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Abstract

The creation and use of models is critical not only to the scientific process, but also

to life in general. Selected features of a system are abstracted into a model that

can then be used to gain knowledge of the workings of the observed system and

even anticipate its future behaviour. A key feature of the modelling process is the

identification of commonality. This allows previous experience of one model to be

used in a new or unfamiliar situation. This recognition of commonality between

models allows standards to be formed, especially in areas such as measurement.

How everyday physical objects are measured is built on an ingrained acceptance

of their underlying commonality.

Complex systems, often with their layers of interwoven interactions, are harder to

model and, therefore, to measure and predict. Indeed, the inability to compute and

model a complex system, except at a localised and temporal level, can be seen as

one of its defining attributes. The establishing of commonality between complex

systems provides the opportunity to find common metrics. This work looks at

two dimensional cellular automata, which are widely used as a simple modelling

tool for a variety of systems. This has led to a very diverse range of systems

using a common modelling environment based on a lattice of cells. This provides

a possible common link between systems using cellular automata that could be

exploited to find a common metric that provided information on a diverse range

of systems. An enhancement of a categorisation of cellular automata model types

used for biological studies is proposed and expanded to include other disciplines.

The thesis outlines a new metric, the C-Value, created by the author. This metric,

based on the connectedness of the active elements on the cellular automata grid,

is then tested with three models built to represent three of the four categories of

cellular automata model types. The results show that the new C-Value provides

a good indicator of the gathering of active cells on a grid into a single, compact

cluster and of indicating, when correlated with the mean density of active cells

on the lattice, that their distribution is random. This provides a range to define

the disordered and ordered state of a grid. The use of the C-Value in a localised

context shows potential for identifying patterns of clusters on the grid.
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5.1 Examples of nine different probability grids. The 40 by 40 grids

were created with an increasing probability that a cell would be

active, where a probability values of 0.1 means around 10% of the
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number of active cells increases as the probability value increases.

The random dispersal of the active cells leads to them occurring on
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relatively static BBR value for all the probability simulations. . . . 178
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5.9 The combinations of neighbourhood search type and search range
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5.13 Measurement of a range of probability grids, p value={0.1, 0.2, ....,

0.9} used as initial input for a dynamic scenario, using a 40 by 40

grid. (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6, (g) 0.7, (h)
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LIST OF FIGURES xxiii

5.17 Results from the first 650 time steps of the simulation of amoebae
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40 by 40 grid with 600 amoebae and a total of 222 blocked cells and

probability settings of (pT , pE, pA) = (1, 0.01, 0). The run was for

2000 time steps, but gathering had been achieved by 650 time steps.

The graphs show the results for (a) C-Value, (b) Entropy, (c) BBR

and (d) Mean Density. The variance of the mean density graphs is

a result of more than a single amoeba being able to occupy a cell.

The prefix to the legends of 1M3 signify the value of the cells being

measured (1) and a Moore neighbourhood (M) with a range of 3 (3).203
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and probability settings of (pT , pE, pA) = (1, 0.01, 0). The resulting

reaction-diffusion waves are shown as red for excited cells, and or-

ange for refractory cells. The amoebae are shown as black cells and
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time steps. The simulation used a 20 by 20 grid and probability
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5.21 Results from a run of 360 agents gathering together over 250 time
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reflects the impact of more than one amoebae being able to occupy

a cell. The fluctuation continues at a much more reduced level after

time step seven. It affects the smoothness of the C-value graph, but

it does not alter the overall steady incline. The prefix to the legends

of 1M3 signify the value of the cells being measured (1) and a Moore
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Chapter 1

Introduction

1.1 Background context

Models are used across a range of systems and for a number of purposes. They

can be used to show how a system will work, or how something will look. A model

can be used to test the suitability or limitation of, for example, a new material or

a design modification. In physics the emphasis is on a model being quantitative,

with mathematics used to define the quantitative relationships. The output of

such models can be compared with real systems. In this way a model can also

be applied as a method of hypothesis of how a system works (deductive), or will

work (predictive). As a system becomes more complicated it becomes necessary to

abstract key features of the system, rather than model the entirety. This process

of abstraction can be viewed as a practical form of reductionism used to simplify

the complicatedness, before applying reductionism to ascertain how a system fits

together and functions. Such reductionism has proved the backbone of scientific

advancements made over the centuries since Newton.

But some sciences, such as biology, have areas that are not so susceptible to the

use of mathematical models.

“[A]ll biological systems are based on the same elemental matter as

everything else, so why can’t physics and chemistry fully explain bio-

logy? A significant difference between biology and more fundamental

sciences is that in biology elementary particles combine to form ‘com-

plex agents’ – machines that perform tasks – and the behavior of these

agents is often difficult to capture mathematically.”

[Tamulonis, 2013, p.7]

1
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Complex systems present severe challenges for modellers and reductionists. They

are, by their very nature, extremely hard, if not impossible, to de-construct, ana-

lyse and understand. They often exhibit unexpected high level structures, some-

times referred to as ‘emergence’, although the actual origins and definition of such

emergence are still widely disputed. The greater the level of abstraction used to

model complex systems the more the process moves towards simulations where

the rules used should not be seen as a direct expression of the rules governing the

complex system. Instead they represent potential insights into the working of the

system.

Indeed, it could be held that everything observed is in fact a model or abstraction

of the real world or a mental model that influences how we interact with the world

[Forrester, 1971; Rosen, 1991; Senge, 2006].

“Each of us uses models constantly. Every person in his private life and

in his business life instinctively uses models for decision making. The

mental image of the world around you which you carry in your head is

a model. One does not have a city or a government or a country in his

head. He has only selected concepts and relationships which he uses

to represent the real system. A mental image is a model. All of our

decisions are taken on the basis of models. All of our laws are passed

on the basis of models. All executive actions are taken on the basis of

models. The question is not to use or ignore models. The question is

only a choice among alternative models.”

[Forrester, 1971]

Mental models are also used in the process of anticipation where an organism

anticipates how something works by correlating the action of the model of a pre-

viously observed system with a newly encountered one. This ability can be seen

as a key element of complex organic systems [Nadin, 2012; Rosen, 2012], while it

can be seen in the tagging and internal models included in the basic elements of

complex adaptive system (CAS) [Holland, 1995]. General Systems Theory seeks

to identify system isomorphisms and uncover isomorphic laws. In a similar way

the forming and utilising of mental models can be transposed onto the concept of

sharing a formal model between analogous systems [Rosen, 1991], thus suggest-

ing the possibility of identifying some common metrics between systems through

their shared model. This would be useful in any search for common indicators in

complex systems, such as for when it moved from or to a high-ordered state. This

search can be started by first selecting a commonly used modelling environment.
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The use of computers and computational models has greatly facilitated the simula-

tion of not only mathematical based models, but also complex systems capturing

the interaction of multiple elements. Parts of the latter may involve mathem-

atical equations, but the overall working of the model is not open to a single

mathematical definition. Thus, the predictions that can be extrapolated from a

mathematical model have to be induced with computational models through the

running of the simulations [Tamulonis, 2013]. Lattice based models, or cellular

automata (CA), have been used as the basic framework for many computational

models studying complex systems, including within biology [Chopard et al., 2002;

Ermentrout and Edelstein-Keshet, 1993; Hegselmann and Flache, 1998; Kroc et al.,

2010; Mitchell, 1996; Packard and Wolfram, 1985; Schiff, 2007; Tamulonis, 2013;

Torrens, 2000; Wolfram, 1984b, 1994, 2002]. The CA lattice of cells, or grid, is

usually one, two, or three dimensions, with each cell in one of a finite number of

states. The rules determining the new state of a cell uses the current state of its

designated neighbours. The cells on the grid are updated in discrete time steps;

traditionally this has been a synchronously update of all the cells, although asyn-

chronous updating schemes that do not always update all the cells within a time

step have become commonplace. Two dimensional CA (2D CA) models provide a

better visual tool than 1D CA when representing 3D events such as traffic or pedes-

trian flow, or the development of skin pigmentation. Although 3D CA mirrors the

world we live in, this simpler realisation of 2D CA, coupled with the greater ease of

programming and running 2D simulations, make it a widely used format. Applied

CA research has been conducted with specific systems in mind, although there has

been a move towards providing a formal setting for CA modelling. This use of CA

can be seen in attempts to bring the concept of emergence into the design of en-

gineered systems methodology [Fromm, 2006]. Ermentrout and Edelstein-Keshet

[1993] proposed three categories of 2D CA models within biology, (deterministic,

particle and growth). If these types are applied to systems outside the discipline

of biology, then there is the possibility of seeing analogy between diverse systems

modelled by the same type, if not across the types. Such analogy would increase

the chance of discovering common metric or means of measuring the output space

of lattice-based models from diverse system domains.

1.2 Motivation

While models and simulations of complicated or complex systems are only likely

to give an abstracted and partial view of a system, they can have the benefit of

showing the state of the system within a localised context over a set period of

time. The modeller chooses a specific modelling technique and the abstractions
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to be modelled with a view of what they are hoping to observe, especially when

the model is designed as a form of monitoring. Cell-based models, including two

dimensional CA, have become very popular and are used to model aspects of

different types of non simple systems. Although they are not as closely coupled

with real systems in the way that some models are, nor are they a panacea for all

modelling, 2D CA do model diverse systems using the same technique and using a

common output format. How the output space is analysed does depend on what is

being modelled and what is being sought. But the analysis of the cell-based output

space has the potential of giving metrics that could be applied to the changing

state of the output space over time for a diversity of systems. Various measuring

techniques have been used, but they have generally been employed to identify

specific, sought after patterns or behaviour within the output space, rather than a

common metric of the overall state of the space. Those measures that have been

considered and proposed have their limitations. The aims and objectives of this

thesis listed below outline the approach being taken in this thesis to propose a

metric that provides a common means of identifying the state of a 2D CA output

space.

Aims:

1. to extend the three classes of biologically 2D CA outlined in Ermentrout

and Edelstein-Keshet [1993] to include non-biological motivated models and

models using probability in either or both their updating schemes and rules

(enhancement of existing work)

2. to design, implement and evaluate a simple method based on connectedness

between the active cells to identify the state of 2D CA grid space (novel

work)

3. to identify a general means of identifying the changing state of a 2D CA grid

space across different domain models (novel work).

Objectives:

1. to classify systems using 2D CA modelling by means of the type of model

used and the characteristics of the observed output (aim 1)

The behaviour and output expected from each of the three types of CA

models of biology can be used to distinguish them. Deterministic automata

focus on the synchronous, non probabilistic changing state of each cell on

the grid; particle automata deal with agents’ movement across the grid; and
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growth automata track the gradual spread and population of cells across

the grid. Non biological extensions to deterministic automata, can include

forest fires, browning motion and various power-law models, such as earth-

quakes. But there are also a large group of automata that use probability in

an asynchronous updating scheme or in the rules used to update a cell. This

group, labelled in the thesis as “randomised automata”, extends the mod-

elling of systems traditionally covered by deterministic automata and needs

to be viewed as a separate type of CA. Growth automata, can encompass

models of snow crystals, snow avalanche and slime mould. Particle automata

arise out of the lattice gas models, which feature the changing state of the

particles when they collide. But an increasing number of particle or agent

based automata can be classified as non collision models, such as pedestrian

and vehicle and swarm models. Within the non collision based models there

are basic flow models, threat models, (including evacuation where humans

can exhibit herd behaviour), obstacle and navigation models. While there

is a temptation to split this type into two types, particle and agent, the

similarities are strong enough to keep them as one type.

2. to establish any analogy between different systems using 2D CA models (aim

1)

The abstraction of a system into a model simulated by a 2D CA can be

classified by the type of CA model used. The similar grid behaviour and

output expected within each type would indicate that a level of analogy

exists between the models of the different systems within each type, which

in turn has the possibility of some common metrics associated with the

output of the models.

3. to develop the basis of a measuring technique that can be used with 2D CA

output from different domains and with different expected output (aim 2)

Visualisation of the CA model is a key part of its appeal as a modelling

technique. But other measuring techniques have been employed, including

density measures, the tracking of agent movements, the measurement of ‘en-

tropy’ and the identification of patterns and clusters. Clustering algorithms

are utilised both in the modelling rules used in the running of the CA and in

determining the presence of clusters of a specific type of cells. Any generic

metric needs to move away from the identification of specific features and

instead focus on the changing state of the CA grid as a whole.

4. to evaluate the suitability of the measurement technique against various 2D

CA output scenarios (aim 2)
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Any metric has to first distinguish between different states of the CA grid,

such as between whether the active cells are randomly spread across the

grid or show any level of clustering. This can be related to the density and

number of clusters on the grid, as well as any pattern created on the grid

or the formation of just a single cluster. The visualisation enabled through

the CA modelling technique makes it simple to create a range of scenarios

to test against. The new proposed technique needs to be compared to other

existing measurements of 2D CA output.

5. to construct models to simulate and measure the output of three types of CA

models, deterministic, particle and randomised (aim 1, 2 and 3)

The use of scenarios can be used to test and tune any metric. The purpose of

this objective is to test the metrics against the changing state of the output

of actual models of three different types of 2D CAs. The changing state

illustrates the movement to or from a random distribution of active cells on

the grid to one that has some discernible order or grouping of the active

cells.

6. to evaluate the effectiveness of the measure and metric (aim 2 and 3)

The effectiveness of any metric is not only how well it works, but also how

it compares to other metrics.

7. to establish if the new metric provides the basis of tracking changes in the

overall state of the CA output from different domain models (aim 3)

The final objective is to see if the new metric can be used to track the state

of the lattice of different domain models as it changes between a random

and a highly structured state.

1.3 Plan of thesis

The closing section of this chapter outlines the plan of the thesis (see also Fig-

ure 1.1).

In chapter 2 some of the ideas on the central topics of the thesis are reviewed,

starting with the classification of systems and the role of reductionist and non-

reductionist approaches in the analysis of systems. This leads into an exploration

of isomorphism, analogous systems and modelling. The epistemic value of com-

puter simulation is then considered. This is followed by an explanation of the

computational modelling technique of cellular automata (CA) and examples of
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the variety of systems modelled with it are outlined. The types of CA defined in

[Ermentrout and Edelstein-Keshet, 1993] are reviewed and a couple of enhance-

ments proposed. The task of measuring 2D CA output is reviewed prior to the

summary of the chapter.

The simulation methodology adopted and methods used are outlined in chapter 3.

The four approaches to the measuring of 2D CA output space are examined,

including connectedness and the history of its concept and previous manifestations

and usage. The means of testing them with scenarios is explained and the three

types of CA models used are described. The four metrics are then defined in

formal terms.

In chapter 4 the scenarios and models used are outlined and an overview of the

program suite created to run and analyse the scenarios and models is given. Then

the three types of scenarios selected to test the metrics are explained. This is

followed by details of the design of each of the three models and their implement-

ation and validation against the original work from which they were drawn. A

test plan is presented for each model.

The results from the scenarios and from the simulations of the deterministic,

randomised and particle models are analysed in chapter 5. This incorporates a

comparison of the performance of the three existing metrics and the connectedness

method proposed in this thesis.

In chapter 6 there is a discussion of the impact and relevance of the findings that

are highlighted throughout the thesis, beginning with the enhancement of the clas-

sification of CA types. This is followed first by an evaluation of the scenarios and

models used, and then by a review of modelling and the role of the three models

used within the context of the simulation methodology. Next the performances of

the four metrics are considered; this leads into an evaluation of the connectedness

metric proposed in chapter 3. The chapter concludes with a reappraisal of the

modelling process and the feasibility of a common means of evaluating the state

of a 2D CA output space across different system domains.

The main body of the thesis ends with chapter 7, where the objectives from

chapter 1 are reviewed with reference to the research carried out in the thesis.

This is followed by a statement on the contribution made by the thesis. The

chapter ends with suggestions for future work.
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Chapter 2

Systems, models and simulations

2.1 Introduction

Systems and models form an integral part of the scientific method. The op-

eration of a system, comprising of two or more interacting elements within a

defined boundary, is observed and a hypothesis formed to explain the observed

phenomenon. The system can consist of subsystems that interact and the re-

lationship between its boundary and its surrounding environment can be either

closed, isolated or open. Models, based on the abstraction of features of the sys-

tem perceived to be pertinent, are used to refine the hypothesis and provide the

basis of what an experiment then needs to validate. In this formal environment

the experiment provides epistemic value, rather than the model. The model itself

can range from a partial extraction of a real life system, to a representation of the

target system governed by a globally defined mathematical equation.

In everyday life the experience and information gained from observing the be-

haviour of one ‘system’ can be used in mental models to predict how a newly

encountered system might behaviour. The effective mapping of similarities or

analogies between source and target systems is also fundamental to how a simula-

tion, (where a model is ‘run’), provides any epistemic value, opaque or otherwise.

Simulations provide a representation of the target system, but unlike an experi-

ment they have no material link with it. In cases where the interactions within a

system are such that its behaviour cannot be reduced to a mathematical equation,

then experiments can be difficult to construct and run. A recourse to understand-

ing and unravelling such ‘complex’ systems is to simulate their behaviour. This

can be seen in the computer simulations used in astrophysics and climatology.

While such large simulations are testament to the power of modern computers,

a considerable amount of computer simulation is conducted at a much simpler

9
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and a much less resource consuming level. Cellular automata (CA) provide such

a framework. A cellular automaton is made up of a lattice of cells. Each cell is

in one of a finite number of states, and the lattice can be in any finite number of

dimensions. The cells are updated in discrete time steps using the values of a cell’s

neighbours to determine the value of that cell at the next time step. CA have been

used to model complex behaviour [Kroc et al., 2010; Wolfram, 1984a], including

self organisation [Fatès et al., 2008; Wolfram, 1994]; a high ordered state that is

seen as emergent as it cannot be attributed directly to the known characteristics

of the elements within a system, in this case the cells of the cellular automaton,

their state and the local rules governing their update. Emergence within a system

is seen by many as a key characteristic of a complex system.

A ‘dumb hole’ uses nearly perfect fluids, such as Bose-Einstein condensate, to

create a sonic black hole that is theoretically similar to a gravitational black hole

[Dardashti et al., 2014]. This example of an analogous simulation shows how a

model of one system can be used to understand another system that is extremely

difficult to observe. This similarity in the behaviour of two diverse systems is

demonstrated through a shared model. The running of the simulation produces

output that is then shown to exhibit the common behaviour. Computer simu-

lations have a problem in that the operation of the computer and the program

governing the simulation are opaque. There is always the possibility that anything

observed is an artefact, rather than a true representation of the target system.

Despite this, many CA simulations utilise abstracted characteristics of real life

systems to solve problems in different system domains; such as chemotaxis for

modelling pedestrian movement [Schadschneider, 2001] or the gathering of agents

[Fatès et al., 2008]. In this way an analogy is being drawn between two systems.

But like analogous simulations, these computer simulations use measurements that

are obviously specific to the simulation and the motivation driving the simulation.

Two-dimensional CA have been used as simple simulations of many different sys-

tems (see subsection 2.6.5). Each simulation shares a similar modelling frame-

work, including the visual output space. But even if a varied selection of CA

simulations are grouped into different types of CA, (such as in [Ermentrout and

Edelstein-Keshet, 1993]), within each type there is no guarantee that one measure

used to analyse the output of one cellular automaton could be used across that

type of CA. The identification of a common measure across the CA output from

the simulation of models of diverse systems would be of interest, not least in es-

tablishing a common indicator of the state of the output space that is independent

of any measure specific to a simulation. This forms the central part of the thesis
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and is introduced in chapter 3.

This chapter is split into seven further sections. A review of how systems have

been classified as simple, complicated and complex is carried out in section 2.2.

Special attention is given in subsection 2.2.3 to what makes a system complex,

including emergence in subsubsection 2.2.3.2. Comparisons are explored between

complex systems and both chaotic systems in subsubsection 2.2.3.3 and complex

adaptive systems in subsubsection 2.2.3.4. The subsection on complex systems

concludes with a working definition of a complex system in subsection 2.2.4.

Although reductionism continues to be an extremely useful and effective way of

analysing isolated and closed systems, it does have limitations when facing the

openness associated with complex systems. These limitations are considered in

section 2.3 and then a non-reductionist view of systems is presented in section 2.4.

The latter looks at similarities between second order cybernetics of von Foerester

and Robert Rosen’s relational theory. This features (a) the role of the observer in

subsection 2.4.1, (b) how the interactions between the system’s constituent parts

is explained in terms of relations, anticipation and feedback in subsection 2.4.2,

(c) the importance of context when modelling in subsection 2.4.3, and (d) role of

isomorphism and analogous systems in modelling in subsection 2.4.4. .

The latter section concludes with the idea of looking for some analogy, and thus

common indicator, in a common modelling technique and the measurement of the

output space. This leads into the appraisal of computer simulation in section 2.5,

including their epistemic worth compared to experiments in subsection 2.5.1 and

their use and epistemic value as opaque thought experiments in subsection 2.5.2. A

brief outline of the advantages of computer simulation is given in subsection 2.5.3.

This is followed by a review of two types of simulations in subsection 2.5.4; those

based on global mathematical equations and those using local rules. The latter

features cellular automata, which are explored in section 2.6.

The thesis uses two-dimensional CA for its simulations (see chapter 4). The use

of different dimensions is considered in subsection 2.6.1 and two-dimensional CA

are explained in subsection 2.6.2. The impact of synchronous and asynchronous

updating schemes is evaluated in subsection 2.6.3. The review of CA closes in

subsection 2.6.5 with an outline of some of the different areas of investigation

that have been modelled by CA. The areas of physics & chemistry, social science,

biology & medicine, earth science, traffic flow and general applications are then

regrouped using the three broad categories of CA labelled in [Ermentrout and
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Edelstein-Keshet, 1993] as deterministic, particle and growth automata. A fourth

category of randomised automata is then proposed and a revised table of CA

simulations is presented.

The penultimate section, section 2.7, looks at the issues of measuring different

types of CA. In subsection 2.7.2 a outline is given of how various entropic meas-

urements have been used to measure for emergence in CA, such as by tracking any

loss of randomness. The section ends with an overview of Kolmogorov Complexity

in subsection 2.7.3. This offers a relatively easy way of measuring an output space

if it can be represented in a string format. The chapter closes with a summary in

section 2.8.

2.2 Systems - a linear view

The definition of system in the Oxford English Dictionary includes:

“1. An organized or connected group of objects

2. A set or assemblage of things connected, associated, or interde-

pendent, so as to form a complex unity; a whole composed of parts in

orderly arrangement according to some scheme or plan; rarely applied

to a simple or small assemblage of things (nearly = ‘group’ or ‘set’)

3. In various scientific and technical uses: A group, set, or aggregate

of things, natural or artificial, forming a connected or complex whole.”

Simpson et al. [1989]

The key feature is the connectedness of interrelated and interacting components,

grouped, by implication, within a defined boundary. A basic system is generally

referred to as simple. The terms mechanistic and mechanical are also used. From a

reductionist’s stance systems are on a linear sliding scale of simple to complicated

to complex, (see Figure 2.1).

Simple Complicated Complex

Figure 2.1: Linear scalar of systems

In this reductionist or mechanistic view a system’s position on the scale is de-

pendent on our knowledge of how it works. The position can change as our under-
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standing grows or, if the system boundaries expand, lessens. But the definitions

and demarcation between simple, complicated and especially complex can be con-

fusing.

2.2.1 Simple systems

Simple systems conform to the reductionism ideal. They are reducible to their

component parts, from which their function can be ascertained. These parts can

then be reassembled to reproduce a working system. Their alternative titles of

mechanistic and mechanical signifies the way that they are generally constructed

systems, built with a discernible purpose in mind. In this way the models asso-

ciated with simple systems range from detailed design drawings and scale models

to modelling of the performance of the system as a whole, or of component parts.

The latter is often carried out as part of a system’s test programme, such as stress

tests of an aircraft wing in a wind tunnel.

A simple system is often an artefact, constructed with a purpose in mind. Con-

sequently, the relational aspects of the system can be subsumed into the general

attributes of the system and its components. An example of this is the relatively

simple system of a combustion engine where the principal operation is the ignition

of a gas so that it expands to apply force to a component of the engine, for example

a piston. Both the process of causing the gas to expand and the working of the

piston can be tested separately. It is only when they are integrated together that

the relationship between the chemical reaction of the gas and the machined struc-

ture of the piston results in the creation of mechanical energy. This mechanical

energy is not part of the individual components, but a product of their interaction

as a result of their engineered relationship. This relationship in a simple system

is usually taken for granted as it is designed and explainable.

The various models of a simple system can lead to the sharing of new techniques

with other modelling processes and systems, such as new construction methods, or

uses for new materials. Measuring methods can also be shared across models and

actual systems. Load bearing factors, CO2 omissions, fuel consumption, engine

power, and heat efficiency are just a few examples of measurements that can be

used in multiple models and systems. Such measures can be used with a model

to monitor the performance of a system, or to analyse production performance

issues. Consequently, a key feature of a simple system is the ability to measure,

quantify and predict its actions.
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2.2.2 Complicated systems

A complicated system can be seen as a larger simple system; still predictable and

following discernible rules, but with more components. The components can even

contain one or more simple systems. In his use of broken symmetry to reappraise

reductionism and point out its limitations, Anderson et al. [1972, p.396] stated

that “[a]t some point we have to stop talking about decreasing symmetry and

start calling it increasing complication”. This follows the concept that as things

grow and move up the scales, then the interaction will change the symmetry and

potentially involve new laws. As with a simple system, a complicated system can

be reduced to and reassembled from its parts [Ottino, 2004], and as he elaborates

elsewhere:

“Très compliqué is used to describe the most elaborate mechanical

watches. They are, as their French name implies, complicated. A

Star Caliber Patek Phillipe has 103 pieces. A Boeing 747-400 has,

excluding fasteners, 3106 parts. In complicated systems, parts have to

work in unison to accomplish a function. One key defect (in one of the

many critical parts) brings the entire system to a halt. This is why

redundancy is built into designs when system failure is not an option

(e.g., a nuclear submarine).”

[Ottino, 2003, p.292. author’s italics]

This view of a complicated system involves not just the ability to reduce and

rebuild a system, but also an understanding of the integrity of the relationship

between the components of the system. Kier and Witten [2005, p.9] concur that

“Complicated systems also have the property that one key defect can bring the

entire system to its knees”. Bak [1999] observes that large dynamic systems are so

complicated that it is impossible to construct a full-sized model. Also, he contends

that it has to be modelled as it is too complicated to collect and analyse data from

real life. “In the final analysis, the quality of the model relies on its ability to

reproduce the behavior of what it is modeling!” [Bak, 1999, p.42]. Furthermore,

he believed that better insight could be gained by starting with simple models and

then building on them, rather than from an over complicated model [Bak, 1999,

p.132].

The distinction between simple and complicated systems has to be more than a

subjective judgement. The size, or rather number of interacting components is

obviously a factor. But when considering Bak’s comment above on the use of

simple models, the concept of some of the components of a complicated system
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being made up of interconnected simple systems could be useful. The predictab-

ility of the simple systems would make any relationship with other sub-systems

or components equally predictable within the context of the complicated system.

Prediction in a complicated system would be harder to achieve than in a simple

one.

2.2.3 Complex systems

If simple and complicated systems are essentially on the same spectrum then on a

linear sliding scale of systems so are complex systems. Consequently, they would be

classified as a higher level of complicatedness. But this mechanistic view of systems

would seem to be limiting, especially when biology and other natural systems are

brought into consideration [Abbott, 2009; Anderson et al., 1972; Hosseinie and

Mahzoon, 2011; Mikulecky, 2001; Rosen, 1991; Schrödinger, 1992]. In contrast

to the potential fragility of a complicated system, adaptivity to prevent critical

failure in the face of any component breaking is held as a feature of complex

systems and distinguishes it from simple and complicated systems [Rickles et al.,

2007]. Indeed, the range of systems that are held to exhibit complex behaviour

extend past biological and non-biological natural systems to include man made

and socio-economic systems [Çambel, 1993]. But it is not absolutely clear what

distinguishes a complex system not only from simple and complicated ones, but

also from chaotic systems and complex adaptive systems (CAS).

2.2.3.1 Linear characteristics of complex systems

If we take the assessment from subsection 2.2.1 and subsection 2.2.2 that simple

and complicated systems are made up of components and relatively simple rules,

and consequently are predictable, then unpredictability would be the key feature of

complexity. But reductionism would see this unpredictability as a result of a lack

of knowledge that could, at least theoretically, be resolved. This once again leads

back to a linear scale of systems and one that is bound up in some measure with the

observer’s ability to understand and predict the workings of the system in focus.

Edmonds [1999b] attempts to get around this ‘knowledge’ problem by defining

complexity as an attribute of the model being used to investigate and understand

a system. His comprehensive study of the syntactic measures of complexity led him

to offer a general definition of complexity that could be reinterpreted in different

contexts:

“Complexity is that property of a model which makes it difficult to

formulate its overall behaviour in a given language, even when given
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reasonably complete information about its atomic components and their

inter-relations”

[Edmonds, 1999b, p.72. author’s italics]

But it could be argued that not only is the building of ‘good’ models a skilful

task, but there is a certain amount of knowledge and experience required when

selecting the attributes of a system to model.

The results of Edmonds’ survey are reflected in the extensive investigation of

complexity and chaos in the context of complex adaptive systems (CAS) carried

out by Couture [2007a], and in the general review of complexity by Mitchell [2009].

The measures of complexity documented can generally be grouped in one of four

categories:

1. more of a result of the complexity than a condition for it (e.g., processing

time and resources)

2. too specific to a limited set of types of complexity (e.g., algorithmic inform-

ation content)

3. too subjective (e.g., algorithmic information content; degree of hierarchy)

4. hard to actually apply (e.g., statistical complexity; entropy; thermodynamic

depth)

So apart from the ability for a complex system to survive component failure, the

only defining characteristic of a complex system would seem to be the unpredict-

ability of the system, albeit maybe only temporarily. Mitchell [2009] holds that

randomness and probabilities are essential properties of a complex system. But

both of these can be seen as complementing unpredictability.

The ability to adapt and to self-organise is associated with complex systems, but

this is an aspect of unpredictability that is aligned with a feature of complexity

termed emergence, where the characteristics of a system could not be directly

traced back to the attributes of the physical components that made up the system

[Couture, 2007b; Fromm, 2005a; Prokopenko et al., 2007]. So this is again a

complementing part of unpredictability. Gershenson [2005, p.3] adopts a practical

notion of the theoretical aspects of self-organisation, “[a] system described as self-

organizing is one in which elements interact in order to achieve dynamically a

global function or behavior”. This would suggest a link between the interaction

of components, unpredictability, self-organisation, adaptability and emergence.
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Ottino [2004, p.399] summarises that “[t]he hallmarks of complex systems are

adaptation, self-organization and emergence”. But there is as much debate around

emergence as there is about complexity.

2.2.3.2 Emergence

The nature of emergence can be described from what could be termed a strong re-

ductionist point of view, as a redundant term created merely to gloss over whatever

we have no current causal explanation for. On the other extreme of the debate,

emergence implies completely novel structures and system characteristics that

‘emerge’ and can not be traced back to the attribute of the components of the sys-

tem. There are examples of previously emergent properties that are subsequently

explained as new scientific knowledge and techniques are developed, such as in

solid state physics and molecular biology [Kim, 2006]. But there are as many

properties in the universe that still appear surprising and irreducible,

“How do proteins work their wonders? Why do magnetic insulators

superconduct? Why is 3He a superfluid? Why is the electron mass

in some metals stupendously large? Why do turbulent fluids display

patterns? Why does black hole formation so resemble a quantum phase

transition? Why do galaxies emit such enormous jets? The list is

endless, and it does not include the most important questions of all,

namely those raised by discoveries yet to come.”

[Laughlin and Pines, 2000, p.30]

Some supporters of emergence have separated it into an observer related feature

and an actual natural phenomenon. Abbott [2006] splits the debate between

functionalism and reductionism, likening his ‘static emergence’, which is not time

dependent, and ‘dynamic emergence’, where emergence is observed as the model

changes over time, to Weinberg’s petty and grand reductionism. Walliser [2009]

has a similar view, seeing epistemological emergence as covering the intended out-

come of the modeller’s conceptualisation of the system; while ontological emer-

gence indicates that the emergent phenomenon actually exists as a characteristic

of the macroscopic level. Hosseinie and Mahzoon [2011] argue that a better meta-

physical framework (Transcendentalism) is needed to understand emergence, as

reductionism and holism explain different perspectives of the functional levels and

scope of a system. Ronald et al. [1999] goes so far as to put the observer at the

centre of any notion of emergence; it is visualised in the mind of the observer and

as such has a nebulous quality to it. The role of the observer is considered in

subsection 2.4.1.
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Various attempts have been made to give substance to emergence by listing its

characteristics. Couture [2007b, p.73] lists (a) supervenience - dependence on

existence of a lower level, (b) downward causation - the effect is not epiphenomenal,

but has a causal effect on the levels below , and (c) irreducibility - it is not the

aggregate of component parts. De Wolf and Holvoet [2005] place supervenience,

downward causation and irreducibility in their micro-macro effect, two-way link

and radical novelty respectively. They then propose another five: (a) coherence

(pattern formation), (b) interacting parts (local interaction micro-level elements),

(c) dynamical (system evolution), (d) decentralised control (self-organisation), and

(e) robustness and flexibility (adaptability).

In what can be seen as a step on from characteristics, various classifications and

frameworks have been proposed to clarify the nature of emergence, resulting in

even more discussion. Fromm [2005b], on his part, outlined a taxonomy of four

types of emergence: (a) simple/nominal emergence without top-down feedback,

(b) weak emergence including top-down feedback, (c) multiple emergence with

many feedbacks, and (d) strong emergence. The idea itself of weak and strong

emergence has led to much debate about their definition. Davies [2006] suggests

that weak emergence is where the system and its environment could be explained

theoretically through reduction, but in practice needs close analysis or simulation.

Bedau [2008] focuses on weak emergence, which depends on the system being open

and the downward causation being diachronic; with the latter, the macroscopic

can affect the microscopic conditions for a future state, but it is not a disorderly or

vicious cycle and represents a degree of equifinality. Emergence, especially strong

emergence, is usually associated with downward causation, where the macrolevel

affects the microlevel [Clayton and Davies, 2006]. Ryan [2007] argues that emer-

gence is understandable only if it is explained with reference to the relationship

between the scope of macro and micro level descriptions, rather than through

levels of observations; he defines an emergent property as something only seen

at the macro level and it is ‘weak’ when the levels differ only in resolution, and

novel when the difference between the macro and micro levels is only in their

scope. This view is expanded to propose an information-theoretical framework

for complexity science [Prokopenko et al., 2007]. Deacon [2006] takes the cir-

cular causality demonstrated by feedback in dynamic systems, and argues that

emergent dynamics arise out of the stochastic nature of a system, which amplifies

and dampens the feedback between different dynamic levels; the circular process

provides a degree of system closure and he places emergent phenomena into three

subcategories (teleodynamics, morphodynamics and thermodynamics), which he

arranges in increasing topological complexity.
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Boschetti and Gray [2008] take what seems a less philosophical view with their

list of three types of emergence, (1) pattern formation, (2) intrinsic emergence and

(3) causal emergence. They question to what extent emergence can actually be

modelled or simulated - especially causal emergence. They caution against taking

models too seriously, “[n]o actual information about the real world is produced by

a simulation” [Boschetti and Gray, 2008, p.4]. They also espouse the idea that as

things change existing information is used; new information is not created, instead

the original rules and states are reviewed and whatever is needed is extracted,

“[t]heorems are transformations of information, not new information” [Boschetti

and Gray, 2008, p.4]. Rickles et al. [2007] also take a practical view concerning

how there can be a hierarchy of levels producing emergent properties. They state

that:

“Emergent properties may also be universal or multiply realisable in

the sense that there are many diverse ways in which the same emer-

gent property can be generated. For example, temperature is multiply

realisable: many configurations of the same substance can generate the

same temperature, and many different types of substance can generate

the same temperature.”

[Rickles et al., 2007, p.934]

If it is agreed that emergence cannot be explained by the aggregation of the

components of a system, and that something cannot arise out of nothing, then the

only other system activity mentioned is the interaction or relationship between

the system components; unless the system is so open that factors outside the

designated system boundary are having an impact on the system. There are still

the potential problems of (a) unpredictability and its association, if any, with the

lack of knowledge and (b) whether everything that could have an effect on the

system has been taken into account such that “out of nothing” would have to

be qualified by the limitations of what was known and modelled; such that it

was ‘out of something unknown or not modelled’. There is also the question of

whether any emergence remains emergent once it is satisfactorily explained. If

this was the case, then the example in subsection 2.2.1 of a combustion engine

creating mechanical energy would not be held as emergent. Kim [1999] refers to

emergent and resultant. The former indicates something new and unpredictable

that has no inductive or no theoretical predictability, whereas the latter is additive

or subtractive and could still be a complex calculation, but its predictability is the

key difference with an emergent characteristic. This could work for the creation

of mechanical energy in a combustion engine if it was seen as an additive result of
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a spark, a combustible gas and a container that could expand with the explosion

of the gas. However, even at this simple system level it seems a relational process,

rather than a physical component one.

Whatever decision is taken on emergence in simple systems and the classification

of emergence once its causation is explained and a level of predictability achieved,

the issue of unpredictability and knowledge remains. It may be that the desire

for a more fixed definition of complexity and emergence is fruitless. But there is

potential if unpredictability is coupled with non-computable. Laughlin and Pines

[2000, p.28] point out that the equation of conventional non-relativistic quantum

mechanics “cannot be solved accurately when the number of particles exceeds

about 10. No computer existing, or that will ever exist, can break this barrier

because it is a catastrophe of dimension”. But, reductionism, with its goal of

a theory of everything [Barrow, 2008], and the ideas of a digital world espoused

by Zuse [1970] and Fredkin [1990], would dispute the existence of anything non-

computable [Brodu, 2007, p.17]. However, there are other views on the nature of

systems that will be discussed in section 2.4.

2.2.3.3 Complex and chaotic systems

There has been a lot of interest in chaotic systems, strange attractors and the

unpredictable nature of such systems, even though they are deterministic [see

Crutchfield et al., 2008; Gleick, 1987; Kellert, 1993; Lam, 1998; Newman, 1996;

Strogatz, 1994; Wuensche, 1998]. Chaos has been associated with complexity [see

Çambel, 1993; Couture, 2007a; Holland, 1998; Langton, 1990; Prigogine et al.,

1985]. Indeed, complex systems can be chaotic, and vice versa. But in terms of

systems, chaos is not synonymous with complex.

“Chaos is the generation of complicated, aperiodic, seemingly random

behaviour from the iteration of a simple rule. This complicatedness

is not complex in the sense of complex systems science, but rather

it is chaotic in a very precise mathematical sense. Complexity is the

generation of rich, collective dynamical behaviour from simple inter-

actions between large numbers of subunits. Chaotic systems are not

necessarily complex, and complex systems are not necessarily chaotic

(although they can be for some values of the variables or control para-

meter; [...]).”

[Rickles et al., 2007, p.934]
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A complex system is open to its environment and subject to the variants that

can result from a large collection of interacting components. While sensitivity

to initial conditions is seen as a key feature of chaotic systems, the non-linearity

usually inherent in complex systems results in them sharing this sensitivity. But

an obvious extension to this is that the complexity of the many components and

their interaction within a complex systems means that this sensitivity can arise

from any or all of the various points of interaction; the input from a subsystem or

from the interaction of components can induce a sensitivity that is not confined

to the initial start up of a complex system. This sensitivity, whether from initial

conditions for chaotic or complex systems or from any internal input point of a

complex system, means that the behaviour of the system under observation is

extremely hard, or impossible to predict with any degree of certainty.

2.2.3.4 Complex and complex adaptive systems

It is not always clear what difference is intended between the use of the label com-

plex system and complex adaptive system (CAS). Some literature use complex

system for natural, but not biological systems, such as for Bak’s sand pile exper-

iment. Holland [1998] uses the term CAS to cover both natural systems such as

societies and the immune system, and also engineered systems such as distributed

computing and artificial intelligence systems. A CAS is usually associated with

a collection of interacting autonomous or semi-autonomous agents; the ability of

these agents can range from relative simple behaviour to very complex systems

or complex adaptive systems in their own right - human beings are an obvious

example of the latter type. On a more simplistic level, the modelling of the self-

organisation of cells on a grid can be seen as the simulation of a CAS. In the

same way as in cybernetics, there are often layers of systems within systems. The

system containing the agents that is the focus of an investigation (the system in

focus) is the microsystem or microscopic level; any high level structure that arises

from the microscopic levels manifests itself in the macrosystem or macroscopic

level [Ruhl, 2006b]. Such a view tends to identify multiple microscopic levels

below the macroscopic level. But as discussed above, while there are rules govern-

ing the agents and their interaction, the ability to predict how they will behave

and how the system will evolve is virtually impossible as even minute changes to

the composition of the system, or perturbation from the environment will alter

the flow and evolution of the system. None of this makes any great distinction

between a complex system and a CAS, nor provides any new insight into what

makes a system complex. There is no real discernible difference in the elements

attributed to a CAS from those of a complex system. Ruhl [2006a] comments on
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the “co-evolution” and “radical openness”, but such behaviour is not precluded

from complex systems.

2.2.4 Complex systems revisited

The previous subsections have reviewed what makes a system complex. A number

of characteristics have been mentioned. A complex system tends to be more open

to its environment, making its context very relevant. The interaction between

its many components leads to unpredictable behaviour that it is not possible to

attribute to the physical components that make up the system. This unpredicted

behaviour can manifest itself, for example, as adaptation and self-organisation

that emerges unexpectedly. This gives the concept of order arising out of disorder

and, in the same way, emergence being linked to a loss of randomness.

Ladyman et al. [2013, p.26] argue that randomness in a complex system should be

associated with the “source of interaction” between the components. They also

highlight that emergence is a required feature of a complex system, but it is not

all that is needed to define it:

“Certainly we must say that emergence in all epistemological senses is

necessary for complex systems. If a system doesn’t exhibit higher-level

order as discussed above, then it is not complex. However, emergence

is not sufficient because, for example, an ideal gas exhibits emergent

order but is not a complex system.”

[ibid, p.9]

They stress the need for the system to have “many elements”, although this once

again introduces a degree of vagueness as to how many is sufficient; they consider

a provisional definition:

“Complex System (physical account) A complex system is an

ensemble of many elements which are interacting in a disordered way,

resulting in robust organisation and memory.”

[ibid, p.27. authors’ bold font]

Memory is inferred from the robustness; and robustness means that any emer-

gence, such as a pattern or self-organisation, persists even though the system’s

many elements continue to interact. This robustness also reflects a complex sys-

tem’s ability to suffer perturbations or survive component failure, unlike a simple
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or complicated system. This definition features interacting elements and order

emerging from disorder. Although not explicit, unpredictability is implied in the

robust organisation arising from the disordered interaction between the many com-

ponents in the system.

A more explicit version of the above definition is proposed as a working definition:

A complex system is a collection of many elements whose random in-

teraction leads to the unpredictable emergence of robust organisation.

2.3 Reductionism and its limitations

If the extreme reductionist’s view is taken that everything in a system is the-

oretically reducible to its component parts, then an increase in the number of

components in a system and the complicatedness of their interactions above that

of a complicated system would be a definitive feature of a complex system.

However, if, for example, unpredictability is taken as the core feature of a complex

system, then non-computability, non-reducibility, openness and the increase in

system permutations through the interaction of components and context could all

be seen as contributing to the level of unpredictability. It is worth looking a little

more at why reductionism is considered by many to have limitations.

Even those highlighting the shortfalls of reductionism have pointed out the fact

that it has been fundamental to the scientific advances made over recent centur-

ies [Edmonds, 1999b; Ellis, 2006; Hosseinie and Mahzoon, 2011; Kineman, 2011b;

Laughlin and Pines, 2000; Weinberg, 2008]. It is still seen as a mainstay of scientific

analysis in the scientific method [Barton and Haslett, 2007]. The act of reduction

is central to everyday activity, providing, as it does, a means of breaking something

into manageable parts. In this way reductive analysis is fundamental to general

problem solving. Indeed, the abstraction we employ in our mental modelling is

itself a part of reductionism. Reductionism abstracts or breaks a system into smal-

ler parts that are easier to analyse and then explain in an unambiguous syntactic

language. In this way a sense of objectivity is presented. The reductionist world is

composed of mechanistic systems that can be recursively de-constructed, segment

by segment, layer by layer, like a matryoshka doll, until we arrive at the funda-

mental formulae and building blocks of everything. Consequently, any system that

cannot be seen in mechanistic terms is specific and non-generic.
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Reductionism focuses on the components within a system and the structural or-

ganisation of those physical components. Its models are generally expressions of

systems closed to the external environment. But this overlooks the system’s in-

teractions between the components internally and with the external environment.

The latter, which can be seen as the context of the observed system and its model,

can influence and potentially change the functions, interactions and relationships

within a system. And despite all the scientific success brought by reductionism

and the scientific method over recent centuries, what we actually know is very

limited; for example, the standard model is an explanation of the fundamental

structure of matter, but “the model only describes the 4% of the known universe,

and questions remain” [CERN, 2013].

“For the biologist, evolution and emergence are part of daily life. For

many physicists, on the other hand, the transition from a reductionist

approach may not be easy, but should, in the long run, prove highly sat-

isfying. Living with emergence means, among other things, focusing on

what experiment tells us about candidate scenarios for the way a given

system might behave before attempting to explore the consequences of

any specific model. This contrasts sharply with the imperative of re-

ductionism, which requires us never to use experiment, as its objective

is to construct a deductive path from the ultimate equations to the

experiment without cheating. But this is unreasonable when the be-

havior in question is emergent, for the higher organizing principles

- the core physical ideas on which the model is based - would have

to be deduced from the underlying equations, and this is, in general,

impossible.”

[Laughlin and Pines, 2000]

Questions over the central and singular role of reductionism are not new. Rosen

[1987, 1991, 2012], in his argument for his modelling relations, proposed that the

prevalent state of systems is complex, which reductionism is not capable of prop-

erly explaining; furthermore, the non-porous boundary between a simple system

and a complex one was defined by a complex system having at least one of its parts

that was non-computable. Kineman [2011b, 2012] synthesised modelling relations

into R-theory, with reductionism complementary to it. Davies [2006] held that a

complete reductive analysis of a system is only possible if the system is closed.

He argued that as novel behaviour is partly a result of a complex system being

open, then reductionism would be inadequate to explain everything. Synthesis

and holism hold that a system cannot be reduced or studied in isolation, but has



CHAPTER 2. SYSTEMS, MODELS AND SIMULATIONS 25

to be observed as a complementary part of an active, open and dynamic system

[Hitchins, 2003b]. Çambel [1993] advocated a dual approach that applies reduc-

tion to the details of complexity, while also maintaining an holistic viewpoint.

Koestler, as highlighted by Corning [2002], shared a similar view, believing that

living systems could only be explained through both reductionism and holism.

The openness means that unpredictable or novel behaviour in a system can be

explained by causes outside the system boundary. The system boundary can be

expanded to include the causes, thus making the behaviour predictable within the

system. But Chu et al. [2003] explained that there is a state of radical openness’s

where the boundary can no longer be extended and the system is at its most

complex. As the resources needed to reduce a complex system far exceed what

is available to us, Edmonds concentrated on the models and formal languages

used to investigate and explain complex systems to then arrive “at an analytical

useful conception of complexity” [Edmonds, 1999b, p.134]. He later suggested a

pragmatic approach to the reductionism verses holism debate [Edmonds, 1999a]

Consequently, there are a number of characteristics of complexity that reduc-

tionism fails to, or has difficulty in addressing, including openness, component

interaction, emergence, and non-computability.

2.4 A non-reductionist view of systems

The consideration of interaction between system components and the consequence

of opening a system up to external perturbations is not a recent occurrence, al-

though modern day complexity theory and chaos theory would be the first focus

of much research.

“Complexity theory is an approach to the modelling of highly com-

plicated and interconnected systems using techniques derived from the

physical sciences, with a focus on self-organisation, emergence and

nonlinearity. It takes inspiration both from general systems theory

and cybernetics.”

[Ramage and Shipp, 2009]

While it is interesting that the authors talk of “highly complicated and inter-

connected systems” rather than complex ones, the main point for the current

discussion is the reference to general system theory (GST) and cybernetics.
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“GST studies systems at all levels of generality, whereas Cybernetics

focuses more specifically on goal-directed, functional systems which

have some form of control relation.”

[Heylighen and Joslyn, 2001]

GST, founded by von Bertalanffy, believed in the importance of an interdiscip-

linary approach that considered open systems, emergence, system boundaries and

hierarchies [Ramage and Shipp, 2009]. The intentions of GST were:

“ 1. To investigate the isomorphy of concepts, laws, and models from

various fields, and to help in useful transfers from one field to another

2. To encourage development of adequate theoretical models in fields

which lack them

3. To minimize the duplication of theoretical effort in different fields

4. To promote the unity of science through improving communications

among specialists.”

[Adams et al., 2013]

For their part, cybernetics focused on the idea of feedback and information within

a system, and the similarities between human and machine behaviour. Von Foer-

ster and second-order cybernetics moved cybernetics from a quasi objective and

mechanistic view of systems, to one that emphasised “autonomy, self-organisation,

cognition, and the role of the observer in modelling a system” [Heylighen and

Joslyn, 2001]. Glanville [2002] saw this development as comparable to the pro-

gress made between the “Newtonian view of the universe, and the Einsteinian”.

Cybernetics distanced themselves from the linear causality of reductionism, see-

ing causality as circular and self referential, without any defined primary cause.

Thus cybernetics modelled systems with feedback loops and feed-forward loops.

This circularity can be seen in the organisational closure of a system, such as the

concept of autopoiesis that Maturana and Varela [1980] used to describe life.

The basis of relational theory and the modelling relation [Rosen, 1991, 2012] was

formulated from a similar multi-disciplinary melting pot of ideas as cybernetics,

although it has only recently been synthesised into R-theory [Kineman, 2011a,b,

2012]. Core to the theory is the idea that complex systems predominate and

mechanistic or simple systems are a specific category of systems. R-theory has

similarities with cybernetics. The role of observation plays a key role, as it does

in second order cybernetics. The model of anticipation (see figure Figure 2.2(a))
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bears, according to Nadin [2010, pp.24-25], a “striking analogy” to “von Foersters

concept of non-trivial machines” (see Figure 2.2(b)). Its metabolism repair, or

(M,R) system has comparisons with autopoiesis [Nomura, 2007] and the concept of

anticipation has been coupled with autopoiesis in an algorithm to show autopoietic

properties in a cellular automata model [Dubois and Holmberg, 2010]. At its

heart is the view that the organisation of relations between the components of a

system within a context is more important than the organisational structure of

the physical components. In this way everything observed can be seen as a model,

even our view of our surroundings and the natural world. The model or realised

view of a system is bound to the continual process of abstracting and modelling the

system within a context. The context can be modified or changed and represents

the potential that a system can realise. A mechanistic view of a system can be

taken by reducing the realised system to a fixed, single context, with no potential

outside of that context. Organisation within R-theory and cybernetics should not

be confused with thermodynamic order and disorder; instead it is how a system is

organised in terms of the relationship between components and also between the

organisation and the components.

The following subsections look at some of areas that can be seen as limited by

reductionism, but catered for by GST, cybernetics, R-theory, or a combination of

them.

2.4.1 The observer

Consideration of the role of the observer has already been referred to in subsub-

section 2.2.3.2 when looking at emergence and in the section above when referring

to Von Foerster and the second order cybernetics and the importance they placed

on the observer. In second-order cybernetics the focus moves from the detachment

of observed systems to an integration of the observer and an ‘observing systems’

where the aim of the model is replaced by that of the modeller. In this way the

system becomes less controlled and more autonomous and the focus is on the

interaction between observer and observed [Umpleby, 2001].

R-theory makes the forming of models an essential part of the relationship that

you have with the environment, or the ‘ambiance’ external to your inner self. In

essence, our modelling of the natural world is the forming of a mental model,

making the relationship between modelling and observation pervasive.
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might indeed allow for further dialogue between the strict-Rosen followers and the
computational-oriented new generation of researchers. Rosen’s strict terminological
discipline should, of course, not be construed as a declaration of ownership. My own view
of anticipation, which highlights non-deterministic processes, as well as anticipation as a
realisation in the space of possibilities, probably differs from his. The understanding of
anticipatory processes as definitory of the living is shared by a minority of those pursuing
the subject. But this is science, always subject to subsequent revisions and re-definitions,
not religion or a dogmatic pursuit of pure terminology. It would benefit no one to proceed
in an exclusionary manner. Knowledge is what we are about and, in the long run, our better
understanding of the world and of ourselves is the final arbiter. In this sense, it can prove
useful to our understanding of Rosen’s contribution and the richness of attempts not
aligned with his rigorous science, to shortly acknowledge yet another fascinating scientist
whose work came close to some of Rosen’s interrogations: Heinz von Foerster. We were
unable to find out whether the two of them met. von Foerster was associated with the
University of Chicago for a while; his Biological Computer Lab at the University of
Illinois-Urbana Champaign could not have escaped Rosen’s attention. Moreover, his
original writings (in establishing Second Order Cybernetics) definitely caught Rosen’s
attention. von Foerster himself was aware of Rosen’s work and found the subject of
anticipation very close to his own views of the living and on the constructivist Condition of
Knowledge. But what prompts our decision to bring up von Foerster is the striking analogy
between Rosen’s model (1985a, p. 13) and von Foerster’s concept of non-trivial machines
(von Foerster and Poerksen 2002) (Figures 2 and 3).

Let us only make note of the fact that non-trivial machines are dependent on their own
history (which is the case with Model M in Rosen’s model), cannot be analytically
determined, and are unpredictable (cf. von Foerster and Poerksen 2002, p. 58).

If the suggestion holds – and we should dedicate more time to it – it is quite clear how
from the original Rosen definition of anticipation, many more, derived as alternative non-
trivial machines (in von Foerster’s sense, i.e. non-algorithmic), were conceived and tested.
Sure, this brings up important epistemological questions, from among which I would only
allude to one: replication. Howard Pattee, his colleague at theCenter for Theoretical Biology
in Buffalo, still cannot accept Rosen’s intransigence in dealing with von Neumann’s
universal constructor – a construct that could achieve unlimited complexity. Pattee is
willing to concede that formally von Neumann’s model (which he – Rosen n.n. – thought it

Figure 2. Rosen’s (M,R)-model.
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competed with his own (M,R)-model) was incomplete. But he argues that actually, von
Neumann and Rosen agreed (life is not algorithmic). Moreover, that self-assembly
processes characteristic of the living do not require complete genetic instructions. The
reason for bringing up this point is rather practical, and Pattee (2007) expressed it
convincingly: we should avoid getting diverted from Rosen’s arguments only because, at
times, they do not conform with the accepted notions (in this case, von Neumann’s
replication scheme).

Rosen (1966) was actually opposed to von Neumann’s understanding of the threshold
of complexity, bringing up the need to account for the characteristics of the organism as
evolvable. Nevertheless, in hindsight we can say that both realised, although in different
ways, that if complexity is addressed from an informational perspective, we end up
realising that life is ultimately not describable in algorithmic terms. Chu and Ho (2006)
correctly noticed that, in Rosen’s view, ‘living systems are not realizable in computational
universes’. They provided a critical assessment of Rosen’s proof, which Louie (2007)
refuted. Louie’s argument in some ways confirms that non-algorithmic self-assembly
(epigenetic progresses) is of such a condition that it does not require either full
descriptions of the functions or of the information involved in living processes.

Given the implications of this observation, we need to give it a bit more attention.
Along the line of the Church-Turing thesis – i.e. that every physically realisable process is
computable – von Neumann (1963, p. 310) went on out a limb and stated, ‘You insist that
there is something a machine cannot do. If you will tell me precisely what it is that a
machine cannot do, I can always make a machine which will do just that’. If von Neumann
was convinced that telling precisely what it is a machine cannot do – emphasis on
precisely – is a given, he was not yet disclosing that telling precisely might after all
require infinite strings, and thus make the computation to be driven by such a description
impossible (intractable, in computer science lingo). Actually, von Neumann should have
automatically thought of Gödel in realising that a complete description, which would have
to be non-contradictory, would be impossible. Descriptions, in words (as he expected, cf.
‘anything that can be completely and unambiguously put into words . . . ’), or in some other
form, are, in the final analysis, semiotic entities. They stand as signs for something else
(the represented), and in the interpretant process we understand them as univocally or
ambiguously defined (Nadin 1988).

Representations of the world, not fragments of the world, are actually processed. Until
the development of brain imaging, we could not capture the change from sensorial energy
to the re-presentational level. And even with images of the brain, we still cannot quantify
semiotic processes. It is the re-presentation of things, not things themselves, that is subject
to processing and understanding. Re-presentations are renewed presentations as signs; that
is, attempts to associate a sign to an object and to conjure the consequences that the sign
might have on our activity. Re-presentations can be of various degrees of ambiguity –
from very low (indexical signs, as marks left by the object represented) to very high
(symbols, i.e. conventions). Lightning arouses a sense of danger associated with
phenomena in the world. The black cat brings up false associations (superstitions) with
dangers in the world. They are of different levels of ambiguity. The living can handle them

Figure 3. ‘Roadsigns definitions postulates aphorisms, etc.’ [sic] (von Foerster 1995).
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used in buildings and will become as ubiquitous in the 21st Century as lighting 

systems became ubiquitous at the start of the 20th Century. Designers in the early 

part of the 20th Century had to conceptualise electric light as a medium in its own 

right. 21st Century designers will have to be equally fluent in automatic, reactive and 

interactive design, i.e. time-based design in its three main forms. Designers and 

architects are faced with an essentially new extension to their craft [Gage. 2002].  

 

One of Von Foerster’s comments on trivial machines relates to nature, “The 

discovery of agriculture is the discovery that some aspects of nature can be 

trivialised”! “If I till today, I will have bread tomorrow.” [Von Foerster, 2002b] 

Agriculture is a constructed construct, one of the oldest and most powerful social 

constructs ever developed. As a natural magician, Von Foerster was initially part of 

an equally powerful, more recent enterprise – the natural science project of the past 

five centuries. The aim has been to construct more trivial machines that describe the 

workings of more and more aspects of nature.  

 

These trivial machines allow us, as designers, to create time-based variety by 

mimicking nature. It is possible to construct transient constructs using rule bases of 

such complexity that, when operating, are only partially understood by passing 

observers. 

 

 
Non-trivial Machine ‘Understanding Understanding’  page 311 fig3 

 

This is Heinz Von Foerster’s non –trivial machine. The inner element is invisible and 

the product (f) z is dependant on an internal feedback loop. The output continually 

varies rather like the output from a chaos pendulum. The result is a form of pattern 

that continually changes but remains strangely familiar. It is possible to construct a 

wide range of physical devices which behave in this way. A typical example is Peter 

! ! ! ! (b)

Figure 2.2: (a) Rosen’s anticipatory model [Louie, 2008, p.299], with
the model (M), the effector (E) and the object system (S). The output
goes into the encoding for ‘current time’ model of the natural system;
thus the environment entails both the model and the scenario of the
object system (S); M entails E and can be entailed by E; and E entails
S both directly and through influences the environment’s entailment
of S. (b) von Foerester’s non-trivial machines (adapted from Nadin
[2010, p.25]), with internal feedback and a similarity to a black box
where it is synthetically determined, history dependent, analytically
undetermined and unpredictable.
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The impact of observation and measurement within a supposedly closed environ-

ment was first clearly demonstrated in quantum physics. But unexpected emer-

gence can also be seen as a result of observation and analysis; “The scientist

interacts with the system in two ways; through setting the actual experiment

up to be observed and through measurement probing of the system” [Kier and

Witten, 2005]. A link between observation and emergence is also highlighted by

Kitto [2008], who suggests that the observer creates an epistemological emergence,

while novel complex system behaviour is ‘real’ emergence and can be termed as

ontological emergence. The impact of the interaction between the observer and

the system can be more profound. Gershenson and Heylighen [2003, p.610] reason

that, “[a]gain, the purpose of the system is not an objective property of the system,

but something set by an observer” (authors’ italics).

It is understandable that despite all attempts to make science as objective as

possible, inevitable anthropocentrism means everything has to be defined in terms

that we can understand and, potentially, observe. Bonabeau and Dessalles [1997]

connect emergence with the observer and the methods of measurement used; these

can be the observer’s own senses or created ones, such as models, but they are all

supplementary to the system and not intrinsic to it. They argue that,

“Nothing would emerge in the absence of human observers and of their

conceptual constructs.”

[Bonabeau and Dessalles, 1997, p.10]

Observing does not equate with subjectivity, but it does belie any concept of true

objectivity being really achievable.

2.4.2 Relations, anticpation and feedback

The importance of interaction between components was key in GST, cybernetics

and R-theory.

“Systems are nets of relations which are sustained through time. The

process by which they are sustained are the process of regulation. The

limits within which they can be sustained are the conditions of their

stability”

[Vickers, 1983, p.17. author’s italics]

The feedback and feed-forward mechanisms of the cybernetics and the concept of

anticipation in R-theory are examples of relational influences within open systems.
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In R-theory the anticipatory system of an organism, which is seen as a subset of a

complex system, allows it to model situations in faster than conscious time, thus

allowing possible scenarios to be analysed and used in the making of a decision

[Rosen, 2012]. The process could be far reaching, as in evolutionary characteristics:

“In terms of material structure, the evidence of organization-based

anticipation of future conditions can be seen in the existence of such

things as reproductive organs at birth in human babies, long before

any considerations of reproducing become a biological imperative for

that individual organism.”

[Rosen and Kineman, 2005, p.407]

Reductionism holds with a linear concept of time, where the cause of something

precedes the event. As anticipation and feed-forward mechanisms bring in the

concept of the ‘future’ having a causal effect on the present, they can be seen as

problematic for reductionism. On the other hand, feedback is something that fits

into the modelling of systems, simple or more complicated. A feedback mechanism

can be seen as expressing the relationship between components in a system, as well

as with the immediate environment. R-theory is held as a better or as good a way

to model simple systems [Rosen, 1991], but there is no evidence of a working

example.

The relational view is that when two complex systems are combined, the resulting

combined system or systems have their own context and attributes; so any new

features or behaviour that might be viewed as emergent, are explainable as part

of the interaction and combination of the systems, which is more than just the

sum of the combined systems. Kineman [2007, pp.64-65], with reference to the

article by Ulanowicz [2007] Emergence, naturally!, highlights how the third system

appears naturally, leading to 1 + 1 => 3; stating that:

“This result supports the view that the functions of each system inter-

action must be considered uniquely and recorded with respect to their

original context. Furthermore, the concept of ‘emergence’ is clearly an

artefact of the mechanistic/quantitative analysis; whereas the ‘third’

system exists quite naturally in a relational analysis Ulanowicz [2007].”

[Kineman, 2007, p.65]

The important of context is considered in the next section.
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2.4.3 Context and modelling

Cakar et al. [2007] define degrees of self-organisation (SO) where the term self

depends on the context of the system’s boundaries and the view point of the

observer. Second-order cybernetics was focused on the importance of the observer

in the modelling process. This took the model away from a closed, mechanical

representation, to one that was open and subject to perturbations. The observer

provided the context or setting of the model, and as such the actions of the observer

and the context influences what was being modelled. Likewise, the why or purpose

of a system is linked to the context of a system. The context illuminates the

purpose of a system and facilitates or impedes the achieving of any system goals.

So the context that the system is observed in is crucial to how the system is

observed.

Edmonds [2007] argues that modelling with a view to the context is essential,

terming this as ‘context-dependency’. In a later work Edmonds [2010] makes the

observation that unlike complex systems, simple systems can be modelled from

the perspective of a single context. He goes on to take a pragmatic view where the

inability to compute the full nature of complexity can be aligned with the concept

that complexity can only be modelled in a localised and temporal way [Edmonds,

1999a]. In this way the constraint of a localised context is imposed to allow a

limited observation of a complex system to be modelled.

Chu et al. [2003] proposed the concept of ‘radical openness’, where systems are at

their most complex. This would appear to correlate with the ‘high end complexity’

of Kitto [2008]. She goes on to point out it is not just that a complex system is

open, but that there is a ‘blurring’ of the boundary between a system and its

environment; she argues that the dynamics of the system with its environment, or

its ‘contextuality’, is vitally important. Kitto proposes a scalar view of systems

where there are bands of ‘simple’, ‘contextual’ and ‘observer driven’, but there is

no clear distinction between what is or is not a complex system (see Figure 2.3).
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Figure 2.3: A linear complexity scale proposed by Kitto [2006, p.21].
All systems belong to a scale of complexity, where some are more com-
plex than others. The scale stretches from Newtonian mechanical sys-
tems exhibiting simple ‘complexity’, to systems displaying high end
complexity

2.4.4 Isomorphism, analogous systems and modelling

Traditionally the methodology of science has followed either the experimental or

theoretical paradigms, with the latter relying on the former to verify or falsify their

theories [Kroc et al., 2010]. This approach does not open itself up to abstraction

at a level that can find and exploit such phenomena as emergence [Beautement,

2001], nor to the modelling of component interactions and relations. The benefit of

such an approach can be seen in the application of chaos in short-term prediction

on the behaviour of a complex system or the use of small perturbation to stabilise a

system without even fully understanding the dynamics of the system [Lam, 1998].

Hitchins [1996] states that complexity can be part real and part perception; he sees

models and an external view of the system as two effective ways of cutting through

the complexity. As mentioned in subsection 2.2.2, Bak [1999] maintains that large

dynamic systems are both too complicated to model in their entirety, and produce

too much data in real life for any comprehensive collection and analysis of their

output; he advocated the use of models, starting with simple ones that could then

be built on to discover insights into the working of the system. Natural systems,

such as the swarming behaviour of bees or fish, or the Nile perch in Lake Victoria

discussed by Chu et al. [2003], are open systems and have no unique pattern.

Therefore any models used to simulate them cannot be verified or validated. A

prediction can be made and a model applied and observed, but the confirmation

can only be partial and the main worth of the model is heuristic [Oreskes et al.,
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1994]. In this way a speculative formulation, serving as a guide in the investigation

or solution of a problem (often the most appropriate solution of several found by

alternative methods), is selected at successive stages of a program for use in the

next step of the program. Bonabeau et al. [1999] argue that a model of a swarm

should be consistent with what is known about the natural system as you are

trying to show how the natural world works.

In R-theory the modelling relation has to be in congruence, or else it is not a

suitable model [Louie, 2007; Rosen, 1991]. If the congruence or modelling relation

is between just the input and output, then you have a simulation as you have no

way of learning how the natural system functions internally or is organised. A

modelling relation has to be formed between the causality of the natural system

and the inference of the formal system; this enables you to gain insight into the

organisation and workings of the natural system. In contrast to this, cybernetics

has the concept of a ‘black box’ whose internal workings cannot be explained,

except for the inputs and outputs; in some ways this can be seen as a simulation

within R-theory. Two important concepts arise out of the implication of the

modelling relationship, which have similarities in cybernetics:

1. a natural system, or the system being modelled, can have multiple models;

Edmonds [2007] refers to this as ‘clusters of models’ that can be combined

in many ways; cybernetics also have the concept of one to many, as well as

many to many, which can increase the variety of a system

2. the same formal system or model could hold for more than one natural

system; this would make the natural systems analogous; in cybernetics and

GST a key objective is to find isomorphisms in the modelling of systems,

although allowance has to be made for von Bertalanffy caution against the

inappropriate application of isomorphism

Analogy is a relation between natural systems which arises through the models of

their causal entailment and not directly from their material structures. This can

be seen in the way we apply and modify mental models to different systems and

different contexts. As such, analogy and its cognates offer a more powerful and

physically sound alternative to reductionism; they ‘share a common model’ and

therefore are ‘analogous systems’, as opposed to ‘one encompasses the other’ with

a separate model for each [Louie, 2009, pp.102-103].
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However, Godfrey-Smith [2006] in his argument that the ‘semantic view’ was dis-

torting the philosophical understanding of models, argues that:

“For one scientist, the model might operate merely as a predictive

device. All that matters is its input - output profile. For another,

the model is not just a device for predicting what the system will do,

but a causal map of the target system that tells us something about

why it does what it does. This more realist attitude does not present

itself as a “yes or no” choice, or even as a single gradient. There is

usually something more like a multidimensional space of different ways

in which a model system might resemble a target. Following Giere

(especially 1999), I reject attempts to give a uniform formal analysis

of these resemblance relations using a concept of isomorphism, or some

relative of that concept.”

[Godfrey-Smith, 2006, p.733]

The subjectivity associated with the application of a semantic view of a system is a

common argument levelled at the alternatives to reductionism. But, reductionism

attempts to facilitate objectivity through a syntactic approach. In doing this it

encloses and limits itself, especially in terms of complex system modelling and

analysis.

“For better or worse we are now witnessing a transition from the sci-

ence of the past, so intimately linked to reductionism, to the study of

complex adaptive matter, firmly based in experiment, with its hope for

providing a jumping-off point for new discoveries, new concepts, and

new wisdom.”

[Laughlin and Pines, 2000, p.30]

The modelling process is pervasive in the natural world,

“At one extreme, bacteria hardwire simple models in their biological

structure, while at the other extreme humans employ conscious mental

processes and store formal mathematical tools in books and computers.

Nonetheless, they both ‘model’ and ‘predict’.”

[Boschetti et al., 2012, p.108]

They further qualify that models are not solely for prediction, but also for examin-

ing, comprehending and even controlling a system; but any prediction is (1) not a



CHAPTER 2. SYSTEMS, MODELS AND SIMULATIONS 35

prophecy, (2) only valid within the context of the model, (3) is scale-dependent,

and (4) the building of the model itself is a catalyst for further conjecture and

experimentation, rather than end target of the modelling process [Boschetti et al.,

2012, pp.109-111].

A model of a system can be at a level of abstraction that renders it specific to

that system. This would logically give the potential for more to be learnt about

the system being modelled, but it would negate the possibility of discovering any

analogous systems and through them any comparable and transferable features

or facts. This implies that the degree of abstraction would need to be more

generalised in order to facilitate the identification of analogous systems. A mental

model can be formed of the result of dropping a brick on your foot. That model

can be abstracted in different ways and levels to suggest the consequence of, for

example, (a) a brick hitting another part of your body, (b) a heavy object hitting

you, (c) the level of pain and damage caused by the fluctuation in the weight

and velocity of the object hitting you, (d) the pain experience by someone else

hit by an object, and onto (e) the likely damage resulting from the impact of two

inanimate objects, based on additional knowledge such as the weight of the objects

and the velocity at the point of impact. The potential of using the mental model

in a different modelling scenario is increased as the degree of abstraction becomes

looser. In the last example the focus has moved from pain and damage, to just

potential damage, which may be informed by another set of models more related

to the specific inanimate objects under observation; such as ones that took account

of the physical composition of the objects. And as can be seen, the relevance of the

weight and velocity involved in the impact has been extracted as things that can

be used in the analysis and prediction of the consequence of two objects colliding.

A cybernetic inspired model showing a basic feedback system could be labelled to

show a number of basic systems, where an activity is turned on or off depending

on the feedback received. This involves measuring the feedback, but it might

be the temperature in a room, the level of water in a cistern or the amount of

energy being used to maintain a vehicle at a set cruise control speed. In this

very basic level of abstraction the state of the feedback mechanism is a general

indicator of the state of the system. As the model becomes more detailed, then

the link between the commonality of the model and analogous systems becomes

harder to maintain, and any general indicator becomes more obtuse. This would

suggest that the generality of an indicator would lessen as the model became more

detailed and less abstract. A slightly different approach would be to consider a

common modelling environment that is used for the modelling and simulation of
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a variety of different systems. So the analogy would be through the output, or

output space being created or used. This would restrict the generality of any

indicator to systems that could be modelled via the common modelling technique,

and possibly to groups within that range of systems. Any generality would be in

the measurement of that output space.

2.5 Computer simulation

Although computer simulation, (sometimes referred to as digital simulation), is

the focus of this section, it is worthwhile first to look at an analogue simulation.

A celebrated example is the “dumb hole” simulation using Bose-Einstein condens-

ates and fluid flow as an analogue for the behaviour of black holes [Schützhold

and Unruh, 2002]. Dardashti et al. [2014] hold that this simulation of a dumb hole

goes further than the common use of analogy in philosophy and science. They

propose that analogue simulation should replace the nomic isomorphism of ana-

logical reasoning, which in the case of the dumb hole example would lead to the

impractical task of establishing a full nomic connection between the source and

target system. Instead “[a]nalogue simulation, as we understand it, can occur

even when the syntactic isomorphism one can identify does not hold between the

laws governing the two systems in generality” [Dardashti et al., 2014, p.10]. They

contend that:

“[T]here is a syntactic isomorphism to be exploited in the dumb holes

case, and we think it is best understood as holding between two very

particular modelling frameworks, each with narrower scope than genu-

ine laws. The question is not of an isomorphism between the laws of

fluids and the laws of quantum gravity on the other. Rather, there

is an isomorphism between a particular adequate way of modelling a

special class of fluid setups and a particular adequate way of modelling

the behaviour of quantum fields near a black hole horizon.”

[ibid , authors’ italics]

The analogue simulation has a material model and experiment as its source system

that is analogous to the target system, whereas a computer simulation runs a

model that represents the target system. While both types of simulations share

no material similarities with the target system1, Durán [2014] points out that

analogue simulations, as opposed to computer simulations, are causally related.

1The concept of silicon based target system being simulated on a computer with silicon chips
is looked at by Winsberg [2009, p.5], who holds that “[o]ne problem is that, in this case, it seems
quite clear that the relevant similarities are not material”.
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A succinct definition of a model used as the basis for a computer simulation is

given as:

“[A] hypothetical system that is claimed to represent a certain target-

system.”

van der Grient [2011, p.5]

Thus a computer simulation uses a hypothetical system as its model, which might

be a representation of an abstraction of either the target system or a system ana-

logous to an abstraction of the target system. The latter can be seen in the use

of abstractions of natural biological systems in the computer simulation of diverse

systems (for example, cockroach aggregation and collective decision making in a

group of micro-robots [Garnier et al., 2008]; swarm theory and the control of un-

manned aerial vehicles [Hart and Craig-Hart, 2004]; the aggregation of the Dicty-

ostelium discoideum cellular slime mould and decentralised gathering [Fatès et al.,

2008; Girau et al., 2009]; chemotaxis and pedestrian dynamics [Schadschneider,

2001]).

Kier and Witten [2005] draw a distinction between two types of simulation along

different lines. They see the two types as both being “active imitations of real

things, [...] but with different aims” [ibid, p.5]. The purpose of the first is to

replicate a specific behaviour of the target system, but usually with very little

contextual relevance; such as a mechanical bird whistle or a hologram. “Such a

simulation reveals little or nothing about the features of the original system, and is

not intended to do so” [ibid ]. But the second type of simulation has much greater

ambitions, achieved by running it:

“It attempts to mimic at least some of the key features of the system

under study, with the intent of gaining insight into how the system

operates. In the context of our modeling exercise, a simulation of this

sort means letting our model ‘run’. It refers to the act of letting the

parts of our model interact and seeing what happens. The results are

sometimes very surprising and informative.”

[ibid ]

But there is debate about the worth of simulations within scientific enquiry and

the nature of their epistemic value.
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2.5.1 Epistemic value of computer simulation

Di Paolo et al. [2000] show a general cycle of scientific enquiry where theory is

refined by constructing a model or a series of models from which arises predictions

that are then compared to observations. In a more specific way the scientific

method has been used in the natural sciences to derive, collate or amend knowledge

using a cycle of theory, analysis, hypotheses and experimentation. Experimentation

has traditionally been seen of greater epistemic value than a simulation [Giere,

2009; Guala, 2002; Morgan, 2005; Winsberg, 2014]. The principal argument is

based on materiality, where an experiment “bears a material similarity to the

target of interest, but in a simulation, the similarity between object and target is

merely formal” [Winsberg, 2014, p.15]. This material connection between source

and target systems promotes a physical connection that cannot be established

through a simulation:

“The epistemological payoff of a traditional experiment, because of the

causal connection with the target system, is greater (or less) confidence

in the fit between a model and a target system. A computer experi-

ment, which does not go beyond the simulation system, has no such

payoff.”

[Giere, 2009, p.61]

So the example of an aircraft wing being tested in a wind tunnel is an experiment

that has a high degree of materiality and, consequently, of epistemic worth. In

this process of experimentation, models can be seen as ways to both formulate a

suitable experiment and to encapsulate and communicate the findings:

“Models not only explain why certain phenomena occur, they also serve

as a way of summarizing knowledge. A good model compresses and or-

ganizes large amounts of experimental data into a succinct description

of the system.”

[Tamulonis, 2013, p.4]

This lack of material connection can call into question the validity and epistemic

worth of computer simulations when compared directly against an experiment.

But Parke [2014, p.17] argues that in the debate over epistemic privilege between

simulation and experimentation, “[t]he methodological difference between experi-

ment and simulation is not purely pragmatic. It matters for making judgements

about epistemic value - but only in a context-sensitive way”. She sees experi-

ments as usually having privilege when little background knowledge is known; but
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in some contexts there is both “enough [information] to build reliable simulations

to answer certain sorts of questions” and issues of scale making it infeasible to

construct accurate physical experiments [ibid ]. Indeed there are situations, such

as in astrophysics and cosmology, where experiments are either not possible, or

have inferior output to computer simulations [Morrison, 2009].

Gershenson [2007, p.54] argues that the model cannot be understood until it is

run; so the computer simulation implements the model. He sees the process as

progressing from the abstract to the particular and the level of simulation moving

from a simple proof of concept to an extensive run that provides data on the

performance of the system. So in some ways a simulation is itself a model of the

system, but it is not the same as a model.

“To summarize, simulations are, like models, autonomous both from

theories and from the real world. They differ from models mainly in

their temporal expansion (and sometimes also in their representation

of a temporal process) as well as in their epistemic opacity.”

[Grüne-Yanoff and Weirich, 2010, p.26]

The epistemic opacity is where “[t]he use of a computer to tackle numerical prob-

lems causes the process between input and output of the simulation to become

opaque” [van der Grient, 2011, p.9]; this refers to the inability to follow the steps

of the process both because the process itself is complicated and because it is

obscured as part of the internal working of the computer. This aligns computer

simulation with the idea of a black box, although Beisbart [2012, p.415] would ar-

gue that “[a] program that predicts the behavior of a target system using a black

box would probably not count as a computer simulation”. Also, epistemic opacity

supports the premise that nothing can be learnt about the causal links of a system

through a simulation. This would make simulations of little or substandard use

in understanding the working of a system when compared to models [Giere, 2009;

Rosen, 1991].

But while the full working of a computer simulation may be epistemically opaque,

they can provide a means of investigating how a system works [van der Grient,

2011], or as a guide to modifications to a model or an experiment [Peschard,

2012]. Rasmussen et al. [2001, p.307] maintain that “[t]hrough simulation we have

come a long way in understanding the nature of evolutionary process”. Some

see simulations as capable of producing new knowledge. Barberousse et al. [2009]

investigate whether simulations can be seen as experiments and conclude that they
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“do generate new data about empirical systems, just as field experiments do” [ibid,

p.573]. In contrast, they are also seen not as experiments, but as arguments:

“I conclude that the epistemic force of computer simulations does not

derive from the fact that they are experiments (if they are so at all),

and that the argument view is superior since it brings to the fore the

assumptions and models upon which simulations are built.”

[Beisbart, 2012, p.425]

Morrison [2009] argues that computer simulation has epistemic status equivalent

to experimental measurement and sometimes provides knowledge in areas where

traditional experiments are of little use. But Giere [2009] counters that even in

models that give us an insight into the phenomena of the target system that cannot

be obtained through traditional methods, such as in astrophysics, meteorology and

climate change, any output has to be qualified “within the confines of the model”

and what is obtained is “only a simulated measurement, not a real measurement”

[Giere, 2009, p.61]. Winsberg [2009] argues against both sides of the debate over

the epistemic value of experiments and simulations, while concluding that there is

some justification to the intuitive feeling that there is a difference. He feels that

“it is true that experiments are not intrinsically more epistemically powerful than

simulations. But there may still be important epistemological differences between

experiments and simulations” Winsberg [2009, p.584 author’s italics].

His final argument is based on the ‘quality’ of the background knowledge:

“How trustworthy or reliable an experiment or simulation is depends

on the quality of the background knowledge, and the skill with which

it is put to use, and not on which kind it belongs to.”

[Winsberg, 2009, p.591]

He earlier qualifies this background knowledge and the difference between simula-

tion and experimentation as follows:

“The conceptual distinction between experiment and simulation is now

clear: when an investigation fundamentally requires, by way of relev-

ant background knowledge, possession of principles deemed reliable for

building models of the target systems, and the purported reliability of

those principles, such as it is, is used to justify using the object to
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stand in for the target, when a belief in the adequacy of these prin-

ciples is used to sanction the external validity of the study, then the

activity in question is a simulation. Otherwise, it is an experiment.”

[Winsberg, 2009, p.588]

Consequently, the reliability of the modelling assumptions or principles used are

employed for the internal validation of an experiment, but for the external valid-

ation of a simulation.

Durán [2014] sees computer simulations, through their ability to process large

amounts of information, as cognitive enhancers. But he sees this as a lower level

epistemic characteristic compared to the ability to “describe patterns of behavior

of the target system”; where he takes “the notion of patterns as one which reflects

the structures, the performance, and the behavior of the target system” [ibid, p.85.

author’s italics]. He argues that:

“The advantage of conceptualizing computer simulations in this way is

that the physical features of the computer are no longer their primary

epistemic virtue, but rather, it is their capacity to represent or describe

patterns of behavior of the target system that entrenches computer

simulations as epistemically powerful.”

[ibid . author’s italics]

Thus, his evaluation of the epistemic power of computer simulation is not focused

on its mechanistic capabilities, but rather on “the analysis on the kind of scientific

activities that a computer simulation can perform” [ibid ].

If a computer simulation cannot realise epistemic value through any material con-

nection to the target system, then its worth has to be seen in terms of its ability to

represent the observed behaviour of the target system. This can also be realised

through the alignment of a simulation with, or as the conceptual model of the

target system, much as in the role of thought experiments in traditional science.

2.5.2 Computer simulations as thought experiments

Mäki [2005, p.309] uses the term ‘thought experiment’ to refer to models estab-

lished on theoretical isolation, as a comparison to ‘material experiments’. He

sees theoretical modelling as being able to impose control on the level of isolation

that is beyond that of a material experiment. He concludes with the suggestion
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that “models=experiments insofar as theoretical models and material experiments

share the characteristics of representations that are manipulated in order to effect

isolations” [Mäki, 2005, p.311]. He goes on to argue that:

“We can talk about two kinds of models: theoretical and material

models; about two kinds of experiments: theoretical experiments (or

thought experiments) and material experiments; and more generally

about two broad classes of representations: theoretical and material

representations.”

[Mäki, 2005, p.312].

While thought experiments can be compared with computer simulations in the

aspect of their content, form and usage [Beisbart, 2012, p.426], by its very nature

the processes outlined in a thought experiment need to be transparent and under-

standable, which is contrary to the epistemic opaqueness of computer simulations

[van der Grient, 2011, p.18]. But van der Grient [2011, pp.18-20] goes on to ar-

gue that computer simulation can raise epistemological questions and “discovers

in the literal sense of the word. It makes visible what was previously hidden or

inaccessible to us”. Di Paolo et al. [2000, p.1] hold the view “that although simu-

lations can never substitute empirical data collection, they are valuable tools for

re-organising and probing the internal consistency of a theoretical position”. They

contend that the model verses simulation model debate can be seen as between the

two extremes where, (1) models are general, whereas simulations are specific and

gain validity based on the amount of the real system they accurately capture, as

opposed to (2) “simulation models [appear] to be more like thought experiments:

unrealistic fantasies which nevertheless shed light on our theories of reality” [ibid,

pp.3-4]. They disagree with both extremes and conclude that:

“[I]t is reasonable to understand the use of computer simulations as a

kind of thought experimentation: by using the relationships between

patterns in the simulation to explore relationships between theoretical

terms corresponding to analogous natural patterns” .

[ibid, p.9]

Their comparison is to opaque thought experiments owing to the explanatory

opaqueness of computer simulations; but like ‘transparent’ thought experiments,

the insights and theoretical challenges they engender then need systematic enquiry

and testing in the real world.
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2.5.3 Advantages of computer simulation

A number of advantages gained by the use of computer simulations have been out-

lined. Kier and Witten [2005, p.7] explain how multi-scale simulations in biology

have been “termed ‘in silico’ modeling and simulation”; they go on to promote

the usefulness of both modelling and simulation within this environment:

“Modeling and simulation provide the scientist with two very useful

tools. The first of these is validation of the theoretical understanding

and its model implementation. The second of these tools is that, the

more complete the model, the more it provides an experimental labor-

atory for further research on the very system being modeled. Thus,

“in silico” models can both validate current viewpoints/perspectives

of the dynamical evolution of a system and can provide an environ-

ment in which the scientist can explore potential new theories and their

consequences.”

[Kier and Witten, 2005, p.8]

Humphreys [2011, p.9] holds that the epistemic opacity of computer simulations

gives rise to many features that were out of reach prior to the widespread use of

computers. He believes, in contrast to reductionism, that computer science and

the simulation tools it provides offers a means of seeing commonality between

different domains:

“Reduction suggests to us that we can better understand higher level

systems by showing how they can be reduced to, how they can be

explained in terms of, lower level systems. Computational templates

suggest that we can gain understanding of systems without pursuing

reduction by displaying the common structural features possessed by

systems across different subject domains.”

[Humphreys, 2011, p6]

Giere [2009, p.59] agrees with the underlying premises of Morrison [2009] “that

computer simulation is a qualitatively new phenomenon in the practice of science.

It is the major methodological advance in at least a generation”.

The focus of the debate within the philosophy of science arena has been mainly

about where computer simulations based on mathematical equations fit within the

accepted model of scientific practice. However, a large body of work has been built

around computer simulations utilising local rules, rather than general overarching

mathematical equations.
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2.5.4 Types of simulations

Computer simulation can be split into two types where the simulation is based on;

(1) the application of a global mathematical equation, such as a partial differential

equation (PDE), and (2) the use of local rules to determine the behaviour of

individual elements or agents within the simulation [Winsberg, 2014].

Durán [2014] focuses on equation-based computer simulations, specifically exclud-

ing cellular automata, agent-based simulations and complex systems from the class

of computer simulations used in his defence of the epistemic power of computer

simulations. He gives a number of reasons for the exclusion, concluding with:

“Perhaps the best reason for excluding cellular automata, agent-based,

and complex systems from this study stems from the minimal require-

ments needed for a successful explanation by computer simulations.

In other words, in equation-based simulations the explanans can be

reconstructed directly from the simulation model since its computa-

tion does not add value to the results. In any of the other classes of

computer simulations, the interplay of the various elements during the

computation must be considered as part of the explanans, for they are

part of the success of an explanation.”

Durán [2014, p.96]

In the same vein, Keane [2011b] argues that within combat modelling a PDE

model can be more easily modified and explained than CA. She also holds that:

“There is a danger in the anthropomorphization of agents, insinuating

agents have a reasoning and planning ability when this is obviously

not the case. Also these types of wargames concentrate heavily on the

addition of extra communication ability between agents, shifting the

emphasis to global or increasingly complex nonlocal features.”

[Keane, 2011b, p.12]

Although CA are used in many combat simulations, she believes that the so called

emergent behaviour is difficult to explain, especially when ‘intelligence’ is assumed

for the agents; whereas, she contends, her mathematical model explained more

about what influences the behaviour of the system and agents. She recommends

the complementary use of PDE; especially “as modern warfare now takes on a

manoeuvrist approach” [Keane, 2011a, p.2735] that has to include nonlocal com-

munication.
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Bryden and Noble [2006] review the difference between explicit mathematical mod-

elling and computer simulation, where the latter has implicit steps within it. The

explicit mathematical treatment are held as simpler to understand than some

“complex and unwieldy computer simulations” [ibid, p.2]. They refer to Chomsky

[1986] and his concept of competence and performance; the former is our intrinsic

linguistic ability and is superior to the latter, which is our actual production of lan-

guage. In this way a computer simulation is seen as a performance of a scientific

explanation, whereas an explicit mathematical model can be viewed as having

some inherent ability or competence as a scientific explanation. They explain how

computer simulations can still have relevance:

“At this point, we are left with a conundrum. If computer simulation

models are viewed as mere instances (performances) rather than as sys-

tematic explanations (having competence), how can they be of use to

science? The answer is that there are many areas, identified especially

in the ALife field, which do not yet yield to mathematical modelling

but in which simulation models can already be produced. Such simu-

lation models not only have scientific power as proofs of concept and

for generation of insights for performing empirical science, but they

can also have some explanatory power (Di Paolo et al., 2000).”

[Bryden and Noble, 2006, p.3]

The concept of computer simulation as a performance echoes both the lack of

materiality between the source and target systems, the representational nature of

the model and the idea that a simulation needs to be run. This could be seen as a

positive and important feature of computer simulations, especially when studying

complex systems and facilitating the investigation of emergence where the actual

background knowledge of the target system is restricted. Bedau [2008] draws an

analogy between computer simulation and weak emergence and argues that:

“Derivation by simulation is the process by which causal influence typ-

ically propagates in nature. [...] Thus, derivation by simulation and

weak emergence apply to natural systems just as they apply to com-

puter models”.

[Bedau, 2008, p.164]
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He goes on to claim that:

“Computer simulations allow weak emergence to extend reductionism

into new territory, but they do so by embodying the idea that some-

thing’s nature can depend on its genesis”.

[Bedau, 2008, ibid, p.184]

Thus, while reductionism is essentially non context dependent, computer simula-

tion and the study of weak emergence relies on context in the form of its initial

conditions. Tamulonis [2013] follows a similar line of thought and states that:

“It is often not clear, for example, how a certain tissue functions as a

whole based on observations of individual cells. To understand complex

systems, we need models that can link emergent properties with the

underlying constituents.”

[ibid, p.3]

He argues that a cell-based model can therefore act as a virtual lab, where experi-

mentalists and theoreticians alike can play with the system and generate targeted

ideas for new experiments [ibid. p.10]. He holds that the sheer computational

power of computer models offers the only way to model complex systems, although

any predictions have to be induced rather than deduced:

“By conducting many simulations for different system parameters, we

can explore how the system behaves under different conditions. This is

a major difference between between computational and mathematical

models. Predictions from computational models can only be made

through induction from running simulations, whereas predictions from

purely mathematical models can be deduced from the equations, and

may not require running any simulations at all. Computational models

may therefore seem to be a more brute force approach, but for most

complex systems there is no other way.”

[Tamulonis, 2013, pp.9-10]

Wolfson incited criticism by suggesting that his in depth study of CA [Wolfram,

2002] heralded, as the title proclaimed, “[a] new kind of science”. He puts forward

the idea of models based on simple programs that offer, through their discrete

operations, an easier way to discover basic phenomenon of complexity than a

mathematical equation modelling a continuous system [Wolfram, 2002, pp.161-

168]. The idea of materiality between source and target system is not relevant

within this modelling world:
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“Whenever one makes a model of something, what one’s trying to do

is to capture certain essential features, and then idealize everything

else away, [...] [T]he whole point of a model is that it’s supposed to be

an abstract way of reproducing what a system does; it’s not supposed

to be the system itself.”

[Wolfram, 2003]

Such models are just run. He suggests that finding the appropriate underlying

model could be achieved in a number of ways:

“Usually that’s sort of a creative act. Or perhaps one has some well-

defined class of models, and one can just use statistics to tweak their

parameters. But what about models based on simple programs? Well,

if a model is simple enough, there’s a bizarre possibility: one can just

search through possible models to try to find it.”

[ibid ]

Wolfram’s claims for his ‘discoveries’ are extensive, but Gray [2003] illustrates

the type of criticism Wolfram has received; his review ends with a response to

the claim that the book was “introducing a major generalization of mathematics”

[Wolfram, 2002, p.7]:

“In this he is entirely mistaken, but there are at least two ways in which

he has benefited mathematics: he has helped to popularize a relatively

little-known mathematical area (CA theory), and he has unwittingly

provided several highly instructive examples of the pitfalls of trying to

dispense with mathematical rigor.”

[Gray, 2003, p.17]

Mitchell [2009] likewise welcomes the publicity that Wolfram has brought to CA,

but observes that “[r]eactions to the book were bipolar: some readers thought it

brilliant and revolutionary, others found it self-aggrandizing, arrogant and lacking

in substance and originality” [ibid, pp.158-159].

Chopard and Droz [1998] hold that the simple rules used with CA to model the

microscopic level of some phenomenon was more intuitive and effective than such

traditional approaches as differential equations. Indeed, the potential and useful-

ness of CA as an alternative to equation-based simulations is put forward by Toffoli
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[1984], who argues that CA can act as an alternative to differential equations in

the modelling of physics. Vichniac [1984] holds a similar view. He argues that CA

can be used successfully in three different, though linked approaches; the “second

approach aims at what Stan Ulam has wonderfully called ‘imaginary physics’ as

opposed to ‘real physics,’ [which is] the object of [the first and third] approaches”

[ibid, p.97]:

(1) CA as mere computational tools.

(2) CA as fully discrete dynamic systems.

(3) CA as original models for actual physical phenomena, possibly competing

with existing continuum models.

A CA defines its own discrete environment, which he sees as having a lot of

similarity with the abstract and theoretical space of a physicist [ibid ]. He concludes

that CA are an enhanced form of simulation:

“In contrast with standard simulations, cellular automata do not only

seek a mere numerical agreement with a physical system, but they

attempt to match the simulated system’s own structure, its topology,

its symmetries, in short its ‘deep’ properties.”

[ibid, p.113]

An example of a PDE based model leading to a CA version is illustrated by Cohen

et al. [2011, 2010]. In [Cohen et al., 2010] the generation of patterns of bristles on

the Drosophila notum is explored using “a set of coupled differential equations”

to simulate the cell signalling process of Delta-Notch mediated lateral inhibition.

This work is then built on in [Cohen et al., 2011] by constructing a CA model

that they use to explore and analyse the role of noise in the organisation of the

bristles, as well as the generation of a range of complex patterns (see chapter 4

for a detailed outline).

The next section looks at CA and some of the applications it has been used with.

2.6 Cellular Automata

The birth of CA is attributed to John von Neumann in the early 1950s, following a

suggestion of Stanislaw Ulam on how to approach his work on an abstract model

of self-reproduction in biology [Berto and Tagliabue, 2012; Chopard and Droz,

1998; Mitchell, 2009; Schiff, 2007; Wolfram, 2002]. The cells on von Neumann’s
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large two-dimensional grid could each be in one of twenty-nine states [Chopard

and Droz, 1998]. Subsequent research using a lattice framework, but not always

the term CA, was carried out, but it was not until Wolfram’s seminal paper on the

“Statistical mechanics of cellular automata” [Wolfram, 1983] that “the first serious

study of cellular automata” was published; according to Wolfram, his paper has

been cited by over ten thousand articles [Schiff, 2007].

CA consists of a discrete lattice of one to n dimensions made up of cells. Each

cell can be in one of a number of defined states at any discrete time step. Al-

though von Neumann used a range of twenty-nine possible states per cell, the

move has generally been to simplify it down to a much smaller range, often just

two, which can then be seen as analogous to a binary on / off, or active / inactive

state. Generally the cells are synchronously updated each discrete time step using

simple rules that use the state of neighbouring cells as their input. But the use of

asynchronous cell updating is now also used.

The attraction of CA can be found in their relatively simple application to complex

phenomena:

“The CA paradigm is very appealing and its inherent simplicity belies

its potential complexity. [...] It has been found that this is an excellent

way to analyze a great many natural phenomena, the reason being

that most physical processes are themselves local in nature - molecules

interact locally with their neighbors, bacteria with their neighbors,

ants with their, and people likewise. Although natural phenomena are

also continuous, examining the system at discrete time steps does not

really diminish the power of the analysis. So in the artificial CA world

we have an unfolding microcosm of the real world.”

[Schiff, 2007, p.xii]

The order that emerges from underlying complexity in biology and nature can

be represented by CA using simple local rules; such as the pattern formation on

the combs of honey bee colonies [Camazine, 1991], the behaviour of genes net-

works [De Sales et al., 1997], and self-organisation [Fatès et al., 2008; Girau et al.,

2009]. Chopard and Droz [1998] reflect that our interest is in observing the macro-

scopic and there is a distinct advantage in the “much simpler microscopic reality”

presented by a CA representation of the “complexity [that] comes from a collect-

ive behavior rather than some distinctive aspects of the microscopic interactions”

[ibid, pp.27-28].
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The growth in the use of CA to model complex system has also seen an increase

in the variety of CAs employed and the formal language used to describe them.

One and two dimensional CA have been the predominant CA modelling environ-

ments2; but there is no theoretical limit on the number of dimensions a CA lattice

of cells can have. CA modelling now includes a range of hybrid and coupled en-

vironments, which broadens and enhances its efficaciousness, while retaining as

much simplicity as possible. The rules used to update the cellular grid can range

from very simple, such as used by elementary cellular automata (ECA), to com-

plicated computation used to remap the cellular space; although the former could

be viewed as a simulation as opposed to the computation of the latter [Baldwin,

2002].

2.6.1 Dimensions

As the world is three dimensional then it might seem obvious that any model hop-

ing to reflect that world should also be three dimensional. However, the majority

of existing CA models are one or two dimensional. Von Neumann’s original CA

was built on a large two dimensional lattice. Wolfram’s work has been principally

concerned with one dimensional CA, or ECA as they are often referred to. Indeed,

Wolfram [2002, pp.169-221] looks at the use of CA with different dimensions and

the correlation with the level of complexity exhibited. He states that traditional

science tends to suggest that adding another dimension will increase the complex-

ity of the observed behaviour. But he holds that his examples of ECAs show as

much complexity and that ECAs in fact underpin whatever dimension is being

used:

“[O]n a two-dimensional grid one can certainly imagine snaking back-

wards and forwards or spiralling outwards to scan all the elements.

But as soon as one defines any particular order for elements - however

they may be laid out - this in effect reduces one to dealing with a

one-dimensional system.”

[Wolfram, 2002, p.192]

Certainly the output of a one dimension CA or ECA shows the evolving effect

of time on the cells within one image, whereas with two and more dimensions a

selection of time steps need to be used to show the evolving state of the simulation.

But while this can make it easier to show the changing state of an ECA, it is

2See the work of Wolfram [1994, 2002] for examples, especially 1D CA; Schiff [2007] is one of
the many useful general introductions to CA
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harder to link it to a natural phenomenon. In some of our main forms of visual

communications, such as drawings and writing, we generally use a two dimensional

platform. A leopard is and is seen as a three dimensional object, but when the

distribution of the spots on its skin are studied it is usually reduced to a two

dimensional representation. This is not only easier and less resource intensive

for our own visual observation and evaluation, but also for any computationally

representation.

In the modelling, for example, of traffic or pedestrian movement, the rendering of

the system into a two dimensional space greatly simplifies the model. Likewise,

the modelling of robots or unmanned vehicles moving across the ground and self

organising is easier to create rules for, model and compute in a two dimensional

representation. Lowe [1987] reflects on how research into computer recognition

assumes that human visual recognition matches three-dimensional objects against

reconstructed three-dimensional data. Instead, he argues that this is not necessar-

ily “the primary pathway used for recognition in human vision and that practical

applications of computer vision could similarly be performed without bottom-up

depth reconstruction” [ibid ]. He suggests “it seems likely that the role of depth

recovery in common instances of recognition has been overstated”, and that:

“While it is true that the appearance of a three-dimensional object can

change completely as it is viewed from different viewpoints, it is also

true that many aspects of an object’s projection remain invariant over

large ranges of viewpoints (examples include instances of connectivity,

collinearity, parallelism, texture properties, and certain symmetries)”

[Lowe, 1987, p.356]

The LEGO construction problem is focused on the development of a computer

program that will generate the LEGO building instruction for any real-world ob-

ject. In his research into the performance of two difference approaches to solving

the problem, one of which was a CA based approach, Smal observed that:

“The traditional approach to solving the LEGO construction problem

is to virtually cut a digital representation of the 3D object into ho-

rizontal two-dimensional (2D) layers. The problem then reduces to a

series of 2D solutions which can be joined together to produce the final

3D LEGO sculpture.”

[Smal, 2008, p.4]
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Line drawings, sketches and 2D images have been used as a basis for creating 3D

objects (see [Lau et al., 2010; Lee et al., 2008; Lipson and Shpitalni, 2007; Tian

et al., 2009]). This gives some credence to Wolfram’s view that a 3D lattice can

be made up of 2D lattices, and a 2D lattice of 1D lattices [Wolfram, 2002].

Computer recognition systems still rely on 2D images, often owing to performance

issues:

“In general, 3D methods are slow and limited in the scale of problems

they can address.”

[Nicholls et al., 2004, p.452]

and,

“However, most approaches are still either limited with respect to the

degree of 3D modeling, or can not provide competitive performance in

terms of 2D B[ounded] B[ox] localization” .

[Pepikj et al., 2015, p.1]

While the visualisation of a 3D object or lattice can be represented at any point

in time with 2D lattices, 3D modelling has clear advantages when modelling the

movement and interaction of elements or agents operating within 3D space, such as

representation of unmanned aerial vehicles swarming or self organising. Although

such modelling could seek to learn from the experience of building two dimensional

models of, for example, unmanned ground vehicles. Decaestecker et al. [2007],

in their review of in vitro screening of anti-migratory drugs, also consider the

increasing role of 3D substrates compared to 2D ones. These tests are experiments,

rather than models, but they illustrate that while 2D tests are easier to run and

observe, there are behaviours that can only be seen in 3D tests:

“The vast majority of cell locomotion experiments are performed for

convenience’s sake on 2D substrates so that they can be easily observed.

[...] Observations of 3D cell cultures have previously shown that when

compared to cells cultured on a rigid (possibly ECM-coated) support

(i.e., 2D cell culture), certain cell types cultured in a 3D gel exhibit

completely different types of behavior in terms of gene expression, pro-

liferation, shape, locomotion, and multicellular organization.”

[Decaestecker et al., 2007, pp.156-158]
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But, as was stated in section 2.5, computational models are representations of their

target systems. So while there are systems that involve interaction within a 3D

space, and thus are best represented by 3D models, there are also many systems

or their abstractions that can be observed and modelled within a 2D environment.

The simulations used in this thesis have been created with two dimensional mod-

els because of (a) their better representation of natural phenomenon than ECA,

(b) their easier representation and computation than three dimensional CA mod-

els, and (c) there is a much larger body of work using two, rather than three

dimensions.

2.6.2 Two dimensional CA

In a two dimensional cellular automaton the state of each cell on a lattice is

governed each time step by a rule involving a neighbourhood of cells. The two

best known neighbourhoods used with 2D CA are the von Neumann which consists

of the four cells directly above, below and to either side of the cell in focus; the

cell in focus can be included making this a 4 or 5 cell neighbourhood; the second

is the Moore neighbourhood that also includes the four cells diagonally aligned

with the cell in focus, making this an 8 or 9 cell neighbourhood. In 1970 Conway

defined a simple rule based on an 8 cell Moore neighbourhood where a cell was

either alive (black) or dead (white) based on:

1. birth - exactly 3 live neighbours,

2. survival - 2 or 3 live neighbours,

3. loneliness - live cell with < 2 live neighbours dies, and a dead cell with < 3

live neighbours stays dead, and

4. overcrowding - a live or dead cell with > 3 live neighbours dies or stays dead.

Conway’s Game of Life (GoL) is a totalistic rule system, with the boundaries

wrapping around to form a torus shape. GoL has received considerable interest,

with variations of the rules and the discovery of innumerable ‘lifeforms’ created

by the application of a rule on an initial formation within a two dimensional grid

(see for example Sigmund [1993]). GoL has been classified as a class IV (complex)

system when updated synchronously; asynchronous updating tends to lead to a

static state [Schiff, 2007].
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Modelling with two dimensional CA is not confined to the GoL; most of the models

referred to in Table 2.1 are 2D CA. It has been used to model the movement or flow

of particles, traffic and pedestrians, spatial clustering, and the the movement of

autonomous agents such as Langton’s ant [Chopard and Droz, 1998; Schiff, 2007].

Stuart Kauffman from the 1960s has worked on Random Boolean Networks (RBN)

[Kauffman, 1991], which can be seen as an extension of CA. They are sometimes

referred to as Classical Random Boolean Networks (CRBNs). The nodes and links

in an RBN are comparable to a network or a spread out, disjointed lattice that

is updated in discrete time steps, just like a CA. Apart from the randomness of

the connection of the nodes, RBN also differ from traditional CAs by each node

having its own set of rules, which can be different to each other node [Mitchell,

2009]. RBNs can have two dynamic phases - ordered and chaotic [Gershenson

et al., 2010]. The deterministic, discrete nature of an RBN means that eventually

over a series of time steps the network will evolve towards either a point or a

cyclic attractor [Gershenson et al., 2004]. Gershenson has outlined a series of

RBNs that have different combinations of other characteristics [Gershenson, 2002,

2004; Gershenson et al., 2003].

1. Asynchronous RBNs (ARBN) have asynchronous and non-deterministic up-

dating - same characteristics as CRBNs, but their updating is asynchronous

and random,

2. Generalised ARBNs (GARBN) differ from ARBNs as it is semi-synchronous

and non-deterministic in their updating - same as ARBNs that can update

more than one node at a time,

3. Deterministic ARBNs (DARBN) have asynchronous, non-deterministic up-

dating - same as ARBNs except the nodes are not updated randomly,

4. Deterministic GARBNs (DGARBN) is the semi-synchronous, deterministic

updating - same as ARBNs except more than one node can be updated at

any one time and the updates are not random, and

5. Mixed-context RBNs (MxRBN) are non-deterministic in a particular way -

they are DGARBNs with a selection of contexts of which one is randomly

selected and applied at a regular time steps.

Gershenson et al. [2004] looked at the different types of RBNs and their updat-

ing schemes when different initial conditions were used (i.e. sensitivity to initial

conditions). Their findings were that “the phase transition between ‘ordered’ and

‘chaotic’ regimes of the networks” were unaffected by updating scheme used.
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Gershenson has looked at some factors that can be exploited to manipulate the

various strains of RBNs:

1. through using the probability and connectivity in moving the phase space,

and

2. through topology, modularity, redundancy and degeneracy in the broadening

of the critical regime [Gershenson et al., 2010].

2.6.3 Updating

The standard way of updating a CA between time steps is to synchronously update

in parallel each cell on the grid. This means that the updating rule is run for each

cell within the context of the existing time step and the cell in focus is not aware

of any new updates made to cells in its neighbourhood. Synchronous updating

of the cells usually has a fixed order, such as top left cell of the grid and then

incrementally column by column, row by row. However, as the new state of a

neighbouring cell is not used in the updating of a cell the order of cell update is

irrelevant.

The main difference with asynchronous updating is that the updated state of a

cell is immediately available for use in any subsequent cell update. In this way

the order of updating has significance. In their reflection on asynchronous CA

Bandini et al. [2010] outline a number of update schemes. There are two themes

to the updating: (a) the order of the updating - either random each time step or

a fixed, cyclic order; and (b) the range of cells updated in a time step - either all

or a random selection. In the case of random selection there is no guarantee that

every cell will be updated in each time step.

Schönfisch and de Roos [1999] categorise asynchronous updating into four types,

the first three of which have already been mentioned above:

• random fixed sweep - this is equivalent to a fixed cyclic order involving the

asynchronous updating of all the cells on the grid during a time step. The

order is randomised before the first time step, but then remains constant

through each subsequent time step driven update;
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• random new sweep - this matches a random order update, where each cell

is asynchronously updated in a time step, but the order is randomised prior

to each time step;

• uniform choice - this is the same as a random selection of cells for asynchron-

ous update each time step. This is often illustrated as randomly updating

one cell per time step. After a series of time steps equal to the number of

cells on the grid each cell will have been updated once, or multiple times, or

not at all; and

• Time driven - this is not mentioned above. It involves each cell having, in

effect, an alarm clock that has a randomly selected setting for when it will

go off and the cell will be updated. Once it has been updated the wake up

time is randomly set again.

Schönfisch and de Roos [1999] considered that the choice of asynchronous updating

method was important. They argued that the exponential time driven updating

method was “most satisfying from a theoretical and from a biological point of view

as it is justified by a deviation from continuous time processing and introduces least

undesirable structure” [Schönfisch and de Roos, 1999, p.140]. However, from the

three other methods, uniform choice is the most similar to time driven updating,

and a lot less complicated to implement. This would also tie in with the idea of

“random interaction” used in the definition of complexity given in subsection 2.2.4.

There seems to be varying views on whether synchronous or asynchronous updat-

ing should be used. The argument that asynchronous updating is intuitively more

similar to how physical phenomena operate in real life is made on the basis that

“there is no universal clock in Nature” [Schiff, 2007, p.106]. Wolfram comments

on the same issue:

“Yet just as it seems unreasonable to imagine that the universe consists

of a rigid grid of cells in space, so it also seems unreasonable to imagine

that there is a global clock which defines the updating of every element

in the universe synchronized in time.”

[Wolfram, 2002, p.486]

It is not guaranteed that a different output will be created by changing from one

scheme to the other. Boerlijst and Hogeweg [1991] modelled spiral wave structure

in pre-biotic evolution and found:
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“It turns out that the precise definition of the cellular automaton does

not affect the development of the spirals. We examined for instance

asynchronous updating of the cells, a non-toridal field and other neigh-

bour cells that can give catalytic support”.

[Boerlijst and Hogeweg, 1991, p.25]

But generally, the choice of asynchronous updating produces significant difference

in the output of a cellular automaton [Schiff, 2007, pp.118-121]. In his review of

asynchronous cellular automata Fatès [2013] notes that if asynchronous updating

is used the GoL can stabilise on a fixed pattern. Wolfram refers to sequential

updating as a synonym of asynchronous updating and also highlights the poten-

tial difference in output from the two schemes, “[t]aking the rules for an ordinary

cellular automaton and applying them sequentially will normally yield very dif-

ferent results” [Wolfram, 2002, p.1035]. Although his main focus is synchronously

updated ECAs, he does look at sequential updating. One of these forms is his

mobile automata in which one active cell is updated per time step. These mobile

automata can produce complex behaviour, but it is very rare compared to the

complex output of ECA. [Wolfram, 2002, pp.71-77].

Although asynchronous updating might seem more natural, there is an argument

that the choice of update scheme depends on the scale that is applied to the

observation of the natural phenomena:

“the difference between synchronous and asynchronous update is a

question of how we look at the (real) process.”

[Schönfisch and de Roos, 1999, p.140]

If the time scale is large, then on average all the cells will be updated and it

can be seen as a synchronous process. But if the time scale is reduced so that

only a single or small number of cells can be updated, then an asynchronous

updating scheme will better represent the phenomenon. The difference produced

by the scheme used can be the difference between a model that works and has

relevance and one that is an artefact and has no epistemic worth. Fatès et al.

[2008] created a CA simulation based on the the aggregation of the Dictyostelium

discoideum cellular slime mould using synchronous updating with the intention of

looking at the gathering of agents by combining reaction-diffusion and chemotaxis

(see chapter 4 for a detailed outline). His choice was based on the fact that

asynchronous updating produced unwanted types of excitation waves:
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“The advantage of reaction-diffusion over classical diffusion is that

waves propagate without attenuation and over arbitrary large dis-

tances; the drawback [...] is that messages have to be relayed synchron-

ously and perfectly in order to prevent the creation of self-entertained

excitation waves.”

[Fatès et al., 2008, ibid, p.24]

A collection of works [Grilo and Correia, 2008; Huberman and Glance, 1993; Newth

and Cornforth, 2009; Saif and Gade, 2009] investigating the historic use of syn-

chronous updating in models of the Prisoner’s dilemma, compared to a range of

asynchronous schemes, all concluded “that many of the previous equilibrium states

are mere artifacts of a synchronous updating on a regular lattice” [Fatès, 2013,

p.22]. It should be remembered that a CA is not a real system, but a representa-

tion, or an imaginary system encapsulating essential and relevant abstractions of

a real phenomena where the CA “are a caricature of the real world rather than

its portrait” [Chopard and Droz, 1998, p.28]. Synchronous updating does have

the potential advantage of being simpler to code. It can also produce noticeable

manifestations in the CA output more quickly [Fatès, 2013]. But establishment

that simple programs with simple rules can produce interesting or even complex

artefacts is of no real value apart from supporting the concept that just as order

can arise from complexity, so complexity can emerge from simplicity.

But just as there is no clock guiding nature, it is equally true that events can

happen synchronously, rather than always asynchronously [Fatès, 2013]. In this

way it is possible that a mixture of synchronous and asynchronous updating should

be used to model natural phenomenon, rather than one or the other:

“Probably neither a completely synchronous nor a random asynchron-

ous update is realistic for natural systems.”

[Radicchi et al., 2007, p.1]

The degree and depth of representation and the level of epistemic value desired

will determine the composition of a CA simulation. If the image created on the

lattice is the sole focal point of interest, then how it is created is of little, if any

relevance; even if it is an artefact of the modelling process. But if the CA simula-

tion is intended as an opaque thought experiment, or as part of the modelling and

experimental scientific process, then the basis of the CA model, how it is updated,

the nature and origin of its rules, and the elimination of any unwanted artefacts

are all part of what contribute to the appropriateness and worth of the simulation.
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2.6.4 Coupling CA, Hierarchical CA and Hybrid models

There has been an increasing amount of research into modified CAs including,

1. Coupled CA that link together one dimensional CA [Alonso-Sanz and Bull,

2008; Bull and Alonso-Sanz, 2008; Grassberger, 1999; Maignan and Gruau,

2008a]

2. Higher order cellular automata, arising from work on hyperstructure

[Baas, 2009a,b; Baas et al., 2004], have been proposed where second order

CAs (2-CA) can use more than one rule within a one dimensional CA grid

[Helvik, 2006].

Mori et al looked at a CA based on Rule 22 and where each cell had eight receptors;

the binary representation of Rule 22, 00010110, is used so that each one of the

binary units was one of the receptors for a cell, with the ‘1’s being masters or

independent and the ‘0’s being slaves that take on the values of the master receptor

based on a probability formula, such that the first receptor (f000) could be changed

to a 1, making the rule enacted on the cell into rule 23 (00010111) [Mori et al.,

1998].

Zuse introduced the “net automaton”, which is built on a grid system where

each cell contains a complete calculating system. These single cell “calculating

systems contain both information-processing and information-storing elements”

[Zuse, 1970, p.91]. In the net automaton the role of a cell is to process information.

Sarkar [2000] uses the term hybrid for a CA where each cell has its own rule; a

cell can change these rules at each time step - this is called programmable CA or

tessellation automata. In the latter, a cell can be seen to have a finite set of rules

and the input determines which one gets selected. Sarkar outlined a one-way CA

where the rule depends on the cell itself and either the left or the right cell - but

not both. So the flow of information is one sided. This has been used “in the

development of many easy-to-implement systolic algorithms” [Sarkar, 2000, p.88].

Tissera et al. [2007] have a different take on hybrid. Their evacuation simulation

was based on models of traffic and pedestrian usage, but they decided that while

CA was very good in modelling the local interaction and environment, a further,

maybe different model was needed to show the higher system perspective. Their

approach was to use CA to model the dynamic spread of fire and smoke, while

adopting a goal oriented intelligent agent model to simulate the reaction of people

within the environment.
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2.6.5 Modelling and simulating diverse systems using

Cellular Automata

Tamulonis [2013, p.9] considered the modelling of biological cells, pointing out

that within biology

“Cell-based models have become an important theoretical tool for un-

derstanding and predicting the behavior of cellular scale systems.”

As he demonstrates, the range of cell-based models is extensive, including non-

lattice based models, as well as lattice based models of different dimensions and

shape. One category of lattice based models has been used across a wide range

of systems. As already mentioned, CA are a discrete abstraction of a physical

system in which the physical elements are represented by a finite set of values,

often revealing dynamics that are lost in the continuous system such as a differ-

ential equation [Chopard and Droz, 1998]. The initial focus was on using CA to

model physics, but the range of their application has grown over recent years, (see

Table 2.1).

Table 2.1: Some examples of the range of domains modelled with CA

Area Domain

General applications Cryptography [Oliveira et al., 2008; Wuensche, 2008];

DDoS detection [Lawniczak et al., 2008]; data cluster-

ing algorithms [Chen et al., 2004; de Lope and Mara-

vall, 2013; Moere and Clayden, 2005; Moere et al.,

2006]; computing [Adachi et al., 2004; Mamei et al.,

2005; Mitchell et al., 1994]; LEGO construction problem

[Smal, 2008]; image processing [Adamatzky, 1996]; ro-

botics [Behring et al., 2000; Ioannidis et al., 2008; Magg

and te Boekhorst, 2006; Scheidler et al., 2006]; robot

path planning [Behring et al., 2000]; agricultural price

volatility [Chen and Wang, 2007]; anticipation [Kier and

Cheng, 2000]; differential equations [Toffoli, 1984]; heat

transfer [Burzyński et al., 2004]; self-replicating struc-

tures [Reggia et al., 1998]; distance detection [Maignan

and Gruau, 2008b]

continued on next page
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Area Domain

Biology & Medicine Cardiology [Makowiec, 2008]; immune system and vir-

uses [Bernaschi et al., 2000; Ermentrout and Edelstein-

Keshet, 1993; Sloot et al., 2002; Zorzenon dos Santos and

Bernardes, 1995]; tumour growth [Naumov et al., 2011;

Wcis lo et al., 2009]; genetics [De Sales et al., 1997; Xiao

et al., 2006]; in-stent restenosis [Caiazzo et al., 2009];

complex biochemical systems [Kier and Witten, 2005],

nervous system [Luthi et al., 1998]; cell mechanics [Tam-

ulonis, 2013]; delta-notch signalling [Cohen et al., 2011;

Ghosh and Tomlin, 2001]; formation of ocular domin-

ance stripes [Swindale, 1980]; oscillator synchronisation

[Murray et al., 2013]; swarm systems [Adamatzky and

Holland, 1998; Wright et al., 2000]; biofilm growth struc-

ture [Picioreanu et al., 1999]; skin patterning [Young,

1984]; self-organisation in bee combs [Camazine, 1991];

pheromones and biological traffic phenomena [Chow-

dhury et al., 2005; van Dyke Parunak and Brueckner,

2001]; ant based clustering algorithm [Chen et al., 2004];

myxobacteria [Stevens, 2000]; growth of branching in

fungi [Edelstein-Keshet and Ermentrout, 1989]; vessel

morphogenesis [Markus et al., 1999]

Traffic flow Traffic flow [Benjaafar et al., 1997; Dupuis and Cho-

pard, 2001; Gershenson and Rosenblueth, 2009; Nagel

and Rickert, 2001; Schaefer et al., 1998]; pedestrian flow

[Burstedde et al., 2001; Dijkstra et al., 2000; Franca

et al., 2009; Makarenko et al., 2008; Schadschneider,

2001; Schultz and Fricke, 2010; Schultz et al., 2010];

evacuation simulation [Poudel et al., 2009; Tissera et al.,

2007]; transportation systems [Topa et al., 2006]

Social science Social dynamics [Hegselmann and Flache, 1998; Helvik,

2006]; urban planning and growth [Al-Ahmadi et al.,

2009; Aljoufie et al., 2013; Barredo et al., 2003; Cheng

and Masser, 2004; Clarke and Gaydos, 1998; Torrens,

2000; Tsompanas and Sirakoulis, 2012; Yang et al., 2013]

continued on next page
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Area Domain

Earth science Earthquakes [Georgoudas et al., 2007; Malamud and

Turcotte, 2000]; forest fires [Malamud and Turcotte,

2000]; snow avalanche [Avolio et al., 2010]; strength

properties of heterogeneous coal-beds [Zavsek et al.,

2005]

Physics & Chemistry Lattice Boltzmann [Chopard et al., 2002; Hatzikirou

and Deutsch, 2010; Kusumaatmaja and Yeomans, 2010];

neural activity [Marro et al., 2007]; snow crystals [Re-

iter, 2005]; Browning motion [Lee and Peper, 2008];

Laser dynamics [Guisado et al., 2005]; diffusive and re-

active processes [Pintus et al., 2011]

How it is applied has also grown significantly; classical local rule based CAs have

been supplemented with hybrid CAs [Janssens, 2010; Zavsek et al., 2005], complex

CAs (CxA) [Kroc et al., 2010], agent based CAs [Chen and Wang, 2007; Franca

et al., 2009; Gruner, 2010; Poudel et al., 2009], and dissipative CAs [Zambonelli

et al., 2003], to list some of the variations that have been created. Its potential for

modelling and simulating local interactions in a relatively simple way makes it a

very useful modelling tool. The concept of a clusters of models can be seen in how

the various facets of, for example, pedestrian movement is abstracted into models

of flow, obstacle and collision avoidance, quickest path, bottleneck and evacu-

ation management. The teasing out of analogous systems involves more thought.

Obviously traffic flow and pedestrian flow have many basic level similarities; al-

though traffic flow follows more explicit rules in its use of lanes, overtaking and

general traffic regulations. A possible approach is to classify the CA models in a

classification of model types that removes the emphasis on domains.

Ermentrout and Edelstein-Keshet [1993] proposed three broad categories of CA

models within biology.

1. Eulerian models (deterministic automata)

• discrete lattice of points (cells), usually two-dimensional.

• has completely determined rules with no use of probability to determine

the state of the cell

• updates synchronously
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• the focus is on the changing state of each cell, rather than the tracking

of a cell or agent across the CA grid

• also referred to as “Eulerian” due to analogy with fluid mechanics.

• example: skin patterns [Young, 1984];

Young [1984] uses a grid with its rules based on an activator-diffusion

theory. The grid is made up of a mixture of coloured and uncoloured

cells. Each cell can diffuse inhibitor and activator morphogen to its

neighbourhood. The morphogen, at the next time step, can be dis-

persed to the next set of neighbours. The strength, and thus range,

of the inhibitor morphogen is greater than the activator, thus giving

short-range activation and long-range inhibition, resulting in connec-

ted groups of coloured cells. In Figure 2.4 the results of decreasing the

range of the inhibitor is shown. As it decreases the spot patterns seen

on the left of the figure begin to connect up to form a pattern of stripes,

as seen on the right of the figure.

54 DAVID A. YOUNG 

CALCULATIONS 

The calculation begins by distributing DCs randomly on a rectangular 
grid of points representing pigment cells. Then for each grid point at position 
R, the field values due to all nearby DCs at positions R, are added up. If 
C,w( IR- R,() > 0, then the point at R becomes (or remains) a DC. If 
C, w (IR - R, I) = 0, the point does not change state, and if X:, w( IR - R, 1) < 0, 
the point becomes (or remains) a UC. By simplifying the morphogenetic field 
as shown in Figure 1 and by discretizing the cell positions, I have converted a 
continuum model [Equation (l)] into a cellular automaton [14]. Cellular 
automata are very useful for computational purposes because they simplify 
the problem at hand while retaining the essential features required for 
exhibiting self-organization phenomena. This is justified by the observation 
that very nearly the same results are obtained [13] when w(R) is a continuous 
function, as in Figure l(a). The process of summing the morphogenetic fields 
and changing states for each grid point is repeated until the resulting pattern 
no longer changes. I find that five iterations suffice for convergence to a 
stable pattern, and that the general form of the final pattern is not sensitive 
to the initial DC distribution. 

w2 = -0.34 -0.28 -0.24 0.20 

FIG. 2. Patterns produced with the activator-inhibitor model. The activation area has a 
radius of 2.30, and the inhibition area has an outer radius of 6.01. The activation field value 
wt is + 1.0, and the inhibition field value wz is varied as indicated in the four examples. As 
inhibition is decreased (left to right), the spot pattern connects up into a pattern of stripes. 
Each panel is 25 X 100 in the arbitrary grid units. 

Figure 2.4: An example of a deterministic automata: skin patterns
created via a CA using a activator-inhibitor scheme. The activation
parameter is set to 1.0, while the range of the inhibitor parameter
starts at -0.34 on the left and gradually ‘decreases’ towards zero. This
results in more cells being activated and becoming coloured pigment
cells; consequently the spots seen on the left gradually turn into a
pattern of stripes on the right of the figure (from [Young, 1984, p.54]).
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2. Lattice gas models (particle automata)

• particles move randomly or deterministically across a discrete lattice

• they undergo state changes if they collide

• a cell might be empty; a particle moves into and binds to a cell, but in

this type it is reversible

• example: pedestrian flow in room evacuation [Burstedde et al., 2001]

In this example of a particle automaton the grid represents the floor

space and each cell can either be empty or occupied by exactly one

particle (pedestrian). Burstedde et al. [2001] set the size of the cell

to 40 by 40cm2, which they use to represent the typical space that a

pedestrian takes up in a crowd. The pedestrian can move one cell at

a time in a non-diagonal move, so a von Neumann neighbourhood is

used. The update is completed in parallel for all pedestrians. The

basic rules give a directional preference to each pedestrian and at each

time step evaluates the probabilities for a move of each pedestrian.

Once the desired move of each particle is decided, then if the target

cell is unoccupied and no other cell is contending for the target cell,

the pedestrian moves to the target cell. If there is any contention

between two or more pedestrians then the choice of which one make

the move, while the other stays where they are, is based on the relative

probabilities used to make the original choice of target cell. The model

can also use a dynamic floor field where the pedestrians leave a trail that

decays over subsequent time steps; this allows for interaction between

pedestrians, especially in situations like the evacuation of a room, as

shown in Figure 2.5.

C. Burstedde et al. / Physica A 295 (2001) 507–525 517

!ow, as the unhappy pedestrians gravely disturb the previously unhindered movement
of the pedestrians which pass to the sides of the obstacle. This evokes the need to
"nd out for each pedestrian individually whether it might be necessary to switch to
the happy state instantaneously, depending on the local situation. This can be achieved
without the introduction of per-pedestrian intelligence (see section 2.4.2).

3. Simulations

In the following we describe the results of simulations of two typical situations, i.e.,
the evacuation of a large room [25] (e.g. in the case of a "re) and the formation of
lanes in a large corridor [13]. We use di#erent variants of the basic model in order to
elucidate the potential of the di#erent approaches.

3.1. Evacuation of a large room

For simplicity, in the case of discrete !oor "elds pedestrians are only allowed to
move in north (N ), west (W ), south (S), and east (E) direction, which leads to the
following form of the matrix of preferences:

M =

⎛
⎝

0 MN 0
MW M0 ME
0 MS 0

⎞
⎠ (10)

This choice means no severe restriction since transitions into the diagonal directions
can be implemented quite easily.
In our simulations we have investigated the behaviour of people leaving a quadratic

room with one door only. The s-bosonic "eld has been chosen such that the occupation
number of s-bosons decreases radially from a maximum value at the door to zero at
the corners opposite to the door. Typical stages of the dynamics are shown in Fig. 3.
As an example we have studied the in!uence of the lifetime of d-bosons (i.e., their

decay probability !) on the evacuation time, i.e., the time it takes for all people to

Fig. 3. People leaving a room with one door only. Displayed are three typical stages of the dynamics.

Figure 2.5: Particle automata example: the simulation shows three
stages in the evacuation inspired movement of a crowd within a room
with one exit (from [Burstedde et al., 2001, p.517]).
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3. Solidification models (growth automata)

• only sites adjacent to pre-existing ‘cells’ can be populated by new cells

• once occupied a cell stays occupied

• models are local (i.e “has a finite velocity of propagation which is pro-

portional to the rate of growth of the cells” [Ermentrout and Edelstein-

Keshet, 1993, p.126]

• example: vessel morphogenesis [Markus et al., 1999]

The growth automata example is the simulation of morphogenesis in

[Markus et al., 1999]. They employ an algorithm made up “of a list

of simple rules describing the essential biophysical features, permit-

ting comfortable programming and fast computations” [ibid ]. In Fig-

ure 2.6 a simulation is shown representing the lateral branching vessels

observed in insect trachea. The authors’ used simple rules with four

variable parameters - u (activator) and v (inhibitor) that represents a

morphogenetic activator-inhibitor scheme; g acting as a genetic switch;

and s that allows the type of substrate being simulated to be set, thus

reflecting different growth patterns. The results were held to be better

than those produced by PDE driven automata, (for example [Edelstein,

1982; Meinhardt, 1976]), as they not only showed anastomosis where

separate parts of a branching system is connected, but also “the iso-

tropic, quasi-disordered growth, that is observed in nature” [Markus

et al., 1999, p.204], but was not produced by the PDE based automata.
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Figure 2.6: Growth automata example: this shows the simulation of
lateral branching vessels, such as those observed in insect trachea; a
square lattice of 150 by 150 cells is used. The last two images are both
after 1000 time steps, but t̃ is from a second simulation using different
initial settings (from [Markus et al., 1999, p.199]).
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Some examples, such as in urban growth and usage models, while they might seem

to be growth models, do not fully match a strict interpretation of the criteria; the

status of cells are often driven by other rules, such as the existence of roads, and

their usage can change. Consequently, as the state of a cell is not irreversible and

can be changed, they do not belong in the growth classification. It might be that

the examples given of the characteristics of a growth model are too simplistic and

needs expanding to take into account the varied combinations and types of CAs

used nowadays. But if they are left as they are, then it is understandable, even

when based on the small selection of 2D CA examples in table Table 2.2, that

there is a greater variety of scenarios that open themselves up to the other CA

types rather than growth automata.

In their second category, particle automata, Ermentrout and Edelstein-Keshet

[1993, p.116] initially refer to the collision based model of lattice gas. This would

preclude many non biological CA that are based on the movement of one or

more agents across the CA grid, such as pedestrian and vehicle models, which

could be more appropriately termed collision avoidance models, or agent models.

However, they go on to give examples that include self-organisation of ant trails.

Consequently, the type is not split, but includes non-collision based particle mod-

els such as vehicle (including unmanned vehicles), pedestrian models and swarm

models, basic flow models, threat models, (including evacuation where humans

can exhibit herd behaviour), obstacle and navigation models.

The wide usage of CA as a modelling and simulation tool means that the cat-

egorisation can be applied to models outside of the biological domain (see table

Table 2.2). Key to the definition of a deterministic CA are synchronous updating,

deterministic rules and the absence of randomisation either in the form of an asyn-

chronous updating mechanism or in some level of probability used to influence the

setting of the state of the cell. The latter should not be confused with the determ-

inistic setting of a probability value for a cell, such as when determining possible

land use based on a cell’s neighbours (e.g. Barredo et al. [2003]). This presents

a slight dilemma when considering, for example, the delta-notch signalling used

by Cohen et al. [2011] or the the fuzzy based urban dynamics model devised by

Al-Ahmadi et al. [2009]. The former models the changing state of the cells, de-

termined by their neighbourhood, but uses an asynchronous updating system and

also probability to mirror noise in the update rules (see chapter 4). Such CA that

update the state of their cells either using an asynchronous update method, or a

probabilistic updating rule, or both, is grouped in a new type called randomised

(see Table 2.2).
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Deterministic automata has been widely used to model a range of excitable media.

The modelling of spiral wave structure pre-biotic evolution in [Boerlijst and Ho-

geweg, 1991] would have been grouped within in this category, except for the use

of probability in its rules. Boerlijst and Hogeweg [1991] illustrate how the outcome

of evolutionary processes can be greatly altered by the spatial self-structuring in

partially mixed media. They use a 300 by 300 square grid with each cell either

occupied by a molecule of a certain species or empty. The rules use a cell’s neigh-

bourhood to determine on one of three processes that decide whether (1) a cell

occupied by a molecule decays and becomes empty, (2) an occupied neighbour of

certain species replicates into an empty cell, or (3) an empty cell becomes occu-

pied through a process of catalysis where an occupied neighbour of any species

replicates into the cell if a catalytic molecule also occupies one of the adjacent

neighbouring cells. A diffusion process is also used between time steps. The grid

is divided into subfields of 2 by 2 cells; probability is used to rotate each subfield

90° clockwise or anti-clockwise at each diffusion step. The subfileds are shifted one

cell diagonally after the diffusion process. This use of probability in the second

part of the update process places the model in the new randomised category. The

wiping out of a parasite is shown in Figure 2.7, as well as where a parasite persists

like a cyst.

22 M. C. Boerlijsr and P. Hogeweg /Spiral wat’e structure in pre-biotic el,olution 

Plate 1A Plate 1B Plate 1C 

Plate 3A Plate 3B Plate 3C 

Plate 4A Plate 48 Plate 5 

Figure 2.7: An example of a randomised automata: the effect of self-
structuring spiral wave on the outcome of evolutionary processes. In
plate 4a, at time step 110, the centre of a double spiral is invaded by
parasites (black cells); in plate 4b, at time step 550, the parasites have
been wiped out by other spirals. In plate 5 the parasitic invasion at
the centre of a single spiral still remains as a cyst after 600 time steps
(from [Boerlijst and Hogeweg, 1991, p.23]).
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Table 2.2: Categories of 2 D CA types using entries in table Table 2.1

CA Type Domain

Deterministic excitable media [Adamatzky and Holland, 1998; Gerhardt

et al., 1990; Weimar et al., 1992; Yan and Yuan, 2000]; in-

stent restenosis [Caiazzo et al., 2009]; delta-notch signalling

[Ghosh and Tomlin, 2001]; formation of ocular dominance

stripes [Swindale, 1980]; Immune system and viruses [Bernas-

chi et al., 2000; Zorzenon dos Santos and Bernardes, 1995];

skin patterning [Young, 1984]; Browning motion [Lee and

Peper, 2008]; lattice gas [Pomeau and Frisch, 1986]; urban

land use [Aljoufie et al., 2013; Barredo et al., 2003; Cheng and

Masser, 2004]; earthquakes [Georgoudas et al., 2007]; natural

hazards (forest fires, earthquakes and landslides) [Malamud

and Turcotte, 2000]; snow avalanche [Avolio et al., 2010];

strength properties of heterogeneous coal-beds [Zavsek et al.,

2005]; LEGO construction problem [Smal, 2008]; agricultural

price volatility [Chen and Wang, 2007];

Randomised excitable media [Boerlijst and Hogeweg, 1991]; Cardiology

[Makowiec, 2008]; delta-notch signalling [Cohen et al., 2011];

oscillator synchronisation [Murray et al., 2013]; immune sys-

tem and viruses [Sloot et al., 2002]; genetics [De Sales et al.,

1997]; nervous system [Luthi et al., 1998]; neural activity

[Marro et al., 2007]; laser dynamics [Guisado et al., 2005];

diffusive and reactive processes [Pintus et al., 2011]; urban

land use and growth [Al-Ahmadi et al., 2009; Clarke and

Gaydos, 1998]; evacuation simulation [Tissera et al., 2007];

transportation systems [Topa et al., 2006]; computing [Ada-

chi et al., 2004; Mamei et al., 2005]; myxobacteria [Stevens,

2000]; anticipation [Kier and Cheng, 2000]; selz-organisation

in bee combs [Camazine, 1991]; ant based clustering algorithm

[Chen et al., 2004]

Growth growth of branching in fungi [Edelstein-Keshet and Ermen-

trout, 1989]; biofilm growth structure [Picioreanu et al., 1999],

snow crystals [Reiter, 2005] ; vessel morphogenesis [Markus

et al., 1999]

continued on next page
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CA Type Domain

Particle Lattice Boltzmann [Chopard et al., 2002; Hatzikirou and

Deutsch, 2010; Kusumaatmaja and Yeomans, 2010]; pher-

omones and biological traffic phenomena [Chowdhury et al.,

2005; van Dyke Parunak and Brueckner, 2001]; swarm systems

[Adamatzky and Holland, 1998; Wright et al., 2000]; traffic &

pedestrian flow [Burstedde et al., 2001; Dijkstra et al., 2000;

Franca et al., 2009; Makarenko et al., 2008; Nagel and Rickert,

2001; Schadschneider, 2001; Schaefer et al., 1998; Schultz and

Fricke, 2010; Schultz et al., 2010]; aircraft evacuation simu-

lation [Poudel et al., 2009]; data clustering algorithms [Chen

et al., 2004; Moere and Clayden, 2005]; urban land use and

growth [Tsompanas and Sirakoulis, 2012; Yang et al., 2013];

robotics [Behring et al., 2000; Ioannidis et al., 2008; Magg and

te Boekhorst, 2006; Scheidler et al., 2006]

It should also be noted that a system can be modelled under more than one

type, especially when considering the cell updating types of deterministic and

randomised. This is understandable as the randomised automata are determin-

istic automata that also used probability and / or apply rules randomly. Delta-

notch signalling, for example, has models in both CA types. The simulation of

delta/notch in [Ghosh and Tomlin, 2001] is based on the state of a cells neighbours

and is classified as a deterministic automata; whereas [Cohen et al., 2011] also in-

volves the use of probability, both in the asynchronous updating scheme and in

the perturbation of noise in the signalling process, and is therefore classified as

a randomised automata. This both exhibits the versatility of CA modelling and

illustrates the role of the modeller in deciding how a system will be modelled and,

subsequently, measured.

2.7 Measurement

It has already been mentioned that the process of measuring a system can impact

on the system (see subsection 2.4.1). It can also be a subjective process, espe-

cially if a substantial part of any argument is based on a visual pattern output by

a computer simulation. The choice of modelling technique can either determine

the measuring technique or be determined by it. While the results of an experi-

ment can be unexpected, the process is usually embarked upon with some idea of

what is being sought and the best means of representing the anticipated output.
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This expectation influences the choice of modelling environment and measuring

technique. Ermentrout and Edelstein-Keshet [1993, p.97] describe CA as, “[m]ore

properly, a cellular automaton consists of a simulation which is discrete in time,

space, and state”. A CA provides a very visual representation of the changing state

of the CA grid, based on localised interactions or rules. This immediately sug-

gests the observation and measuring of density, clustering and pattern formation

or dissipation, and the tracking of particles or agents across the CA grid. While

this is not a definitive list, it gives a clear example of why CA might be chosen,

apart from the general ease of modelling with CA compared to other techniques.

But there seems to be no specific alignment of different measuring techniques

to the three categories of models outlined above. Even though the ‘tracking of

particles or agents across the CA grid’ refers specifically to particle models, in a

more general sense such things as path-finding problems can be accomplished via

a growth model, such as the plasmodium of the slime mould Physarum polyceph-

alum [Tsompanas and Sirakoulis, 2012]. The role of measuring is not just to feed

information into a predictive process as observed input into a black box. It can

also be the technique that provides an indicator of the present and impending state

of the system, through the measuring and comparison of the linear system output

or state. There is obviously an observer interest in ‘why’ a system is measured,

which in turn can influence what and how something is modelled and measured.

This is tied into what the observer wants to predict, whether it is the throughput

of a network and any indication of bottlenecks in the flow of traffic through any

of the nodes on the network; or the rate of flow of traffic on a motorway; or the

spread of a virus, or a forest fire. It might be a relatively straight forward indica-

tion of a growth prediction based around the consumption of available resources;

or the more complicated tracking of indicators, whether it is labelled as emergent,

self-organising or in some other way to signify a significant state change. The

latter is often linked to ‘unexpected’ behaviour or change, so modelling is a means

of unravelling, or at least finding a way to predict to some degree, the unexpected.

CA models are often used to gain information for use in other domains; such as

the formulation of data clustering algorithms by modelling ant behaviour [Chen

et al., 2004; Moere and Clayden, 2005; Moere et al., 2006]; or the modelling of

Physarum’s behaviour to create a “powerful low-cost virtual laboratory” that

can be used in “solving the path-planning problem by guiding the development

of adaptive networks as in the case of the actual rail network of Tokyo, Japan”

[Tsompanas and Sirakoulis, 2012, p.17. author’s italics]. These provide examples

of a single model being used for two different, but analogous systems. This ana-
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logy is centred on the algorithm extracted from the model of one system and

employed in another. So it is not based on any predictive measurements, but

on the behaviour and efficaciousness of the model. Well known measures, such

as Shannon’s or Boltzman’s entropy, or slight variants of them, have been used

(see subsection 2.7.2). This can be to provide a specific measure of the system

being modelled, or to propose a general indicator of, for example, complexity or

entropy, both of which can best be described as compound terms, having many

definitions. But the analysis of a single model for a selection of analogous systems

is more likely to provide any possible generic indicators. Such models need to be

at a low enough level to include as many systems as possible, without becoming

meaningless as a predictive tool. A sensible starting point is within a category or

set of models.

2.7.1 Measuring CA output

The measurement of a 2D CA can evaluate a number of features, such as density,

clustering and patterns. Density is relevant not only in the size of the active cells

within a growth automaton, but also in setting the significance of any active cells

in terms of the overall occupied and unoccupied CA cells. Clustering algorithms

are used to organise data as well as to identify clusters of data. Various algorithms

exist (e.g., k-means clustering, hierarchical clustering). Pattern identification can

range from a subjective visual evaluation to one involving concepts of the level

of randomness in the data structure under observation. Different methods, or

different applications of measuring methods can have more relevance to particular

CA types. Mean density can have greater relevance to the tracking of any changes

in the number of active cells in deterministic automata. Clusters can be identified

in deterministic automata, such as with spanning clusters in percolation theory

[Essam, 1980; Hoshen et al., 1997; Kier et al., 1999; Wilkinson and Willemsen,

1983]. Likewise, clustering techniques can be used in the classification of the state

of agent based CA and self-organising systems. Patterns forming and dissipating

can be associated with the degree of randomness in data representation of the CA

output space.

So the choice of simulation and modelling technique is linked to the preference

of measuring method. There obviously has to be something considered worthy of

measuring. That measurement will have limited worth if it just tells us something

about the model. Ideally it will provide some information related to the system

under focus or help in some predictive process related to the system.
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2.7.2 Entropy and measuring emergence in CA

The characteristics of complexity and emergence have been discussed in previous

sections. There are a number of views of how emergence manifests itself to the

observer. Standish [2001] cites the view that surprise is a good test for emergence

(see Ronald et al. [1999]), but this is very much a subjective view from the observer

and not very measurable. The loss of randomness has been held up as an indication

of emergence, in terms of high level structure or stability [Boschetti et al., 2005;

de Silva, 2004]. The proposed measures of complexity, (see section 2.7), offer

different scales to measure for emergence, providing one holds that a lessening in

the complexity of a system can be attributed to the emergence of order, or a loss of

randomness. Coe et al. [2008] looked at producing random CA with probabilistic

and deterministic rules not only to give a better perspective on random behaviour,

but also to facilitate the analytical solution of CA models. Crutchfield argued

that randomness was not by itself the most useful indicator; he argues that the

interaction of order and randomness is what makes a system either complex, or

merely complicated. He used the example of “ordered” ice and “random” water

both being constituted from the same matter (H2O) that is at its most complex

when it is a mixture of both; this suggests that phase transition is possibly one

way of identifying complex thermodynamic states [Crutchfield, 1994].

An accepted measure of the state of a thermodynamic system is its level of entropy.

The 2nd law of Thermodynamics dictates that entropy will increase with time in

a closed system [Hitchins, 2003a]. This involves a balance of energy, therefore

for something to emerge, there has to be some activity; so in order to move to

some stability, you need to push things out of balance [Åm, 1994]. This raises the

question of where the energy needed to create order / emergence goes in order to

satisfy the 2nd law. A view put forward proposes the 2nd law of Thermodynam-

ics is satisfied by order (loss of entropy) in the macro level being balanced by an

increase in entropy in the micro level, which acts as a “sink” [Van Dyke Parunak

and Brueckner, 2001]. Lambert states how, given the opportunity, “energy spon-

taneously tends to flow from being concentrated in one place to becoming diffused

or dispersed or spread out”; this is not inevitable, it is a tendency rather than a

prediction and introduces a measure of bounded stability [Lambert, 2010]. Lam-

bert [2010] goes on to point out that “[o]ur psychological sense of time is based

on the second law. It summarizes what we have seen, what we have experienced

what we think will happen”, leading to the 2nd law sometimes being referred to

as “time’s arrow”.
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The change in a system as a consequence of the second law, resulting in energy

being dispersed, can be measured in the entropy change [Lambert, 2010]. In

this sense what is needed is an understanding of what represents stability and

randomness in a system, and a way to map the phase transition of the system

over a period of time. Hitchins offered a definition of stability:

“A set of interacting systems, itself constituting an open system, may

be said to be stable when, over a period of interest, its net configuration

entropy tends to a constant value” [Hitchins, 2000].

The term configuration refers to “the set of every states at a given time” [Maignan

and Gruau, 2008a]. There are different interpretations of entropy, depending on

the system view being taken by the observer. Hitchins [2000] focuses on con-

figuration entropy, which “is the degree of disorder in pattern, organization and

structure” and is represented by the formula S = k ln W, where S is entropy, k

is Boltzmann’s constant and W is the number of ways things can be arranged.

Mitchell [2009, p.168] refers to Crutchfield’s “particles” that are the boundaries

between the areas of simple patterns that can be identified in a space-time dia-

gram. The image alters as the particles interact with the borders of the image.

“This can be seen as information-processing at the particles”. The idea of identi-

fying “information” flow and entropy within a CA model has produced a number

of formulae based on Shannons’s information entropy, which uses certain probab-

ilities. If an event is unlikely to occur, thus having a low probability, then a high

amount of information is gained if it does occur; whereas if there is a high prob-

ability that an event will occur, then there is reactively little information gained

when it does occur. If P is the probability of an event occurring, then the amount

of information (I ) gained is:

I = log2(1/P ) (2.1)

If the focus is the amount of information gained from a series of events, then the

total amount of information is the weighted sum of all the probabilities of each

event occurring, giving:

I =
N∑

i=1

Pilog2(1/Pi) (2.2)
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Van Dyke Parunak and Brueckner [2001] look at a formula based on Shannon’s

information entropy requiring the measurement of (1) the set of states accessible

to the system and, (2) the probability of finding the system in each of those states,

S = −
∑

i

pilogpi (2.3)

where i is the range of possible states and pi is the probability of finding the system

in state i. Pan [2010] researched a large collection of models found within the

GoL and introduced three parameters to assist in the measuring of the transition

between order and chaos,

1. order parameter

2. complexity index φ(t), based on sum of the different local environments

encountered in a generation

3. entropy also based on Shannon’s information entropy,

H = −
∑

i

pilog2pi (2.4)

As can be seen, the difference between the Equation 2.3 and Equation 2.4 is that

the latter uses log base 2.

Wuensche looked at the idea of measuring the input-entropy of a one dimensional

CA by monitoring the frequency of the look-ups in the rule table and displaying

them for each time-step.

“Each rule produces a characteristic cloud of points which lie within a

parabolic envelope because high entropy is most probable at medium

density, low entropy at either low or high density. Each complex rule

produces a plot with its own distinctive signature, with high input-

entropy variance. Chaotic rules, on the other hand, will give a flat,

compact cloud at high entropy (at the top of the parabola). For ordered

rules the entropy rapidly falls off with very few data points because

the system moves rapidly to an attractor” [Wuensche, 1998].
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The identification of patterns and the repeat cycle is a relatively standard exercise,

but Crutchfield does not see it as a definite proof of emergence. Consideration

of the role of the observer and the biases they might bring is important. This

also applies in distinguishing the difference between discovery and emergence. He

holds that emergence is dynamical and usually evolves over time and appears as

something new; whereas discovery “is atemporal: the change in state and increased

knowledge of the observer are not the focus of the analysis activity; the products

of model fitting and statistical parameter estimation are” [Crutchfield, 1994, p.9].

The plotting of the various elements of the system, such as the configuration of

the agents and the rules, into a fitness landscape reveals a lot about the state of

the system and the possible affect of the system elements on the development of

the system. A system adapts to maintain a high level of fitness and a non-smooth

fitness landscape indicates such system characteristics as feedback and emergence

[Ruhl, 2006b].

Block entropy is a way to compute the presence of hidden structures in a string

of symbols. Sloot et al. [1999] outline the need for some quantity to measure in

order to identify phase transition within a system. They take Shannon entropy

and associate it with the degree of uncertainty that exists in a complex system,

defining the probability of sequences occurring in the model and formulating a

spatial block entropy and a temporal entropy formula [Sloot et al., 1999, pp.209-

210]. They point out that the Kolmogorov-Sinai entropy per unit time can also be

used to evaluate the random space-time processes that are seen in deterministic

CA [ibid ]. Theoretically, if key words were identified as indicating a system trying

to establish order, (pre-emergent state), through its communication channels, then

the frequency could be used as an indicator of the level of order (emergence) or

randomness (complexity). In a model this could be expressed as the amount and,

or size of messages between two linked models or the amount of change between

cycles or over a period of cycles. A decrease or absence of any messages or changes

would indicate that the system has reached some form of ordered state, albeit

maybe a deadlock or frozen one.

2.7.3 Kolmogorov Complexity

Li and Vitányi [2008] state that the “notion of Kolmogorov complexity has its roots

in probability theory, information theory and philosophical notions of randomness,

and came to fruition using the recent development of the theory of algorithms”

[ibid, p.47]. The most common definition of Kolmogorov complexity concerns com-

pressibility and the shortest programme to describe a string. The premise is that
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any object could be describable by a binary string [Bortolussi, 2011; Spracklin and

Saxton, 2007]. Like the Hurst exponent, Kolmogorov complexity is an estimate -

it is impossible to compute all the possible programmes to describe a string and,

therefore, to know if they would all halt [Bortolussi, 2011; Li and Vitányi, 2008;

Nannen, 2010]. “It is nevertheless essential for proving existence and bounds for

weaker notions of complexity” [Nannen, 2010].

Kolmogorov complexity has developed in other areas, such as with Algorithmic

prefix complexity, random finite sequences and information distance. GE’s re-

search into Active Networks [Bush, 2002] looks at using Kolmogorov Complexity

in the network management prediction system. Spracklin and Saxton [2007] eval-

uated a binary string representation of words in an email to apply a spam filter.

Landauer held that there is an amount of heat that can be associated with the

processing of every bit of information in a computer (see Li and Vitányi [2008,

pp.629-631]); in this way the heat generated by each node could be assessed for

the amount, even complexity of the information being processed. If the relevant

information is represented in a string format, then Kolmorogov Complexity and

associated theorems can be applied to it. But a key component is the context and

as such this research intends to follow the principle that:

“If x is an element of a ‘simple’ (in the sense of Kolmogorov complexity)

finite set A, then the Kolmogorov complexity K(x) of x cannot be

much greater than the binary logarithm log| A | of the size of A. This

simple upper bound on K(x) allowed Kolmogorov to define the notion

of randomness; x is random in A if K(x) is close to its upper bound

log| A |. Thus randomness essentially means the closeness of the K(x)

to some upper bound.”

[Gammerman and Vovk, 1999]

K(x) refers to the prefix Kolmogorov complexity where x is self-delimiting. It is

important to establish both the lower and upper bounds being used within the

context of what is being modelled and measured.
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2.8 Summary

This chapter reviewed areas that were considered pertinent to the thesis. This

started with the investigation of systems and the distinction between different

classes of systems. It was suggested that a linear approach to classifying systems

based on the number of components would overlook the true relevance of the in-

teractions between the components of a system. A simple or mechanistic system

is either designed for a purpose, or the purpose is discernible. In this situation,

the purpose becomes the single context of the system and any system behaviour

is traceable and attributed to the design and workings of the system; even if it

is not a direct attribute of any system component, but a result of their designed

interaction. The production of mechanical energy was given as a simple example

of this (see subsection 2.2.1). The term complicated system is not a separate clas-

sification, but a grading within the category of simple systems. The number of

components within a complicated system make it hard to understand and unravel,

but it is made up of components and interactions that are traceable and capable of

being modelled. As such, simple systems can be reduced to their component parts

and predictive models used to help design, monitor and even exert control over

them. R-theory proposes two separate categories of systems,complex systems and

simple systems or mechanisms, with the former as the common state of systems.

But whether a linear view is taken where a system can be added to or subtracted

from in order to alter its classification, or a R-theory approach where a complex

system has at least one non-computable component, there is an element of judge-

ment that has to be applied. A classification under the linear method relies on

the level of knowledge available; this is especially relevant when any emergence

is experienced though the interactions within a system or between a system and

its immediate environment or context. Classifying complexity through terms of

it being currently unexplainable or unpredictable cannot be fixed. Likewise, the

halting problem means that non-computability is hard, if not impossible, to estab-

lish. A working definition of a complex system was proposed in subsection 2.2.4:

“a complex system is a collection of many elements whose random interaction

leads to the unpredictable emergence of robust organisation”.

Modelling is used in a wide variety of forms to help design, test and monitor

systems, as well as an aid to tease out the workings and future behaviour of a

system. While experiments have more epistemic value than simulations, there is

epistemic worth in simulations, especially as opaque thought experiments and in

situations where experiments are not a realistic option. The many interacting

components in a complex system means that, by its very nature, it can be difficult
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to capture the system in its totality. Although it relies on selecting appropriate

attributes and rules, a limited model of a complex system is perfectly acceptable, as

it is an abstraction of the system and is intended as a representation of the system,

not a complete replication. The simulation of a model of a complex system cannot

show the true potentials of the contexts open to the system, but has to collapse

it down to a single contextual view, as is the case with a simple system. In the

case of a complex system this means taking a localised and temporal contextual

view of the system. Reductionism is invaluable in the process of modelling and

simulation, but it is limited as a tool for explaining complexity and emergence.

For its part, computer simulation provides a platform for modelling complexity,

where the interaction of elements using local rules can demonstrate the emergence

of, for example, patterns and self-organisation.

While the modelling and simulation of highly complicated or complex systems

is limited or at the very least localised, it still has value. Not least as a means

for testing out a hypothesis; a simulation’s output can be compared with other

observations. And while such models and simulation cannot be taken as direct

representation of a system, they can be used to monitor or reflect situations where

a system changes state, or to give insight into situations that appear to lead to

such changes. A corporate LAN can be seen as an extremely complicated, (some

would say complex), network of interactive components, handling massive amounts

of data and open to unwanted and disabling perturbations. Various metrics are

linked to a combination of models to monitor the state of the network and to alert

to any ‘known’ problems. Such models and metrics then become generalised across

different network systems, but they are not of any real direct use in completely

different types of systems.

Mental models are used to transfer acquired information and metrics across differ-

ent systems’ scenarios and contexts. The level of abstraction affects the diversity

of system for which the mental model is of use; the higher the level of abstraction,

the more widespread the range of systems the model can be applied to. But as the

level of abstraction becomes higher, the model becomes less specific. The same

identification of commonality that makes mental models so effective, can be ap-

plied to a formal model of a system. In this way analogous systems, or subsystems

can be identified through shared models.

The search for any common indicators across different systems would be facilitated

through the analysis of any shared models that could be found. Following the

example of mental models, the level of abstraction would determine how diverse the
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systems would be. But this is very dependent on the modeller and the abstraction

and modelling technique chosen. A simpler means of attempting to identify any

common indicators of system state across different systems is to select a commonly

used modelling technique, such as cellular automata. Cellular automata have been

used to model and simulate a variety of domains, as shown in the categorisation of

2D CA in Table 2.2. The range is evident within as well as between the categories.

While what is being modelled and the rules being used are different, all the 2D CA

share a common 2D grid output space. The modeller usually designs the model to

look for specific events, but there are details about the general state of the output

space that are ignored and could, instead, be used to track the overall state of the

model’s representation of the system. The next chapter will look at methods of

measuring the general state of the output of two dimensional cellular automata.



Chapter 3

Methododology

3.1 Introduction

When investigating non simple systems there is a certain inevitability that any

approach will involve abstraction. As was discussed in the previous chapter, re-

ductionism traditionally seeks to reduce a system to its component parts in order

to understand how each component works and with what and how it interacts

to form the system under examination. This can be seen as a process of vertical

reduction. As was mooted in the previous chapter, abstraction can be viewed as

a form of reduction where the identification of analogies between different sys-

tems can lead to common models. This process, both the analogies and common

models, can be conceptualised as a form of horizontal reductionism in which the

abstraction of key features of a system is akin to reducing the scope of what is

examined of a system in order to better unravel and understand some system

phenomenon. As well as being used in an analogous simulation, this process of

abstraction and modelling can be employed in computer simulation to show how

the observed behaviour of one system can be abstracted and modelled to simulate

the behaviour of a diverse system.

This abstraction or horizontal reduction is more often than not used to form a

model of a non simple system. A model of a complicated or complex system will,

therefore, represent a designated part of the whole system, which can broadly be

seen as a reductionist approach. Even if an open and holistic view is taken where

the interactions and relationships within the system and between the system and

its environment are the focus, rather than just the physical parts and structure of

the system, the modelling of the system, especially any computational modelling,

cannot directly reflect the complexity of the interactions. Indeed, R-theory con-

tends that the main indication of a complex system is that at least one of its parts

80
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is non-computational. So any computer modelling and simulation of a complex

system has to be seen also in the context of a localised and temporal abstraction

of the system. These localised and temporal abstraction can be combined to give

a wider view of a complex system, such as with weather forecasting. Over the

decades improved methods have been developed for collecting and collating more

precise and timely information for input into weather models, such as the use of

satellites to gather weather information from above oceans. But even with an

immense increase in the amount of computer resources used and in the quantity,

quality and global spread of information gathered, the accuracy of any forecast is

lessened by any increase in the period between the forecast and the time for which

it was made. As was stated in the previous chapter, a computer model is only a

representation of a real system.

This can mean that at times the connection between a computer simulation and

the system in focus can be tenuous, albeit that the system is itself a model ab-

stracted from the real world. Consequently, although the search for isomorphic

and analogous systems through shared mental models or common models can be

productive, it is, potentially, very much dependent on individual observation and

selection and thus very limited in scope. In order to obtain any common indic-

ators of a system’s state across different domains, a series of factors have to be

agreed on, such as (a) the commonality of the abstractions selected, (b) the mod-

elling framework used, (c) the commonality of the model, (d) the metrics used

and (e) the process of analysis of the output. An alternative approach is to in-

vestigate a common modelling and simulation technique that is used across a wide

and diverse range of systems. The question can then be moved to whether the

commonality of the output space can be used to tell us anything relevant across

the range of systems being modelled; even though each model is set up and its

output space analysed for specific features, rather than for any generic statements

about the output space.

The rest of the chapter starts in section 3.2 with consideration of simulation meth-

odology. This picks up the discussion on the epistemic worth of computer simula-

tions in the previous chapter, (see subsection 2.5.1), and looks at the verification

and validation process in computer simulation. In section 3.3 the research ap-

proach of analysing the output space of diverse 2D CA simulations is outlined;

including some of the ways of traditionally measuring 2D CA grids, such as mean

density (subsection 3.3.2), randomness and clusters (subsection 3.3.3), entropy

(subsection 3.3.4) and a new approach to measuring the connectedness of the

active elements on a 2D grid (subsection 3.3.5).



CHAPTER 3. METHODODOLOGY 82

In section 3.4 the research approach adopted to build, run and analyse the simula-

tions used in the thesis is summarised. The use of scenarios to verify the analysis

programs written in Perl is explained in subsection 3.4.1. The three types of CA to

be simulated are outlined in section 3.5 and their origins and backgrounds, against

which they are externally validated, are introduced in subsection 3.4.2. The met-

rics selected to measure the output of the simulations are described in section 3.6,

which also provides a formal definition of the CA output space. Three existing

metrics are outlined, mean density (subsection 3.6.1), bounding box rate (subsec-

tion 3.6.2) and an entropic metric (subsection 3.6.3). The new proposed measure

of the connectedness between individual elements on the 2D grid is expounded in

subsection 3.6.4. The chapter closes with a summary in section 3.7.

3.2 Simulation methodology

The pervasiveness of modelling was mentioned in the previous chapter. Human

perception of and interaction with the world can be viewed as a process of mod-

elling. In this way the actual interaction using those models could be seen as a

process of simulation, where the models are ‘run’. Thought experiments can be

seen as the process of forming mental models and hypotheses, and then mentally

running them. The intention here is not to suggest that the world and life is

digital, but rather that often the context that we place things in for evaluation is.

The scientific approach is to break things down into units that we can understand,

preferably to the lowest level of a two state option, such as with a straightforward

choice between either|or, on|off, or 0|1. Such topics as fuzzy logic and quantum

theory have shown that it is not always as clear cut as a choice between two op-

tions; there are shades of grey and the process of observation can influence and

change the perception of things. But even with such uncertainties and vagueness,

as well as complex systems that cannot be fully explained, models are formed and

simulations run and some epistemic value gained, as discussed in section 2.5.

Although simulation should not be seen as synonymous with computer simulation,

the increase in the use and power of computers means that computer simulation

can be viewed as the main method of simulation within research and industry.

In this sense computer simulation is better approached from an application and

practical viewpoint, rather than purely from unbounded philosophical specula-

tion. Ulgen et al. [1994] provide a practitioner’s perspective to using simulation

methodology in industry. In practical terms they see the simulation methodology

as the “the process of applying the simulation technique” [ibid]. As part of the

process they highlight the need for conceptual validation between the real system



CHAPTER 3. METHODODOLOGY 83

and the conceptual model; verification between the conceptual model and the sim-

ulation model; and operational validation between the simulation model and the

real system [Ulgen et al., 1994, p.11]. This is shown in the section of Figure 3.1

above the dotted line.

Real System

Conceptual 
Model

Simulation 
Model

Documentation

conceptual 
validation

conceptual 
validation

operational 
validation

operational 
validation

Calibration

Calibration

verification

Conceptual 
Model

Simulation 
Modelverification

[Ulgen et al (1994)]

[New model]

conceptual, rules and 
implementation

operational, 
results and 
analysis

Figure 3.1: The top diagram above the dotted line is from [Ulgen
et al., 1994]. The bottom part of the diagram represents how the
current work is validated against the documentation of the conceptual
and simulation models of the previous studies. This includes the rules,
implementation, results and analysis, as part of the conceptual and
operational information. Thus it can be said that the new models are
being validated against the ‘real system’ of the original work by proxy.

This thesis replicates three previous studies, (see section 3.5). Any independent

reproduction of the original work that successfully corroborates the findings adds

credence to the validity of that original work. But rather than validating the

conceptual and simulation models against a real world target system, they are

validated against the documentation outlining the relevant original work and its

results. Consequently, the new simulation and conceptual models have to be

verified against each other, but the conceptual and simulation models are validated
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against their documented counterparts in the original simulations. In this way

the new work, if it successfully replicates the original work, can be seen as both

validating the original work and being validated against a ‘real system’ by proxy

through the original work, in so far as the original work was successfully validated

(see Figure 3.1).

The new simulations then provides a variety and range of 2D outputs from three

different types of CA. These outputs map the progression of a cross selection of

the states of the simulations through time and, preferably, noticeable state change.

The outputs are measured to assess whether each metric is of use to specific types

of CA, or whether any of the metrics generate worthwhile general information

from all three of the CA types simulated.

3.3 Research approach

The discussion of computer simulation, (section 2.5), and CA, (section 2.6), in

the previous chapter illustrated the usefulness and wide usage of 2D CA models

to simulate system’s phenomenon. Although the real world is 3D, 2D CA models

were considered a better choice than either 1D or 3D ones because:

• they gave a better visual representation of natural phenomenon than 1D CA;

such as patterns and traffic / pedestrian movement,

• they provided a simpler output space to analyse than 3D CA,

• they were easier to program than 3D CA,

• they required less computer resources than 3D CA; allowing them to be more

easily run on laptops and desktop computers, and

• there is a much larger body of work using 2D, rather than 3D.

In subsection 2.6.5 three categories of CA proposed in [Ermentrout and Edelstein-

Keshet, 1993] were expanded to four by defining randomised automata as CA that

were similar to deterministic automata except for the inclusion of probability in

their updating process. This provides a useful means of selecting diverse systems

that use a common output space, but have particular features they are interesting

in measuring through the use of specific metrics or types of metrics. This facilitates

the research approach of analysing the output space of simulations conducted

using 2D CA. For the purpose of the current discussion a two state output is

considered, which can be termed inactive and active. The means of generating

different outputs and how it influences the measuring technique will be looked
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into below; the first consideration is the potential range of different output space,

regardless of any intended or hoped for state. The two extremes are an output

space that is either populated with all inactive cells or all active cells.

The rest of this section continues on from the discussion in subsection 2.7.1 and

considers some of the ways measuring CA 2D grid space can be approached.

3.3.1 Measuring 2D grids

This work follows on from previous research that calculated the Hurst exponent of

the resource usages of each node on a 2D grid output from a Petri-net simulation

of an Active Network model [de Silva, 2004]. In this thesis a different approach to

measurement is taken from that in the previous study for two reasons. Firstly, the

Hurst exponent generally requires a sizeable range of data to work with and the

algorithmic process can be laborious, although Hagiwara et al. [2000] have looked

at a scaled down method for use in real network traffic analysis. Consequently, a

key consideration is that the rescaled range and subsequently the Hurst exponent

does not work well with data that is non-changing, such as a node that has no call

on its resources over a period of time. Steps can be taken to try and limit this

kind of impact, such as by ignoring negative rescaled range values or defaulting

them to a minimum positive value; but this can reduce the value of the resulting

Hurst value, which is in itself an estimate. The second issue is that it does not

show anything about the state of the grid and, therefore, how it has changed and

might potentially change. This is not to say the cell or node view is not of use,

but rather that the overall grid view is more relevant in this thesis.

The context in which the output space is viewed is tied into the context of what

is being modelled and, in turn, helps decide how it is measured. Three views

represent the way a 2D CA output space is considered; an agent’s as it traverses

across the grid, a cell’s as its state fluctuates, and the grid’s overall state after

each time step. A specific agent view or cell view can be broken down to show

the activity of individual agents over the grid, or the fluctuating state of a cell.

A grid view obviously puts the behaviour of the agent or state of the cell into

context both with other agents or cells and with that of the dimensions of the grid

itself. Although the grid view presents the best overall perspective, analysis of

any of these will provide information or insight into the overall changing state of

the grid; such as any congestion or blockages on the grid (grid view) through the

movement of packages across the grid (agent view) or the consumption of resources

(cell view). Obviously, the choice is tempered by the attributes of the system that
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are being modelled and its context. In more detail:

• an agent view includes examining the shortest path, obstacle avoidance and

self-organisation; in the case of modelling a network, then any potential

congestion or blockage can be shown by an agent not moving or taking a

round about route;

• a cell view can be seen as a different take of an agent view, such as when

the tracking of resource usage across a grid reflects the path taken by an

agent; the tracking of a network resource of a network router in a cell, such

as processing power or memory, can suggest possible congestion, blockages,

slow response, and under or over utilisation; and

• a grid view provides the bigger picture and reveal patterns across the whole

grid or the randomness of any grid activity; giving a more comprehensive

perspective on the nature of the functioning of the modelled network.

Whatever measure and method of measurement is adopted one of the first steps

is to establish how the key states are registered for each domain. A pattern may

indicate a better grid utilisation than random usage, or vice versa. Likewise a full

grid could indicate gridlock, or a highly utilised network, or a virus dominated

grid; and a nearly empty grid could reflect the opposite. In this way the choice of

what to measure reflects the objectives of the simulation process and the context

of the modelled system, as well as the often subjective ‘interests’ of the researcher

[Iordache, 2011]. It also influences the choice of metric employed, which is specific

to the simulation. The issue then becomes whether a single metric or a combin-

ation of metrics can tell us anything general about the state of different types of

CA simulations.

If a 2D grid output from a CA simulation using two states to represent either

an active / occupied or an inactive / unoccupied cell is considered, then there a

number of obvious approaches to how to measure the state of the output space,

albeit that they do not work as well with all CA types.

3.3.2 Mean density

If the mean, or average density is given as the number of active cells divided

by the number of cells in the output space, then the mean density of the space

will range from 0 for one with no active cells, to 1 where all the cells are active.

This would indicate that there is a relatively easy measure of the output space,

but only if density is the main characteristic being measured. In the case of a
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deterministic CA this would be of interest; such as tracking the contagiousness

of a virus or, as in percolation theory, ascertaining at what percentage of active

cells a cluster spanning between two opposite sides of the grid occurs. But mean

density would appear to offer little of value in an agent CA, where the focus is

likely to be more on the placement of the agents in the output space in terms of

clusters or self-organisation. This would suggest that the value of such an indicator

would be limited to domains within the same CA type, where the purpose of the

measure would be the same or similar. It may be, in order to attempt to gain any

commonality across CA types, that mean density can be used as an indication of

the overall state and, thus, what subsequent measure to employ.

3.3.3 Randomness and clusters

A common object of interest in the analysis of a 2D CA output is how random any

active cells are. This can be expressed as the randomness or lack of randomness in

any data representation of the output space, or in the clustering of the the active

cells. If an algorithm related to Kolmogorov complexity (see subsection 2.7.3)

is used, then the former depends a lot on how the data are unpacked from the

2D grid; the extraction of the cells into a single 1D array will only relate to

a small part of the potential connection between cells. A cellular automaton

being assessed within a Moore neighbourhood of all its 8 surrounding cells and,

usually, itself would have eight possible connections, as opposed to the 2 that a

1D representation would provide. Chen and Sundaram [2005] use it to estimate

the complexity of 2D shapes, but this again relies on extracting the outer shape

into a 1D linked chain of points.

Clusters or the lack of clusters are a better way to signify the randomness of the

active cells within a 2D grid. The movement of singleton cells, (i.e. single cells

not in a cluster), into a cluster can also be used to highlight self-organisation

(SO), especially within an agent based CA. The density of the 2D grid, as well

as the number of different cluster sizes has been suggested as a measurement of

complexity, as well as an indication of when a percolation or spanning cluster has

been formed [Tsang and Tsang, 1999]. As the density increases, the diversity of

cluster sizes decreases and eventually a cluster that spans two opposite sides of the

grid is formed. In percolation theory the focus is on looking for the percolation

threshold or critical percolation point, pc, given at the level in a grid’s density

where a spanning cluster occurs. This can also be given by the probability value

required to produce a grid with a spanning cluster, where the value is the probab-

ility that a cell is active. But just as at one end of the density scale a grid with a
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high percentage of active cells will congeal into a single cluster, at the other end a

grid with a handful of agents can likewise self organise into a single cluster. The

former generally reflects a movement from a range of clusters of different sizes to

a single cluster, while the latter from ‘random’ singletons to a single cluster. The

end result is the same, but the evaluation of the preceding time steps is different.

This can present a problem with using the same metric to track the progression

to a single cluster for both a sparsely and a densely populated grid.

3.3.4 Entropy

The use of entropy to measure CA was reviewed in subsection 2.7.2. In many

ways it has become a term that is used to indicate a metric employing some

form of probability relationship between the current state of a system and its

next measured state. This originates in the principles brought in by Boltzmann

and statistical mechanics, which deal with the number of possible microsystems

of a system. In this way entropy becomes the measure of how many potential

microsystem exist to explain the next macrosystem state of the grid. This has led

some people to form a the link between order/disorder and the level of entropy

in a system, where high entropy is associated with a high degree of randomness.

Thus a system incorporating the change from a solid to a liquid and then to a

gas is seen as increasing its entropy. In terms of the microsystems, the possible

positions, velocity and direction of each molecule are much more varied for a gas

than a liquid, and for a liquid than a solid.

The classical view of entropy is engrossed with an isolated or closed views of sys-

tems and their macrosystems. Here the entropy is associated with the amount

of energy not available for work. Traditionally it is measured in terms of tem-

perature and as the system increases in entropy it will eventually reach a point

of equilibrium where the system has a uniformed temperature. If a temperature

map is taken of the system then as maximum entropy and equilibrium is reached,

the macrosystem temperature map reaches a stable condition. This lends some

confusion as maximum entropy occurs as the system settles down into a stable

state, at least in terms of the temperature that is being measured. However, this

needs to be viewed also in terms of the microsystems. Statistical entropy focuses

on the number of potential microsystems that could could represent the state of

the macrosystem at the next time step. As a system increases in entropy, so does

the number of microsystems that could describe the next macrosystem state. It is

this that creates the idea of an increase in entropy being associated with a rise in

disorder and randomness. As the isolated macrosystem reaches equilibrium it also
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reaches maximum entropy, even though the macrosystem has the appearance of a

stable, ordered and non-random state. But this is only in terms of the temperature

being used to measure the macrosystem. If the microsystems show, for example,

the potential position and velocity of the atoms that will make up the macrosys-

tem at the next time step, then although the macrosystems is now at a constant

temperature, the number of potential microsystems will not have decreased and

may have increased. This aligns with the assertion that entropy will remain the

same or increase within an isolated system.

This approach also holds with Shannon’s information entropy, which links the

amount of information about an event to the probability that it will occur. The

more likely it is to occur, the less information we will gain if it does. Information

in this context is best seen as the level or measure of uncertainty at the receiving

end of a communication, transmission or, in this case, the completion of a CA

time step. In a grid with two possible states, the maximum uncertainty is when

both states have equal probability. The setting of the state under this probability

setting would give us the most information. As the probability increases for one

state and decreases for the other, the uncertainty over which state will prevail

becomes less and the subsequent information value equally diminishes. This can

be applied to just the state of the macrosystem.

In viewing the output space of a 2D CA the initial consideration is the macrolevel

one and the mapping of the change between the quantity and location of active cells

within the context of the bounded parameters of the CA grid. Such an entropic

evaluation of the macrolevel 2D CA grid looks at the probability or frequency that

an active cell is within some other sub-structure within the grid. This substructure

can be a structural subdivision of the grid space (see Guisado et al. [2005]), or

the result of some other analysis of the grid, such as cluster analysis (see Juwono

[2012], Tsang and Tsang [1999], Essam [1980]). But there could be a problem

as the entropy value moves to its maximum or minimum as it can provide little

information on any more subtle changes within the grid and its macrolevel view.

3.3.5 Connectedness

The concept of the connectivity, connectedness, compactness and similar notions

have been used in a number of ways. Connectedness and connectivity between

nodes or data items is related to how the members of a cluster are found. Dunne

et al. [2002] consider the role of connectance and size in food-web structures,

“which depict networks of trophic relationships in ecosystems, provide complex yet
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tractable depictions of biodiversity, species interactions, and ecosystem structure

and function” [ibid, p.12917]. Trophic species are the taxonomic categories of

species “that share the same set of predators and prey within a food web” [ibid,

p.12918]. They define connectance as equal to L/S2, where L is the directed

trophic links between S nodes or trophic species. This is related to clustering in

random networks:

“The linear relationship of the clustering ratio to network size arises

because clustering in random networks should be equal to connectance

(C = L/S2), because the likelihood that two neighbors of a node are

connected.”

[ibid, p.12919]

Ding and He [2004] take the nearest neighbour consistency that is a key concept

in statistical pattern recognition and extend it to “data clustering, requiring that

for any data point in a cluster, its k-nearest neighbors [kNN] and mutual nearest

neighbors [kMN] should also be in the same cluster”. This kNN relationship is not

a symmetrical one. If y is the nearest neighbour to x it does not mean that x is

the nearest neighbour to y, but it is sometimes convenient to use kMN to define a

symmetric nearest neighbours relationship. They define Cluster kNN consistency

as “[f]or any data object in a cluster, its k-nearest neighbors should also be in the

same cluster” [Ding and He, 2004, p.1].

Handl and Knowles [2007] look at the evaluation of multiobjective clustering solu-

tions, including an evolutionary approach to the problem. They separate clustering

algorithms into three major groups, of which one is:

“Methods based on a concept of connectedness make up the second

group. They employ a more local concept of clustering based on the

idea that neighbouring data items should share the same cluster. [....]

These are well-suited to detect clusters of arbitrary shapes, however,

they can lack robustness when there is little spatial separation between

clusters.”

[ibid, p.58. author’s italics]

They assess the cluster connectedness with a measure of the connectivity that is

“conceptually similar to the criterion of nearest-neighbor consistency” introduced

by Ding and He [Handl and Knowles, 2007, p.60]. The more compact a cluster is

the less its connectivity values are.
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On one level connectedness is related to how a cluster is formed based on the

connectivity between data items or elements. On another level connectedness can

also be used to express the connectivity between clusters of data items within

the dataset. The sorting of data items into clusters involves establishing the

connectivity level or rule that is used to decide whether a particular date item is

included in a specific cluster. The degree of that connectivity can also be used

to then set the connectedness or compactness of the resulting cluster, or if the

clusters are seen as data objects, then the connectedness between the data objects

within the data set. So within a cluster of data items it can act as an indicator of

how closely related the items are and within a dataset it can point to the nearest

neighbour or related dataset.

The above studies show that the concept of connectedness pre-exists as an indic-

ator of the degree of connectivity or compactness used or achieved in forming a

cluster. However, this work takes its inspiration from graph theory, a branch of

topology. Three types of connectedness in topology are considered in [Mendelson,

1990, pp.112-118]; (a) connectedness when it is impossible to decompose the sub-

space of a topological space “into two disjoint non-empty open sets”, meaning it

is connected, (b) path connectedness, which involves the connection of two points,

and (c) “simple connectedness” where the topological space is simply connected

“if there are no holes in it to prevent the continuous shrinking of each close arc

to a point” [ibid, p.112]. The third type is reflected in the ‘simply connectedness’

that Cook uses in his model of pseudo still life, where he considers whether he

can take a given pattern and “decompose its islands into two stable sets. This

is equivalent to finding a boundary that separates the two sets from each other”

[Cook, 2003, p.97]. In order to accomplish this he sees the cells as representing

either islands that consist of ‘land’ cells, or empty cells that can be viewed as

‘water’. The boundary has to go through the water to separate “the islands in

a stable way” [ibid ]. Water cells that are connected to each other constitutes a

sea. He uses his concept of ‘simply connectedness’ to determine if a cell should be

added to a sea or not; this is based on the state of its neighbouring cells. Thus

his idea of connectedness is related to a rule determining the state of a cell.

“If any sea is not simply connected (that is there is land both inside

and outside it), then we can draw a boundary dividing land through

that sea alone, and so the pattern is a pseudo still life.”

[Cook, 2003, p.99]
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Graph theoretical models tend to use a two dimensional representation, using

vertices (sometimes referred to as points or nodes) to signify actors within the

network and edges (sometimes referred to as lines) showing direct ties between

a pair of vertices. A pair of vertices is also referred to as a dyad. A path on

a graph is defined as a set of specific vertices and edges that connect a defined

dyad. There may be more than one path between the defined dyad. The length

of a path is the number of edges in it. The graph itself can be standard, where

the edge between a dyad is symmetrical, or it can be a directed graph, digraph,

which shows whether the link between the two vertices is one way or bidirectional.

The graph can also be assigned values signifying, for instance, the strength of the

relationship between the dyads, making it a valued graph, or vgraph.

Graph theoretical models have often been linked to describe social networks.

“For many centuries ideas now embodied in graph theory have been im-

plicit in lay discussions of networks. The explicit linking of graph the-

ory and network analysis began only in 1953 and has been rediscovered

many times since. Analysts have taken from graph theory mainly con-

cepts and terminology; its theorems, though potentially valuable for

the analysis of real data, are generally neglected.”

[Barnes and Harary, 1983, p.235]

In an earlier work Barnes shows how these “concepts and terminology” included

connectivity and connectedness, the latter being “one of the central notions of

topology” [Barnes, 1969, p.218]. In graph theory connectivity and connectedness

are associated to ideas of joining dyads and the reachability of one vertex from

another:

“Applied to social networks, the word ‘connectedness’ and ‘connectiv-

ity’ may refer to properties of the distance between persons, the num-

ber of paths between them, whether there is a path at all, or the

proportion of possible paths actually in existence.”

[Barnes, 1969, p.215]

Barnes [1969] goes on to discuss how connectivity and connectedness had been used

to describe (a) the join or lack of a join, or possibility of a join between a dyad,

(b) the shortest path between a dyad, (c) the number of genuinely different paths

between a dyad, and (d) the orientation and direction of existing paths. Barnes

also looks at the strength that can be associated with cliques within a social
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network, proposing the calculation of the local density of the vertices attributed

to each clique. The clique can be seen as a subgraph of the graph representing

the whole network. The method he proposes “for determining local density is

based on a series of undirected subgraphs formed of any given point arbitrarily

chosen as root” [Barnes, 1969, p.225]. He calculates the density of the clique

by expressing the number of lines in the subgraph, including those making up a

path, as a percentage of the number of lines in a completed graph with the same

number of points. Although he bemoaned, in a later work [Barnes and Harary,

1983], the general failure to apply the theories of graph theory to the analysis of

social networks, he suggests that the calculation of local density is:

“[A]ppropriate to the study of rumours, the application of diffuse sanc-

tions, the establishment and maintenance of standards of evaluation,

and the like in communities where the social network stretches indef-

initely in all directions from any given individual.”

[Barnes, 1969, p.225]

Peay argues that connectedness “is trivially indistinguishable from reachability

in ordinary graphs” [Peay, 1980, p.387]. But when a digraph is used the joining

has different definitions, thus the triviality is removed and the terms joining and

connectedness “gain substance in the conceptual elaboration required by digraphs”

[ibid, p.390]. He concludes that:

“Described in the most general terms, the idea of joining and connec-

tedness has to do with systematically characterizing pairs of points in a

structure of directed relationships in terms of the paths and semipaths

by which they may be linked.”

[ibid, p.403]

In their tome on graph theory and its applications, Gross and Yellen [2006] devote a

chapter to connectivity. The focus is on edge-connectivity and vertex-connectivity

and how a connected graph can become unconnected through the removal of ver-

tices or edges [ibid, pp.217-246]. In this way the connectedness is associated with

the number of vertices or edges that need to be removed before a graph becomes

disconnected, and with the number of alternative paths available:

“Determining the number of edges or vertices that must be removed

to disconnect a given connected graph applies directly to analyzing

the vulnerability of existing or proposed telecommunications networks,
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road systems, and other networks. Intuitively, a network’s vulnerab-

ility should be closely related also to the number of alternative paths

between each pair of nodes.”

[Gross and Yellen, 2006, ibid, p.217]

While this work borrows some of the concepts and terms of graph theory, it is not

concerned with the direction or ‘path’ related calculations of connectivity; nor with

the vulnerability of a network. Although developed separately, it uses a concept

of connectedness that can be seen as extending the relevance of the link between

the number of existing connections and the possible number of connections, which

was part of the underlying idea of Barnes’ local density; but applied in a different

context to another environment and without any connotation of paths and the

passage of information.

In graph theory one of the values used is the number of edges, or connection, that

a vertex has. If the vertex is seen as a cell on a CA grid, then an edge exists on

the boundary between an active cell and any active cells in its neighbourhood. In

terms of establishing a cluster of active cells, then it can be based on groups of

cells that are connected via an edge with a neighbouring cell in the cluster. Thus

some information relating to that cluster can be obtained, such as the number

of cells in the cluster, or the number of clusters on the grid, or even the number

of active cells not in a cluster (singletons). But identifying clusters is a specific

measure that will give an indication of whether, for example, the active cells or

elements on the grid have formed, or self-organised, into a group. What would be

useful is a measure that provides a better understanding of the state of the whole

grid and the relationship of all the active cells on that grid to the grid’s state.

Therefore, if the number of edges that every active cell has with a neighbouring

cell is evaluated, then the connectivity of each active cell is established. This

can then be used to give you the overall connectedness of those active elements,

based on the number of connections and the number of active cells. If the optimal

connectedness based on the size of a cell’s neighbourhood for that number of

active cells is calculated, you can then calculate the ratio between the actual

connectedness and the optimal connectedness. This provides the potential to

handle both small and large number of cells, as well as small and large groupings

of cells and also to differentiate between a grid with a random spread of cells

compared to highly connected groupings. In addition, this process maintains the

concept of keeping the CA framework and environment as simple as possible,

whilst retaining its usefulness and power as a tool. The idea of measuring the

connectedness of a 2D CA output grid is explained in subsection 3.6.4.
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3.4 Research strategy

The research strategy is carried out using a suite of Perl and Java programs (see

section 4.3). Data are passed between the programs in textual format (see Fig-

ure 3.2). The aim is to provides a range of 2D CA output grids for measuring

! Scenarios !! ! ! ! ! ! ! ! ! ! !      Models / simulations

!

 Static scenario from spreadsheet:
 spreadsheet --> csv file --> converted 
 to grid text format

 Static scenario using probability value:
 generate grid text format with different  
 cell activation probability

 Dynamic scenario randomly generated:
 create grids with randomly placed
 active cells and asynchronously
 update them with a rule that
 centralises them --> output grid text
 format

  Active network model:
cell based model showing resource utilisation   --> 
convert output to grid text format

Delta / Notch signaling model  --> convert output 
to grid text format

Agents gathering using coupling reaction-diffusion 
and chemotaxis --> convert output to grid text
 format format

 Grid analysis:
 (a) outputs the grids in html format
 (b) outputs any clusters in html format
 (c) outputs statistics text block

html / xml rendering of grids

html / xml rendering of clusters

 Statistical analysis:
 (a) amalgamates the statistical blocks
 (b) outputs graph in pgn format

statistical blocks

grid blocks

Graph of amalgamated 
statistical blocks

Figure 3.2: Outline of research strategy

with a series of metrics. The grids are produced in two ways, (a) the creation

of scenarios 2D CA grids using Perl and (b) the modelling of three of the types

of CA; one using Java within the CxA formalism and the MUSCLE code base

[Hegewald, 2009; Hoekstra et al., 2010a], the others using Perl. The metrics and

analysis programs are written in Perl, with data passed between the suite of pro-

grams in a text based format. The tasks are separated to both facilitate flexibility

and to break down the overall processing needed into more manageable parts.

The analysis can be performed either with a Moore or a von Neumann (4 cells -
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north, south, east and west) neighbourhood, but with no wrap around on any of

the sides. The analysis is carried out using a Manhattan distance of 1; this can be

extended to 2 or 3. The Manhattan distance uses only the horizontal and vertical

cells when expanding the range of a search beyond a cell’s immediate neighbour-

hood. In cases where no clusters are found in the distance specified, it is increased

until a cluster is identified, or the distance is equal to half the width or half the

height of the grid, whichever is the smallest.

The second program collates and averages the statistical output and is used to

create graphs of the metrics being used.

3.4.1 Scenarios

Scenarios are used to carry out the verification of the metrics and analysis pro-

grams in identifying three basic grid states: (1) connected groups or clusters of

active cells, (2) the density of active cells on a grid, and (3) the gathering of

active agents. This verifies that the metrics function as expected in these basic

tests and also provide a baseline test for the metrics. The scenarios are split into

two types: (a) a single static scenario where the output space is created with a

mixture of active and inactive cells; this allows the metrics to be tested across a

diverse range of possible outputs with varying numbers of active cells and (b) a

dynamic scenario where an initial grid with a number of randomly located active

cells is taken through a series of time steps in each of which every active cell is

asynchronously updated with a simple rule that attempts to move the active cell

towards the approximate centre of the grid; this allows the fluctuation state of a

fixed number of cells to be observed as they move toward a central cluster.

The static scenarios are created in two ways that reflect one of the main differences

in the modelling and analysis of 2D CA. The first set of static scenarios is created

in a spreadsheet with a grid populated with zeros and ones. This is exported as

a comma separated variable file and then converted into the text format required

for input into the statistical evaluation program. This manual method allows the

creation of grids with a set number of active nodes and fixed patterns or random

active node distribution, which provides a test for the discovery of clusters of

connected active cells.

The second set is generated by a program that uses a probability value to decide

whether a cell is active. Thus a grid created with a probability value of 0.1 will

have very few active cells, whereas one using 0.9 probability will mainly consist of



CHAPTER 3. METHODODOLOGY 97

active cells (see Tsang and Tsang [1999] for details of this use in models testing

percolation theory). The main distinctions between each of the probability values

is a mean density that reflects the probability value and a decrease in the range of

sizes of clusters as the increase in the probability value activates more and more

cells.

The dynamic scenarios, as already mentioned above, are formed by populating a

grid with a number of active cells randomly placed on the grid. The grid is then

updated with a rule that attempts, within each time step, to move asynchronously

each active cell towards the approximate centre of the grid. The size of the grid,

number of active cells on the initial grid and the number of time steps can all be

specified. If no moves are possible before the supplied time steps are completed

then the process stops. This allows the metrics to be tested against a fixed number

of agents on a grid and across a series of time steps, meaning that the mean density

will not register any difference in the state of the grid across the time steps. It

can also be used to provide a further set of single static scenarios with a fixed set

of active cells that are randomly generated.

3.4.2 Model types

The simulations are based on existing work . Thus the validation of each simulation

is against the results of the work it is seeking to reproduce (see chapter 4). Once

this is completed, the test are run for the evaluation of the selected metrics (see

chapter 5). The models simulated reflect three of the CA types outlined in the

previous chapter. A growth automaton is not simulated as it reflects a simple

expansion of active cells. Thus we have the following three CA model types, with

their relevant system of interest:

• Particle - a model using a coupling of reaction-diffusion and chemotaxis to

gather agents.

• Randomised - a protein delta-notch model of juxtacrine signalling; and,

• Deterministic - an active network model;
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3.5 Models

The subject areas of the three models used as the basis for the simulations in this

thesis are outlined in this section. Details of the actual design, implementation,

verification and validation of the simulations against the original work is described

in chapter 4. Biology provides the inspiration for the first two CA models. The

first model represents the movement and gathering of ‘particles’ (agents) on the

2D grid. The second model involves the changing state of cells within a CA

grid. It incorporates probability in the use of noise to ‘control’ the formation

of patterns. This puts it in the new category of randomised CA type that was

proposed in subsection 2.6.5 as an extension to the three proposed by Ermentrout

and Edelstein-Keshet [1993]. The third model represents the deterministic change

of resource usage in the nodes of a theoretical active network.

3.5.1 Particle model using raction-diffusion and

chemotaxis

Slime mould Dictyostelium discoideum provides the basis for the particle model.

Dictyostelium usually exists as a mono-cellular organism, but it has the ability

to change into a multi-cellular organism if necessary. Its amoebae reproduce by

separating into two identical sets of chromosomes, each in its own nucleus. The

amoebae gather together to form a large coordinated group or mound when there

is a scarcity of food. The gathering process is one of signalling waves of cyclic aden-

osine monophosphate (cAMP). The waves follow reaction-diffusion patterns that

couple with the attracting phenomenon or chemotaxis generated by the cAMP.

An amoeba builds up internal cAMP until it reaches a level where it begins to

emit it. Other amoeba are attracted to the strong chemotaxis trail, much like an

ant following a pheromone trail, (as in [Van Dyke Parunak and Brueckner, 2001]).

As the amoeba is drawn along the trail, it dissipates its own internal cAMP until

it becomes immune to the draw of the chemotaxis for a fixed period. This process

gives the signal or dispersion of the chemotaxis its reaction-diffusion pattern.

The particle model follows the design devised by Fatès et al. [2008] in their coupling

of chemotaxis and reaction-diffusion to provide a solution to the decentralised

gathering problem. The work can be related to the controlling of robots when there

is no visible link between them. The aim of the model is for scattered agents on a

grid to form compact clusters. The agents have no location information regarding

themselves or the other agents on the grid and are limited to either altering the

state of the grid they occupy or moving to a neighbouring cell. Their perception
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is restricted to their neighbourhood and their only form of communication is to

send out information. Any information is passed on by the cells. In this process

the information can be corrupted and its strength is dissipated at each time step;

noise can also be introduced to effect the process. Fatès et al. [2008] lay out a key

objective as the determination of “what are the simplest ingredients involved to

achieve a decentralised gathering with these constraints”.

The original work measures the gathering of the amoebae with the bounding box

ratio (BBR), where the area of the box containing all the amoebae is divided by

the total area of the grid.

“This parameter is rather simplistic since it captures only a small part

of the system’s organisation into clusters. However, note that it is a

‘strong’ criterion in the sense that a low values of BBR is attained only

if no amoeba is forgotten from the gathering.”

[Fatès et al., 2008, p.13]

BBR is outlined in subsection 3.6.2.

3.5.2 Randomised model using delta-notch signalling

The randomised model does not use a biological system as a means to solve an

unrelated problem. Instead it is an actual representation of how the delta-notch

protein signalling system can determine cell growth. Different cell types emerge

from a structure that is initially composed of cells of the same type. This differ-

entiation can be seen in all animals and plant tissue. The range of topics covered

has included how butterfly wings form [Evans and Marcus, 2006; Reed and Serfas,

2004]; the role of the delta-notch in cardiac development and disease [Abdulla

et al., 2012]; and various studies of the fruit fly Drosophila melanogaster [Croz-

atier et al., 2004; Luthi et al., 1998; Radtke et al., 2005], including how a cell is

selected to develop into a sensory bristle [Cohen et al., 2011, 2010; Nagle, 2011].

The trigger for the differentiation is largely attributed to gene activity, which can

be tracked by measuring the protein concentration in a cell.

“Genes control cell fate by controlling the type and amount of proteins

made in a cell. Proteins in turn affect gene activity by turning ‘on’

or ‘off’ gene expression thereby affecting the production of proteins

themselves.”

[Ghosh and Tomlin, 2001, p.232]
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There is general acceptance of the concept that what helps to determine a cell’s

fate is the lateral signalling between the cells via the delta-notch protein pathway.

Delta and notch are transmembrane proteins. The delta ligand interacts with

notch receptors in neighbouring cells. How the cells interact affects the production

of delta ligands and the development of the cell [Chitnis, 1995; Greenwald and

Rubin, 1992]. If interaction results in the activation of the notch receptor, then

the gene expression of the cell is immediately affected. The activated cell also

influences its own and its neighbours production of delta ligands. This produces

lateral inhibition where a cell increasing its production of ligands compels its

neighbours to cut back their output of ligands. The opposite can also occur, where

lateral induction encourages the creation of ligands in neighbouring cells, leading

to clear distinction between groups of cells. In this way delta-notch signalling is

seen by many as the mechanism for skin pigmentation and tissue patterns [Chen

et al., 2014; Cohen et al., 2011, 2010; Collier et al., 1996; Ghosh and Tomlin, 2001;

Kicheva et al., 2012; Savill and Sherratt, 2003; Shaya and Sprinzak, 2011].

The modelling of delta-notch signalling attempts to help with insight into how

this cell to cell communication and development works; an area that is still not

fully understood. This model mirrors a simple, but very effective simulation of

the role of structured noise and delta-notch signalling in self-organising patterns

[Cohen et al., 2011]. In an earlier work Cohen et al. [2010] used a mathematical

model to show that the organisation of the bristles on a fruit fly’s notum did not

conform to the traditional models of delta-notch signalling. They found that the

forming of the pattern was dependent on introducing lateral inhibition from non-

neighbouring cells. Their later work [Cohen et al., 2011] uses a CA to simulate

this lateral inhibition as a form of structured noise that could marshal cells into a

well ordered pattern.

The underlying principle of delta-notch signalling used in the model is that cells

compete to change to a delta state and once they have done this they inhibit

their neighbouring cells from making the same change by activating their notch

signalling. This results in a discernible spaced pattern of delta, or active cells. This

visible pattern is stable and static, but is set by the order of the asynchronous

updating of the cells. The perturbation of this process with structured noise breaks

up this stability, leading the cells to develop over time a much tighter patterning.
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3.5.3 Deterministic model using a theoretical active

network

The particle model, (see subsection 3.5.1), shows agents manoeuvring and gather-

ing together across a grid, whereas the randomised model, (see subsection 3.5.2), is

based on the changing state of cells on the grid. The deterministic model simulates

an active network (AN) and is based on the Petri-net simulation of a theoretical

AN in [de Silva, 2004]. In an AN the data packets can be processed at a server

node, thus using more sever resources than just required for the receiving and for-

warding of the packet. The CA model representation of the original model can be

seen as a hybrid of the other two models, containing moving agents in the form of

the Active Data Packets (ADP), moving across a grid of cells representing network

servers with changing states. Although a key difference between the abstracting

of moving agents in the particle model and this model is that in the latter the

ADPs are moving across and off of the grid, whereas in the former amoebae are

seeking to gather.

However, the focus of the analysis is not on the movement of the ADP, but rather

the deterministic change to the resource usage of the network servers that is reflec-

ted in the changing state of the cells on the grid. An ADP is set with an individual

resource requirement, which a server will provide if it has enough to spare; oth-

erwise the ADP is passed on. If an ADP has been processed, then subsequent

cells will forward it on until it exits the grid (network). The original work used

the Hurst exponent to measure the fluctuations server usage in each cell. But as

explained in subsection 3.3.1, this metric is not considered suitable for measuring

the 2D CA output space.

3.6 Metrics

Four approaches to measuring the output grid of a 2D cellular automaton were con-

sidered in section 3.3; (1) mean density, (2) randomness and clusters, (3) entropy,

and (4) connectedness. Four metrics are selected that reflect these approaches.

1. A standard mean density metric is selected to provide a basic measurement

of the number of active cells on the output grid (see subsection 3.6.1).

2. The BBR measure used in [Fatès et al., 2008] is used to provide a relat-

ively simple calculation of the cluster size of all the active cells (see subsec-

tion 3.6.2). Apart from being another relatively simple metric, it provides
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a link to the work used as the base for the particle simulation, thus giving

the means to validate the particle automaton against the original work.

3. The entropy metric chosen is used in [Tsang and Tsang, 1999]. This involves

the identification of clusters within the output space, using the decrease in

the variety of clusters of different sizes to indicate a move towards a single

cluster spanning the grid (see subsection 3.6.3).

4. The last metric proposes a new measure based on the calculation of the

number of connections, or edges that the active cells have, divided by the

optimum connectedness that the same number of cells would have (see sub-

section 3.6.4).

The first three are existing metrics and are used to compare with and validate the

fourth, as well as to see if there is any potential in combining them. The last three

metrics feature the identification of clusters or cell connectivity; this allows a view

of how different clustering approaches can be used. The formation of clusters can

be seen as the emergence of order or a loss of randomness, but randomness is not

necessarily easy to establish. A nearly empty or nearly full grid represents the

two extremes of mean density; but they should also represent noticeable stages in

the entropy of a grid. As a grid fills up it should also correspond with the point

where a spanning cluster is created. Consequently, none of the metrics can be

seen as so specific that they exclude any similarities with any of the other metrics.

This cross coverage of the four approaches, as well as the relatively easiness of

understanding and implementing the metrics, helped in the selection. Although

there are a rich variety of metrics, especially relating to clustering and entropy

that could have been considered, the number was kept at four to correlate with

the four approaches outlined above.

The following provides a formal definition of the CA output space. The grid or

lattice is formally defined as,

L = {1, ..., I} ∗ {1, ..., J}

where I is the number of rows and J is the number of columns. The number of

cells is given by,

NL = I ∗ J

A cell is located on the grid by,

ci,j, where i ∈ I and j ∈ J
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The range of possible states is given by, for example a two state system, as,

R = {0, 1}

The state of a cell is,

σi,j, where σ ∈ R

The number of active cells on a grid is statistically given by,

NLσ=1

The neighbourhood of a cell ci,j is denoted by,

Vci,j

A cluster is labelled with its size, ks and the number of clusters of size s in a grid

is Nks

In examples of the models (e.g., see chapter 4) the specific cell location is often

dropped in general discussions about a cell, its neighbourhood and the rules being

applied to a cell.

3.6.1 Mean density

The mean density is a simple calculation of the number of active sites in a grid

divided by the total number of cells in the grid.

MD =
NLσ=1

NL

(3.1)

This has already been mentioned as a way of distinguishing the growth in the

number of active cells in a grid over a series of time steps. Its limitation as a

potential common measure across CA types has been raised (subsection 3.3.2),

but it acts as a base line as well as a basic indicator that could influence the

application of other metrics.

3.6.2 Bounding box ratio

Fatès et al. [2008, pp.13-16] propose measuring the rectangle that encompasses all

the active cells on the grid. The difference between the highest and lowest value

of i of an active cell on the grid is multiplied by the highest and lowest j value;

the sum is divided by the total number of cells on the grid. The bounding box
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ratio (BBR) represents the number of cells within its border in relationship to the

total number of cells,

BBR =
(imax − imin) ∗ (jmax − jmin)

NL

(3.2)

This simple metric would appear to act as a very rough clustering of all the active

cells. In a grid with a spanning cluster the value will approach one. A possible issue

is that while the BBR might indicate if the active cells are grouping more closely

together, it tells us very little about the actual grouping within the rectangle.

3.6.3 Entropy

Entropy is a term that has been used to describe a range of associated, but different

measures (see subsection 2.7.2 and subsection 3.3.4). The analysis is focused on

the 2D CA output space. This can be viewed as a macrospace, which would lend

itself to an entropic measurement that takes a more information or uncertainty

approach. The one selected is used by Tsang and Tsang [1999] in their study of

cluster size diversity, percolation and complex systems.

“The entropy of the system can be defined as a function of the prob-

ability that an occupied site is part of an s-site cluster.”

[Tsang and Tsang, 1999, p.2686]

The sum of s-clustered per grid is calculated by dividing the number of clusters

of size s by the number of cells on the grid. This is also known as the normalised

cluster number,

ns =
Nks

NL

(3.3)

where Nks is the number of clusters of size s and NL gives the number of cells in

the grid.

The probability that a cluster of s cells contains an arbitrarily selected occupied

cell is given by,

ws =
sns

L∑
s

sns

(3.4)
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Thus the entropy of the system is,

H = −
∑

s

ws ln ws (3.5)

This measure is used to help identify the critical percolation point, pc, where a

spanning cluster is formed. This means the curve of the graph can tail off after

this point, giving little consistent information about the state of the grid once pc

has been reached and most of the active sites belong to a spanning cluster.

3.6.4 Connectedness

The measuring of a CA grid can focus on the comparison of the changing states

of the individual cells over a series of time steps. However, the very visual nature

of the CA grid lends itself to the evaluation of the changing nature of the whole

grid over time. Clustering algorithms have been used both in the rules governing

the action of agents on a CA, (see Chen and Wang [2007] - a novel ant clustering

algorithm based on cellular automata), and to identify clusters in a CA. But this

identified a cluster of cells, it did not provide any real information concerning the

general state of the CA grid. This distinction between cluster identification as

opposed to grid or dataset state was observed in subsection 3.3.5.

Taking the terms of graph theory, the cells are vertices and cells are connected

to other cells in their neighbourhood via edges. This research uses levels of con-

nectedness (edges) between active cells (vertices) to form connected groups, or

clusters of cells. The number of edges in relationship to the number of vertices in

a grouping indicates its density. The number and nature of the cell clusters, in-

cluding singletons, within the CA grid provide an indicator of the degree of order;

singletons, with no clusters, signify randomness, whereas a full or virtually full grid

would correlate with a single, dense cluster and an ordered state. Moreover, this

can be used to identify (a) similar areas within deterministic automata, (b) self-

organisation and the loss of randomness in both agent and particle automata,

and (c) the expansion, (increase in vertices and edges, against the decrease in the

clusters of non-active cells), in all types of automata.

So in a grid the size of a Moore neighbourhood and where all the cells are active,

there would be 9 vertices and 20 connecting edges (see Figure 3.3 (a)). This could

be viewed as an optimally connected cluster. In the context of a larger grid the

cluster might not be so tightly connected (see Figure 3.3 (b)); if the 9 cells, or
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vertices, were in a straight line, the number of connecting edges would be 8.

9 cells, 20 connections
! ! ! ! ! ! ! ! (a)

9 cells, 9 connections
! ! ! ! ! ! ! ! (b)

Figure 3.3: Connectedness between 9 cells using a Moore neighbour-
hood: (a) maximum connectedness of 20, (b) a more linear formation
reduces the connectedness to 9

This gives another evaluation of the state of the active cells in the 2D CA out-

put space, especially in the context of changes to the organisation of the active

cells over a series of time steps. A cluster of 9 cells is a cluster, whatever their

formation. So a measure of the mean density would register the same for any form-

ation. Likewise, if all the active cells were in a single cluster, then the entropy

would be the same. But measuring the number of edges provides the potential

to say something about the changing state of that cluster as its number of edges

show it moving from or towards its optimal connectedness. If this is used for all

the elements on a grid then there is potential to provide a metric that provides

information on the state of the whole grid.

The aim is to find clusters of cells connected at different depths using the Manhat-

tan distance. The CA grid is scanned first for active cells or vertices that are in the

same neighbourhood; each pair of connected vertices is deemed to have an edge

between them; this is repeated until the whole CA grid has been scanned. This

can then be repeated for cells that are one cell apart. The Manhattan distance

can be specified up to a limit of 3, unless no clusters have been found, in which

case it can be increased to one less of half the width, and the same for the height
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if the grid is not a square.

The optimum number of edges for a cluster is given by,

Oks = ϕ(s) (3.6)

where ϕ is the relevant calculation laid out in pseudo code (see Figure 3.4 ).

The number of connection or edges in the site is given by,

Ne =
L∑

k

ke (3.7)

where ke is the number of connections in a cluster.

The optimum number of edges for a cluster with a size equal to all the active cells

in a grid is,

OLσ=1 = ϕ(Nσ=1) (3.8)

The metric calculates the number of edges in the site and divides it by the optimal

connectedness for a cluster of all the active nodes (including singletons),

C-V alue =
Ne

OLσ=1

(3.9)

The C-Value offers a possibility of distinguishing differences both in low and high

occupied grids. The question then becomes whether that provides any useful

information across the different types of CA.
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Figure 3.4: Pseudo code for calculating the optimum number of edges
for nodes in a Moore or a von Neuman neighbourhood

# a cluster must have at least 2 nodes; treat 2 and 3 nodes as known

# cases with one and 3 connections respectively

# set up the variables:

rows = square root of the number of nodes, rounded up

columns = the quotient of the number of nodes divided by the rows

remainder = the modulo of the number of nodes divided by the rows

# (A) calculation for a Moore neighbourhood.

# get the connections of the first column, optimum is 6 for the first

# 4 nodes, and 5 for each additional completed square:

starter_block = 6 + ( 5 * ( rows - 2 ) )

# the rest of the columns of squares have 5 for the first completed

# square and 4 for each of the rest in each column:

other_blocks = ( columns - 2 ) * ( 5 + ( 4 * ( rows - 2 ) ) )

# calculate the remaining connections

# corner nodes have 2 when it is part of an incomplete row.

# inner nodes can have 4 when added to an incomplete row, or 3 if

# it is the first node in an incomplete row with no corners:

if the remainder is greater than zero

if it is one less than competing another row

set surplus to 2 for one corner node

plus 4 for each subsequent node

else

set surplus to 3 for the first node

plus 4 for each subsequent node

the optimum number of edges = inner_block + other_blocks + surplus

---------------------------------------------------------------------

# (B) calculation for a von Neumann neighbourhood.

# get the connections of inner rectangle, optimum is 4 for 4 nodes:

inner_block = ( (rows - 1) * columns ) + ( (columns - 1) * rows )

# calculate the remaining connections

# corner nodes have a maximum of 2 connections; inner nodes have

# 2 when added to an incomplete row. The first node in

# any incomplete row has only 1 connection:

if the remainder is greater than zero

surplus = 1 for the first node and 2 for each subsequent node

the optimum number of edges = inner_block + surplus
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3.7 Summary

This chapter outlined the methodology and methods used in the thesis. It opened

with the adoption of a simulation methodology. As discussed in subsection 2.5.1,

a simulation is externally validated, as opposed to the internal validation of an

experiment. In this thesis the three simulations are based on previous work,

meaning that their validation is against the recorded results in the original works.

In effect, the simulations are validated against the ‘real world’ by proxy through

the documented results of the original work. Successful validation signifies that the

original work has been reproduced and also contributes to validity of the original

work itself.

A CA can be used for a variety of modelling situations, including ones where the

state of the cells is of interest and others where the focus is on the movement of

agents across the whole grid. Each focus has a different approach to what is of

specific significance in terms of measuring and analysing. This can range from a

simple assessment of the density of active cells, to the identification of clusters

on the grid. A metric is chosen with the specific focus on the context of the

simulation. The output grid of a 2D CA is a very visual space that has a limited

scope for representation; although the breadth of domains modelled with CA is

extensive. The simplicity of the 2D CA environment means that many attributes

of one metric can be seen in another. Thus, the density or clustering of active

cells have mutual points of interest, such as a spanning cluster that will generally

signify a high density of active cells. Likewise, high entropy can also be seen as

high density, and both low entropy (in terms of the macrolevel view presented by

the grid), low density and low levels of clustering could be construed as indicating

a higher chance that any active cells are randomly spaced on the grid.

Analogue simulation can be used to show an experiment of one system that can be

used as a simulation of a diverse system. In this way the specific metrics used in

the experiment also have relevance in the simulation. But such generality between

diverse systems is difficult to establish, although the drawing of analogies between

different observed contexts and systems is seen in how humans interact with new

situations and experiences. A more accessible and useful approach in establishing

some concept of generality between diverse systems is the measurement of a com-

mon modelling output space. The 2D CA output space provides an ideal common

area used for the modelling of diverse systems. A focus on the state of the whole

grid can be used to establish a common metric that is useful across different types

of system.
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Models covering three of the CA types described in subsection 2.6.5, particle,

randomised and deterministic were outlined, as well as the original work they

are based on. Four metrics, mean density, BBR, entropy and a newly proposed

C-Value were then explained. These were selected to cover the four approaches

listed as appropriate for measuring a 2D CA output space, density, clustering

(including randomness), entropy and connectedness. The three establish metrics

are all perceived to have a problem with measuring all three of the models, whereas

the new C-Value metric is felt to have the potential to provide information on all

three of the models, either individually or combined with one of the other metrics.



Chapter 4

Modelling

4.1 Introduction

The methodology and methods employed in this thesis were outlined in chapter 3,

including the scenarios and models used in the thesis. This chapter gives fur-

ther details of the implementation of the models and their validation against the

original work they replicate. The scenarios used are explained and the process

of using them to verify the working of the code implementing the metrics and

analysis of the simulations is started.

The chapter begins with an explanation in section 4.2 of the types of neighbour-

hoods, their range and the boundary conditions used in the three simulations.

Relatively simple fixed boundary conditions are used with the rectangular grids

that feature in the particle and deterministic models. Whereas the randomised

model employs a more complicated hexagonal grid with a wrap around toroidal

boundary, making the 2D grid effectively a torus; this makes it a more realistic

representation of, for example, the development of skin pigmentation on an an-

imal. The choice of the development and programming environments are outlined

in section 4.3, including examples of the how information is stored and passed

between the various programs.

In section 4.4 the scenarios are explained. The hand-crafted scenarios show how

the neighbourhood chosen can effect how the active cells are grouped. The test

plans outlined for the probability and dynamic scenarios are implemented in

chapter 5. The three models, their rules and implementation are discussed in

section 4.5. Simulation examples are validated against the output of the original

work from which the models are derived. A test plan for each model shows the

simulations that will be run and analysed in chapter 5. The chapter concludes

111
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with a summary.

4.2 Neighbourhood

There are two types of neighbourhood used in the models with rectangular grids,

and one for the model with a grid of hexagonal cells:

• the preferred nine cell Moore neighbourhood incorporating the cell in focus

and the eight cells bordering it;

• the five cell von Neumann neighbourhood using the cell in focus and the

cells bordering it to the north, east, south and west ; and

• the seven cell hexagonal neighbourhood using the cell in focus and the six

cells bordering it.

The neighbourhood also has a range or depth as well as boundary conditions.

4.2.1 Boundary conditions

The boundary conditions determine how the update rules are applied to a cell

on the edge of the grid. The four main boundary conditions are usually given in

terms of 1D CA (see Chopard and Droz [1998, pp.15-16]):

• fixed where the missing neighbouring cell is assumed to to have a predefined

fixed value. Obviously in a two state CA this would be one of the two states;

• reflection where the missing cell has the value of an existing neighbouring

cell. So a cell on the east border of a CA grid will reflect the value in its

existing western neighbour into the missing eastern neighbour;

• adiabatic where the missing cells are given the value of the border cell ([Schiff,

2007, pp.47-49] refers to this as reflective); and,

• periodic where the grid wraps around and is treated as a torus; this is also

referred to as a toroidal boundary condition.

The particle and deterministic models employ a null fixed boundary condition for

the rectangular grids. This in effect means that only the existing neighbours are

taken into consideration. The randomised model uses a grid of hexagonal cells and

a periodic boundary condition. These choices reflect the more obvious options for

a 2D CA grid, where any agent either leaves the grid and enter the surrounding

environment to have no further effect on the grid (null fixed boundary condition),

or leaves the edge of a grid to reappear on the opposite edge (periodic or toroidal

boundary condition).
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4.2.2 Range

The range is relevant to both the depth of the neighbourhood and the depth

between cells in a cluster. In both cases a Manhattan distance is used with a

minimum range of 1 and a maximum of 3. In the simulations using a rectangular

grid and a Moor neighbourhood, a cell with coordinates of i,j (row, column) has

an expanding neighbourhood where the the cell in focus has eight neighbours

when the range is 1, a further sixteen when it is 2 and an additional twenty-four

when it is 3 (see Table 4.1). The cells are stored in nested arrays reflecting their

Table 4.1: Cartesian coordinates for Moore neighbourhood of i,j for a
range of 1, 2 and 3.

i-3, j-3 i-3, j-2 i-3, j-1 i-3, j i-3, j+1 i-3, j+2 i-3, j+3
i-2, j-3 i-2, j-2 i-2, j-1 i-2, j i-2, j+1 i-2, j+2 i-2, j+3
i-1, j-3 i-1, j-2 i-1, j-1 i-1, j i-1, j+1 i-1, j+2 i-1, j+3

i, j-3 i, j-2 i, j-1 i, j i, j+1 i, j+2 i, j+3

i+1, j-3 i+1, j-2 i+1, j-1 i+1, j i+1, j+1 i+1, j+2 i+1, j+3
i+2, j-3 i+2, j-2 i+2, j-1 i+2, j i+2, j+1 i+2, j+2 i+2, j+3
i+3, j-3 i+3, j-2 i+3, j-1 i+3, j i+3, j+1 i+3, j+2 i+3, j+3

coordinates. The location is made up of (i ∗ number of columns in a row) + j,

and is used to build and move around temporary lists of cell coordinates.

The calculation of the neighbourhood and range of an hexagonal grid follows

similar principles, but is slightly more complicated in its implementation. The

grid used has cells rotated so that a flat edge is on top (see Figure 4.1). The cells

are stored in location order; this facilitates the drawing of the grids, as well as

storage and retrieval. But any manipulation is performed on the unpacked row,

column coordinates.

The layout of each row of the grid is split into an upper and lower level. The cells

in column zero and the even columns are in the ‘upper’ half, the odd numbered

columns in the ‘lower’. Any upper cells will have cells to the south east and south

west on the same row, but will have to go up a row for their north east and north

west cells. Conversely, lower cells have north neighbours on the same row, but

need to go down a row for their southern ones. This becomes more involved when

taking into account the wrapping around effect of a toroidal boundary where a cell

might be looking for its neighbours from both the row and column on the other

visual side of the grid. Consequently, an increase in the range is far from straight

forward, (see Figure 4.1). The listing of sample code, which include the bases of
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the algorithm used to work out neighbouring cells in the delta-notch hexagonal

program suite, can be found in the appendix C.

0
i-3,j-3

1
i-3,j-2

2
i-3,j-1

3
i-3,j

8
i-2,j-3

10
i-2,j-1

16
i-1,j-3

17
i-1,j-2

18
i-1,j-1

19
i-1,j

24
i,j-3

26
i,j-1

28
i,j+1

30
i,j+3

9
i-2,j-2

11
i-2,j

13
i-2,j+2

32
i+1,j-3

35
i+1, j

40
i+2,j-3

48
i+3,j-3

51
i+3,j

56
i+4,j-3

41
i+2,j-2

43
i+2,j

25
i,j-2

27
i,j

29
i,j+2

33
i+1,j-2

49
i+3,j-2

34
i+1,j-1

42
i+2,j-1

50
i+3,j-1

52
i+3,j+1

44
i+2,j+1

36
i+1,j+1

20
i-1,j+1

12
i-2,j+1

4
i-3,j+1

5
i-3,j+2

37
i+1,j+2

45
i+2,j+2

53
i+3,j+2

54
i+3,j+3

46
i+2,j+3

38
i+1,j+3

22
i-1,j+3

14
i-2,j+3

6
i-3,j+3

7
i-3,j+4

15
i-2,j+4

23
i-1,j+4

31
i,j+4

39
i+1,j+4

47
i+2,j+4

55
i+3,j+4

21
i-1,j+2

57
i+4,j-2

59
i+4,j

57
i+4,j-1

61
i+4,j+2

63
i+4,j+4

61
i+4,j+3

61
i+4,j+1

Figure 4.1: Cell location with row (i) and column (j) relevant to the cell
in focus at location 27. The grid is stored in a location based array to
save storage, but the application of rules using a cell’s neighbourhood
and range is based on unpacking the location into row and column
coordinates.

The packing of the row, column (i,j ) coordinates into a location is achieved by:

location = ( ( integer from i / 2 ) * number of columns )

+ j

The unpacking is move involved:

i = (( integer from location / number of columns ) * 2)

+ location mod 2

j = location mod number of columns

A range of one, two and three are shown for a cell in a central position on an eight
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by eight hexagonal grid in Figure 4.2. However, the difference can be seen when

the boundary condition is brought into play. In the rectangular grids a null fixed

condition is used, meaning that if i, j is on the right hand, or eastern border of the

grid, then all the two leftmost columns in table Table 4.1 would be treated as if

they were inactive. However, the hexagonal simulation uses a periodic or toroidal

condition, so it wraps around the grid edge as if it is joined to the opposite side

(see Figure 4.3). One of the advantage of this is that it better models the 2D

representation of the outer layer of a 3D object, such as pattern formation on

skin.

 
(a) Range of 1 (red), 2 (orange) and  
 3 (yellow) for a hexagonal grid.

Figure 4.2: Range and boundary conditions for a hexagonal grid. This
shows the range around the cell in focus (black) of 1 (6 red cells), 2 (6
red + 12 orange cells) and 3 (6 red + 12 orange + 18 yellow cells) for
an eight by eight grid
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(b) Toroidal boundary range of 1 (red),  
 2 (orange) and 3 (yellow) for cell  
 (black) on a hexagonal grid.

Figure 4.3: Range and boundary conditions for a hexagonal grid.
The toroidal boundary conditions causes the range radiating from the
(black) cell in focus to wrap around the grid.

The search for clusters follows the same neighbourhood, boundary conditions and

can have the same range. All clusters are found within a range of 1. If it is

specified, clusters of two cells apart can then be collated and then three, providing

the cell has not already been allocated to a cluster of a smaller Manhattan size.

The range is limited to three as this is the highest range that precludes cells being

clustered across existing clusters. The only time that that the range is expanded

to find a cluster is if no cluster has been found within the range specified. Any

expanded search is stopped as soon as two nodes are found and the expanded range

has been checked. This conforms with the underlying principle that a cluster must

consist of at least two nodes.

4.3 Program suite

The programs to run the models and analyse the output using the four metrics

outlined in chapter 3 were written in Java and Perl. The choice to program

the models rather than utilise an existing tool set, such as Matlab or Wolfson’s
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Mathematica, was initially based on the intention to use the spatial and temporal

features that was part of the MUSCLE modelling and simulation framework, (see

appendix A), for the Active Network simulation used as the deterministic model.

MUSCLE provides either a C++ or Java code base. The Java base proved easier

to implement on the Ubuntu Linux operating system used to run the AN model.

The analysis of the AN model’s output and the programming and simulation of

the two other models was carried out on the Apple OSX operating system, which

has a Unix core and shares many run line utilities with the Ubuntu platform. All

data was saved in a textual, record based format so that it could be easily passed

between programs and manipulated by the various utilities available.

When considering the two other models and the measuring and analysis programs,

it was felt that continuing to write programs, rather than take recourse in a third

party tool, allowed greater control and flexibility. However, it was felt there would

be greater benefit from using another programming language. Perl was chosen

because of a number of reasons; it is (a) free, (b) a general-purpose scripting lan-

guage, (c) an interpreted language and (d) available on most platforms. Although

as an interpreted language Perl will not execute as fast as a compiled language, its

development cycle is much faster. It is possible to develop and test in incremental

and iterative cycles that are much reduced in time as the code does not have to be

compiled. It also provides a succinct and flexible object orientated programming

environment.

A number of utilities, both programmed and scripted, are used to facilitate the

handling of the data output, such as extracting specific time steps. These utilities

make use of the tools supplied as part of the Unix / Linux core. In general, all

output from the programs are collected in the appropriate text or display file and

relevant sub-directory (for example, logs, displays, stats, graphs and thesis files

directories). The output type is text based, including display files in xml and html

format, except for graphs which are created as png files. The general procedure is

for an output file to start with a date and time stamp consisting of the day of the

month, hyphen, hour, minute, seconds and the ID, bounded by two underscores, of

the running program, such as ‘24-153938 RDC ’ or ‘24-153938 DNH ’ for output

from the particle (Reaction-Diffusion and Chemotaxis) and randomised (Delta-

Notch Hexagonal) models respectively. The tail of the output file name will reflect

information about its running option followed by the relevant file type. An output

file might have more than one date-time stamp and program ID if it has been run

by more than one program.
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Each Perl simulation or analysis program is invoked by a pl file which processes

the runtime parameters and calls the relevant object modules. The objects, stored

in Perl pm files and using the Moose extension to the Perl object oriented system,

generally consist of a kernel or controlling object that contains an array of grid

objects, that in turn contain an array of node objects, the latter being synonymous

with the cells on a grid. The Perl kernel object will initially hold just the initial

grid in their array, but this will increase to one grid per subsequent time step

of the simulation. When a simulation is measured an array of grids showing

each ‘connected’ group of cells is created for each grid in the array created by the

simulation. The dynamic scenarios and models are invoked by calling the following

programs with the relevant parameters1:

dynamic scenarios TSM Kernel.pl,

randomised model RDC Kernel.pl,

particle model DNH Kernel.pl and

deterministic model ActiveMode.java

An outline of the main programs and scripts can be found in appendix D, and the

actual programs and documentation are on the disk supplied with the thesis. The

basic process for each model can be viewed in four steps:

(1) initialisation - create and populated a grid:

Any program creating an initial grid for use in a simulation will save the grid

in a file starting with its ID and then information about the size of the grid,

the number of active cells and any relevant creation rules. An initial grid is

created and stored for repeated use (see example in listing 4.1).

The obvious advantage of saving the initial grid is not only to allow testing and

assist program development, but also to show the different effect of changed

program parameters, such as the neighbourhood type or the Manhattan dis-

tance used.

Each of the main simulations programs can create and save an initial grid, with

the size of the grid and the number of occupied cells specified at runtime. They

can also be supplied a file with the initial grid in. In the case of the particle

model there are some simulations where the grid has blocked cells on the gird.

1the deterministic model is a series of Java modules that need to run in the MUSCLE frame-
work and the simulation is invoked using a Ruby program. See appendix D for details.
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Listing 4.1: Example of a stored initial 10 by 10 grid with 36 active

cells set to ‘1’

Gr idS ize =[10 ,10 ]

Grid = [ 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 :

0 : 1 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 1 : 1 : 1 : 1 : 1 : 0 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 1 :

1 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 1 : 1 :

0 : 0 : 1 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 1 : 0 ]

(2) simulation - apply the model’s rules over a number of time steps using the

initial grid:

The simulations using rectangular grids pass their output to a program that

runs the metrics; whereas the simulation based on the hexagonal grid with a

toroidal boundary also contains the routines used to calculate the metrics as

the hexagonal grid and toroidal boundary required different algorithms. The

simulations using hexagonal grids can be run once to create a grid, run the

simulation, save the state as a text for future processing, save the metrics as

text and save the simulation as xml ; or it can be run in a series of separ-

ate operations, providing the output of the simulation is saved as a textual

representation of the state of the grid during each time step. The facility to

re-process a grid, or simulation output, or to split the process from a single

to a multi-stepped one is also available in the other core programs. A saved

simulation will consist of a text file with multiple grids, each identified by

a unique ID, such as the relevant time step. Each file starts with a record

indicating the origin of the initial grid; the example below in listing 4.2 points

to a simulation of the particle ‘RDC’ model , using a 10 by 10 grid with 40

active cells (see section 4.6 for further details of this model).

The rectangular grids can be saved and displayed as html ; xml is used for the

hexagonal grids as it enabled, through Perl, the construction of the hexagonal

cells. This provides a means of easily conducting a visual inspection of the

output. The saving of the grids in textual form also allows grids from specific

time steps to be extracted and either rendered as html or xml, or measured and

analysed. Indeed, as both html and xml are text and record based, selected

time steps can be extracted directly from the displays files themselves and in

the case of large grids, the display parameters can be adjusted to render the

grids so that they can be observed and printed more easily. This is useful both

from a testing and analysis perspective, and as a means of selecting key time

steps for use within the thesis without having to re-process a full simulation.
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Listing 4.2: Example of a stored simulation with the source file at the

top and the first two time steps

Or ig in [ i n p u t g r i d s /RDC 10by10a40 . txt ]

Gr idS ize =[10 ,10 ]

TS=0

Grid = [ 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 :

0 : 1 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 1 : 1 : 1 : 1 : 1 : 0 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 1 :

1 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 1 : 1 :

0 : 0 : 1 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 1 : 0 ]

TS=1

Grid = [ 1 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 :

1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 1 :

1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 0 : 1 : 0 : 0 : 0 :

1 : 0 : 1 : 0 : 0 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 1 : 1 ]

(3) measurement - apply selected metrics to simulation’s output:

The measurement of the grids created from a simulation is saved in a STATS

text file. An example of the first five time steps of a the simulation of the

particle model is shown in listing 4.3.

Listing 4.3: Example of the stored block of the metrics (STATS) for

five time steps; more information is provided in the text above

Orig in =[ i n p u t g r i d s / rdc 20by20w80m2ts40ehS grids . txt ]

x t i t l e =[time s tep ]

LAYOUT=[MeanDensity , Entropy , SampleMean , BBR, C−Value ]

STATS[0 , 400 , 1 ,M, 3 , 0 . 2 0 0 0 , 1 . 5 5 0 9 , 0 . 1 8 2 5 , 0 . 9 0 2 5 , 0 . 2 2 6 8 ]

STATS[1 , 400 , 1 ,M, 3 , 0 . 1 9 2 5 , 1 . 6 1 2 4 , 0 . 1 7 7 5 , 0 . 9 0 2 5 , 0 . 2 3 6 4 ]

STATS[2 , 400 , 1 ,M, 3 , 0 . 1 7 7 5 , 1 . 1 7 8 7 , 0 . 1 6 2 5 , 0 . 9 0 2 5 , 0 . 2 0 3 4 ]

STATS[3 , 400 , 1 ,M, 3 , 0 . 1 6 7 5 , 1 . 3 6 9 7 , 0 . 1 5 2 5 , 0 . 9 0 2 5 , 0 . 2 3 0 8 ]

STATS[4 , 400 , 1 ,M, 3 , 0 . 1 7 2 5 , 1 . 5 1 6 0 , 0 . 1 5 7 5 , 0 . 9 0 2 5 , 0 . 2 2 2 7 ]

In the first line the Origin shows the text file that contained the grids from the

simulation and was subsequently processed. The x title specifies the title to

be used on the x-axis of any graph. The names of the metrics that were used

are listed in the LAYOUT ; these match respectively the end of each STATS

line, so that the last value in the STATS lines shown above is the C-Value,

the penultimate is the BBR, and so on. The LAYOUT names are also used

in any graphs or tables created from the file The first five settings in a STATS

line represent:



CHAPTER 4. MODELLING 121

1. an ID - this is used to combine stats together in the analysis program.

In the example this shows the time step of the relevant grid. It could

be the probability value used to create the grid or the number of active

cells, for example, where later analysis can calculate the average of the

combined STATS with the same ID,

2. the number of cells in the grid; in the Origin used in the example the

grid is 20 by 20 equalling, as shown, 400 cells,

3. the cell state value used to extract data for the statistical analysis; this

is usually a ‘1’ signifying an active cell,

4. the neighbourhood used - M = Moore, V = von Neumann, H = Hexagonal

grid and,

5. the Manhattan range of 1, 2 or 3 used in the cluster analysis.

All simulations are stored in the textual grid format so that the metrics can

be rerun and re-analysed.

(4) analysis - compare and analyse the results from the metrics:

The analysis of the STATS from a simulation or a collection of simulations

is carried out for all the models by the S Data modules, invoked by calling

S Data.pl. The main purpose of the analysis program is to output comparisons

of the metrics and different simulations in the form of a graph or a table. The

graphs are saved as png files and the tables are stored in the LATEX longtable

format, which facilitates their inclusion in the thesis. Examples of the graphs

and tables created from the STATS can be seen in chapter 5.

4.4 Scenarios

An outline of the scenarios was given in subsection 3.4.1. They provide a relatively

simple way of testing different output scenarios and verifying that the programs

implementing the selected metrics and subsequent analysis are functioning as ex-

pected. The verification can be split into two key areas, (a) an identification of

groupings of connected active cells, which will be referred to below as clusters,

and (b) benchmarking the metrics. The ability to identify clusters is verified us-

ing hand-crafted stater grids and can be seen in subsection 4.4.1. Probability

(subsection 4.4.2) and dynamic (subsection 4.4.3) scenarios are used to verify and

benchmark the metrics in chapter 5.
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4.4.1 Hand-crafted

The hand-crafted scenarios are one off grids used to verify the analysis program,

especially the identification of clusters of connected active cells on a grid. They

are created using a spreadsheet. Using a spreadsheet, a grid of cells of a selected

size is populated with 0 or 1, the latter indicating an active cell. The grid is

then exported as a csv file. This is then converted by a Perl program into the

required grid layout for either further processing or analysis. Although a small

series of grids could be created to represent a brief time series of agents moving

in or out of a cluster, such a sequence is dealt with by the dynamic scenario (see

subsection 4.4.3).

Test plan

A sample of the hand-crafted grids were created to test the identification of clusters

using both the Moore 8 cell neighbourhood and the von Neumann 4 cell neigh-

bourhood. The results of using the Moore neighbourhood to extract clusters of

neighbouring cells sharing an edge from fairly simple patterns is shown in the

next three figures. In the first a grid with five nested clusters of square outlines

of connected active cells are extracted in Figure 4.4.

Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_2.html

1 of 2 14/04/2015 08:22connected grid with 82 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

2 of 20 14/04/2015 10:02

connected grid with 66 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

3 of 20 14/04/2015 10:02

connected grid with 50 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

4 of 20 14/04/2015 10:02

connected grid with 34 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

5 of 20 14/04/2015 10:02

connected grid with 18 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

6 of 20 14/04/2015 10:02

Figure 4.4: The extraction of clusters using the Moore eight cell neigh-
bourhood. The active cells are shown as black. The starting grid is at
the top. Five clusters are extracted.

In the next, Figure 4.5, three starting grids are shown; (a) has four active cells,

one at each corner of the square grid, which yields a single cluster of connected

cells, (b) has a starter grid with a scattering of four cells clusters, all of which
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were found, and (c) has eighty one active cells evenly spaced across the starter

grid, which is then extracted as a single cluster. The majority of the clusters

found so far have a Manhattan distance of one, although the cluster in example

Figure 4.5(c) has a Manhattan distance of 3.

Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_1.html

1 of 2 14/04/2015 08:41

connected grid with 4 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

1 of 20 14/04/2015 10:02

(a)

Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_3.html

1 of 2 14/04/2015 08:42

connected grid with 4 nodes (1
of 16)

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

7 of 20 14/04/2015 10:02

(b)

Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_4.html

1 of 2 14/04/2015 08:43

connected grid with 81 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

8 of 20 14/04/2015 10:02

(c)

Figure 4.5: Three simple examples of hand-crafted grids and the identi-
fication of their respective groupings of connected cells using the Moore
eight cell neighbourhood. The active cells are shown as black. The
starting grids are on the left. (a) the four active cells are of equal
distance apart on the square grid and form a single cluster; (b) the
starter grid is made up of groups of 4 cell; just one of the 16 clusters is
shown; (c) all of the cells on the starter grid form a single eighty one
cell cluster
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The last of the simple examples in Figure 4.6 are used to verify the ability of

the written Perl program suite to identify clusters using a Moore neighbourhood

uses a starter grid with just three active cells, spaced unevenly apart and at

more than a Manhattan distance of three. As no clusters are found within a

Manhattan distance of three, the search distance is increased, as was the case

with Figure 4.5(b), until either a cluster is found, or the search exceeds the limits

of the grid. In this example the nearest two active cells are grouped together and

the remaining active cell is a singleton.

Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_5.html

1 of 2 14/04/2015 08:43

connected grid with 2 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

9 of 20 14/04/2015 10:02

All singletons on grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

10 of 20 14/04/2015 10:02

(a) (b) (c)

Figure 4.6: The three active cells (coloured black) are of unequal
distance apart. Using a Moore eight cell neighbourhood, (a) the starter
grid produces (b) a one two cell cluster and (c) a one singleton.

The next three figures show more intricate patterns and the difference in what is

extracted by the two neighbourhoods. In Figure 4.7 the starter grid in (a) yields

a single forty nine cell cluster in (b) using a the Moor neighbourhood. But in (c)

a von Neumann neighbourhood does not include the diagonal cells next to the cell

in focus, so one cluster of four cells at a Manhattan distance of 2 is found, while

the other forty five cells are singletons.
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Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_7.html

1 of 2 14/04/2015 08:44

(a)

connected grid with 49 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

17 of 20 14/04/2015 10:02

(b)

connected grid with 4 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

11 of 20 14/04/2015 09:38

All 45 singletons on grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

12 of 20 14/04/2015 09:38

(c)

Figure 4.7: This shows the difference in cluster identification in (a) the
starter grid at the top when using (b) a Moore eight cell neighbourhood
where the starter grid at the top produces one cluster of all the active
(black) cells and (c) a von Neumann neighbourhood where a cluster of
four cells is found at a Manhattan distance of 2, see left hand grid, and
45 singletons, see right hand grid.

The contrast is even more evident in Figure 4.8. In (b) the Moor neighbourhood

search of the starter grid in (a) groups all the active cells into six separate clusters.

In (c) the first three clusters found with a von Neumann neighbourhood match

three found in (b). But after that the other three clusters shown in(b) are replaced

in (c) with six smaller clusters and fourteen singletons.

The final verification test using a hand-crafted scenario shows how the starter grid

in Figure 4.9(a) is made up in (b) of two clusters using a Moor neighbourhood,

but becomes in (c) one identical cluster, five smaller clusters and eleven singletons

when using a von Neumann neighbourhood.
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Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_6.html

1 of 2 14/04/2015 08:43

(a)

connected grid with 12 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

11 of 20 14/04/2015 10:02

connected grid with 33 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

12 of 20 14/04/2015 10:02

connected grid with 14 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

13 of 20 14/04/2015 10:02

connected grid with 64 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

14 of 20 14/04/2015 10:02

connected grid with 38 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

15 of 20 14/04/2015 10:02

connected grid with 9 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

16 of 20 14/04/2015 10:02

(b)

connected grid with 12 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

1 of 20 14/04/2015 09:38

connected grid with 64 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

2 of 20 14/04/2015 09:38

connected grid with 33 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

3 of 20 14/04/2015 09:38

connected grid with 2 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

4 of 20 14/04/2015 09:38

connected grid with 20 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

5 of 20 14/04/2015 09:38

connected grid with 14 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

6 of 20 14/04/2015 09:38

connected grid with 2 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

7 of 20 14/04/2015 09:38

connected grid with 5 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

8 of 20 14/04/2015 09:38

connected grid with 4 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

9 of 20 14/04/2015 09:38

All 14 singletons on grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

10 of 20 14/04/2015 09:38

(c)

Figure 4.8: Another example of the difference in cluster identific-
ation in (a) between an eight cell Moore neighbourhood and a four
cell von Neumann neighbourhood. (b) six clusters are found using
the Moor neighbourhood; (c) a von Neumann neighbourhood identifies
nine clusters and fourteen unconnected singletons that are displayed in
the last grid
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Starter grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_8.html

1 of 2 14/04/2015 08:44

(a)

connected grid with 26 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

18 of 20 14/04/2015 10:02

connected grid with 27 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_csg...

19 of 20 14/04/2015 10:02

(b)

connected grid with 3 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

13 of 20 14/04/2015 09:38

connected grid with 2 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

14 of 20 14/04/2015 09:38

connected grid with 27 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

15 of 20 14/04/2015 09:38

connected grid with 3 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

16 of 20 14/04/2015 09:38

connected grid with 3 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

17 of 20 14/04/2015 09:38

connected grid with 4 nodes

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

18 of 20 14/04/2015 09:38

All 11 singletons on grid

file:///Users/cwdjohnson/PhD/perl/displays/csv_combined_Vc...

19 of 20 14/04/2015 09:38

(c)

Figure 4.9: A final example of the difference in cluster identification
between an eight cell Moore neighbourhood and a four cell von Neu-
mann neighbourhood. (a) the starter grid at the top produces the two
clusters in (b) when a Moor neighbourhood is used ; in (c) the use of a
von Neumann neighbourhood yields six clusters and eleven singletons
(see the last grid).
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4.4.2 Probability

The probability scenarios are created by a Perl program. The size of the grid is

supplied as well as a probability value where 0 < p value < 1. A random number

between zero and one is generated for each cell in the grid; if the random number

is equal to or less than the p value the cell is set to one (active), otherwise it is

set to zero (inactive). This means that a low p value will result in a grid with

a low number of active cells, whereas a p value of 0.9 will create a grid with a

large percentage of active cells (see Figure 4.10). This method is used by Tsang

and Tsang [1999] in their investigation of cluster size diversity and percolation

threshold, and the measurement of complexity.

(a) p_value = 0.1
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(b) p_value = 0.2
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(c) p_value = 0.3
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(d) p_value = 0.4
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(e) p_value = 0.5
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(f) p_value = 0.6
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(g) p_value = 0.7
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(h) p_value = 0.8

                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         

file:///Users/cwdjohnson/PhD/perl/displays/p0.8values.html

1 of 2 31/03/2014 14:59

(i) p_value = 0.9
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Figure 4.10: Examples of nine different probability grids. The active
cells are shown as black. The first grid in the top left corner was created
with a p value of 0.1. The p value of the subsequent grids going across
the page and down increment by 0.1 up to a value of 0.9 in the grid
in the bottom right corner. As the probability increases, so too does
the density of active cells on the grid. This creates scenarios where the
metrics and analysis programs can be tested against variable densities
and the impact of the density on clustering identification can be seen.
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Test plan

Output files can be combined to consist of grids formed from a mixture of p values

and grid sizes before being analysed. These scenarios are used in chapter 5 to

benchmark the metrics against different percentages of active cells on the grid. In

this way the ability of the metrics and analysis programs to distinguish between

different grid densities can be verified. The correlation between the number of

different cluster sizes and density, as well as the basic identification of clusters can

also be confirmed.

4.4.3 Dynamic

The dynamic scenarios are created using a Perl program with parameters that can

be used to set the grid size and the number of active cells. The specified active

cells are randomly spaced on the grid. The size of grid and number of agents are

varied as, although the scenario is predictable, a key distinction is the number

of agents or active cells on the grid. A densely packed grid will soon become a

single cluster, as opposed to a handful of active cells spaced out on a large grid.

Therefore, the main purposes of this scenario is to (a) baseline the metrics against

a range of output grids that show scattered agents gradually grouping together

and (b) ascertain how the metrics performed when there was little change in the

output grid to be identified, such as when the initial grid was very densely packed

with active cells. The created grid is updated for a supplied number of time steps

where the active cells are asynchronously processed with a simple rule that moves

them, if there is an empty cell, towards the centre of the grid. The metrics can

then be tested against a series of output grids that shows a move towards a single

dense cluster (see Figure 4.11).

Test plan

Dynamic scenarios are created to investigate the performance of the metrics in

a number of situations, including (a) how much distinction can be seen in the

information obtained from the time steps of a densely packed grid as they quickly

stabilise into a single cluster and (b) what discernible range of information can be

obtained from the time steps involved in moving a few active cells on a large grid

into a cluster. A series of simulations were conducted and metrics compared (see

chapter 5).
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ts 0
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1 of 21 01/04/2014 16:22

ts 6
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ts 9
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ts 12

file:///Users/cwdjohnson/PhD/perl/displays/tsm_40by40w40.html

13 of 21 01/04/2014 16:22

ts 15

file:///Users/cwdjohnson/PhD/perl/displays/tsm_40by40w40.html

16 of 21 01/04/2014 16:22

ts 18
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19 of 21 01/04/2014 16:22Figure 4.11: Example of dynamic scenario with a 40 by 40 grid and 40
agents (black cells). The agents cluster around the centre of the grid
within eighteen time steps. Time steps (ts) 0, 6, 9, 12, 15 and 18 are
shown.

4.5 Models

Three models have been built to reflect three of the four types of CA outlined

in Table 2.2, particle, randomised and deterministic. The growth type is not

modelled as it consists of the simple expansion or growth of the number of active

cells that is easily measured; although the direction, pattern and speed of growth

are of interest in some specific areas. All three models are based on existing work.

The purpose of the following sections is to outline and validate the design of the

three models and their operation against the relevant original work. The models

were selected to provide an example of each of the three CA types. As will be

seen below, the three models also have different features that ensure the variety

tested is not confined to CA type, but incorporates different boundary conditions

and updating rules.

4.6 Particle model

The particle model follows the design devised by Fatès et al. [2008] in their coup-

ling of chemotaxis and reaction-diffusion to provide a solution to the decentralised

gathering problem Their modelling of slime mould Dictyostelium discoideum gath-
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ering in mounds in the event of food scarcity is considered in subsection 3.5.1. In

the model the amoebae cells of the slime mould are synonymous with ‘agents’ or

‘particles’. The model represents the amoebae signalling waves of cyclic adenosine

monophosphate (cAMP) in reaction-diffusion patterns coupled with their chemo-

taxis in response to the cAMP. The rest of this section looks at the design of the

particle model and validates the new simulations of the model against the original

ones.

4.6.1 Particle model design

The model uses a synchronous update method, otherwise the reaction-diffusion

waves are not formed and the chemotaxis is not sufficiently established to gener-

ate any meaningful gathering of the agents (see the discussion on CA updating in

subsection 2.6.3). This can be seen in Figure 4.12 where the left hand image is

a dynamically created 40 by 40 grid with 200 randomly placed active ‘amoebae’

(black cells) and a series of arrays of blocked (blue) cells of random length and

distribution; it is updated for 3500 time steps asynchronously (middle grid) and

synchronously (right hand grid). The rules and working of the model are explained

below, but the figure shows how the desired wave pattern, represented by the red

excited cells and the orange refractory ones, and resultant gathering of the amoe-

bae is only achieved with the synchronous updating method. In the asynchronous

grid displayed in the middle of the figure the amoebae are still scattered across

the gird, and no evidence of any reaction-diffusion patterns can be identified.

ts 0

file:///Developer/MUSCLE_2010-01-11_13-51-27/src/java/Ac...

1 of 42 26/03/2014 20:34

(a) (b) ts 3500

file:///Developer/MUSCLE_2010-01-11_13-51-27/src/java/Ac...

40 of 41 26/03/2014 20:35

(c) ts 3500

file:///Developer/MUSCLE_2010-01-11_13-51-27/src/java/Ac...

41 of 42 26/03/2014 20:34Figure 4.12: Example of asynchronous and synchronous updating in
a 40 by 40 grid with 200 agents and with the excited value M set to
2. Cells containing amoebae are coloured black; red cells are in an
excited state, orange ones are refractory; blue indicates a blocked cell.
(a) initial grid configuration; (b) after 3500 time steps of asynchronous
updating the agents are still scattered on the grid and the reaction-
diffusion is patchy; (c) after 3500 time steps with synchronous updating
the agents have gathered together in one region of the grid and the wave
pattern of the reaction-diffusion is evident.
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The design and rules of the model follow those documented in [Fatès et al., 2008].

An eight cell Moore neighbourhood is used, so the state of the cell in focus is

not used. A null fixed boundary condition is applied, so cells on the edge of the

grid have a reduced neighbourhood. Three probability settings have a potential

impact on the execution of the update rules: (a) the transmission rate pT; (b) the

agitation rate pA; and (c) the emission rate pE. The model has two layers, the

amoebae (or agent) and the environment. The update rules involve the linking

of the two layers. The layers and their interaction are outlined in the following

subsections.

4.6.2 Environment layer

The environment layer deals with the state of the cells, which ranges from a neutral

state of 0, through to an excited state of M that is defined at run time. After

one time step a cell in an excited state enters a refractory state where its state is

lessened by 1 each subsequent time step until it reaches a neutral state. Thus, if

M is set to 3, the possible state would consist of R={0, 1, 2, 3} and the refractory

state of {1, 2} (see Figure 4.13).

 Neutral                                  Refractory                                     Excited

10 MM-1. . . .

apply Rule 1

apply Rule 2

Figure 4.13: Environment layer with a simple reaction-diffusion pro-
cess. A cell becomes excited if it is neutral (σtc = 0) and there is at
least one excited neighbour (card{Et

vc}, where Vc is the neighbourhood
of the cell in focus c), and with probability of Bernoulli (pT ) = 1. A
cell dissipates from an excited state through a refractory state by 1
each time step until it returns to a neutral state (adapted from Fatès
et al. [2008, pp.5-6] and Girau et al. [2009, p.3]).

The rules governing any change to the state of a cell between time steps are:

Rule 1: a neutral cell becomes excited if it has at least one cell in its neighbourhood

that is in an excited state and a randomly generated number is less than
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or equal to pT (transmisson rate);

σt+1
c = M if σtc = 0 and card{Et

vc} > 0 and B(pT ) = 1 (4.1)

Rule 2: a cell in an excited or refractory state dissipates by 1 every time step until

it reaches a neutral state;

σt+1
c = σtc − 1 if σtc ∈ {1, ...,M} (4.2)

Rule 3: a cell is neutral if none of the previous rules are applied.

σt+1
c = 0 otherwise (4.3)

These rules match R1, R2 and R3 outlined in [Fatès et al., 2008, pp.5-6].

4.6.3 Amoeba layer

The amoeba layer controls the movement and location of each amoeba at each

time step. An amoeba is a single cell organism, but in the model it is not a one

amoeba to one grid cell correlation as more than one amoeba can occupy a cell.

The model represents the real life situation where there is a food shortage and the

amoebae stop spreading out and instead form into a mound [Bretschneider et al.,

1997]. As the update method used is synchronous, an amoeba wanting to move

to a cell only knows the state of that cell at the last time step, so at the next time

step multiple amoebae can occupy a cell. If a cell has one amoeba in it, after the

synchronous update all eight neighbouring cells could, theoretically, have moved

an amoeba into the cell. This would mean that the cell would have nine amoebae

in it after the update. It would be unable to accept any more until at least eight

further time steps had elapsed; more if it failed to move an amoeba off during a

time step. A consequence of this, within a modelling tool such as CA, is that while

there is a fixed number of amoebae on a grid, with no births or deaths, visually

the number of amoebae (represented by black cells) might appear to fluctuate.

A cell is available for an amoeba to move to if it is empty or has less than two

amoebae in it; the latter is termed free. The rules deals with free cells that are not

in an excited state (F̃ t
c ) and free cells that are in an excited state (Ẽt

c). A randomly

selected cell from any free cells in the neighbourhood is denoted by R(F̃ t
vc) and

a target cell is ⊕tc. While more than one amoeba might end up in a cell, only

one amoeba can move from an occupied cell during the time step update. The

movement of an amoeba is controlled by:
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Rule 4: if a randomly generated number is less than or equal to the agitation rate

then the amoeba is moved to a randomly selected free cell if any exists;

if B(pA) = 1 then ⊕tc = R(F̃ t
vc) (4.4)

Rule 5: if the random number is greater than the agitation rate, then if the cell

is neutral and there is at least one free excited cell in the neighbourhood

the amoeba moves to a randomly selected excited free neighbouring cell;

if B(pA) 6= 1 then if σtc = 0 and card{Ẽt
vc} > 0

then ⊕tc = R(Ẽt
vc)

(4.5)

Rule 6: otherwise no move occurs.

These rules correspond to R4, R5 and R6 given in [Fatès et al., 2008, p.6].

4.6.4 Layer interaction

The two layers interact following one rule:

Rule 7: if a cell in a neutral state is occupied by one or more amoebae (Atc > 0)

then the cell is set to excited if a random number is less or equal to the

emission rate.

σt+1
c = M if σtc = 0 and Atc > 0 and B(pE) = 1 (4.6)

The two rules that excite a cell (Rule 1 and Rule 7) can be combined together:

Rule 8: A cell becomes excited based on the transmission rate and a neutral state

as well as there being either at least one excited neighbouring cell or that

the cell is occupied and a randomly generated number is less than or equal

to the emission rate.

σt+1
c = M if B(pT ) = 1 and σtc = 0

and (card{Et
vc} > 0 or (Atc > 0 and B(pE) = 1))

(4.7)

These rules replicate R7 and R1’ given in [Fatès et al., 2008, p.6]. The model also

follows their setting of M = 2 with a state range of R={0, 1, 2} [ibid, p.7]; this

keeps the rules and states of the model as simple as possible.
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4.6.5 Simulation examples

This section provides validation that the model and simulation, written in Perl,

provides similar results to those published in [Fatès et al., 2008]. Their first simu-

lation established that transmission and emission rates of 1 and an agitation rate

of zero produced reactive-diffusion waves that met and then dissipated or merged,

rather than interacting with any amoebae and producing chemotaxis. This meant

that no gathering occurred and the amoebae remained static. The simulation was

run on a 20 rows by 30 columns lattice with 3 amoebae. The number of amoeba

is kept low so as to show the working of the model as clearly as possible. The

results concur with the original work and they can be seen in Figure 4.14 along

with the original results from [Fatès et al., 2008, p.8].

t = 0 t = 5

t = 10 t = 20

Figure 4: Four views of the evolution of the model with two amoebae in the
fully deterministic case for a grid size (30, 20) and (pT, pE, pA) = (1, 1, 0). Amoe-
bae are represented by black squares, white squares are neutral cells, darkest
brown/grey squares are excited cells, lighter brown/grey squares are refractory
cells. This colour code is kept in the following.

t1 t2 t3

Figure 5: Abstract view of the propagation of fronts in an Euclidian space.
Dashed lines represent frontiers between influence regions. (t1 < t2 < t3)
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(a)

ts 0

file:///Users/cwdjohnson/PhD/perl/displays/28-131825_20by...

1 of 22 28/03/2014 13:21

ts 5

file:///Users/cwdjohnson/PhD/perl/displays/28-131825_20by...

6 of 22 28/03/2014 13:21

ts 10

file:///Users/cwdjohnson/PhD/perl/displays/28-131825_20by...

11 of 22 28/03/2014 13:21

ts 20

file:///Users/cwdjohnson/PhD/perl/displays/28-131825_20by...

21 of 22 28/03/2014 13:21

(b)

Figure 4.14: Fully deterministic static evolution with a 20 rows by 30
columns grid, 3 amoebae and rates of (pT , pE, pA) = (1, 1, 0). The cell
state range is R={0, 1, 2}, with M=2; the resulting reaction-diffusion
waves are shown as red for excited cells, and orange for refractory cells.
The amoebae are shown as green cells in the original work and as black
cells in the new simulations; the white cells are neutral. (a) time steps
0, 5, 10 & 20 from the original work in [Fatès et al., 2008, p.8]; (b) the
output for time steps 0, 5, 10 & 20 from the simulation using the new
Perl program; this concurs with the original work in (a).
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In their second simulation Fatès et al. [2008] showed the effect of introducing a

1% possibility that neighbouring cells would not set the cell in focus to an excite

stage. The setting of pT = 0.99 for this non-coherent regime resulted in small

transmission errors that caused waves independent of the amoebae and hindered

any gathering process. The results are shown in Figure 4.15 and mirror the original

ones.

t = 0 t = 40

Figure 7: Loss of coherence occuring with non-perfect transmission rate
(pT, pE, pA) = (0.99, 1, 0) on a small lattice of (30, 20).

system for these settings. We observe that for small simulation times the sys-
tem behaves qualitatively as for the non-perturbed case: waves are initiated by
amoebae, they propagate until they collide and annihilate. However, as trans-
mission errors accumulate, the waves progressively loose their coherent shape.
Additional sources of waves appear: these are spiral waves whose behaviour is
well-studied in reaction-di↵usion media, whether discrete or continuous [14]. As
time advances, more and more of these persistent spiral waves appear. Finally,
when the coherence is totally lost, amoebae start moving erratically as they
sometime receive excitation fronts.

Interpretation Small transmission errors in the environment create new
sources of excitation waves, independently of the amoebae. The multiplication
of such parasitic waves causes a confusion that does not allow the amoebae
to group into clusters. We call this behaviour where persistent waves develop
independently of the position of the amoebae, the non-coherent regime.

4.3 The Extinction Regime

For smaller values of pT the loss of coherence is observed even more rapidly.
Interestingly, when the transmission rate becomes small enough, waves are no
longer persistent. We call this new qualitative behaviour, where waves spon-
taneously disappear, the extinction regime. We observed that the transition
from the non-coherent regime to the extinction regime is sharp and occurs for
pT ⇠ 0.20.

Experiment In order to understand the origin of this abrupt change, we
considered a system depleted of amoebae, where some cells were randomly set
excited with probability 10% and left neutral otherwise. To separate the non-
coherent regime from the extinct regime, we monitored the evolution of the
density of excited cells: e(t) = card{c 2 L |�t

c = M}/X.Y
We expect this quantity to reach zero quickly for the extinction regime and

to remain strictly positive for the non-coherent regime. To test this hypothesis,
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(a)

ts 5

file:///Users/cwdjohnson/PhD/perl/displays/28-133111_20by...

6 of 42 28/03/2014 13:33

ts 10

file:///Users/cwdjohnson/PhD/perl/displays/28-133111_20by...

11 of 42 28/03/2014 13:33

ts 20

file:///Users/cwdjohnson/PhD/perl/displays/28-133111_20by...

21 of 42 28/03/2014 13:33

ts 40

file:///Users/cwdjohnson/PhD/perl/displays/28-133111_20by...

41 of 42 28/03/2014 13:33

(b)

Figure 4.15: Non-coherent regime with same starting grid as the previ-
ous figure, but with rates of (pT , pE, pA) = (0.99, 1, 0). The reduction in
the transmission rate effects the even spread of the reaction-diffusion
wave pattern by introducing additional waves independent from the
amoeba, thus impeding any gathering process. The resulting reaction-
diffusion waves are shown as red for excited cells, and orange for re-
fractory cells. The amoebae are shown as green cells in the original
work and as black cells in the new simulations; the white cells are
neutral. (a) this shows the initial and the fortieth time steps of the
original work [Fatès et al., 2008, p.10]; (b) time steps 5, 10, 20 & 40
from the new model match those of the original work in (a).
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Fatès et al. [2008] also looked more closely at the effect of varying the transmission

rate in their extinction regime simulation. In the simulation the initial grid has

no amoebae on it. Instead an average of 10% of the grid is populated with a

randomly located excited cells, all the other cells are left in a neutral state. The

simulation is carried out for 0.1 increases of pT from 0.1 to 1 inclusively; and

with (pE, pA) = (0, 0). As was seen in the non-coherent simulation above (see

Figure 4.15), a setting of pT = 0.99 led to a loss of coherence in the reactive-

diffusion wave pattern (see Figure 4.16). In this simulation the final grid of each

run is evaluated for the mean density of excited cells. Although the simulation

was run with smaller grids and for less time steps, the results matched the original

simulation (see Figure 4.17), and show that the “transition from non-coherent

regime to the extinction regime is sharp and occurs for pT 0.20” [Fatès et al.,

2008, pp.10-11]. They see the graph’s shape as an indication of second-order

phase transition. Although there are no amoebae involved, the lack of any wave

patterns in the end grid of pT = 0.3, ..., 0.9, (see Figure 4.16(b)), resembles the

results found when using an asynchronous updating method (see Figure 4.12(b)).

This re-emphasises the lack of cohesion in such an updating method.

(a) ts 0

file:///Users/cwdjohnson/PhD/perl/displays/extinction_40by4...

1 of 3 30/03/2014 11:47

(b) ts 400

file:///Users/cwdjohnson/PhD/perl/displays/extinction_40by4...

2 of 3 30/03/2014 11:47

Figure 4.16: The extinction regime simulation. Red indicates an ex-
cited cell, and orange a refractory one. The white cells are neutral.
There are no amoeba placed on the grid for this simulation. Results
gained from a 40 by 40 grid over 400 time steps with (pE, pA) = (0, 0)
and a pT range of {0.1, 0.2,...,0.9,1}. (a) an example of an initial grid
consisting of neutral cells except for about 10% randomly located ex-
cited cells; (b) an example of the state of the grid with pT = 0.9 after
400 time steps.
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Asymptotic excited cells density vs. transmission rate

Figure 8: Average density of excited states as a function of pT (see text). Lattice
size is (100, 100), the environment is depleted of amoebae, 10% of the cells were
intially set to the excited state.
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Log-Log plot of d(t) for different values of pT

f(t)=K. t ^ -D
pT= 0.2044
pT= 0.2045
pT= 0.2046

Figure 9: Evolution of the density of excited cells e(t) around the critical value
transmission rate pT (log-log scale). Lattice size is (400, 400). The straight line
has slope ��DP = �0.451, which is predicted by the directed percolation theory.

12

inr
ia-

00
13

22
66

, v
er

sio
n 

4 
- 1

5 
Se

p 
20

08

(b)

Figure 4.17: Mean density of excited cells as a function of pT . (a) this
shows the results from the original work [Fatès et al., 2008, p.12] where
a 100 by 100 grid depleted of amoebae was initially set with 10% of
its cells in an excited state; (b) this graph shows the mean density of
excited cells for each of the pT settings after 400 time steps and the
transition at pT 0.20 from non-coherence to extinction; a 40 by 40 grid
was used. The results from the new model shown in (b) match those
of the original work in (a).



CHAPTER 4. MODELLING 139

In their final simulation Fatès et al. [2008, pp.13-22] looked at how the probability

rates could be used to gather the amoebae into clusters, with and without perturb-

ation. The measuring of the clusters is the focus of chapter 5, so the validation of

this part of the new agent gathering model against the original work is an example

of the gathering process using the last two settings laid out in Table 4.2 for quick

self-organisation.

Table 4.2: Suggested settings for the static, non-coherent, extinction
and self-organising regimes (adapted from [Fatès et al., 2008, p.22])

pT pE pA qualitative behaviour

1 1 0 static

[0.2, 1] any 0 non-coherent

< 0.2 any 0 extinction

1 0.10 0 self-organising (slow)

1 0.01 0 self-organising (quick)

1 0.01 0.2 self-organising (quick)

The first validation test used a 40 by 40 grid with 600 randomly located amoebae

with a pure transmission rate and no agitation: (pT , pE, pA) = (1, 0.01, 0). The

simulation was run for two thousand time steps. The results can be seen in

Figure 4.18 and reflect the behaviour seen in the original simulation in [Fatès

et al., 2008], which used a grid with (X, Y ) = (30, 20), around 60 amoebae and

the same ratio settings (Figure 4.19). In all the remaining figures in this section the

amoebae in the original work are shown as green cells, while in the new simulations

they are depicted by black cells.
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ts 0

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

1 of 50 30/03/2014 20:36

ts 50

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

7 of 50 30/03/2014 20:36

ts 100

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

12 of 50 30/03/2014 20:36

ts 250

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

15 of 50 30/03/2014 20:36

ts 500

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

20 of 50 30/03/2014 20:36

ts 1000

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

29 of 50 30/03/2014 20:36

ts 1500

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

39 of 50 30/03/2014 20:36

ts 2000

file:///Users/cwdjohnson/PhD/perl/displays/30-19511_rdc_rb...

49 of 50 30/03/2014 20:36Figure 4.18: Example of the process of amoebae gathering through a
simulation of reaction-diffusion and chemotaxis. A 40 by 40 grid was
used with a starting grid of 600 amoebae and a probability ratio setting
of (pT , pE, pA) = (1, 0.01, 0). The samples shown are, from the top left,
time steps 0, 50, 100, 250, 500, 1000, 1500 and 2000. This reflects the
findings of the original study shown in Figure 4.19.
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t = 0 t = 40

t = 80 t = 160

t = 320 t = 640

Figure 10: Sequence showing the formation of a pacemaker with (pT, pE, pA) =
(1, 0.10, 0) and (X, Y ) = (30, 20).
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Figure 4.19: Process of amoeba gathering from the original work [Fatès
et al., 2008, p.14]. A grid with (X, Y ) = (30, 20) is used with a prob-
ability ratio setting of (pt, pE, pA) = (1, 0.01, 0). A probability of 10%
was used to initially populate a cell with an amoeba. The resulting
reaction-diffusion waves are shown as red for excited cells, and orange
for refractory cells. The amoebae are shown as green cells and the
white cells are neutral. The samples shown are, from the top left, time
steps 0, 40, 80, 100, 320, and 640.
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The next three simulations use a much larger grid of (X, Y ) = (150, 100). The

original work has a probability of 10% that a cell on the initial grid is populate

with an amoeba; the new simulation randomly places an amoeba on 10% of grid.

All three simulations are matched against output from the original work and show

corresponding behaviour. The first also uses a pure transmission rate and no

agitation. The results of (pT , pE, pA) = (1, 0.01, 0) on a large grid can be seen

in Figure 4.20 and the compactness of the groups can be seen in both the new

and the original results (Figure 4.21). The second simulation introduces a small

agitation rate of 10%: (pT , pE, pA) = (1, 0.01, 1.0). The new results (Figure 4.22)

again confirms the original findings (Figure 4.23), with both simulations showing

groupings that appear less compact and show the effects of the low agitation rate.

The third simulation use the same settings of the previous example, but places

around 1500 blocked cells in vertical and horizontal lines onto the initial grid. In

the final grid displayed of both the new simulation (Figure 4.24) and the original

work (Figure 4.25), two decentralised groupings have formed with both showing

the effect of the low agitation rate. In both simulations some amoebae have been

blocked in and prevented from joining either of the groups. The three simulations

concur with the original work in [Fatès et al., 2008] and show the gathering process,

as well as the ability of the amoebae to negotiate around obstacles; something that

“can be seen as an emergent property since at no time was it explicitly coded in

the local rules governing the system” [ibid, p.22].

The new simulations in this section have replicated those from the original work,

thus validating the new model against the original one in [Fatès et al., 2008].
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ts 0

file:///Users/cwdjohnson/PhD/perl/displays/16-62851_RDC...

1 of 7 16/04/2015 10:50

ts 200

file:///Users/cwdjohnson/PhD/perl/displays/16-62851_RDC...

2 of 7 16/04/2015 10:50

ts 400

file:///Users/cwdjohnson/PhD/perl/displays/16-62851_RDC...

3 of 7 16/04/2015 10:50

ts 800

file:///Users/cwdjohnson/PhD/perl/displays/16-62851_RDC...

4 of 7 16/04/2015 10:50

ts 1600

file:///Users/cwdjohnson/PhD/perl/displays/16-62851_RDC...

5 of 7 16/04/2015 10:50

ts 3200

file:///Users/cwdjohnson/PhD/perl/displays/16-62851_RDC...

6 of 7 16/04/2015 10:50

Figure 4.20: Example of the process of amoebae gathering through
a simulation of reaction-diffusion and chemotaxis, and with a pure
transmission rate and no agitation. A 150 by 100 grid with was used
with a starting grid of 1500 amoebae and a probability ratio setting
of (pT , pE, pA) = (1, 0.01, 0). The resulting reaction-diffusion waves are
shown as red for excited cells, and orange for refractory cells. The
amoebae are shown as black cells and the white cells are neutral. The
samples shown are, from the top left, time steps 0, 200, 400, 800, 1600,
and 3200. This reflects the original work shown in Figure 4.21.
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t = 0 t = 200

t = 400 t = 800

t = 1600 t = 3200

Figure 12: Evolution of the model with perfect transmission rate and no ag-
itation: (pT, pE, pA) = (1, 0.01, 0). Lattice size is (150, 100). Note that the
streams follow the diagonal axes only with the current model that uses the
eight-cell neighbourhood. In the cases where the model is defined with four-cell
neighbourhood (N,E,S,W), the streams follow the X and Y orthogonal axes.
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Figure 4.21: Process of amoeba gathering with perfect transmission
and no agitation from the original work [Fatès et al., 2008, p.17]. A
grid with (X, Y ) = (150, 100) is used with a probability ratio setting
of (pT , pE, pA) = (1, 0.01, 0). A probability of 10% was used to initially
populate a cell with an amoeba. The resulting reaction-diffusion waves
are shown as red for excited cells, and orange for refractory cells. The
amoebae are shown as green cells and the white cells are neutral. The
samples shown are, from the top left, time steps 0, 200, 400, 800, 1600
and 3200.
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Figure 4.22: Example of the process of amoebae gathering through a
simulation of reaction-diffusion and chemotaxis, and with a pure trans-
mission rate and a low agitation rate of 10%. A 150 by 100 grid with
was used with a starting grid of 1500 amoebae and a probability ratio
setting of (pT , pE, pA) = (1, 0.01, 0.1). The resulting reaction-diffusion
waves are shown as red for excited cells, and orange for refractory cells.
The amoebae are shown as black cells and the white cells are neutral.
The samples shown are, from the top left, time steps 0, 200, 400, 800,
1600, and 3200. This reflects the original work shown in Figure 4.23.
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t = 0 t = 200

t = 400 t = 800

t = 1600 t = 3200

Figure 13: Evolution of the model with perfect transmission rate and small
agitation: (pT, pE, pA) = (1, 0.01, 0.1).
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Figure 4.23: Process of amoeba gathering with perfect transmission
and a low level agitation rate of 10% from the original work [Fatès
et al., 2008, p.19]. A grid with (X, Y ) = (150, 100) is used with a
probability ratio setting of (pT , pE, pA) = (1, 0.01, 0.1). A probability
of 10% was used to initially populate a cell with an amoeba. The
resulting reaction-diffusion waves are shown as red for excited cells,
and orange for refractory cells. The amoebae are shown as green cells
and the white cells are neutral. The samples shown are, from the top
left, time steps 0, 200, 400, 800, 1600 and 3200.
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Figure 4.24: Example of the process of amoebae gathering through
a simulation of reaction-diffusion and chemotaxis, and with obstacles
on the grid. A 150 by 100 grid with was used with a starting grid
of 1500 amoebae, 1500 blocked cells and a probability ratio setting of
(pT , pE, pA) = (1, 0.01, 0.1). The resulting reaction-diffusion waves are
shown as red for excited cells, and orange for refractory cells. The
amoebae are shown as black cells and the white cells are neutral. The
blue cells are the obstacles on the grid. The samples shown are, from
the top left, time steps 0, 200, 400, 800, 1600, and 3200. This reflects
the original work in Figure 4.25, although on a smaller grid.)
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t = 0 t = 200

t = 400 t = 800

t = 1600 t = 3200

Figure 15: Evolution of the model with obstacles, perfect transmission rate and
small agitation: (pT, pE, pA) = (1, 0.01, 0.1).
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Figure 4.25: Process of amoeba gathering with a perfect transmission
rate and a small agitation rate and obstacles from the original work
[Fatès et al., 2008, p.19]. A grid with (X, Y ) = (150, 100) is used with
a probability ratio setting of (pT , pE, pA) = (1, 0.01, 0.1). The resulting
reaction-diffusion waves are shown as red for excited cells, and orange
for refractory cells. The amoebae are shown as green cells and the
white cells are neutral. The blue cells are the obstacles on the grid.
The samples shown are, from the top left, time steps 0, 200, 400, 800,
1600, 3200.
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In Figure 4.26, as in Figure 4.18, a smaller grid of 40 by 40 is used to show how

the gathering process is well illustrated by a smaller grid. A pure transmission

rate was used with no agitation: (pT , pE, pA) = (1, 0.01, 0). The grid was randomly

populated with 600 amoeba and 222 blocked cells. The run time of a large 100

by 150 grid can be four hours or more, while a 40 by 40 takes considerably less

and gives comparable results. Consequently, the thesis uses a 40 by 40 grid in the

simulations carried out in chapter 5.
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53 of 54 30/03/2014 21:30Figure 4.26: Example of the process of amoebae gathering through
a simulation of reaction-diffusion and chemotaxis, and with obstacles
on the grid. A 40 by 40 grid was used with a starting grid of 600
amoebae and a probability ratio setting of (pT , pE, pA) = (1, 0.01, 0).
222 blocked cells were arranged randomly in lines and bars on the grid.
The resulting reaction-diffusion waves are shown as red for excited cells,
and orange for refractory cells. The amoebae are shown as black cells
and the white cells are neutral. The blue cells are the obstacles on the
grid. The samples shown are, from the top left, time steps 0, 50, 100,
250, 500, 1000 and 2000.
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4.6.6 Test plan

The reactive-diffusion and chemotaxis model, which is used as an example of a

particle CA, gives a range of CA grid outputs through the altering of the probab-

ility rates (see Table 4.2). Two regimes are modelled and analysed, the extinction

and the self-organising regimes. The extinction regime is interesting both in the

general interpretation of the grid space where 0.2 < pT < 1 and in the randomness

of the distribution of excited cells. The self-organising regime, as opposed to the

extinction regime, features clustering. Consequently this model not only provides

a series of outputs that fits in with the idea of measuring clusters and connected-

ness, but also provides a series of outputs that test the suitability of measuring

results that do not exhibit obvious visual clusters. A series of tests covering both

these regimes are analysed in chapter 5.

4.7 Randomised model

The second model involves the changing state of cells within a CA grid. It incor-

porates probability in the use of noise to ‘control’ the formation of patterns. This

puts it in the new category of randomised CA type that was proposed in subsec-

tion 2.6.5 as an extension to the three proposed by Ermentrout and Edelstein-

Keshet [1993].

The randomised model replicates the work in [Cohen et al., 2011]. This work

simulates the role of structured noise and delta-notch signalling in self-organising

patterns. The modelling of delta-notch signalling to help understand how cells

communicate and develop, an area that is still not fully understood, is considered

in subsection 3.5.2.

The underlying principle of delta-notch signalling is that cells compete to change

to a delta state and once they have done that they inhibit their neighbouring cells

from making the same change by activating their notch signalling. This results in

a spaced pattern of delta, or active cells. This pattern is stable and static, but

is set by the order of the asynchronous updating of the cells. The perturbation

of this process with structured noise breaks up this stability, leading the cells to

develop over time a much tighter patterning. Cohen et al. [2011] implement two

types of structured noise, (a) temporal noise that occurs when each signal sending

cell generates an inhibitory signal with an irregular strength and (b) spatial noise

that originates from a spatial fluctuation of the strength of cell to cell signals.
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4.7.1 Randomised model design

The model uses two types of asynchronous updating schemes outlined in subsec-

tion 2.6.3. The random order asynchronous (ROA) update is used in the simula-

tions that do not include noise. This is also known as a random new sweep where

all the cells are updated in one time step, but the order the cells are updated in is

decided at the start of each time step. In their simulations with signal noise Cohen

et al. [2011, p.792] define a single time step “as a number of random selections

equal to the number of cells in the array”. Consequently, a random selection asyn-

chronous (RSA) updating is used when the model incorporates the probability of

noise affecting the delta-notch process. In this method, also known as uniform

choice, each time step updates the same number of cells that exist on the grid,

but each individual update randomly selects which cell to update; thus at the end

of the updating sequences for a time step a cell might have been updated once,

multiple times, or not at all.

A cell is either active or neutral, the former signifies that it has changed to a

delta signalling state, the latter that its notch signalling is active and it has been

inhibited from changing state. In the output grids active cells are represented by

the black cells. Non active cells are white although, as will be discussed below,

in other simulations they are coloured to represent how many cells are active

within the specified range. The number of active cells that can exist in a cell’s

neighbourhood is set by the threshold value. The scope of the neighbourhood is

defined by the range, which can be one cell incorporating eight neighbours, or two

with eighteen, or three with thirty-six neighbours (see Figure 4.2(a)). The grid

properties differ from the other two models as it is hexagonal and has toroidal

boundary conditions (see Figure 4.2(b)).

The following sections outline the rules, (based on the original work in [Cohen

et al., 2011], governing the simulations of the model, the validation of the new

simulation against the original work and the test focus adopted.

4.7.2 Lateral inhibition without noise

Although this can be defined with a probability, as the probability value used is

set to one it is in fact the asynchronous update that makes this a randomised

CA type. The state of each cell is determined by the state of its neighbours,

with the threshold set to one. This means that only one cell can be active in a

hexagonal based Moore neighbourhood of six cells. Thus the cells selected early

on for update have a higher probability that none of their neighbours have already
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been activated.

The rule governing a lateral inhibition without noise is:

Rule 1: A cell will become active and start transmitting an inhibitory signal if

non of its neighbours are active (σtvc < 1):

σt+1
c = 1 if card{σtvc < 1}, else σt+1

c = 0 (4.8)

As was mentioned above, this simulation establishes a fixed spatial pattern of

delta signalling cells. The introduction of spatial and temporal noise into the

cell update rules removes this static state and establishes a much more compact

pattern. This rule equates with the probabilistic rule set in [Cohen et al., 2011,

p.789, figure 2(b)].

4.7.3 Temporal noise

Temporal noise (Nt) has the ability to prevent a cell from becoming active, or to

make an active cell inactive. In effect, a cell that should have its state changed

to active or should remain active has a probability that it will stay or become

inactive.

The rule governing the application of temporal noise is:

Rule 2: a cell will have an active state and transmit an inhibitory signal if the

number of active cells in the neighbourhood of the cell are below the

threshold limit and if a generated random number is greater than Nt

value (H is the threshold value);

σt+1
c = 1 if card{σtvc < H} and p(Nt) = 0, else σt+1

c = 0 (4.9)

4.7.4 Spatial noise

Spatial noise (Ns) represents a lessening in the strength of the signal from neigh-

bouring cells for the cell in focus to be inhibited. In the model it is used when the

number of active cells in the neighbourhood are equal to or above the threshold

value. In the case where the cell in focus would be inhibited from changing state,

the spatial noise probability setting allows it a chance to ignore the signals and to

become active. The rule is set so that as the number of active neighbours becomes

greater than the threshold the chances of ignoring the state and becoming active

lessens.
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The rule is expressed as:

Rule 3: a cell with the number of active neighbours equal to or greater than the

threshold setting can still become active and transmit an inhibitory signal

if a randomly generated number is less than or equal to the Ns value to the

power of the sum of 1 plus the number of active cells in the neighbourhood

and less the threshold value;

σt+1
c = 1 if card{σtvc >= H} and p(Ns)

[1+n−H] = 1, else σt+1
c = 0

(4.10)

Rules 2 and 3 are run in conjunction based on number of active cells and the

threshold setting. They both represent the rule table in [Cohen et al., 2011,

p.790, figure 3(a)].

4.7.5 Simulation examples

Figure 4.27 shows four examples of the lateral inhibition model with no inhibition

using Equation 4.8 and random order synchronous updating. The static spatial

disorderly spread of active cells is produced from an initial grid of inactive cells

after 1 or 2 time steps. This is in line with the original simulation shown in

Figure 4.28.

file:///Users/cwdjohnson/PhD/thesis/dnh_no_noise1.xml

1 of 1 08/04/2014 19:55

file:///Users/cwdjohnson/PhD/thesis/dnh_no_noise2.xml

1 of 1 08/04/2014 19:54

file:///Users/cwdjohnson/PhD/thesis/dnh_no_noise3.xml

1 of 1 08/04/2014 19:54

file:///Users/cwdjohnson/PhD/thesis/dnh_no_noise4.xml
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Figure 4.27: Four examples of lateral inhibition with no noise using
an eight by eight hexagonal grid. The random order asynchronous
updating method is used with rule 1. The active (black) cells quickly
form into a disordered pattern that concurs with the original simulation
shown in Figure 4.28.
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align to give well-ordered patterns like those previously
attributed to diffusion-based systems [3,40].

2. RESULTS

2.1. Modelling lateral inhibition using
asynchronous cellular automata

Lateral inhibition patterns arise as a homogeneous group
of cells compete to express an inhibitory signal. The end
result of this signalling process is cells that either express
an inhibitory signal or are inhibited from doing so by sig-
nalling cells with which they are in contact (figure 2a).
In this way, an array of cells can be described as a two-
state system, in which cells are either active (expressing
inhibitory signals) or inactive (inhibited). This binary
state system lends itself to analysis as a two-state CA.
Within this formalism, the transition probabilities for
lateral inhibition can be easily captured using a simple
rule-based logic: a cell with an active neighbour has
zero probability of being active, while a cell with no
active neighbours has a probability of being active of 1.
This is represented in figure 2b,c, and constitutes a
discrete version of the continuum models of lateral inhi-
bition, which rely on threshold concentrations of Notch
and Delta determined through coupled differential
equations to determine cell state [2,21].

We applied this simple general model of lateral inhi-
bition to a two-dimensional array of hexagonally packed
cells to analyse the lateral inhibition process (similar
results were generated using other types of packing—
see the electronic supplementary material). In this
scheme, a cell can be in one of two states: dark grey
or white, where a dark-grey cell represents one that
actively expresses an inhibitory signal. To simulate
the patterning process beginning with a uniform field
of white cells, cells in the array were selected at
random and updated according to the rule-set described
in figure 2b. The rules simply state that if a cell has no

active signalling neighbours it may actively express an
inhibitory signal; if it has one or more active neighbours
it may not. A stable pattern quickly emerges using these
simple rules to yield a pattern of active (dark grey) cells
separated by intervening inactive (white) cells, as
shown in figure 2c.

2.2. Without signal noise, emergent patterns
remain fixed and irregular

The emergent lateral inhibition patterns, such as that
shown in figure 2c, quickly stabilize, at which point
no further changes in cell state take place. As a result,
the final arrangement of active cells is set according to
the order in which they were first randomly selected
and may be quite irregular (quantified using the coef-
ficient of variation (CV) of pattern spacing, as defined
in figure 4c) as long as it fulfils the requirement that
no two signalling cells are in direct contact with one
another. Although this particular model is highly sim-
plified compared with previous models of lateral
inhibition [21,29–31] (which include dynamical descrip-
tions of protein synthesis or gene network interactions),
it shares a common feature, in that it generates a pat-
tern of cell states that remains fixed once established.
However, as we recently showed by imaging the lateral
inhibition in the developing Drosophila notum, in vivo,
the process is accompanied by a gradual process of
pattern refinement [2].

2.3. Signal noise can be simulated by adapting
cell update probabilities

Having previously suggested that signalling noise could
be involved in this process of refinement, we next used
the CA model of lateral inhibition to consider the
effect of signalling noise on the long-term development
of patterns by introducing non-binary cell update pro-
babilities into the model. These generalized rules are

number of active
neighbours (n)

<1 ≥1

probability of signalling 1 0

(a)

(b)

(c)

Figure 2. Simulating lateral inhibition patterning. (a) A schematic of the lateral inhibition patterning. Initially homogeneous cells
(light grey) compete to express an inhibitory signal. Eventually a single cell becomes active (dark grey) and strongly inhibits the
expression of the signal in its contacting neighbours. (b) The outcome of lateral inhibition signalling expressed as a probabilistic
rule set. The signalling probability determines whether a single cell in a field will express an inhibitory signal based on the total
number of its active signalling neighbours (n). (c) An asynchronous cellular automata simulation of lateral inhibition. Cells in the
8 ! 8 hexagonally packed array are sequentially selected at random and updated according to the rule table in (b). The outcome
is a notably disordered packing of active cells (dark grey) expressing the inhibitory signal.

Structured noise in tissue patterning M. Cohen et al. 789
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Figure 4.28: A CA simulation of lateral inhibition from [Cohen et al.,
2011, p.789]. The cells in an 8 by 8 hexagonal grid are updated using
random order asynchronous updating. The disorder of the active (dark
grey) cells reflects the inhibitory signal.

The second simulation involves using first Ns = 0.1, Nt = 0 and then Ns = 0, Nt =

0.1, and using a threshold of H = 1. Figure 4.29 shows some of the output grids,

which agree with the original results shown in Figure 4.30. The output grids

shows the active cells as black; the inactive cells are colour coded to indicate how

many active neighbours they have. The result is that the pattern of the active

cells became more compact. This is reflected by the colour of the inactive cells

gradually showing a higher rate of active neighbours. The final grids are more

compact and the neutral cells mainly have three signalling cells around them, as

shown by the increase in grey cells. There would seem to be a difference in the

application of the toroidal boundary conditions, as the inactive cells on the border

of the grids in the original results do not seem to reflect the active cells on the

opposite sides of the grid, which in a ‘wrap around’ toroidal boundary condition

should be taken into account.
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Figure 4.29: Lateral inhibition with spatial noise probability set to
0.1. The threshold is set to H = 1, the neighbourhood range is 1
and a toroidal boundary is used. Rather than settling into a static,
disordered pattern, by the hundredth time step the spatial noise has
perturbed the active cell into a more compact a pattern. This is also
indicated by the increase in grey coloured cells signifying an increase
in the number of signalling cells around the inactive cells. Time steps
(ts) 1, 5, 10 and 100 are shown. The results concur with the original
results displayed in Figure 4.30.

expressing a signal if it is in contact with a set number
of actively signalling cells (denoted by a threshold value T,
figure 3d).

2.3.2. Temporal noise. Temporal noise (Nt) arises as a
result of fluctuating inhibitory signals generated within

each signal-sending cell (figure 3b). These fluctuations
may emerge in a structured way from oscillations
inherent in the signalling protein expression [41–43].
Alternatively it is possible that the signalling pathway
is set up in such a way that stochastic variation in the
concentration of signalling proteins frequently tips the
inhibitory signal above and below the signalling
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Figure 4. (Caption overleaf.)
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expressing a signal if it is in contact with a set number
of actively signalling cells (denoted by a threshold value T,
figure 3d).

2.3.2. Temporal noise. Temporal noise (Nt) arises as a
result of fluctuating inhibitory signals generated within

each signal-sending cell (figure 3b). These fluctuations
may emerge in a structured way from oscillations
inherent in the signalling protein expression [41–43].
Alternatively it is possible that the signalling pathway
is set up in such a way that stochastic variation in the
concentration of signalling proteins frequently tips the
inhibitory signal above and below the signalling
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Figure 4.30: A CA simulation of signal noise leading to pattern op-
timisation from [Cohen et al., 2011, p.791]. The cells in an 8 by 8
hexagonal grid are updated using random selection asynchronous up-
dating. The threshold is defined as T and is set to 1. The colour key is
at the bottom of the figure, with signalling cells shown as dark grey and
the colour cells indicating the number of active neighbours around an
inactive cell. The number of grey cells indicating three signalling cells
around an inactive cell increase as the pattern becomes more compact.
A selection of time steps are shown, increasing from left to right.
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Figure 4.31 shows the last output grid of a series of simulations of a twenty by

twenty hexagonal grid over a thousand time steps. The simulations varied in

the neighbourhood range, threshold, noise and asynchronous update types. The

neighbourhood ranges of one, two and three were tested. Two setting were used

for each range:

1. random selection asynchronous update with no noise (Nt = 0, Ns = 0) and

2. random selection asynchronous update with some temporal noise (Nt =

0.01, Ns = 0).

Simulations with a variety of threshold (H) settings were performed for each range,

noise/updating combination, including where the threshold is set to the number

of neighbours. Thus the first grouping, Figure 4.31(a), has six cells in a neighbour

hood and the last grid shows the result of a simulation with the threshold set to six

(H=6). The threshold settings of the last simulations displayed in Figure 4.31(b)

and (c) also mirror their respective neighbourhoods of eighteen (H=18) and thirty-

six (H=36).

The results show a similar range pattern formation shown in the original work

(see Figure 4.32), which further validates the new model. In the simulations using

a range of one, Figure 4.31(a), the addition of noise in the lower row shows how

the signalling (black) cells have formed a compact pattern across the grid. The

only exception is the last grid where the threshold is the same as the number

of cells in a neighbourhood and the signalling (black) cells predominate; this is

also seen in the results from the original work, Figure 4.32(a). In the other two

groupings, Figure 4.31(b) and (c), a spotted pattern can be discerned in the first

three threshold settings of each, with the lower rows showing how the addition of

noise produces a more compact pattern. The next two thresholds settings in both

(a) and (b) suggest a move towards a striped pattern, although in the lower row

of (b) H=28 the noise has produce an increase in the number black cells such that

the inactive, non-black cells form a spotted pattern. The last grid of both (b)

and (c) reflects that of (a) where there is a prevalence of the signalling cells. This

supports Cohen et al. [2011, p.794] conclusion that “[a]t different signal ranges

and inhibitory thresholds, a broad scope of patterns can be achieved” and that

noise plays an important part in the development of patterns and compressed

self-organisation.

The new simulations in this section replicate those carried out in the original work.

Consequently, the new model can be seen as validated against the original model

outlined in [Cohen et al., 2011].
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Figure 4.31: Pattern formation using lateral inhibition with different
thresholds (H), using a 20 by 20 grid over 1000 time steps (last time step
shown). (a) range=1; (b) range =2; and (c) range=3. The upper row
in each grouping used a RSA update with no noise settings; the lower
row used RSA with Nt = 0.1, Ns = 0. The two rows of each grouping
corresponds to the output of the original work shown in Figure 4.32.
As in the original, patterns of stripes and spots can be seen and noise
can also appear to realign a disorder spread of signalling (black) cells
into a pattern, such as in the lower row of (a) H=1, 2, 3, 4 and 5 (b)
H=4, 6 and 10, (c) H=14, 20 and 28.
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of inhibitory signalling owing to noise and as a result are
less likely to begin signalling and cause the pattern to
reposition. Thus, the alignment of stripes represents
the most stable pattern configuration in a noisy signal-
ling environment. Figure 6d reveals that the range of
signal noise for which a stable optimized pattern is
achieved is similar to the T ¼ 1 case in figure 4d. Identi-
cal results (not shown) were also achievable with spatial
noise. Furthermore, refinement of stripe patterns was

also achievable in a square-packed array (electronic
supplementary material, figure S3).

3. DISCUSSION

The pattern of sensory organs in the notum
of Drosophila is spaced by a process of inhibitory
cell–cell signalling mediated by highly dynamic

T = 6T = 5T = 4T = 3T = 2T = 1

T = 18T = 14T = 10T = 7T = 4T = 1

T = 36T = 28T = 20T = 12T = 8T = 1

signalling n = T – 1 n = T + 1 n = T + 2 n = T + 3n = T

signal noise

no noise

signal noise

no noise

signal noise

no noise

(a)

(b)

(c)

(d)

Figure 5. At different signal ranges and inhibitory thresholds, a broad scope of patterns can be achieved. (a–c) Each panel shows
typical results after 1000 steps for simulations of inhibitory signalling carried out in a 20 ! 20 hexagonally packed array of cells.
Different signal ranges were implemented, as illustrated by the size of the hexagonal shells positioned on the left ((a) one cell,
(b) two cells and (c) three cells). For each signal range, a selection of inhibitory thresholds is shown with and without temporal
noise, Nt ¼ 0.01. The active signalling cells and the neighbourhood of inactive cells are identified according to the key in (d). It is
clear from this illustrative set of examples that different patterns are achievable ranging from spots through to stripes that may be
in some cases realigned by the input of signal noise (e.g. (b), T ¼ 10).

794 Structured noise in tissue patterning M. Cohen et al.

J. R. Soc. Interface (2011)

 on April 26, 2013rsif.royalsocietypublishing.orgDownloaded from 

Figure 4.32: Pattern formation using different signal ranges and inhib-
itory thresholds from [Cohen et al., 2011, p.152]. Each group (a-c) uses
a 20 by 20 hexagonal grid and shows the results after 1000 time steps.
The signal range is shown by the hexagonal diagram to the left of each
grouping; (a) one cell, (b) 2 cells and (b) a range of 3 cells. The top
row of each grouping has no noise, while the lower row has a temporal
noise setting of Nt = 0.1. A selection of threshold is shown, ranging
from T = 1 to T = 36, are shown. The key at the bottom shows colour
used to indicate an active signalling cell (dark grey) and the number
of active cells surrounding an inactive cell. A range of patterns can be
seen, as well as the effect of noise in realigning a pattern (e.g., lower
row (b) T=10).
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4.7.6 Test plan

The delta-notch model, which is used as an example of a randomised CA, provides

a different challenge to the other models as the difference between the first pop-

ulated grid and the final formation, based on the simulation examples above, is

often minute. Tests are run and analysed in chapter 5 against the above simula-

tions, but also against simulations using a variety of noise settings that cause a

greater fluctuation of the number and placements of the signalling cells.

4.8 Deterministic model

The focus of the deterministic model is the resource usage of the network servers

represented by the state of each cell, rather than the tracking of the Active Packets

(AP) as they move across an Active Network (AN), delineated by the grid. Each

AP can require processing at a server and has a resource requirement. It is this

that creates a greater fluctuation in the resource usage across the grid than would

be expected merely with the passage of data packets across a network. A brief

outline of the model is given in see subsection 3.5.3. This section looks at the

design of the deterministic model.

4.8.1 Deterministic model design

The Active Network model consists of Active Packets (APs) that traverse across

a network of Active Nodes (ANode). For the sake of the model abstraction the

network is configured to only include active nodes and there is no distinction over

whether the Active Application is conveyed by the AP or already resides in the

ANode. The attributes abstracted into the model are:

1. each ANode has resource capabilities;

2. each AP has resource requirements;

3. an AP can only be processed at an ANode if there are adequate resources

available. The allocation is done on a first come first served basis;

4. an AP has the capability to reserve resources at an ANode for up to 50 time

cycles from when it is processed;

5. an AP is set to perform one of the following actions at the end of each time

cycle:

(a) Forward - the AP is forwarded to the next node;
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(b) Replicate - the AP is forwarded to the next node and if it was processed

in the current time cycle two replica APs are created, one either side of

the forwarded AP; each replication inherits the settings of the original

AP;

(c) Merge - if there is sufficient processing resource, the AP is retained

at the ANode for a period of five cycles. Any subsequent AP that is

processed at the same ANode that is set with a post-processed status

of ‘merge’, and has the same ‘merge ID’ is merged / consumed. At the

end of the 5 cycles a non-consumed Merge AP is forwarded to the next

node; and

(d) Consume - if the AP is processed, it is terminated at the end of the

time cycle;

6. each AP has two direction indicators. The first is the key direction (1 =

north, 2 = north-east, 3 = east .... 8 = north-west); the second flips between

the two directions needed to achieve a diagonal move within the more re-

strictive Von Neumann environment, such that a first indicator of 2, would

have a 2nd indicator that flipped between 1 and 3 - i.e. to achieve a diagonal

move two lateral movements have to be made;

7. each AP has a lifespan; and

8. more than one AP can occupy an ANode during a time cycle.

4.8.2 Active Network Domain

The approach taken in this model is to retain the concept of the process status

of the AN and its ANodes, but also to add the flow of the Active Data Packets

(ADPs) across the AN. A key temporal difference is observed in the update rate

of a network (a network cycle) and the processing of an ADP at an ANode. But

the processing cannot be as a time scale separation process as the process time

will vary and some ADPs will be flagged for passing to the next ANode during one

network cycle, while others may take greater than one network cycle to process

at the current ANode. This means that while the active processing of an ADP at

an ANode may take longer than one network cycle, the processor is checked every

cycle for any processed ADPs, hence the temporal overlap. The scale separation

map (SSM) for the AN Domain show the ADP Flow and ANode occupying the

same temporal scale, with the Processor stretching from the same scale to a larger

one. The three kernels are shown in the AN Domain SSM, see figure Figure 4.33.

Consequently, the model is a single domain one (see appendices subsection A.1.3),
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with temporal overlap between the three sub-models / kernels and coupling oc-

curring inside the inner iteration loop, (see Figure 4.34 for the coupling template).
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Figure 4.33: AN Domain SSM

ANode

While true
D := D_init
f := f_init
while not EC

D := U(D)
f := B(f)
f := C(f)
f := P(f)
O_i[f]

end
O_f[f]

end

1

2
3

4

ADP Flow

While true
D := D_init
f := f_init
while not EC

D := U(D)
f := B(f)
f := C(f)
f := P(f)
O_i[f]

end
O_f[f]

end

Processors

While true
D := D_init
f := f_init
while not EC

D := U(D)
f := B(f)
f := C(f)
f := P(f)
O_i[f]

end
O_f[f]

end

8
5

6

7

Figure 4.34: AN Domain coupling template

The processing sequence of the kernels (sub-model) is laid out in figure Figure 4.35.

The basic functioning of the kernels is:

1. ADP Flow kernel - this models the flow of the ADPs across the network.

Its first task is to update the ANode kernel with details of the movement
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of any ADPs - in the event of none a message indicating this will be sent

to resolve the blocking state around receive(). It will then receive details

from the ANode kernal of all the ADPs that are ready to move from their

current locations. The calculation of an ADPs movement is governed by:

(a) a message from the ANode kernel flagging which ADPs are ready to

move;

(b) one or more of its four (van Neumann) neighbours having not already

been visited by it, (in the event that all four have, then, excluding the

last ANode visited, the ADP will treat the other three options as open,

providing they satisfy the other rules);

(c) a space in at least one of the three nodes; and

(d) if there are more than 1, then either the ANode with the most resources

available, or the route opposite to the previous ANode, or random

choice.

If there are no routes open the ADP will remain where it is.

2. ANode Kernel - this models the overall status of the ANodes and the

ADPs located at them over each network cycle. The ANode kernel receives

a list of ADPs to move from one ANode (cell) to another. The number

of ADPs that can be located at an ANode during one network cycle is set

at initialisation. The main role of this sub-model is to ‘process’ the ADPs

passed to it and then pass a list of ADPs ready to move back to the ADP

Flow kernel. The outline of the processing is:

(a) The ADPs are moved as requested in the list from the ADP Flow kernel;

any unprocessed ones that match the processing type of the ANode are

added to the list to be sent to the Processor;

(b) The list is sent to the Processor Kernel;

(c) The list of processed ADPs is received from the Processor Kernel; and

(d) A list of ADPs ready to move is created based on:

i. the ADP has been processed - either it will have just been returned

by the Processor Kernel, or it is ‘passing through’ on the way to

an ‘end terminal’. If the current ANode is an end terminal it sets

the ADP status flag accordingly and the ADP Flow Kernel will

terminate the ADP;

ii. the ADP is unprocessed, but the current ANode does not match

its processing type; and
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iii. the ADP has passed its Life Span - the status is flagged accordingly

and the ADP Flow kernel terminates the ADP.

(e) The ‘ready to move’ list is sent to the ADP Flow Kernel - in the event

of none a message indicating this will be sent to resolve the blocking

state around receive().

3. Processor Kernel - this models the processing that takes place when an

ADP activates code at the ANode (i.e. is unprocessed, has a matching

processing type and there is processing capacity). The number of ADPs per

ANode that can be processed at the Processor Kernel is the same as the

number of ADPs that can be located at an ANode during a network cycle

and is set at initialisation. The number of cycles required to process an

ADP is initially set by the number of cycle requirements of the ADP and

the processor scale factor of the ANode - so an ADP requiring 2 network

cycles will have its processing time set to 2 by a ‘standard’ ANode, but to 1

by an ANode twice as fast (scale factor of 0.5) and to 4 by an ANode half as

fast (scale factor of 2). This allows for slow or fast ANodes to be placed in

the network and for ADPs to range from processor light to heavy. Each cycle

within the Processor Kernel starts with receiving a list of ADPs to process

from the ANode Kernel and ends with sending a list of processed ADPs back

to the ANode Kernel - in the event of none a message indicating this will be

sent to resolve the blocking state around receive(). The reduction of the

time set by the Processor Kernel for an ADPs to be processed will normally

be one per cycle, but an additional factor can be brought in by building a

dependency on the collective amount of processing being undertaken by an

ANode; this could be used to reflect an ADP becoming process bound.
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Figure 4.35: AN Domain Sequence Diagram

4.8.3 Attributes

The following is the outline of the attributes of an ADP, an ANode and a Processor:

• ADP

– ID (nnn)

– CurrentLocation (A1)

– Status (Unprocessed | Processed | Died | Finished)

– ProcessType (x | y | z | ....)
– LifeSpan (n network cycles)

– VistedANodes (A1, B2, B3, C3...)

– ProcessingCyclesRequired (n network cycles)

• ANode

– ID (A1)

– MaxADPs (0 - n)

– ProcessTypes (x + y + z...)

– Status (Active | Dead)

– Type (Terminus | Normal)

• Processor

– ID (A1)
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– ProcChannels (n ≡ ANode.MaxADPs)

– ProcessorScaleFactor (0.5 | 1 | 1.5 | 2)

4.8.4 Message structure

There are four send(data) conduits; these are 1○, 3○, 5○, and 7○ in Figure 4.35

and Figure 4.34. Each one passes a list of ADPs and their relevant attributes.

1○ ADP =⇒ ANode:

< MsgNum = 0− n >< ID = ADP.ID, FROM =

ADP.V istedANodes[last], TO = ADP.CurrentLocation,

STATUS = ADP.Status[, PTY PE = ADP.ProcessType,

PCR = ADP.ProcessingCyclesRequired] >< ID = .... >

3○ ANode =⇒ ADP:

< MsgNum = 0− n >< ID = ADP.ID, STATUS =

ADP.Status >< ID = .... >

5○ ANode =⇒ Processor:

< MsgNum = 0− n >< ID = ADP.ID, PCR =

ADP.ProcessingCyclesRequired >< ID = .... >

7○ Processor =⇒ ANode:

< MsgNum = 0− n >< ID = ADP.ID >< ID = .... >

4.8.5 Initialisation and perturbations

Each kernel reads from a text file on initialisation. The following is set up: (a) the

initial ADPs, with their start location and attributes; (b) the number of ADPs

that can be at an ANode over one network cycle, and (c) the Processor Scale

Factor for each ANode; (d) the number of processing channels per ANode; and

(e) the type of ANode - i.e. is it an End Terminal, (these will be set up on the

border of the grid), or a normal ANode. Perturbations are set up at initialisation

with an attribute that determines after how many cycles they are ‘introduced’ into

the environment. Perturbations are in the form of ADPs with a special status -

e.g., an ADP with a Status of k will ‘kill’ an ANode (set ANode.Status to D).

4.8.6 CAs and observables

Each kernel is a sub-model and has a range of data. Some data can be extracted

from more than 1 kernel, (such as the number of ADPs per ANode per network
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cycle); only one source per data item is shown below. The following outlines the

modelling method and available data at each kernel:

• ADP Flow Kernel - this uses a two dimensional grid. An ADP can move 1

cell to left, right, above, or below (von Neumann neighbourhood). The basis

of the movement is on a non-repeating random walk [Chopard and Droz,

1998; Flake, 1999], with a maximum of n ADPs per cell. The data available

include:

– The movement of an ADP is recorded2 and can be mapped individually,

or collectively (e.g. all, or just ADPs of one Process Type);

– The number of cycles / moves an ADP makes before it finishes or is

terminated;

– The number / percentage of ADPs finished and terminated is recorded;

– The time taken to process an ADP is recorded - both finding a suitable

ANode, at the Processor, and reaching an end terminal; and

– The number of messages sent to the ANode Kernel each network cycle.

• ANode Kernel - this uses a 2 dimensional grid with each cell representing an

ANode. This kernel is essentially a control / monitoring point. But it does

record information that can be displayed and analysed including:

– The state of each ANode in terms of number of ADPs located at it per

network cycle;

– The number of messages sent to the Processor Kernel per network cycle;

and

– The number of messages sent to the ADP Flow Kernel per network

cycle.

• Processor Kernel - this model uses an n column one dimensional CA grid to

represent the processing channels available at an ANode (≡ maximum ADPs

per ANode). The updating of the grid depends on the value set in the cell,

the values in the other cells (such as in a Margolus neighbourhood, but in a

one dimensional environment), and the setting of the ProcessorScaleFactor.

The data that can be collected from this kernel includes:

– The data from the processing channels of each ANode; these can be

amalgamated to then be represented as a single value per ANode;

– the number of messages sent to the ANode Kernel; and

2‘recorded’ also covers data that are extractable from the data logged
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– the number of messages sent to the ADP Flow Kernel Kernel.

The data are logged per cycle and at the termination of a kernel. The intention

is to capture the data so that visualisation of the sub-models changing states can

be recreated and data extracted for analysis as required.

4.8.7 Simulation examples

The AN model, which is used as an example of a deterministic CA, was developed

following the core criteria of a Petri net simulation of the properties of “a high-

level abstract definition of an Active Network” [de Silva, 2004, p.123]. The model

looked at the memory performance of the nodes (servers) as agents (packages)

are replicated across the grid (network), using the Hurst parameter to analyse

the state of the nodes over 500 time steps. The results showed evidence of a

“Cascading Effect” when the network exhibited “high levels of Self-Similarity (i.e.

with Hurst values above 0.9). [...] The threshold value of 0.9 was based on

the empirical evaluations of several predetermined simulation scenarios” [de Silva,

2004, p.118]. The results were generated by injecting a mixture of replicating

and non-replicating packages into the grid; if a node could process the replicating

package it would replicate, otherwise it would move onto the next node in search

of the required resources. The packages would move across the grid until they

entered an end node and exited the grid.

The Hurst value was developed to assess the optimum dam size along the Nile delta

to cater for the extreme conditions of drought and flooding experienced there. As

such it relates to the analysis of time series and any autocorrelations that can be

found in them and any resulting long-term dependencies. The Hurst value is used

to indicate whether the next value is likely to be lower or higher or whether there

is a developing pattern of fluctuating low / high values, or a sustained period of

high values, or whether there is no evident autocorrelation. This makes it a very

linear evaluation, that requires something to measure; the Hurst calculation does

not like zero values, so a nominal value needs to be fed in, such as if a node has

not had any of its memory utilised during a time step. The Hurst exponent is

calculated on the memory usage of each node over the time steps of the simulation.

This means that any observed graphical characteristic is subject to the order in

which the Hurst exponent of each node is displayed. The order is critical; change it

and a cascading or oscillating pattern could change to one showing evidence of two

plateaued collections of node values. This can be mitigated by keeping the same

order for each display, which is the case in the original work. But it highlights

a potential problem with how output from abstract models are produced and



CHAPTER 4. MODELLING 168

assessed. This is something this research cannot claim immunity from, but that

it has attempted to address by measuring the state of the output grid across the

time steps, rather than the state of individual cells.

In this way it is hard to verify the workings of this model against the former, as the

focus is on the state of the grid across the time steps, rather than individual nodes.

A suggestion of the “Cascading Effect” found in the previous work [de Silva, 2004,

pp.122-147] was observed but it was far from conclusive (see Figure 4.36).
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Figure 4.36: A measure of 25 nodes over 1024 time steps using the
Hurst parameter

Also, there is no direct comparison with the actual working or performance of an

active network that either model can be measured against. The role of this model

in comparison with the scenarios and models outlined above will be discussed in

chapter 6.

4.8.8 Test plan

The tests focus, as did the previous work, on the memory usage at the nodes. This

is observed by utilising the replication of APs as they move across the grid.
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4.9 Summary

This chapter described the scenarios and models used in the thesis. The hand-

crafted scenarios verified the ability of the code written to identify and extract

groupings of connected active cells. These scenarios also illustrated the effect

of changing the neighbourhood used when searching for groups of active cells.

The explanation of the different neighbourhoods, Manhattan range and boundary

conditions indicates how they can impact the analysis of the output grids of a sim-

ulation. The details of two other scenarios, the probability and dynamic scenarios,

were also outlined, although their usage is shown in chapter 5.

The model first investigated and then built was based on the work in [de Silva,

2004]. The decision to use the MUSCLE framework was founded in an initial desire

to explore the potential of the model from both a temporal and spatial perspective.

This meant that the first model was coded in Java on top of the MUSCLE code

base. The control and freedom that coding gave had a greater appeal than utilising

an existing tool, such as Matlab. Consequently the other two models were coded,

although the advantage of using a different language was explored and Perl was

selected. This interpreted language provided, with its Moose object oriented (OO)

framework, a very versatile and extremely powerful environment for handling and

manipulating data. One of Perl’s strength in manipulating text is its ability to

integrate with the tools available within the Unix / Linux core. This was especially

important as all data stored and transferred between programs were in text format,

which allowed the ability to rerun simulations, the metrics and the analysis. It also

enabled the selection of specific records for processing, giving obvious advantages

when wanting to extract key time steps from a resource intensive simulation.

Although the deterministic model was programmed in Java, the text based output

was easily converted into the required layout for measuring and analysing by the

Perl programs that were written later.

The details of the three models used in the thesis showed the range of domains

and modelling approaches used. The particle model presented an example of the

representation of a real life biological phenomenon being used to solve a non biolo-

gical problem. The modelling of slime mould Dictyostelium discoideum gathering

in mounds in the event of food scarcity as a way of addressing the decentralised

gathering problem also illuminated the effect the updating scheme can have. The

required reaction-diffusion waves were only evident when a synchronous updating

system was used. So the use of a scheme that could be seen as contrary to what

happens in real life was necessary to represent a real life phenomenon. The new
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model replicated the rules used in Fatès et al. [2008] and the simulations of the

new model were successfully validated against the original work.

The randomised model also involved the representation of a biological system. But

instead of using it as an analogous system to explain how a different system could

work, it was a CA model of how the delta-notch signalling and ‘noise’ could form

patterns, such as seen in skin pigmentation and the distribution of hair follicles.

The model used two types of asynchronous updating schemes. The first updated

each cell on the grid in a sequential order randomly set before each time step. But

the modelling incorporating noise and producing patterns involved a scheme that

is seen by some as more representative of real life, (see subsection 2.6.3). This

system updated in each time step the same number of cells that existed on the

grid, but they were randomly selected with no guarantee whether a cell would be

updated once, many times or not at all during a time step. The new randomised

model recreated the work done in [Cohen et al., 2011] and the simulations run

were successfully validated against the original work.

The deterministic model was an attempt to represent a theoretical system. This,

as well as the choice in the original work in [de Silva, 2004] of the Hurst parameter

to measure the output of the simulation, meant that of all the models used this

was the most difficult to replicate and validate. The problems of modelling a

theoretical model is considered later in the thesis.



Chapter 5

Analysis

5.1 Introduction

This chapter presents the key results of the simulations carried out with the vari-

ous scenarios and models outlined in chapter 4. Special attention is given to the

performance of the new connectedness metric proposed, the C-Value (see subsec-

tion 3.3.5), across three CA types, including the randomised category proposed

as an extension to those outlined by Ermentrout and Edelstein-Keshet [1993]. It

should be noted that the graphs displayed in this chapter and appendix B are self

scaling, based on the values being displayed. This allows as clear a display of the

data presented as possible, but it does mean the scaling can vary.

The first section, section 5.2, looks at the scenario tests run to bench mark the

performance of the selected metrics. The probability scenarios in subsection 5.2.1

create a sequence of grids with different percentages of randomly dispersed active

cells. The grids were measured with both a Moore and a von Neumann neigh-

bourhood. The established metrics, (entropy, BBR and mean density), perform

as expected, with the BBR reflecting how the random placement of the active

cells stretches across the whole grid. The entropy metric shows how the increase

in the number of occupied cells produce a higher number of clusters with diverse

sizes until a critical point is reached and a single cluster becomes dominant and

spans the grid. The new C-Value keeps abreast of the mean density, indicating

that the increase in the level of connectedness is down to compression induced

by the increase in the number of active cells on the grid, rather than any actual

non-random ordering of the cells.

The dynamic scenarios in subsection 5.2.2 simulate the gathering of the active

agents on a grid into a centralised cluster. This is used to evaluate how well the
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metrics indicated the gathering process of only a few active agents, as well as

for a more densely populated grid. The C-Value successfully shows the gathering

process, providing information on the states of the grids for all the tests; although

the difficulty for all the metrics in registering changes for only a few active agents

is clearly seen. A more extensive comparison of the two neighbourhoods is con-

ducted, along with the three range settings of 1, 2 and 3. A very marginal benefit

is discernible when using the Moore neighbourhood and a range of 3 with a low

number of active agents. Consequently, this neighbourhood and range setting was

adopted as the default for the subsequent simulations.

The probability and dynamic scenarios are then combined in subsection 5.2.3, with

the initial grids for a dynamic scenario simulation being set up by the probability

scenario. This allows a controlled range of populated grids to be tested, especially

where the grids are filled up to 90% with active cells; identifying changes on such

grids poses comparable challenges to those of sparsely populated grids. The C-

Value provides useful information about the changing state of the grid as the active

agents gathered together across all probability scenarios used as initial input;

whereas the other metrics register less and less information as the initial grid of

the simulation becomes more crowded with active agents.

In section 5.3 the reactive-diffusion and chemotaxis model is used to simulate a

decentralised gathering of active agents on a grid. This represented the category

of particle model, as defined in [Ermentrout and Edelstein-Keshet, 1993], (see

subsection 2.6.5). Two tests, as outlined in the original work [Fatès et al., 2008],

were run, (a) the extinction regime were there are no active agents, instead a

setting of (pE, pA) = (0, 0) and pT = {0.1, 0.2, ...., 0.9, 1} creates a series of

simulations consisting of excited and refractory cells where the random placement

of the excited cells are measured; and (b) the gathering regime where the decent-

ralised gathering of the amoeba on the grid space is captured and analysed. The

extinction regime ties in with the probability scenario as the distribution of the

excited cells is random. The similarity is shown by the C-Value keeping abreast

of the mean density, confirming that no gathering or ordering of the excited cells

has taken place. The gathering regime is tested with a series of simulations with

and without barriers on the grid, and with sparely and densely filled grids. As

with the dynamic scenario, the C-Value gives a better indication of the gathering

process than the other metrics.

The second category of CA model tested was the randomised model that was newly

proposed in subsection 2.6.5. This recreates the original work in [Cohen et al.,
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2011] that simulates a delta-notch model. There are two core tests in section 5.4,

one without any noise perturbation and one with. The simulation without any

noise creates a static array of signalling cells. The C-Value shows that while the

connections of the signalling cells could be higher, they were far from disorderly.

The test that incorporated noise uses two settings; the first used a spatial noise

setting of Ns = 0.1, the second of Ns = 0.9. The former results in a distinctive

pattern of forty clusters, each made up of three signalling cells; something that

the C-Value does not identified. The latter produces a large cluster, containing

virtually all of the signalling cells, spread without any discernible pattern across

the grid. In this simulation the C-Value indicates that there was a level of con-

nectedness between the signalling cell, but as it keeps abreast of the mean density

it also implies that there is a certain level of randomness to the structure.

The two simulation using noise are then re-analysed in subsection 5.4.1 with a

localised C-Value being calculated. This involves the averaging of the C-Value of

each cluster found on the grid. This successfully identifies the ordered pattern

that emerged with Ns = 0.1. Although it shows the same general behaviour of

the C-Value in the simulation using Ns = 0.9, the LC-Values reveals that the

calculation also needs to take into account the imbalance that a few small clusters

or singletons can have when averaged with a single cluster holding almost all of

the signalling cells.

The final simulation in section 5.5 involves a reworking of the Active Network used

in [de Silva, 2004]. This simulation of a theoretical environment proves to be the

least productive of all the tests. The main main benefit from the one test run is

the example of how a computational model can produce an interesting artefact,

where the oscillating cycle of two grids was observed.

The chapter closes with a summary in section 5.6.

5.2 Scenarios

A series of tests were run to provide an overall bench mark for the performance of

the metrics against grids with different percentages of cell activation, (probability

scenarios, see subsection 4.4.2), and against output grids showing the gathering

of agents together over a series of time steps, (dynamic scenarios, see subsec-

tion 4.4.3). The two scenarios were then combined with the probability scenario

providing a range of initial grids with different levels of active cell occupation for

use in the dynamic scenario simulation.
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5.2.1 Probability scenarios

The purpose of this test was to see how the four metrics performed when measuring

grids with different numbers of active cells randomly located on them. The test

created forty grids of size 40 by 40 for each probability value range of p value={0.1,

0.125, 0.150, 0.175, 0.2,...., 0.875, 0.9}. The program creating the grid iterates

through the cells and at each one compares a program generated random number

against the p value; if the random number is less than or equal to the p value then

the cell is flagged as active / occupied. Thus, the number of active cells on a grid is

set by the probability value, with 0.1 correlating with 10%, 0.125 with 12.5% and

up to 0.9 where on average 90% of the cells on the grid will be active. A sample

of the type of grids created can be seen in Figure 5.1. Each grid was measured

and the results then averaged for the grids of each probability value. The tables

listing the averages for a Moore neighbourhood are listed in Table 5.1, and for

a von Neumann neighbourhood in Table 5.2. The performance of the metrics is

shown in the graphs in Figure 5.2.

The overall shapes of the graphs for the two neighbourhood are similar, although

the apex of the curve of the entropy metric, for example, is achieved using a Moore

neighbourhood on the grid with a probability value of 0.3 with a value of 2.7147

(see Table 5.1); whereas the entropy metric using a von Neumann neighbourhood

peaks on the grid with a probability value of 0.475 with a value of 2.9205 (see

Table 5.2). This difference reflects how the Moore’s eight cell neighbourhood

groups the active cells into fewer cluster more quickly than the von Neumann

four cell neighbourhood. The entropy value reflects the reduction of the number

of different sized clusters as the number of active cells increases. It has little it

can say about the general state of the output grid once it has peaked. The mean

density and BBR metrics do not take into account the type of neighbourhood

used, so they have the same value in both tables. The BBR produces almost a

horizontal line in the graph (see Figure 5.2), with all the grids, except the one with

the lowest probability, having a value of 0.9506. This reflects how the randomly

placed active cells are distribute across the whole grid, including to the outer edges

(see Figure 5.1).

The new C-Value metric keeps in step with the mean density. This can be seen as

reflecting how the gradual rise in the number of agents on the grid is also reflected

in an inevitable increase in the compactness, and thus the connectedness of the

agents within the fixed dimensions of the grid. What is important to note is that

the cells have been randomly placed on the grids. Therefore, the matching of
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the C-Value with the mean density has potential significance. The connection

between randomness, mean density and the C-Value will be discussed further in

the analysis of the results from the tests in subsection 5.2.2 and subsection 5.2.3,

which also start with randomly generated grids, but then simulate the gathering

of the active cells into a single cluster.

Table 5.1: Probability test using a Moore neighbourhood. Values from
analysis of probability scenarios p value={0.1, 0.125, 0.150, 0.175, 0.2,
....,0.875, 0.9}, where 0.1 correlates with a 10% chance that a cell will
be active and 0.875 with an 87.5% chance. Forty grids of 40 by 40 size
were created for each probability value and then measured using the
four metrics. The metric of each group of probability values were then
averaged. The ID is made up of the probability value used to set the
number of active cells, and then a three character block representing
the value indicating an active cell, the neighbourhood type used in any
cluster search and the maximum range depth used. Thus, in this table
1M3 means the cell value used was 1, the neighbourhood was a Moore
(M) one and the range depth was 3. The entropy metric peaks at a
probability setting of 0.3. The BBR is static apart from the lowest
probability setting. After a very slight gap at the start, the C-Value
and mean density keep in step with each other.

ID C-Value Entropy BBR MeanDensity

0.1 1M3 0.1686 1.3531 0.9482 0.1000

0.125 1M3 0.1827 1.5405 0.9506 0.1250

0.150 1M3 0.1981 1.7581 0.9506 0.1488

0.175 1M3 0.2133 1.9619 0.9506 0.1744

0.2 1M3 0.2289 2.1614 0.9506 0.1991

0.225 1M3 0.2499 2.3694 0.9506 0.2245

0.250 1M3 0.2683 2.5065 0.9506 0.2497

0.275 1M3 0.2911 2.6397 0.9506 0.2758

0.3 1M3 0.3099 2.7147 0.9506 0.2944

0.325 1M3 0.3331 2.6668 0.9506 0.3218

0.350 1M3 0.3632 2.4713 0.9506 0.3528

0.375 1M3 0.3854 2.1585 0.9506 0.3755

0.4 1M3 0.4048 1.6819 0.9506 0.3981

0.425 1M3 0.4326 1.2622 0.9506 0.4232

0.450 1M3 0.4574 0.7180 0.9506 0.4511

0.475 1M3 0.4816 0.3611 0.9506 0.4740

0.50 1M3 0.5073 0.2161 0.9506 0.5014

0.525 1M3 0.5312 0.1552 0.9506 0.5254

0.550 1M3 0.5561 0.0728 0.9506 0.5493

continued on next page
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ID C-Value Entropy BBR MeanDensity

0.575 1M3 0.5773 0.0478 0.9506 0.5731

0.6 1M3 0.6026 0.0316 0.9506 0.5985

0.625 1M3 0.6297 0.0185 0.9506 0.6252

0.650 1M3 0.6491 0.0094 0.9506 0.6465

0.675 1M3 0.6750 0.0079 0.9506 0.6717

0.7 1M3 0.7036 0.0078 0.9506 0.7007

0.725 1M3 0.7296 0.0026 0.9506 0.7275

0.750 1M3 0.7524 0.0017 0.9506 0.7506

0.775 1M3 0.7800 0.0003 0.9506 0.7769

0.8 1M3 0.7990 0.0000 0.9506 0.7986

0.825 1M3 0.8271 0.0000 0.9506 0.8259

0.850 1M3 0.8531 0.0000 0.9506 0.8525

0.875 1M3 0.8740 0.0000 0.9506 0.8737

0.9 1M3 0.8961 0.0000 0.9506 0.8970

Table 5.2: Probability test using a von Neumann neighbourhood. Val-
ues from analysis of probability scenarios p value={0.100, 0.125, 0.150,
0.175, 0.200, ....,0.875, 0.900}, where 0.1 correlates with a 10% chance
that a cell will be active and 0.875 with an 87.5% chance. Forty grids of
40 by 40 size were created for each probability value and then measured
using the four metrics. The metric of each group of probability values
were then averaged. The ID is made up of the probability value used
to set the number of active cells, and then a three character block rep-
resenting the value indicating an active cell, the neighbourhood type
used in any cluster search and the maximum range depth used. Thus,
in this table 1V3 means the cell value used was 1, the neighbourhood
was a von Neumann (V) one and the range depth was 3. The entropy
metric peaks at a probability setting of 0.475. The BBR is static apart
from the lowest probability setting. After a very slight gap at the start,
the C-Value and mean density keep in step with each other.

ID C-Value Entropy BBR MeanDensity

0.1 1V3 0.1842 0.7997 0.9482 0.1000

0.125 1V3 0.2062 0.9642 0.9506 0.1250

0.150 1V3 0.2286 1.1461 0.9506 0.1488

0.175 1V3 0.2502 1.2698 0.9506 0.1744

0.2 1V3 0.2650 1.4272 0.9506 0.1991

0.225 1V3 0.2858 1.6098 0.9506 0.2245

0.250 1V3 0.3040 1.7840 0.9506 0.2497

continued on next page



CHAPTER 5. ANALYSIS 177

ID C-Value Entropy BBR MeanDensity

0.275 1V3 0.3244 1.9465 0.9506 0.2758

0.3 1V3 0.3400 2.1090 0.9506 0.2944

0.325 1V3 0.3575 2.2599 0.9506 0.3218

0.350 1V3 0.3825 2.4562 0.9506 0.3528

0.375 1V3 0.4036 2.5939 0.9506 0.3755

0.4 1V3 0.4203 2.7284 0.9506 0.3981

0.425 1V3 0.4443 2.8079 0.9506 0.4232

0.450 1V3 0.4689 2.8938 0.9506 0.4511

0.475 1V3 0.4860 2.9205 0.9506 0.4740

0.50 1V3 0.5120 2.9133 0.9506 0.5014

0.525 1V3 0.5360 2.7458 0.9506 0.5254

0.550 1V3 0.5594 2.4989 0.9506 0.5493

0.575 1V3 0.5796 2.0029 0.9506 0.5731

0.6 1V3 0.6039 1.5459 0.9506 0.5985

0.625 1V3 0.6314 1.1017 0.9506 0.6252

0.650 1V3 0.6510 0.6243 0.9506 0.6465

0.675 1V3 0.6755 0.2977 0.9506 0.6717

0.7 1V3 0.7043 0.1708 0.9506 0.7007

0.725 1V3 0.7296 0.0917 0.9506 0.7275

0.750 1V3 0.7532 0.0495 0.9506 0.7506

0.775 1V3 0.7810 0.0241 0.9506 0.7769

0.8 1V3 0.7998 0.0105 0.9506 0.7986

0.825 1V3 0.8287 0.0074 0.9506 0.8259

0.850 1V3 0.8545 0.0045 0.9506 0.8525

0.875 1V3 0.8757 0.0014 0.9506 0.8737

0.9 1V3 0.8982 0.0006 0.9506 0.8970
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Figure 5.1: Examples of nine different probability grids. The 40 by
40 grids were created with an increasing probability that a cell would
be active, where a probability values of 0.1 means around 10% of the
cells on the grid will be activated and 0.9 correlates with 90%. The
probability values displayed are (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5,
(f) 0.6, (g) 0.7, (h) 0.8 and (i) 0.9. The active cells are shown as black
and are distributed randomly across the whole grid. The number of
active cells increases as the probability value increases. The random
dispersal of the active cells leads to them occurring on the fringes of
even the least populated grid of (a); this results in a relatively static
BBR value for all the probability simulations.
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(a)

(b)

Figure 5.2: The results of the four metrics testing the state of out-
put grids across a range of grids created with probability values of
p value={0.100, 0.125, 0.150, 0.175, 0.200, 0.225,...., 0.875, 0.900}.
Forty grids of 40 by 40 size were created for each probability value
and then measured using the four metrics. The metric of each group
of probability values were then averaged. A range of 3 was used with
each neighbourhood; the legends on the graphs refer to the value that
identifies an occupied cell on the grid (1), the neighbourhood used (M
for Moore, or V for von Neumann, and the range used, followed by
the relevant metric. (a) shows the use of an eight cell Moore neigh-
bourhood and (b) the uses of a four cell von Neumann neighbourhood.
The entropy metric peaks at a lower value probability grid in (a) as
the eight cell Moore neighbourhood clusters the occupied cells into a
single cluster sooner than the von Neumann neighbourhood. The BBR
and mean density metrics are the same for both neighbourhood. The
C-Value is virtually the same for both (a) and (b) and keeps step with
the mean density.
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5.2.2 Dynamic scenarios

This test looks at how the metrics perform when measuring the gathering of active

agents towards the centre of the grid. Each cell can be occupied by a single agent,

so each cell at a time step is either occupied or empty. Thus the gathering of the

agents is in effect represented by a gathering of the occupied cells. The gathering

algorithm, (see Appendix C.4), is based on an agent having three possible moves

it can make to manoeuvre closer to the centre of the grid. If all three options are

blocked, then the agent remains where it is. The orientation of the agent is based

on an x, y axis through the centre point of the grid, hence the cross like shape

of the cluster that forms in Figure 5.3. The gathering process terminates when

either the specified number of time steps has been used up, or when no agent can

move. A random ordered asynchronous (ROA) updating scheme was used where

the order of the agents to be asynchronously moved was randomly created for each

time step (see subsection 2.6.3 and subsection 4.7.1).

A series of grids were created with a selection of agents randomly placed on them.

Each test was run for fifty time steps, or less if movement on the grid halted. Four

grid sizes were used, 25 by 25, 50 by 50, 75 by 75 and 100 by 100. The range of

the number of agent tested on a each grid was Agents={2, 8, 12, 16, 20, 30, 40,

50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350}. This provided the opportunity

to compare what the metrics registered from when there was a very small number

of active agents through to when the grid was more crowded. The latter is shown

in Figure 5.3, which depicts a selection of the gathering process of 350 agents

randomly placed on a 100 by 100 grid. The gathering process is clearly displayed.

The graph relating to this specific test can be found in Figure 5.4(d).

The graphical analysis of the simulation of 350 agents across the four grid sizes

and using a Moore neighbourhood with a maximum range of 3 are laid out in

Figure 5.4. The relevant tables and graphs for all the permutations run for this

test can be found in appendix B.1.1. As expected, the mean density is shown

as a straight line in all four graphs as the number of agents is consistent across

the time steps. The entropy value behaves in a similar way to that shown in

the probability scenario tests in subsection 5.2.1. This reflects the fact that the

entropy metric is based on the number of different cluster sizes, and the gathering

of the agents towards a central cluster mirrors the move towards a single cluster as

the probability value increases. In Figure 5.4(b)-(d) the BBR can be described as a

reflection of the C-Value, crossing at a time step after the point where the entropy

metric is at its apex. The C-Value starts at or just above the mean density value
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and then increases as the agents gather together and the connectedness between

them becomes greater. The BBR value moves in the other direction as the distance

between the row and column positions of the most outlying agents decreases. The

effective shrinkage of the grid area containing active agents can be seen clearly in

the grid time steps shown in Figure 5.3.

ts 1(a) ts 10(b) ts 20(c)

ts 30(d) ts 40(e) ts 45(f)

Figure 5.3: Examples of the gathering of 350 agents into the centre
of an 100 by 100 grid. (a) The active agents are randomly placed on
the initial grid. The gathering process can be seen in action in (b)-(e),
time steps 10, 20, 30 and 40 respectively. The gathering process has
completed by time step 45, see (f).

The shape of the lines plotting the metrics becomes more pronounced as the

grid size increases. The amount of activity needed to complete the gathering

process is indicated by the number time steps (see Figure 5.4 and Figure 5.5).

In Figure 5.5(a) the 350 active agents occupy 56% of the cells on the 25 by 25

grid, making it the most crowded grid used in this test. The gathering process

is completed after just eight time steps, as opposed to the forty-five time steps

in the simulation using the 100 by 100 grid. In the graph relating to the 25 by

25 grid, (see Figure 5.4(a)), the C-Value provides the most pronounced indicator

of the change from the initial random grid to the final grid showing the active

agents gathered together towards the centre of the grid. The curve of the BBR

line is very shallow, which reflects the small amount of change in the outer limits

of the active agents locations before the gathering process concludes. In all four
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graphs the C-Value starts on the initial randomly generated grid at or around

the same value as the mean density. This is consistent with the results from

the previous section, subsection 5.2.1. But once the agents begin to gather the

C-Value, as would be expected, increases. This move from an initial grid with

randomly placed active cells to one where the active cells are ordered in a single

centralised group is marked on all four simulations by how the C-Value increases

and moves away from the mean density.

(a) (b)

(c) (d)

Figure 5.4: Examples of the gathering of 350 agents into the centre
of a square grid of (a) 25 by 25, (b) 50 by 50, (c) 75 by 75 and (d)
100 by 100. The C-Value is consistent on all four graphs and is the
only metric that provides provides information on the state of the grid
across the time steps in (a). In (b)-(d) the other metrics also begin to
register the gathering process, with the obvious exception of the mean
density, as the number of active agents is consistent across the relevant
time steps. The move of the C-Value from the mean density reflects
the move from a random placement of the active cells on the initial
grid to an ordered, centralised grouping. A Moore neighbourhood was
used with a maximum range of 3; this is reflected in the legends which
start with 1M3- followed by the relevant metric.
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ts 1(a) 25 by 25 ts 8(b) 25 by 25(a) (b)

ts 1(c) 50 by 50 ts 20(d) 50 by 50
(c) (d)

ts 1(e) 75 by 75 ts 32(f) 75 by 75
(e) (f)

ts 1(g) 100 by 100 ts 45(h) 100 by 100
(g) (h)

Figure 5.5: The first and last grids of the gathering of 350 agents
into the centre of a square grid of (a)-(b) 25 by 25 taking eight time
steps, (c)-(d) 50 by 50 taking 20 time steps, (e)-(f) 75 by 75 taking
32 time steps and (g)-(h) 100 by 100 taking 45 time steps. A Moore
neighbourhood with a maximum range of 3 was used.
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The other area of interest from these simulations was how the metrics preform

when measuring just a few agents. Figure 5.6 shows the results of the simulations

run with eight agents ((a)-(d)) and twelve agents ((e)-(h)), using the four grid

sizes of 25 by 25, 50 by 50, 75 by 75 and 100 by 100. All the simulation use a

Moor neighbourhood and a range of three. The scarcity of active agents meant

that there was relatively few chances of clusters forming until the agents converged

at the centre of the grid. This can be seen in the shape of the entropy line on

the graphs. The metric is based on the probability that an active agent is part of

a cluster of size ‘s’ and that there is cluster size diversity, (see subsection 3.6.3).

The latter means that there has to be more than one cluster and at least two

different size of cluster, otherwise the entropy is zero, such as when all the active

agents are gathered together in one single cluster or when the clusters all have

the same number of active agents. Therefore, the potential for the entropy metric

to track changes in this gathering process simulation, when there is a very small

number of active agents, is low. For example, a grid with eight active cells has a

limited number of cluster combinations involving different cluster sizes before all

the cells are in one cluster of eight. Table 5.3 shows the breakdown of the clusters

identified in the four simulations with eight active cells. The time steps where

there is cluster size diversity is where the corresponding graphs in Figure 5.6(a)-

(d) show the entropy rising above zero. In Figure 5.6(a) the entropy level is

above zero at the initial time step through to the time step 8. This is reflected

in Table 5.3(1a-b) where there are two clusters of different sizes. However, in

Table 5.3(4d-e, and g) there are more than one cluster, but they are the same size,

The resulting zero entropy can be seen for the corresponding time steps of 14-29

and 31 in Figure 5.6(d)

The mean density remains the same across all the time steps and the value is only

just above zero as the active agents represent such a minuscule percentage of the

total number of cells on a grid. The BBR metric shows a smooth curve across

all the grids, but it tails off before the gathering process is completed. However,

the C-Value continues to have an upwards trend after both the entropy and BBR

lines have ceased to register anything. The shape of the C-Value metric curve is

observed at a relatively low agent population level. Figure 5.6(a)-(d) shows the

shape of the C-Value beginning to be evident in the tests run with 8 and (e)-(h)

with 12 agents, although a smoother curve does not become evident until more

agents are on the grid (see appendix B.1.1 for graphs of all the permutations run

for this test). The tests on the reactive diffusion chemotaxis model will look at

whether a non centralised gathering of agents affects the curve of the BBR and

C-Value graph. But the analysis of grids with a low population of agents does



CHAPTER 5. ANALYSIS 185

present a challenge, although the C-Value appears to provide more information

across all the time steps than the other metrics.

Table 5.3: Clusters and singletons during the simulation of eight active
agents on four grid sizes; (1) 25 by 25, (2) 50 by 50, (3) 75 by 75 and
(4) 100 by 100. The entropy of the active agents and grid is zero unless
there is at least two clusters of different sizes. Thus the 25 by 25 grid
will start with an entropy value, see (1a), whereas multiple clusters of
the same size will have a zero entropy, see (2b and c), (3b and d) and
(4d, e and g). This is shown by the entropy values displayed in the
corresponding graphs, (see Figure 5.6).

Grid size Time steps: number and size of clusters, with number of

singletons

(1) 25 by 25 (a) 0-5: a 2 and 3 cell cluster, with 3 singletons, (b) 6-8: a 2

and 4 cell cluster, with 2 singletons, (c) 9: a 6 cell cluster

with 2 singletons (d) 10: an 8 cell cluster with no singletons

(2) 50 by 50 (a) 0-9: a 2 cluster, with 6 singletons, (b) 10-12: 2 x 2 cell

cluster, with 4 singletons, (c) 13: 2 x 3 cell cluster with 2

singletons (d) 14: a 2 and 3 cell cluster with 3 singletons

(e) 15-17: a 2 and 4 cell cluster with 2 singletons (f) 18: a 3

and 5 cell cluster no singletons (g) 14: a 2 and 6 cell cluster

no singletons (h) 14: an 8 cell cluster no singletons

(3) 75 by 75 (a) 0-11: a 2 cell cluster, with 6 singletons, (b) 12: 2 x 2 cell

cluster, with 4 singletons, (c) 13-17: a 2 cell cluster, with 6

singletons, (d) 18-23: 2 x 2 cell cluster, with 4 singletons,

(e) 24-25: a 4 cell cluster, with 4 singletons, (f) 26: a 5 cell

cluster with 3 singletons (g) 27-28: a 6 cell cluster with 2

singletons (h) 29-31: a 7 cell cluster with 1 singleton (i) 32:

an 8 cell cluster with no singletons

(4) 100 by 100 (a) 0-3: a 2 cell cluster, with 6 singletons, (b) 4: a 3 cell

cluster, with 5 singletons, (c) 5-13: a 2 cell cluster with 6

singletons (d) 14-16: 2 x 2 cell cluster with 4 singletons

(e) 17-29: 3 x 2 cell cluster with 2 singletons (f) 30: 2 x 2

and 3 cell cluster with 1 singleton (g) 31: 3 x 2 cell cluster

with 2 singletons (h) 32-33: a 2 and 4 cell cluster with 2

singletons (i) 34-39: a 2 and 5 cell cluster with 1 singleton

(j) 40-42: a 2 and 6 cell cluster with 0 singletons (k) 43-44: a

7 cell cluster with 1 singleton (l) 45: an 8 cell cluster with 4

singletons
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5.6: The measurement of simulations of the gathering of 8 (a-d)
and 12 (e-h) active agents into the centre of a square grid. Four grid
sizes were used, 25 by 25 (a & e), 50 by 50 (b & f), 75 by 75 (c & g) and
100 by 100 (d & h). The mean density remains the same across all time
steps, while the BBR and entropy metrics do not register anything in
the final time steps. The C-Value indicates the gathering process even
for the smallest number of agents on the largest grid, see (d). The
legend show the metric used with a prefix of 1M3, signifying the value
of an occupied cell (1) and the use of a Moore neighbourhood (M) with
a maximum range of 3 (3).
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The next series of tests were run to see if changing the neighbourhood and range

had any real affect on the performance of the metrics. The simulations compare

the performance of the two types of neighbourhoods, Moore (M) and von Neumann

(V), and the three ranges of 1, 2 and 3. They were carried out on a 25 by 25 grids

with three low agent populations of 4, 8 and 12, and one 100 by 100 grid with 350

agents (see Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11 respectively). This

focuses mainly on the low end where there is obviously more difficulty in gaining

any distinctive measure. The middle and higher populations of agents exhibit a

smooth curve for both the C-Value and BBR. Consequently, only one grid with

a large population of 350 agents is shown; this is on a larger grid of 100 by 100,

where the the 350 agents only represent 3.5% of the total number of cells and,

consequently, a longer sequence of time steps is needed to complete the gathering

process, providing more information to analyse.

The three simulations using grids with a just a few active agents show that there

is a very slight difference between the two neighbourhoods, and that the changing

of the range to 3 has a minor effect. The nature of the simple algorithm used

to gravitate the agents towards the approximate centre of the grid should not be

forgotten, but the results suggest that the selection of a Moore neighbourhood

and a maximum range of 3 has a very slight impact when there is a low number

of active agents on the grid. When there are only four active agents there is

no distinction between the different ranges used (Figure 5.8); whereas with eight

(Figure 5.9) and twelve (Figure 5.10) active agents there is some differential, but

it is very little and does not change the basic curve of the lines on the graphs. The

difference is between the C-Value in Figure 5.9(c) and in Figure 5.9(a) & (b). In

(c) the C-Value retains the level of connectedness for time steps 3 and 4, and then

starts to rise for 5; whereas for (a) & (b) the C-Value drops for time steps 3 to 5,

before starting to rise at time step 6. This indicates that the use of a range of 3 in

(c) has picked up and grouped some active cells identified as singletons with range

1 and 2 in (a) and (b) respectively. The use of a range of three also highlights a

difference in a Moor neighbourhood with twelve active agents in the grid, as can

be seen in the graph in Figure 5.10(c) when compared to Figure 5.10(a) & (b).

While the difference in both examples is minimal, it does suggest that the use of

a range of 3 with a Moore neighbourhood provides a better option.

The simulations with eight and twelve active agents support the observations

made in the previous test about measuring a small number of active agents. Con-

sequently, the mean density is a constant figure running just above zero; the BBR

registers more than the C-Value in the early time steps, but this reverses before
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half the time steps are completed with the C-Value providing much clearer inform-

ation about the changing state on the grid. The entropy value only rises above

zero on Figure 5.9(b)-(c) and Figure 5.10(b)-(c) and (e)-(f). The simulation with

four active agents also illustrates the potential for artefacts being produced by

computational simulations. The four active agents gather together in the middle

of the grid after about twelve time steps, however instead of stopping, the al-

gorithm enters into a cycle where the shape of the cluster alternates through four

stages, as seen in Figure 5.7. The steady state of the C-Value at a high value of

connectedness indicates the artefactual behaviour.

(1) Grid
number
35; time

step = 35:
connected
grid with
4 nodes

    (a) TS 46 (1) Grid
number
37; time

step = 37:
connected
grid with
4 nodes

    (b) TS 47 (1) Grid
number
38; time

step = 38:
connected
grid with
4 nodes

   (c) TS 48 (1) Grid
number
34; time

step = 34:
connected
grid with
4 nodes

    (d) TS 49Figure 5.7: The last four grids from the simulation of 4 active agents
on a 25 by 25 grid with a Moore or a von Neumann neighbourhood
with a range of 1. This cycle of the four agents clustered together in
the centre of the grid is an artefact of the simple gathering algorithm
used in this test. This results in the C-Value in the graphs displayed in
Figure 5.8(a)-(f) ending in a long horizontal line, rather than as soon
as the active agents are first grouped together.

However, any thoughts that a larger group of agents on a larger grid would reveal

significant difference between, for example, von Neumann with range 1 and Moore

with range 3, would seem to be incorrect. There is little evidence of any real

difference. If the agents are close enough, then sweeps with a range depth of 1

and 2 will pick them up, leaving little or nothing for a search at range 3 to find,

often resulting in no difference in the figures between range 2 and range 3. While

Figure 5.11(b) and (c) are almost identical in shape, (a) has a few differences

including the entropy line starting at a much lower value. However, the starting

entropy value is dependent on the number of different sized clusters, if any, found

in the random composition of the initial grid. So while it could be construed as

an indication of how random the spread of active agents might be on the initial

grid, the interest in the entropy metric is in the shape of the graph and the at

what point the apex and nadir of the graph occurs.
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Indeed, the main difference between the two neighbourhoods is that the C-Value

increases to 0.8843 for the Moore neighbourhood in Figure 5.11(a)-(c), and 0.9169

for the von Neumann neighbourhood in Figure 5.11(d)-(f). This is understandable

as the maximum connectivity of 350 active agents is greater for the Moore’s eight

neighbourhood, resulting in a lower C-Value. Also, the shape of the entropy apex

and descent are distinctive to each neighbourhood type, with a wider top section

followed by a steep descent for the von Neumann neighbourhood; whereas the

Moore neighbourhood has a staggered descent. But this does not appear of any

great significance. The tables from which the graphs in Figure 5.11 were formed

are shown in appendix B.1.2. These show that the C-Value and BBR cross over at

time step 19 for both neighbourhoods, while the apex of the entropic measurement

is at time step 14 for the Moore neighbourhood and time step 18 for the von

Neumann neighbourhood. However, although the overall conclusion is that there

appears to be only a very minimal benefit in using the Moore neighbourhood,

as the larger Moore neighbourhood involves more connections, and thus has the

theoretical potential of revealing a greater level of differentiation between the level

of connectedness or compactness of a cluster, it will remain the principle setting

used in the tests, with a catch all range of 3.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.8: The combinations of neighbourhood search type and search
range on a 25 by 25 grid with 4 agents. (a)-(c) show the Moore (M)
neighbourhood, (d)-(e) the von Neumann (V). (a) and (d) have a range
of 1, (b) and (e) a range of 2, and (d) and (f) a range of 3. The prefixes
in the legends indicate the value of an active agent, the neighbourhood
type and the range, such as 1M2 for (b) or 1V1 for (d). The gathering
process ends relatively quickly, although an artefactual behaviour of
the simple gathering algorithm results in the shape of the final four
agent cluster cycling through 4 stages, (see Figure 5.7).
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(a) (d)

(b) (e)

(c) (f)

Figure 5.9: The combinations of neighbourhood search type and search
range on a 25 by 25 grid with 8 agents. (a)-(c) show the Moore (M)
neighbourhood, (d)-(e) the von Neumann (V). (a) and (d) have a range
of 1, (b) and (e) a range of 2, and (d) and (f) a range of 3. The prefixes
in the legends indicate the value of an active agent, the neighbourhood
type and the range, such as 1M2 for (b) or 1V1 for (d). The shape of
the C-Value is more distinguishable than with just 4 agents. In (c) a
range of 3 finds more clusters in time steps 3 to 5, than range 1 in (a)
& range 2 in (c).
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(a) (d)

(b) (e)

(c) (f)

Figure 5.10: The combinations of neighbourhood search type and
search range on a 25 by 25 grid with 12 agents. (a)-(c) show the
Moore (M) neighbourhood, (d)-(e) the von Neumann (V). (a) and (d)
have a range of 1, (b) and (e) a range of 2, and (d) and (f) a range of
3. The prefixes in the legends indicate the value of an active agent, the
neighbourhood type and the range, such as 1M2 for (b) or 1V1 for (d).
The C-Value provides a clearer indicator of the changing grid across
all the time steps.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.11: The combinations of neighbourhood search type and
search range on a 100 by 100 grid with 350 agents. (a)-(c) show the
Moore (M) neighbourhood, (d)-(e) the von Neumann (V). (a) and (d)
have a range of 1, (b) and (e) a range of 2, and (d) and (f) a range
of 3. The prefixes in the legends indicate the value of an active agent,
the neighbourhood type and the range, such as 1M3 for (b) or 1V1 for
(d). The C-Value and BBR appear almost as a reflection of each other,
although the C-Value continues to rises over the later time steps, while
the BBR remains the same.
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5.2.3 Probability and dynamic scenarios combined

A final scenario test was run that combined both the probability and dynamic

scenarios. Probability grids of 40 by 40 were created for nine probability settings,

one for each of p value={0.1, 0.2, ...., 0.9}, and then used as the initial grid for

the dynamic scenario. This enabled the performance of the metrics to be observed

across a full range of populated grids, especially the more densely packed ones.

The dynamic scenario tests in the previous section were mainly focused on sparsely

occupied grids.

In the probability scenario just the initial, randomly generated grids were meas-

ured and the C-Value ran alongside the mean density (see Figure 5.2). In that

test the highest values were recorded, as would be expected, for the most densely

populated grids with a probability setting of 0.9, where the C-Value peaked at an

average of 0.8982 and the mean density at 0.8970 (see Table 5.1). Table 5.4 and

Figure 5.12 show the C-Value for each starting and end grid of these combination

simulations, where it rises to 0.9245 and above. The mean density remained the

same across the time steps of each simulation as there was no fluctuation in the

number of active agents. The tables showing the time steps and metrics for all

four metrics are in appendix B.1.4.

This combination test shows how the four metrics capture the change of the grids

from a randomly generated state to one where some form of order has been imposed

by gathering the active agents towards the centre of grid (see Figure 5.13). The

results correspond with those of the dynamic scenario tests, where overall the

C-Value provided the most consistent and distinctive measure of the gathering

process on grids with a low number of agents. What is of interest is how the

performance of the C-Value persists through medium to densely populated grids.

The BBR metric had provided a comparable performance in the dynamic scenario

tests, but in this test it falls away as the number of active agents increases. As the

other metrics register less and less, the C-Value continues to record the gathering

process. Indeed, in the two most densely packed grids, Figure 5.13(h) & (i), the

C-Value is the only metric that registers any relevant information concerning the

changing state of the grid.
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Table 5.4: The C-Value of the start and end grids of a range of prob-
ability grids, p value={0.1, 0.2, ...., 0.9}, used as initial input for the
dynamic scenario, using a 40 by 40 grid. The C-Value registers an
increase across all the simulations. It rises from 0.1660 to 0.9245 for
the grid with the least number of active agents on; and on the most
populated grid it increases from 0.9034 to 0.9995. The latter is a grid
where around 90% of the cells are occupied. A Moore neighbourhood
with a range of 3 was used (M3).

probability Start-CV End-CV

0.1 1M3 0.1660 0.9245

0.2 1M3 0.2188 0.9544

0.3 1M3 0.3192 0.9760

0.4 1M3 0.4120 0.9901

0.5 1M3 0.5203 0.9940

0.6 1M3 0.6177 0.9965

0.7 1M3 0.7003 0.9986

0.8 1M3 0.7989 0.9988

0.9 1M3 0.9034 0.9995

Figure 5.12: The initial and final grids of a range of probability grids,
p value={0.1, 0.2, ...., 0.9} used as initial input for the dynamic scen-
ario, using a 40 by 40 grid. As can be seen, the C-Value registers an
increase for all the simulations run. The size of the increase reflects
the density of active agents on a grid. The probability value of 0.9
represents an occupation rate of around 90%, so the scope for the an
increase in the C-Value is limited.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.13: Measurement of a range of probability grids, p value={0.1,
0.2, ...., 0.9} used as initial input for a dynamic scenario, using a 40 by
40 grid. (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6, (g) 0.7, (h) 0.8
and (i) 0.9. The C-Value provides a consistent representation of the
changing state of the grids as the active agents on them gather towards
the centre of the grid. The mean density provides no additional inform-
ation and as the number of occupied cells increases the other metrics,
apart from the C-Value, provide less and less useful information. On
the two most densely populated grids (h) and (i) the C-Value is the
only metric that provides any information concerning changes in the
state of the grid.
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5.3 Particle model

Two facets of the reaction-diffusion and chemotaxis model were used to analyse

the performance of the metrics; the state of the output grid during the extinction

regime and during the gathering regime (see subsection 4.6.5). The former is

populated with cells in an excited state that do not gather together, but instead

represent a random dispersion of excited cells across the grid. The latter models

the decentralised gathering of amoeba within the grid space.

In the first test using the extinction regime, the initial grid had 10% of its cells

set to an excited state. Table 5.5 shows the averaged state of the final output grid

from a 40 by 40 grid run over 400 time steps 5 times each for a probability setting

of (pE, pA) = (0, 0) and pT = {0.1, 0.2, ...., 0.9, 1}. The graphical representation

of each metric can be seen in Figure 5.14.

Table 5.5: Average of 5 simulations of a 40 by 40 grid over 400 time
steps for a pT = {0.1, 0.2, ...., 0.9, 1.0} and (pE, pA) = (0, 0). The
initial grids had 10% of their cells set to an excited state and randomly
placed on the grid. The last grid in each simulation was measured.
The ID shows the p value used to create the initial grid, followed by
2M3, which represents the value of an excited cell (2) and a Moore
neighbourhood (M) with a range of 3 (3).

ID C-Value Entropy BBR MeanDensity

0.1 2M3 0.0000 0.0000 0.0000 0.0000

0.2 2M3 0.0000 0.0000 0.0000 0.0000

0.3 2M3 0.1999 1.7456 0.9506 0.1293

0.4 2M3 0.2261 2.1890 0.9506 0.1923

0.5 2M3 0.2444 2.3601 0.9506 0.2279

0.6 2M3 0.2678 2.5131 0.9506 0.2632

0.7 2M3 0.3026 2.6423 0.9506 0.2896

0.8 2M3 0.3064 2.6136 0.9506 0.2954

0.9 2M3 0.3335 2.7269 0.9506 0.3206

1.0 2M3 0.0000 0.0000 0.0000 0.0000

In Figure 5.14 all four metrics show the sharp rise once pT passes 0.2 and an equally

rapid drop back down to zero excited cells after 0.9, as reported in the original work

[Fatès et al., 2008] and replicated in subsection 4.6.5. As the pT value increases

between 0.3 and 0.9 the number of excited cells increase, after which it plummets

back down to zero excited cells for pT = 1. The BBR flat lines between 0.3 and
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0.9 with a value of 0.9506, whereas the C-Value, entropy and mean density values

show similar increases. The BBR values reflect the observations of the probability

scenarios, (see subsection 5.2.1), where the random dispersal included ‘active’ cells

on all four edges of the grid, giving a static BBR, (see Figure 5.15).

(a) (b)

(c) (d)

Figure 5.14: Average of 5 simulations of a 40 by 40 grid over 400 time
steps for (pE, pA) = (0, 0), and each of pT = {0.1, 0.2, ...., 0.9, 1.0},
indicated by the p value on the graphs. The initial grids had 10% of
their cells set to an excited state and randomly located on the grid. The
graphs show the average of the last grid of each of the five simulations,
as measured by the four metrics: (a) C-Value, (b) Entropy, (c) BBR
and (d) Mean Density. On all the graphs there were no excited cells
left on the grid by time step 400 for pT = {0.1, 0.2, 1}. The excited
cells have a value of 2 on the grid and a Moore neighbourhood with a
range of 3 was used, hence the prefix on the legends of 2M3.
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pT 0.3 pT 0.4 pT 0.5(a) (b) (c)

pT 0.6 pT 0.7 pT 0.8(d) (e) (f)

pT 0.9(g)

Figure 5.15: The last grid out of a run of 400 in an extinction regime
simulation with a pT set at (a) 0.3, (b) 0.4, (c) 0.5, (d) 0.6, (e) 0.7,
(f) 0.8 and (g) 0.9; the graphs for pT={0.1, 0.2. 1.0} are not shown
as they do not contain any excited cells. The excited cells are red and
are dispersed across the grids; the refractory cells are orange and the
white cells are neutral. In (g) the randomness of the spread of excited
cells can be seen, as well as a number of small groupings of cells with
a diversity of sizes.
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What is more unexpected is that the entropy metric has the same graphical shape

as the C-Value and mean density metrics, indicating that the scattered popula-

tion of excited cells has not reached percolation criticality where a large cluster

has formed and the diversity of cluster sizes has started to decline [Tsang and

Tsang, 1999]. This would seem to be confirmed by the fact that the C-Value

peaks at 0.3335 which is near to the mean density high level of 0.3206, which

roughly correlates to the start values on Figure 5.13(c); where the entropy value

starts at just below 2.800, which is where it peaks in Figure 5.14(b). The start

values are a measurement of the initial grid, which was randomly generated. It

was noted earlier how the combined probability and dynamic test, (see subsec-

tion 5.2.3), showed the C-Value increasing as a cluster is formed up to a value

above 0.9000, while it had run alongside the mean density in the probability test in

subsection 5.2.1. The probability grids were randomly populated with active cells,

suggesting a possible indication of the randomness of the active cells on a grid

when the C-Value is aligned with the mean density and below 0.9000. Therefore,

a C-Value of 0.3335 and a mean density of 0.3206 can be seen as symptomatic of

the excited cells being spread randomly across the grid in this test. This, in turn,

would increase the possibility of there being a number of clusters of diverse size on

the grid, confirming the entropy results. Figure 5.15 shows the state of the final

grids from one of the five simulations, which was used in the calculation of the

metrics. As can be seen, the excited (red) cells in Figure 5.15(g) are spread across

the grid without any discernible order and a number of small groups of cells of

varying sizes can be seen.

The second series of tests of the particle automata looks at the decentralised

gathering of the amoebae. A collection of 40 by 40 grids was created with 600

amoebae and 222 blocked cells, all randomly placed on the initial grids. The

blocking cells were grouped as horizontal and vertical barriers across the grid.

The probability settings were (pT , pE, pA) = (1, 0.01, 0) and the simulation was

run for 2000 time steps, although the amoebae had gathered into one cluster by

time step 650 (see Figure 5.16). The table with the values used can be seen in

appendix B.28.

The analysis of the first 650 time steps can be seen in Figure 5.17. The decrease in

the value of the mean density reflects the fact that a cell can accommodate more

than one amoeba. The mean density reacts as if the number of active agents has

reduced, or is fluctuating. The other three metrics also base their calculation on

the number of occupied cells, rather than the number of active agents. Therefore,

any apparent reduction of active agents will lead to the occupied area becoming
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more compact, thus having a slight affect on the BBR. Likewise the C-Value

calculates the connectedness of the occupied cells and the maximum connectedness

is based on the number of occupied cells. But as suggested, any variance should

be slight and, in some measure, experienced by all the metrics.

Indeed, the results shown in Figure 5.17 are comparable to those from the dynamic

scenario tests, (see subsection 5.2.2). The mean density and C-Value start from

around the same point and then the C-Value increases as the amoebae gather

together. The entropy in Figure 5.17(b) also reflects the peak and descent of

latter part of the graphs seen in the probability scenario test (see Figure 5.2).

This is in line with the fact that the 40 by 40 grid has 1600 cells, which becomes

1378 available cells when the 222 blocked cells are taken into account. This means

that the 600 amoebae randomly placed on the cell represents roughly 43.5%, or

a probability value of 0.435; the graph for the combined probability and dynamic

scenario using a probability value of 0.4 on the initial grid shows the same shape for

the entropy values, (see Figure 5.13(d)). The BBR and C-Values, in Figure 5.17(a)

& (c) respectively, both show the same graph shape and orientation as was seen

in the dynamic scenario, (see Figure 5.11).
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ts 0 ts 250(a) (b)

ts 450 ts 650(c) (d)

Figure 5.16: Amoebae and decentralised gathering with barriers. This
shows (a) the initial grid and time steps (b) 250, (c) 450 and (d) 650 of
one of the simulations using a 40 by 40 grid with 600 amoebae (black
cells) and a total of 222 blocked cells (blue) and probability settings
of (pT , pE, pA) = (1, 0.01, 0). The resulting reaction-diffusion waves are
shown as red for excited cells, orange for refractory cells and the white
cells are neutral. The run was for 2000 time steps, but gathering had
been achieved by 650 time steps.
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(a) (b)

(c) (d)

Figure 5.17: Results from the first 650 time steps of the simulation
of amoebae and decentralised gathering with barriers. The simulation
used a 40 by 40 grid with 600 amoebae and a total of 222 blocked cells
and probability settings of (pT , pE, pA) = (1, 0.01, 0). The run was for
2000 time steps, but gathering had been achieved by 650 time steps.
The graphs show the results for (a) C-Value, (b) Entropy, (c) BBR and
(d) Mean Density. The variance of the mean density graphs is a result
of more than a single amoeba being able to occupy a cell. The prefix
to the legends of 1M3 signify the value of the cells being measured (1)
and a Moore neighbourhood (M) with a range of 3 (3).
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A final test was run to see if the reactive-diffusion model collaborated the find-

ings of the scenarios when tracking a low and a high population of active agents

(see subsection 5.2.2 and subsection 5.2.3). The relevant tables can be found in

appendix B.2.

The low population test was run with four agents on a 20 by 20 grid with no

obstructions, representing a probability scenario of 0.01. The probability settings

were conducive to a ‘quick’ gathering, (pT , pE, pA) = (1, 0.01, 0), (see Table 4.2).

The test was set for 1000 time steps, but the 4 amoebae had gathered after 290.

The initial and final grid can be seen in Figure 5.18. The results can be found

in Figure 5.19. They are similar to those seen in the 4 active agents dynamic

scenario test in Figure 5.8(c). The C-Value and BBR values both register changes

in the state of the grid. Although the C-Value registers that the four agents gather

together, the process is not seen as a smooth transition, but one of sharp rises,

followed by a period of inactivity. The dynamic scenario used a relatively simple

algorithm to gather the active agents into the centre of the grid, leading to a

smoother curve for the BBR than seen in Figure 5.19(c).

ts 0 ts 290(a) (b)

Figure 5.18: Time steps (a) 0 and (b) 290 from a run of the 4 agents
gathering together over 1000 time steps. The simulation used a 20
by 20 grid and probability settings of (pT , pE, pA) = (1, 0.01, 0). The
resulting reaction-diffusion waves are shown as red for excited cells,
and orange for refractory cells. The amoebae are shown as black cells
and the white cells are neutral.
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(a) (b)

(c) (d)

Figure 5.19: Results from the simulation of 4 agents gathering together
over 300 time steps. The simulation used a 20 by 20 grid and probab-
ility settings of (pT , pE, pA) = (1, 0.01, 0). The graphs show the results
for (a) C-Value, (b) Entropy, (c) BBR and (d) Mean Density. The pre-
fix to the legends of 1M3 signify the value of the cells being measured
(1) and a Moore neighbourhood (M) with a range of 3 (3).

The high population test used the same probability settings, but with 360 amoebae

and equivalent to a probability scenario with a p value of 0.9. The amoebae had

gathered together after 250 time steps. The initial and final grids can be seen in

Figure 5.20. The results are displayed in Figure 5.21. Once again the C-Value and

BBR provide the best information on the state of the grid over the 250 time steps,

although the C-Value gives a clearer distinction in the gathering induced by the

reactive-diffusion and chematoxis process. The initial decrease in the C-Value and

mean density graphs is due to the number of occupied cells decreasing as amoebae

start to share cells on the grid. Figure 5.20 shows how the number of unoccupied

cells has increased from the initial grid.
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ts 0(a)

ts 6(b)

ts 250(c)

Figure 5.20: Time steps (a) 0 and (b) 6 and (c) 250 from a run of
the 360 agents gathering together over 1000 time steps. The simula-
tion used a 20 by 20 grid and probability settings of (pT , pE, pA) =
(1, 0.01, 0). The resulting reaction-diffusion waves are shown as red for
excited cells, and orange for refractory cells. The amoebae are shown
as black cells and the white cells are unoccupied. The effect of more
than one amoeba being able to occupy a cell is shown by the increase in
unoccupied cells in (b) and (c), compared to (a). The change between
(a) and (b) can be seen in the initial decrease in the C-Value and mean
density values seen in Figure 5.21(a) and (d) respectively.
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(a) (b)

(c) (d)

Figure 5.21: Results from a run of 360 agents gathering together over
250 time steps. The simulation used a 20 by 20 grid and probability
settings of (pT , pE, pA) = (1, 0.01, 0). The graphs show the results for
(a) C-Value, (b) Entropy, (c) BBR and (d) Mean Density. The initial
time steps for the C-Value in (a) and the mean density in (d) show a
sharp decrease before increasing in the expected manner. This reflects
the impact of more than one amoebae being able to occupy a cell.
The fluctuation continues at a much more reduced level after time step
seven. It affects the smoothness of the C-value graph, but it does not
alter the overall steady incline. The prefix to the legends of 1M3 signify
the value of the cells being measured (1) and a Moore neighbourhood
(M) with a range of 3 (3).
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5.4 Randomised model

Two tests were run with the randomised model using two different asynchronous

updating methods (see subsection 2.6.3 and subsection 4.7.1). The first looked at

the grids produced when the delta-notch model was run with no noise and used a

random order asynchronous (ROA) updating method. The output was measured

with all three range settings, R={1, 2, 3}, allowing a comparison to be made. The

second test looked at the results of noise being introduced into the delta-notch

model and employed a random selection asynchronous (RSA) updating method.

The static array of signalling cells produced by the delta-notch model with no

noise was shown in subsection 4.7.5. This static state is reached from an initial

grid with no signalling cells on it and after only a couple of time steps. Table 5.6

shows the connectedness values when twenty of the static grids were measured

three times each, one for each of the possible search range settings, R={1, 2, 3}.

Table 5.6: The measurement of 20 samples of 8 by 8 hexagonal grids
with no noise for a range of 1, 2 and 3. The ID is made up of the sample
reference followed by a block of, for example, 1HA1, which illustrate
the value indicating a signalling cell (1), an hexagonal grid (H) using
a ROA (A) updating method and a range of 1. The last grid of each
sample in a run of 20 time steps was measured. The active cells are
produced from an initial grid of inactive cells after 1 or 2 time steps
and then the disorderly pattern becomes static. As was found seen in
subsection 4.7.5, the absence of any noise means that the order of the
signalling cells is generally not as compact or pervasive as it could be.
Although sample 16 has a C-Value of one for ranges 2 and 3, implying
that the 41 connections shared by the seventeen signalling cells is the
maximum achievable for that number of cells. A threshold of one was
used.

ID C-Value Entropy BBR MeanDensity

1 1HA1 0.0000 0.0000 0.7656 0.2344

1 1HA2 0.7381 0.0000 0.7656 0.2344

1 1HA3 0.7381 0.0000 0.7656 0.2344

2 1HA1 0.0000 0.0000 0.6562 0.2188

2 1HA2 0.7027 0.0000 0.6562 0.2188

2 1HA3 0.7027 0.0000 0.6562 0.2188

3 1HA1 0.0000 0.0000 0.7656 0.2344

3 1HA2 0.6429 0.0000 0.7656 0.2344

3 1HA3 0.6429 0.0000 0.7656 0.2344

4 1HA1 0.0000 0.0000 0.7656 0.2344

continued on next page
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ID C-Value Entropy BBR MeanDensity

4 1HA2 0.7143 0.0000 0.7656 0.2344

4 1HA3 0.7143 0.0000 0.7656 0.2344

5 1HA1 0.0000 0.0000 0.7656 0.2344

5 1HA2 0.6905 0.0000 0.7656 0.2344

5 1HA3 0.6905 0.0000 0.7656 0.2344

6 1HA1 0.0000 0.0000 0.7656 0.2031

6 1HA2 0.6250 0.0000 0.7656 0.2031

6 1HA3 0.6250 0.0000 0.7656 0.2031

7 1HA1 0.0000 0.0000 0.7656 0.2188

7 1HA2 0.6486 0.0000 0.7656 0.2188

7 1HA3 0.6486 0.0000 0.7656 0.2188

8 1HA1 0.0000 0.0000 0.7656 0.2344

8 1HA2 0.6667 0.0000 0.7656 0.2344

8 1HA3 0.6667 0.0000 0.7656 0.2344

9 1HA1 0.0000 0.0000 0.7656 0.2500

9 1HA2 0.6875 0.0000 0.7656 0.2500

9 1HA3 0.6875 0.0000 0.7656 0.2500

10 1HA1 0.0000 0.0000 0.7656 0.2344

10 1HA2 0.6667 0.0000 0.7656 0.2344

10 1HA3 0.6667 0.0000 0.7656 0.2344

11 1HA1 0.0000 0.0000 0.7656 0.2344

11 1HA2 0.6667 0.0000 0.7656 0.2344

11 1HA3 0.6667 0.0000 0.7656 0.2344

12 1HA1 0.0000 0.0000 0.7656 0.2188

12 1HA2 0.6486 0.0000 0.7656 0.2188

12 1HA3 0.6486 0.0000 0.7656 0.2188

13 1HA1 0.0000 0.0000 0.7656 0.2188

13 1HA2 0.5946 0.0000 0.7656 0.2188

13 1HA3 0.5946 0.0000 0.7656 0.2188

14 1HA1 0.0000 0.0000 0.6562 0.2500

14 1HA2 0.7083 0.0000 0.6562 0.2500

14 1HA3 0.7083 0.0000 0.6562 0.2500

15 1HA1 0.0000 0.0000 0.7656 0.2188

15 1HA2 0.6486 0.0000 0.7656 0.2188

15 1HA3 0.6486 0.0000 0.7656 0.2188

16 1HA1 0.0000 0.0000 0.7656 0.2656

16 1HA2 1.0000 0.0000 0.7656 0.2656

continued on next page



CHAPTER 5. ANALYSIS 210

ID C-Value Entropy BBR MeanDensity

16 1HA3 1.0000 0.0000 0.7656 0.2656

17 1HA1 0.0000 0.0000 0.6562 0.2188

17 1HA2 0.6757 0.0000 0.6562 0.2188

17 1HA3 0.6757 0.0000 0.6562 0.2188

18 1HA1 0.0000 0.0000 0.7656 0.2344

18 1HA2 0.6667 0.0000 0.7656 0.2344

18 1HA3 0.6667 0.0000 0.7656 0.2344

19 1HA1 0.0000 0.0000 0.6562 0.2500

19 1HA2 0.6875 0.0000 0.6562 0.2500

19 1HA3 0.6875 0.0000 0.6562 0.2500

20 1HA1 0.0000 0.0000 0.6562 0.2031

20 1HA2 0.5625 0.0000 0.6562 0.2031

20 1HA3 0.5625 0.0000 0.6562 0.2031

The BBR and mean density measures do not rely on the range, so they do not

vary over the three range settings. The fact that no signalling (black) cells are

next to each other is a result of the threshold being set to 1, leading to a signalling

cell being surrounded by an immediate neighbourhood of inhibited (white) cells,

(see Figure 5.25). Therefore, a check for connectedness at range 1 yields nothing;

whereas all the clusters of active cells are found with range 2, thus rendering the

range 3 search redundant. It must be remembered that a setting of 2 does a depth

1 search first, and a range 3 search does a search at depth 1 and then 2 before

doing a final sweep to find any unconnected nodes at depth 3. The results of all

three range settings on the C-Value is shown in graphical form in Figure 5.22,

where the values from a range of 1 are all zero, and range 2 and 3 have the same

values. Figure 5.23 shows just the values returned for the metrics with the range

set to 3. The entropy metric finds nothing to register. Inspection of the grids

in Figure 5.25 indicate that the signalling cells are all grouped in a single cluster

within a range of 2, with the occasional singletons on some of the grids, such as

on Figure 5.25(6).
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Figure 5.22: The C-Value connectedness measurement of 20 static
grids on an 8 by 8 hexagonal grid with no noise using a search depth
range of R={1, 2, 3}. In this example all of the clusters of signalling
cells are grouped during the search at a range of 2. Consequently, 1HA1
(active value, Hexagonal grid using ROA updating, range 1) is at zero
along the x axis as no connections were found, and ranges 2 (1HA2)
and 3 (1HA3) are mapped on top of each other as all the connections
are found within the search with range 2. The level of the C-Value for
range 2 & 3 indicates that the signalling nodes on each grid are fairly
well connected, with sample 16 peaking with a full C-Value of 1.

Figure 5.23: The four metrics of 20 static grids on an 8 by 8 hexagonal
grid with no noise using a search range of 3 and a ROA updating
method. The C-Value runs across the graph at a higher level than the
mean density, indicating that the distribution of the signalling cells on
each of the grids is not random, but are at some level of connectedness.
The prefix to the legends of 1M3 signify the value of the cells being
measured (1) and a Moore neighbourhood (M) with a range of 3 (3).
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The twenty grids measured can be seen in Figure 5.25. Cohen et al. [2011, p.789]

refer to “notably disordered packing of active cells” in the signalling cells produced

by the delta-notch with no noise. The results visually do not look entirely random,

and some order can be noted in some of the samples. The C-Value appears to bear

this out if the correlation of C-Value with the mean density is seen as indicating a

random state, as was suggested in the dynamic scenario and particle model tests.

The mean density of the range 2 and 3 tests is between 0.2031 and 0.2656, while

C-Value for nineteen of the samples is spread between 0.5625 and 0.7381, with

one sample having a value of 1 (see Figure 5.24). This implies that nineteen of

the samples have a medium level of connectedness, putting them above a random

state, but below a highly ordered or grouped state.

s18, csg0, 1

s19, T1, R1, Nt0, Ns0,UA

s19, csg0, 1

s20, T1, R1, Nt0, Ns0,UA

Figure 5.24:
Sample 16,
see text.

The ‘perfect’ C-Value of 1 indicates that the signalling cells have

the maximum number of edges connected for that number of

cells, range and neighbourhood. The C-Value of 1 is achieved by

the last grid, time step 20, in sample 16, (see Figure 5.25(16)).

The grid has 17 signalling cells and the connected sub grid in

Figure 5.24 shows more clearly how the cells gather together

in a cluster with the range set to 2; visually the connections

are between each signalling cell (black) separated by a single

non-signalling cell (white). Full toroidal wrap around is used

yielding 41 connections. It is not entirely evident if wrap around toroidal boundary

conditions are in full use in some of the diagrams in the original work [Cohen et al.,

2011, pp.789, 791 and 794], which might account for any difference in their view

of how packed the signalling cells are.
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ts 20 ts 20 ts 20 ts 20 ts 20(1) (2) (3) (4) (5)

ts 20 ts 20 ts 20 ts 20 ts 20(6) (7) (8) (9) (10)

ts 20 ts 20 ts 20 ts 20 ts 20(11) (12) (13) (14) (15)

ts 20 ts 20 ts 20 ts 20 ts 20(16) (17) (18) (19) (20)

signalling H-1 H H+1

H+2 H+3

< H-1

> H+3

Figure 5.25: 20 hexagonal 8 by 8 grids produced with no noise and
using a ROA updating system. The initial grid has only inactive cells
on it; signalling cells become established within a couple of time steps.
The last grid of a simulation of twenty time steps is shown. The absence
of noise means that the grid is not completely populated with tightly
packed signalling cells, but the use of a threshold of 1 means that
each signalling cells is surrounded by an immediate neighbourhood of
inactive cells; meaning that a range of 1 finds no connections. However,
(16) has all 17 of its signalling cells with 41 connections in a single
cluster and a C-Value of 1, indicating that they have the maximum
number of connects possible in a wrap around toroidal environment.
The signalling cells on the other grids are also found in clusters within
a range of 2, with a few exceptions, such as the singleton in the top
left quarter of (6).
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The previous test looked at the identification of small changes in the state of the

cells on a grid. This can be as challenging and problematic as trying to measure the

movement of a very small number of agents. In Figure 5.23 the C-Value gives good

information on the state of an individual grid, showing that there was a level of

connectedness. The second test looks at two simulations that produce hexagonal

grids that have different patterns of signalling cells on them. Both simulations

were run for 200 time steps on a 20 by 20 hexagonal grid with a threshold of 4, a

range of 2 and Nt = 0. The first has a spatial noise setting of Ns = 0.1, and the

second Ns = 0.9, (see Table 5.7 and Table 5.8 respectively).

Table 5.7: Selected values from measurement of delta-notch model with
noise. The simulation was run on a 20 by 20 hexagonal grid with a
settings of threshold = 4, range = 3, Nt = 0 and Ns = 0.1 and using a
RSA updating method. The ID is made of up the time step followed by
a block of 1HR3, which illustrate the value indicating a signalling cell
(1), an hexagonal grid (H) using a RSA updating method (R), and the
range of 3 (3). The C-Value increases a little, but it does not rise much
above the mean density, despite a very ordered pattern emerging, (see
Figure 5.26(a)).

ID C-Value Entropy BBR MeanDensity

1 1HR3 0.2109 1.2821 0.9025 0.2475

2 1HR3 0.2007 0.8379 0.9025 0.2475

3 1HR3 0.2365 0.8548 0.9025 0.2600

4 1HR3 0.2359 0.5623 0.9025 0.2625

5 1HR3 0.2509 0.7658 0.9025 0.2575

6 1HR3 0.2591 0.8481 0.9025 0.2625

7 1HR3 0.2647 0.9704 0.9025 0.2650

8 1HR3 0.2612 0.8153 0.9025 0.2575

9 1HR3 0.2605 1.0794 0.9025 0.2675

10 1HR3 0.2549 0.7438 0.9025 0.2650

20 1HR3 0.2617 0.9672 0.9025 0.2725

30 1HR3 0.2785 0.5456 0.9025 0.2700

40 1HR3 0.2710 0.6274 0.9025 0.2725

50 1HR3 0.2975 0.5469 0.9025 0.2800

60 1HR3 0.3115 0.6712 0.9025 0.2825

70 1HR3 0.3263 0.3365 0.9025 0.2875

80 1HR3 0.3323 0.6135 0.9025 0.2875

90 1HR3 0.3259 0.3812 0.9025 0.2800

100 1HR3 0.3333 0.4405 0.9025 0.2900

110 1HR3 0.3323 0.2954 0.9025 0.2875

continued on next page
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ID C-Value Entropy BBR MeanDensity

120 1HR3 0.3353 0.1480 0.9025 0.2950

130 1HR3 0.3353 0.1480 0.9025 0.2950

140 1HR3 0.3371 0.0000 0.8550 0.3000

150 1HR3 0.3371 0.0000 0.8550 0.3000

160 1HR3 0.3371 0.0000 0.8550 0.3000

170 1HR3 0.3371 0.0000 0.8550 0.3000

180 1HR3 0.3371 0.0000 0.8550 0.3000

190 1HR3 0.3371 0.0000 0.8550 0.3000

191 1HR3 0.3371 0.0000 0.8550 0.3000

192 1HR3 0.3371 0.0000 0.8550 0.3000

193 1HR3 0.3371 0.0000 0.8550 0.3000

194 1HR3 0.3371 0.0000 0.8550 0.3000

195 1HR3 0.3371 0.2303 0.9025 0.3000

196 1HR3 0.3371 0.2303 0.9025 0.3000

197 1HR3 0.3343 0.2023 0.9025 0.2925

198 1HR3 0.3353 0.1480 0.9025 0.2950

199 1HR3 0.3353 0.1480 0.9025 0.2950

200 1HR3 0.3353 0.1480 0.9025 0.2950

Table 5.8: Selected values from measurement of delta-notch model with
noise. The simulation was run on a 20 by 20 hexagonal grid with a
settings of threshold = 4, range = 3, Nt = 0 and Ns = 0.9. The ID is
made of up the time step followed by a block of 1HR3, which illustrate
the value indicating a signalling cell (1), an hexagonal grid (H) using a
RSA updating method (R), and the range of 3 (3). The C-Value runs
along side the mean density.

ID C-Value Entropy BBR MeanDensity

1 1HR3 0.4668 0.4495 0.9025 0.4675

2 1HR3 0.5546 0.2758 0.9025 0.5325

3 1HR3 0.4992 0.0000 0.9025 0.5125

4 1HR3 0.5156 0.1972 0.9025 0.5000

5 1HR3 0.5238 0.1461 0.9025 0.5250

6 1HR3 0.5333 0.1302 0.9025 0.5250

7 1HR3 0.5466 0.5817 0.9025 0.5425

8 1HR3 0.5237 0.1757 0.9025 0.5325

9 1HR3 0.5079 0.0000 0.9025 0.5250

continued on next page
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ID C-Value Entropy BBR MeanDensity

10 1HR3 0.5441 0.0000 0.9025 0.5375

20 1HR3 0.5631 0.0000 0.9025 0.5350

30 1HR3 0.4939 0.4165 0.9025 0.4975

40 1HR3 0.5175 0.0000 0.9025 0.5250

50 1HR3 0.5026 1.2958 0.9025 0.5025

60 1HR3 0.4910 0.5766 0.9025 0.5175

70 1HR3 0.4629 0.5225 0.9025 0.4950

80 1HR3 0.5411 0.0538 0.9025 0.5300

90 1HR3 0.5191 0.0000 0.9025 0.5275

100 1HR3 0.4948 0.3228 0.9025 0.5000

110 1HR3 0.4939 0.5004 0.9025 0.4975

120 1HR3 0.5385 0.1156 0.9025 0.5175

130 1HR3 0.5237 0.2752 0.9025 0.5175

140 1HR3 0.5241 0.0915 0.9025 0.5475

150 1HR3 0.5457 0.0000 0.9025 0.5375

160 1HR3 0.5077 0.4598 0.9025 0.5025

170 1HR3 0.4908 0.0973 0.9025 0.5125

180 1HR3 0.4983 1.1506 0.9025 0.5050

190 1HR3 0.5482 0.0929 0.9025 0.5425

191 1HR3 0.5166 0.0000 0.9025 0.5425

192 1HR3 0.5137 0.2239 0.9025 0.5225

193 1HR3 0.5324 0.0000 0.9025 0.5350

194 1HR3 0.4923 0.7249 0.9025 0.5025

195 1HR3 0.5410 0.0000 0.9025 0.5550

196 1HR3 0.5324 0.1256 0.9025 0.5425

197 1HR3 0.5291 0.0936 0.9025 0.5350

198 1HR3 0.5267 1.1642 0.9025 0.5025

199 1HR3 0.5450 0.1624 0.9025 0.5425

200 1HR3 0.5345 0.0936 0.9025 0.5375

The spatial setting of Ns = 0.1 produces a symmetrical pattern of clusters con-

sisting of three cells (time step 194 is shown on Figure 5.26(a)). Whereas the

simulation with a setting of Ns = 0.9 evolves into a linked chain of clumped cells,

spread across the grid (time step 200 is shown on Figure 5.26(b)). In Figure 5.26(a)

all the black signalling cells are grouped in a neat pattern of forty clusters of three

cell each. The clusters are spread in eight lines of five clusters. All the clusters

are picked out with a range setting of 1.
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ts 0 (a)

ts 0 (b)

signalling H-1 H H+1

H+2 H+3

< H-1

> H+3

Figure 5.26: Time steps from two simulations run over 200 time steps
with H = 4, range = 2 and Nt = 0. (a) shows the highly ordered
pattern produced at time step 194 from the simulation with Ns = 0.1,
and (b) is time step 200 from the run with Ns = 0.9. Despite the visual
appearances, (b) has a higher C-Value than (a).
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However, Figure 5.26(a) has a low C-Value, despite visually having a distinctive

and highly ordered pattern of three cell clusters across the grid. Indeed, Fig-

ure 5.26(b), although being visually inelegant compared to the pattern of (a),

scores a higher C-Value because the cells are more connected as a group. This

is exasperated by the toroidal boundary condition which increases the potential

maximum connections. A three cell cluster on an eight by eight grid will never

wrap around and will only have a maximum of three connected edges, whereas

the 120 signalling cells that make up the forty clusters of three cells have a much

higher maximum number of connected edges, including via the toroidal boundary,

leading to the low C-Value of the Ns = 0.1 simulation. The values from a selection

of time steps for just the C-Values from both simulations can be seen in Table 5.9.

Table 5.9: A sample of the C-Value connectedness values for two simu-
lations run over 200 time steps with H = 4, range = 3 and Nt = 0. The
ID in the left column is made of up the time step followed by a block
of 1HR3, which illustrate the value indicating a signalling cell (1), an
hexagonal grid (H) using a RSA updating method (R), and the range
of 3 (3). The middle column shows a selection of the simulated grids
run with Ns = 0.1; the right column was run with Ns = 0.9. Although
the simulation in the left column produced grids with patterns of small
clusters the higher noise perturbation used by the simulation in the
right column produced more active cells that, although a disorganised
sprawl, generated a higher C-Value, (see Figure 5.26).

ID Ns = 0.1 Ns = 0.9

1 1HR3 0.2109 0.4668

2 1HR3 0.2007 0.5546

3 1HR3 0.2365 0.4992

4 1HR3 0.2359 0.5156

5 1HR3 0.2509 0.5238

6 1HR3 0.2591 0.5333

7 1HR3 0.2647 0.5466

8 1HR3 0.2612 0.5237

9 1HR3 0.2605 0.5079

10 1HR3 0.2549 0.5441

20 1HR3 0.2617 0.5631

30 1HR3 0.2785 0.4939

40 1HR3 0.2710 0.5175

50 1HR3 0.2975 0.5026

60 1HR3 0.3115 0.4910

70 1HR3 0.3263 0.4629

continued on next page
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ID Ns = 0.1 Ns = 0.9

80 1HR3 0.3323 0.5411

90 1HR3 0.3259 0.5191

100 1HR3 0.3333 0.4948

110 1HR3 0.3323 0.4939

120 1HR3 0.3353 0.5385

130 1HR3 0.3353 0.5237

140 1HR3 0.3371 0.5241

150 1HR3 0.3371 0.5457

160 1HR3 0.3371 0.5077

170 1HR3 0.3371 0.4908

180 1HR3 0.3371 0.4983

190 1HR3 0.3371 0.5482

191 1HR3 0.3371 0.5166

192 1HR3 0.3371 0.5137

193 1HR3 0.3371 0.5324

194 1HR3 0.3371 0.4923

195 1HR3 0.3371 0.5410

196 1HR3 0.3371 0.5324

197 1HR3 0.3343 0.5291

198 1HR3 0.3353 0.5267

199 1HR3 0.3353 0.5450

200 1HR3 0.3353 0.5345

The metrics from both the Ns = 0.1 and the Ns = 0.9 simulations can be seen in

the graphs in Figure 5.27. In Figure 5.27(a) the C-Value of the Ns = 0.1 simulation

does have the curve that indicates a gathering or ordering of the signalling cells,

but the values registered do not indicate a highly connected cluster and they only

rise marginally above the mean density shown in Figure 5.27(d). Certainly it does

not support the move from randomness to a state of higher order that is portrayed

in Figure 5.26(a). Thus by itself the C-Value does not identify the regular pattern

displayed on the grid in Figure 5.26(a) because it has already identified the lower

level connectivity of each individual three cell cluster.

What is also of great interest is the shape of the C-Value graph of the Ns =

0.9 simulation displayed in Figure 5.27(e). While the values are higher than in

(a), indicating a higher level of connectedness, the shape of the graph, with its

alternation between just above 0.4500 and below 0.6000, lacks any evidence of a



CHAPTER 5. ANALYSIS 220

gathering or compression process. Indeed, the values of the C-Value and mean

density in Table 5.8 have similar fluctuations, indicating that although there is a

large, sprawling cluster, it is random in its composition and not highly structured.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 5.27: Analysis of two simulations run over 200 time steps with
H = 4, range = 3, Nt = 0, but different spatial noise settings. (a)-(d)
were run with Ns = 0.1; (e)-(h) were run with Ns = 0.9. (a) & (e)
show the C-Value, (b) & (f) the BBR, (c) & (g) the entropy and (d)
& (h) the mean density. The prefix to the legends of 1M3 signify the
value of the cells being measured (1) and a Moore neighbourhood (M)
with a range of 3 (3). See text for further information.
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5.4.1 Identifying patterns of clusters in the randomised

CA model

The problem the C-Value has in recognising the distinctive pattern of clusters in

Figure 5.26(a) indicates how the level at which the metric is calculated is geared

more towards the identification of the extent to which the active or occupied cells

on a grid are gathered together in a compact, single cluster. A possible solution is

to set the process at a lower level in an attempt to identified patterns of clusters.

This involves calculating the C-Value for each cluster identified. The C-Value

for the grid is then the sum of the localised C-Values divided by the number of

clusters. A singleton is treated as a cluster with a zero C-Value.

The results of calculating the localised C-Value (LC-Value) can be seen alongside

the C-Values evaluated for the two randomised simulations with noise from the

previous section:

1. the simulation with noise set at Ns = 0.1, Nt = 0, threshold = 4, range = 3

and a RSA updating method; and

2. the simulation with noise set at Ns = 0.9, Nt = 0, threshold = 4, range = 3

and a RSA updating method.

The table listing the C-Value and LC-Value for selected time steps from both

simulations with noise can be seen in Table 5.10. The LC-Value for the simulation

using Ns = 0.1 captures the highly ordered pattern that is spread across the grid,

as seen in Figure 5.26(a), with a LC-Value of one being achieved by most grids

after time step eighty. This is in contrast to the C-Value which only picked up

a slight rise in the connectedness of the signalling cells and did not recognise the

move from an empty initial grid to a highly ordered one because the pattern is

made up of small, evenly dispersed clusters of three cells.
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Table 5.10: Comparison of the C-Value and the Localised C-Value from
selected time steps of the simulations using a spatial noise setting of
Ns = 0.1 and Ns = 0.9, (see Table 5.7 and Table 5.8 respectively for
tables of the original simulations). The LC-Value of the Ns = 0.1
section reflects the highly ordered, dispersed pattern that can be seen
in Figure 5.26(b)). The ID starts with the time step, then 1HR3 which
represents the value identifying a signalling cell (1), a hexagonal grid
(H) using a RSA (R) updating method and a range of 3. A threshold
of 4 was used with both simulations with a full toroidal wrap around
boundary and no temporal noise, Nt = 0.

ID 0.1 C-Value 0.1 LC-Value 0.9 C-Value 0.9 LC-Value

1 1HR3 0.2109 0.6826 0.4668 0.4441

2 1HR3 0.2007 0.7667 0.5546 0.6168

3 1HR3 0.2365 0.8000 0.4992 0.2132

4 1HR3 0.2359 0.7037 0.5156 0.5771

5 1HR3 0.2509 0.7500 0.5238 0.7984

6 1HR3 0.2591 0.7969 0.5333 0.5657

7 1HR3 0.2647 0.8206 0.5466 0.8373

8 1HR3 0.2612 0.7935 0.5237 0.4294

9 1HR3 0.2605 0.7683 0.5079 0.6598

10 1HR3 0.2549 0.8124 0.5441 0.3424

20 1HR3 0.2617 0.7725 0.5631 0.2367

30 1HR3 0.2785 0.8485 0.4939 0.6652

40 1HR3 0.2710 0.9167 0.5175 0.1705

50 1HR3 0.2975 0.9302 0.5026 0.7943

60 1HR3 0.3115 0.8682 0.4910 0.5273

70 1HR3 0.3263 0.9756 0.4629 0.5562

80 1HR3 0.3323 1.0000 0.5411 0.4205

90 1HR3 0.3259 0.9512 0.5191 0.3227

100 1HR3 0.3333 1.0000 0.4948 0.5661

110 1HR3 0.3323 1.0000 0.4939 0.6078

120 1HR3 0.3353 1.0000 0.5385 0.2607

130 1HR3 0.3353 1.0000 0.5237 0.7367

140 1HR3 0.3371 1.0000 0.5241 0.5569

150 1HR3 0.3371 1.0000 0.5457 0.1735

160 1HR3 0.3371 1.0000 0.5077 0.3553

170 1HR3 0.3371 1.0000 0.4908 0.2478

180 1HR3 0.3371 1.0000 0.4983 0.7152

190 1HR3 0.3371 1.0000 0.5482 0.3014

continued on next page
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ID 0.1 C-Value 0.1 LC-Value 0.9 C-Value 0.9 LC-Value

191 1HR3 0.3371 1.0000 0.5166 0.1329

192 1HR3 0.3371 1.0000 0.5137 0.3494

193 1HR3 0.3371 1.0000 0.5324 0.3343

194 1HR3 0.3371 1.0000 0.4923 0.4998

195 1HR3 0.3371 1.0000 0.5410 0.2331

196 1HR3 0.3371 1.0000 0.5324 0.6706

197 1HR3 0.3343 1.0000 0.5291 0.3679

198 1HR3 0.3353 1.0000 0.5267 0.5625

199 1HR3 0.3353 1.0000 0.5450 0.6392

200 1HR3 0.3353 1.0000 0.5345 0.4480

The graphs of the C-Value and LC-Value for both simulations can be seen in

Figure 5.28. The shape of the graphs are maintained for both Ns = 0.1 and Ns =

0.9. Although in the former the values for LC-value are much higher, indicating

the ordered structure of the pattern. The graph of the LC-Value for Ns = 0.9 in

Figure 5.28(d) has the same fluctuating pattern of the C-Value one in (c).

However, the range of the LC-Value results for Ns = 0.9 is much greater, spreading

from 0.1329 (time step 191) to 0.8826 (time step 109), whereas the C-Value range

is 0.4520 (time step 163) to 0.5653 (time step 82) (see appendix B.3.1 for the full

tables). Each grid in the Ns = 0.9 simulation has one main connected sub grid

that groups almost all of the signalling cells. The wide fluctuation of the LC-

Value is where the there are some signalling cells that are not in the main group.

These either form very small clusters with a high or maximum C-Value, or are

singletons with a C-Value of zero. The former leads to a higher overall LC-Value,

such as with time step 109, which has a main connected sub grid with a C-Value of

0.6478 and two other sub grids both with a two cell cluster on and each having a

C-Value of 1; this leads to the LC-Value of 0.8826. In contrast, time step 191 has

a main connected sub grid with a C-Value of 0.6646 and four singletons, giving a

LC-Value of 0.1329 (see Figure 5.29).
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(a) (b)

(c) (d)

Figure 5.28: Comparison of C-Value and LC-Value for delta-notch sim-
ulations with noise. (a) C-Value for Ns = 0.1, (b) LC-Value for Ns =
0.1, (c) C-Value for Ns = 0.9 and (d) LC-Value for for Ns = 0.9. Both
simulations used additional settings of threshold = 4, range = 3, tor-
oidal boundary and a RSA updating scheme. The shape of the graphs
are maintained, with (a) and (b) showing the increase in the connected-
ness of the signalling cells on the grid, although only (b) indicates how
ordered the cells become on the grid. Both (c) and (d) indicate how
the connectedness fluctuates with a setting of Ns = 0.9, implying that
the cluster has a random distribution across the grid. The LC-Value
shown in (d) also has a much wider range of values, which is brought
on by too much weight being given to the few signalling cells that do
not form part of the main grouping of cells. The prefix to the legends
of 1M3 signify the value of the cells being measured (1) and a Moore
neighbourhood (M) with a range of 3 (3).
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Figure 5.29: The grid for time step 191 and its connected sub grids.
The averaged C-Value of the sub grids give a LC-Value of 0.1329. (a)
the state of the grid at time step 191 of the simulation of the delta-
notch randomised model. The settings used were Ns = 0.9, Nt = 0,
threshold = 4, range = 3 and a toroidal wrap around boundary with
a RSA updating scheme. Signalling cells are black, inactive cells are
white and the yellow cells indicate an inactive cell with a threshold +
3 state; (b) the main connected sub grid of signalling cells extracted
at range 1 and with a C-Value of 0.6478; (c) - (f) the four singletons
extracted from the grid, each with a C-Value of zero.

In the Ns = 0.1 example the latter time steps have forty connected sub grids each

with a three cell cluster and a C-Value of 1. Consequently the LC-Value reflects

the regular pattern of three cells that is created across the grid. But the example

of the Ns = 0.9 shows how the calculation of the LC-Value needs adjustment

to ensure that more consideration is given to the distribution of the signalling

cells and the prevention of a very small percentage of the signalling cells from

disproportionally affecting the LC-Value.
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5.5 Deterministic model

One set up was tested with the deterministic CA model. This simulated one

package set to replicate moving across a 10 by 10 grid in order to see the changing

state of the resource usage of the cells on the grid. A replicating package moving

vertically or horizontally across the middle of the grid takes 9 time steps to move

across the grid. In this time, providing resources are available, the resource usage

across nodes is greatly increased as replicated packages are spun off to both sides

of the replicating package. The life time of the replicated packages was set to one

time step, in which time they could themselves replicate if there were resources

available. This short life span was used so as to get as uncluttered a view of the

replicating process and resource usage as possible.

Any AP that had a resource reservation requirement of the maximum of 50 cycles

could result in the resource impact being increased by 50 cycles, providing the

relevant node had available resources. This would suggest that the longest any

footprint of an AP would be seen on the grid is with a merge AP traversing

diagonally across the grid. If the AP is processed at every AN it visits, then it

takes 45 cycles / time steps. This is extended to 91 cycles if it has a reserve memory

requirement lasting for the maximum of 50 cycles. Consequently, after 91 cycles,

or even less, it would be expected that no resource usage would be registered

on the grid and all the cells would be inactive. However, a replicating package

started off from a corner of the grid to move diagonally across the grid results

in the replication folding back on itself and locking into a continual oscillation

between two patterns. Figure 5.30 shows an example of a 10 by 10 grid initiated

with a replicating agent injected at the bottom left corner. The grids shown in

Figure 5.30(h) & (i) are the start of a two grid oscillation that continued for the

rest of the simulation of 511 time steps. The measurement of this oscillating state

can be observed in Figure 5.31.

The BBR and the mean density metrics reflect the basic difference in the number

of active cells and the area covered by them between the two oscillating grids.

The entropy and connectedness measure flat line as there is no difference in their

perception of the active cells on the grid. But all indicate that the grid is still

occupied, and the high C-Value points to the connectedness of the structure. While

this is an interesting manifestation, any claims of emergence should be restrained.

The model does not represent any factual representation of a live system, nor is it

a model that can be compared with the output of a real time system. As such the

oscillation has to be considered as an artefact, although a useful test case for this
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research. The wrongful interpretation of artefactual events is an habitual problem

with computational system that is aligned with the wrongful assumption that a

model can be seen as more than it actually is. However realistic its construction

is, it is only a model of the system.
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Figure 5.30: The results of a replication package moving diagonally
across the grid from a corner. The AP was set a lifespan of 1 cycle in
order to leave the grid as uncluttered as possible. The first 12 grids
are shown with the black cells indicating the nodes where resources are
being consumed. The oscillation cycle of two grid states starts with
(h) & (i) and was still evident in steps 510 and 511 at the end of the
simulation.
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(a) (e)

(c) (d)

Figure 5.31: The metric analysis of the AN deterministic test. This
was run on the first 36 grids. (a) C-Value, (b) entropy, (c) BBR and (d)
mean density. The fluctuation in (c) and (d) reflects the different num-
ber of active cells in the two oscillating grids first seen in Figure 5.30(h)
& (i). The two grids in the cycle both consist of one cluster, leading to
the same C-Value for both grids and, consequently, flat lining on (a)
for a value of one; the same occurs for the entropy value on (b) which
settles at zero. The prefix to the legends of 1M3 signify the value of
the cells being measured (1) and a Moore neighbourhood (M) with a
range of 3 (3).
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5.6 Summary

This chapter presented the results of the tests and simulations of probability and

dynamic scenarios, and the models representing three CA categories. The prob-

ability scenarios gave the first indication that there was a correlation between

the C-Value, the mean density and the random distribution of occupied or active

cells on the CA grid. The probability scenario created grids with the percentage

of randomly located occupied cells determined by a probability value. The BBR

metric was relatively static, thus showing how even in the more sparsely occupied

grids the randomness of the placement of the cells led to them being spread out

to the edges of the grid. The entropy showed how the diversity of the cluster

sizes on the grid increased until a single spanning cluster became prevalent across

the grid. The mean density, as expected, increased as the number of occupied

cells increased. The C-Value ran alongside the mean density, indicating that the

increase in connectedness of the occupied cells was determined by the increase in

their number on the fixed dimensions of the grid, rather than any rule or planned

clustering of the cells.

The dynamic scenario used a simple gathering algorithm to move the active agents

into the centre of the grid. The C-Value reflected this move from a random initial

grid by increasing above the mean density. In this way, the randomness of the

initial grid was shown by the mean density and C-Value having a similar starting

value, and the loss of randomness was then illustrated by the increase in the C-

Value. The gathering algorithm did not seek to pack the active agents tightly,

but a C-Value above 0.900 indicated when the active agents had collected into a

single centralised cluster. The dynamic scenario was used to see how the metrics

performed when there were different extremes of cell occupation. This mainly

concentrated on very low numbers of active agents, specifically four, eight and

twelve. Of the four metrics, the BBR and C-Value provided information on the

state of the grid, with the C-Value providing more information on the final time

steps, or stages of the gathering process, than the BBR.

Both the Moore and the van Neumann neighbourhood were used in the probability

scenario. The dynamic scenario was used to conducted a more detailed comparison

of the two neighbourhoods and the use of different search ranges. The values

generated by the two neighbourhoods will be different as, for example, a Moore

neighbourhood will potentially find more clusters, affecting the entropy, and more

connections, influencing the C-Value. Also with a Moore neighbourhood the C-

Value will have a higher maximum number of connections for a specified number of
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active cells. While the tests using 350 active agents revealed no obvious, observable

difference in the graphical representation of the metrics, apart from the expected

difference in values, a small difference was seen in the graphs of eight and twelve

agents using a Moore neighbourhood and a range of 3. A range of three gathers

any singletons identified with a range of 1 and of 2 into a cluster that is then

reflected in the C-Value. Although this was of little overall significance, a Moore

neighbourhood with a range of 3 was adopted for the subsequent simulations.

The two scenarios were then combined to evaluate how the metrics performed from

a low population of active agents of occupying 10% of a grid up to a grid with 90%

occupation. The graphs of the results showed clearly the effect on the entropy and

the BBR as the graph became more densely populated. They both registered less

and less information on the changing state of the grid. In contrast to this, the

C-Value, starting alongside the mean density when measuring the initial grid, rose

in value up to above 0.9000 in all the simulations, even in the final one where the

90% occupation of the grid resulted in a static value for the BBR and a zero value

for the entropy. Overall the scenarios showed that the C-Value was consistent in

identifying the gathering together of different density of active agents. The BBR

proved to be a very simple but effective measure, but it lacked a certain finesse

in the analysis of some of the simulations with a high number of occupied cells.

The entropy measure proved to be effective for the job it was designed for, but its

overall ability to provide a good level of information across all the time steps was

limited. A value of zero could mean that there were one or no clusters, or that

there were 2 or more clusters but all of the same size. Credence was also given

to the concept that a C-Value aligned to the mean density implied a degree of

randomness in the distribution of the cells being measured.

The simulation of the extinction regime of the reactive-diffusion and chemotaxis

model confirmed the C-Value was approximately the same value as the mean dens-

ity when the distribution of cells being measured was random. The subsequent

simulation of the decentralised gathering of the amoebae showed the effect of more

than one amoeba being able to occupy a cell, with all the metrics exhibiting some

fluctuating in their values, but maintaining the expected shape of the graphical

representation of measuring the decentralised gathering. The simulations using a

low population of 4 amoebae and then a much higher one of 360 verified the find-

ings of the dynamic scenario. Firstly, that it was difficult to capture information

when only a few amoebae were present, although the C-Value and BBR gave some

useful, albeit limited, information; secondly, that of the four metrics the C-Value

provided the most distinct information on the gathering of the 360 amoebae.
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The delta-notch model was simulated first without any noise perturbation, and

then with two diverse spatial noise settings of Ns = 0.1 and Ns = 0.9. In the no

noise simulation all three ranges were tested, confirming that the catch all range

of 3 was preferable. The wrap around nature of the toroidal boundary means

that the maximum connections achievable by a group of occupied cells is higher

than the null boundary used by the previous model. This in turn can affect the

general level that the C-Value reaches for a relatively compact cluster, as seen in

the results of the no noise simulation. Although it can also give rise to a perfect

C-Value score of 1. The simulations using noise highlighted the way the C-Value

performed when the focus was not on the gathering of active agents or cells into

a single cluster on the grid. The simulation using Ns = 0.1 produced a highly

ordered pattern of 3 cell clusters in eight rows of five clusters on each row. This

forty cluster pattern was hardly registered by the C-Value, which only just rose

above the mean density. Whereas, in the simulation with Ns = 0.9 the occupied

cells were visually sprawled across the grid. The cluster was connected but lacking

any real order, but it had a higher C-Value than Ns = 0.1. The C-Value for Ns

= 0.9 oscillated in a similar trajectory to that of the mean density, implying that

while the signalling cells were connected, there was a certain randomness to their

distribution. This drew attention to how the C-Value was set up to evaluate the

connectivity of the signalling cells on the grid and hence the degree to which they

were gathered together, rather than any pattern that might evolve.

The issue of how to identify the recurring three cell pattern from the Ns = 0.1

simulation was examined by averaging the sum of the C-Value of each cluster

found on the grid, with each singleton having a zero C-Value; this produced a

localised C-Value (LC-Value). This worked well, although the LC-Value results

from the Ns = 0.9 simulation threw up the need to consider how to cater for the

imbalance that a few singletons or small clusters could create when the main bulk

of the signalling cells were in one cluster.

The final simulation of a theoretical active network failed to provide any further

information on the performance of the metrics. However, it did demonstrate the

potential for artefactual behaviour to be created by computation modelling. A

similar incident had been observed in one of the tests run in the dynamic scenario

(see Figure 5.8).

The results, including an assessment of the performance of the new connectedness

metric, are discussed further in the next chapter.



Chapter 6

Discussion

6.1 Introduction

This chapter considers the main areas of interest raised by the work carried out

in the thesis. It first revisits the CA types and the extension proposed in subsec-

tion 2.6.5, before looking at the performance of the scenarios and models outlined

in chapter 4. This leads into a discussion of the modelling process and verification

and validation of the models used in the thesis The performance of the metrics

outlined in chapter 3 and analysed in chapter 5 is then reviewed, with special

attention given to the new connectedness metric. The main discussion ends with

a reconsideration of commonality and the identification of common metrics.

6.2 Classifying CA types

Ermentrout and Edelstein-Keshet [1993] categorised CA models within biology

into three broad types (see Table 2.2). The versatility and relative easiness of

implementing CA models has seen their widespread use within other areas of re-

search (see Table 2.1). The original three categories were based on three different

views of the lattice or CA grid, which was usually two-dimensional, and the pro-

cess that evolved on it (see subsection 2.6.5). The first, deterministic automata,

represented models that focused on the cells or nodes of the grid and their state.

The second, particle automata, involved grids where particles or agents moved

randomly or deterministically across the grid. The last, growth automata, dealt

with irreversible models where the lattice grew as new ‘sites’ were absorbed as

new, occupied cells. While this still forms the basis of any categorisation of CA

models, there is one recommended definition change and one gap in the area of

cell state based CA models.

232
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Although the particle automaton was defined in terms of particles colliding and

changing, it also includes non colliding particle models and the definition needs to

reflect this. The change could be considered pedantic, as non collision agent CA

models, including those modelling ant pheromone trails or traffic, often involve

rules governing situations where a cell is occupied by more than one agent. This

could be construed as a ‘collision’ situation, or at least an impending one. However,

in such models it is not always the case that the particles undergo state change,

as proposed in the original definition; although it might be argued that direction

could be seen as a state of the particle, and a collision avoidance CA model involves

agents avoiding colliding by changing direction, it would be more appropriate to

talk in terms of additional rules governing collisions or multi occupancy of cells.

An obvious limitation to the three categories defined in [Ermentrout and Edelstein-

Keshet, 1993] is the exclusion of the use of probability in any updating method

or rules. The deterministic category was defined as using a synchronous updat-

ing scheme and deterministic rules that excluded the use if any randomisation

either through an asynchronous updating method or rules that involved prob-

ability. However, as was outlined in subsection 2.6.3 a number of asynchronous

updating schemes have been developed and are believed by many to better re-

flect real life when compared to the synchronous update of the whole grid. In the

same way the use of probability with the rules set to update the state of the cells

or the movement of agents across the grid introduces an element of chance and

randomness that more closely resembles our perception of real life and, especially,

complex systems. There has been an increasing number of CA models incorporat-

ing asynchronous updating or probability in their rules, or both. Thus the three

categories outlined in [Ermentrout and Edelstein-Keshet, 1993] do not cover the

range of CA models now being constructed and simulated. A new CA category

was proposed titled randomised automata in subsection 2.6.5, that takes a cell

state perspective and incorporates asynchronous updating and probability. Ex-

amples of this new category were listed in Table 2.2 and the delta-notch signalling

CA of [Cohen et al., 2011] provided the basis of the randomised CA model used

in the thesis. This model used asynchronous updating schemes and probability

to mirror noise in the update rules, and illustrates the richness of the CA models

excluded from the original categorisation.
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6.3 Scenarios and models

Three sets of scenarios and three models were created, as well as an analysis

suite of programs. The results of the analysis of the metrics used is discussed in

section 6.5 and section 6.6. The purpose of this section is to review and appraise

the programs and their performance.

The scenarios were constructed to verify the key functionality of the programs and

to provide benchmark testing of the analysis part of the program suite. The hand

crafted scenarios were used to test the ability of the programs to extract connected

clusters of active cells from an output grid. The probability scenarios evaluated

the ability of the metrics outlined in chapter 3 to distinguish between grids with

varying populations of active cells randomly located on the grid. The dynamic

scenarios benchmarked how the metrics tracked different numbers of active cells as

they gathered together in a cluster. A final test used the output of the probability

scenarios as initial grid input into the dynamic scenarios. The purpose of this

was to cross reference the metrics using the breadth of the probability test with

the results of running them under the dynamic scenario, providing an idea of how

the metrics performed when tracking the gathering of agents on a more and more

cluttered grid space. Both chapter 4 and chapter 5 showed that the scenarios

successfully performed their tasks, both as test programs and as bench markers.

The three lattice based models outlined in chapter 4 were built to create output

from three different types of CA models. Two of the CA model types, determin-

istic and particle automata, were from the original proposal by Ermentrout and

Edelstein-Keshet [1993]; the other was the new randomised automaton proposed

in this thesis.

The particle automaton model was based on a study of the decentralised gathering

problem using reactive-diffusion and chemotaxis as illustrated in [Fatès et al.,

2008]. The Perl program constructed was successful in confirming the findings of

the static, non-coherent and extinction regimes tested in the original work, (see

subsection 4.6.5). It demonstrated that a minimum introduction of noise was

required to initiate a gathering of agents on a two dimensional grid, with and

without obstacles on the grid. The ability of the amoebae to navigate around the

obstacles and gather was also observed. The metrics conformed to the benchmark

settings found by the dynamic scenarios and provided a good set of output grids

tracking the gathering process over a series of time steps. It also corroborated

the problem area of registering enough differentiation in the action of a very small
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number of agents on a grid highlighted by dynamic scenario tests.

The randomised automaton followed the model outlined by Cohen et al. [2011]

and their study of delta-notch signalling and the use of structured noise to gen-

erate self-organising tissue patterns. The original work was itself a progression

from work using differential equations [Cohen et al., 2010] and, like the particle

automaton model, it illustrates the power of a simple CA computational model

to recreate and facilitate the investigation of highly complicated and interactively

complex systems. The Perl program recreated the hexagonal grid and toroidal

boundary conditions of the original work, and confirmed the pattern generating

ability of different combinations of temporal and spatial noise using the specified

three neighbourhood depth ranges, (see subsection 4.7.5). The challenge presen-

ted by this model is that the number of active cells is often fairly constant after a

few time steps for a lot of the noise combinations. Thus it becomes problematic

in identifying any significant change as the active / signalling cells become more

or less compressed.

The deterministic automaton model was built using the Complex Cellular Auto-

mata (CxA) framework and the MUSCLE Java code base, (see section 4.8 and

appendix A). This had the advantage of both providing a formal framework for

defining and documenting how the grids link together and providing the Java

code for the the interaction between the respective spatial and temporal grids.

However, while the code framework is recommended for defining hybrid and CxA

applications, the code base would benefit from being updated. Perhaps the most

significant change that could be made is the method of connectivity between the

respective grids. The existing method is a bound pipe. This means that once data

are sent down the pipe all other processing is stopped on the grid at the sending

end until the grid at the receiving end of the pipe has finished its processing and

returned a response. As the very successful simulation of models using this set up

have shown in [Kroc et al., 2010], this is not a problem unless a better form of

asynchronous updating between the grids is desired. In many ways it is identical to

the discussion of the merits of CA synchronous and various asynchronous updating

of cells on a CA Grid (see subsection 2.6.3). However, regardless of thoughts over

the improvement of the code base, the real issue is the suitability and performance

of the deterministic model.

The problems over verifying the Java code developed to run the AN deterministic

automaton model were highlighted in section 4.8. The crux of this problem was

that the original model [de Silva, 2004], and thus the new Java one, was built on
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an abstraction of the functions of a theoretical AN. There was nothing to validate

the performance of the model. In this way the model was nearer a scenario than a

model. While the deterministic model produced a very interesting result, as there

is no way of checking the outcome against a real situation, it has to be classified

as an artefact.

The scenarios verified that the key aspects of the program suite were working, while

the particle and randomised models, once validated against the original works,

provided information on the performance of the metrics. But the deterministic

model does not help in any assessment of the metrics, rather any interpretation of

the changing state of its output space has to be based on how the metrics executed

with the other two models. Any observations made about the deterministic model

has to be seen as hypothetical and lacking any validation. Consequently, the arte-

fact of an oscillating pattern on the grid, (see section 5.5), could be hypothetical

compared to a replicating virus flooding a network and promoted as a valid high

level structure to analyse. But, its remoteness from a real life situation means it

fulfils the role more of a scenario, rather than a model that can be verified and

validated.

The particle and randomised automaton models both produced output that raised

questions of not just how it would be measured in a quantitative way, but also

how qualitative differences between output grids could be identified and potential

key moments flagged. A significant factor in the real and perceived contribution of

the particle and randomised automata models is also their association to a real life

process, the activities of amoebae and delta-notch signalling respectively. As has

been stated above, the deterministic model does not share the same connection.

The status of the models within any modelling framework with reference to levels

of abstraction and quality of data used is discussed in the next section.

This section cannot close without commenting on the decision to code the models,

the analysis and the display routines. The use of modelling environments, such

as Matlab, was an alternative to writing thousands of lines of code. However, the

desire to model diverse CA types led to a decision to control the code directly,

especially once Perl was adopted first to write the analysis of the Java AN model

and then the particle and randomised CA models. Coding presented the only real

option once it was decided to recreate existing models. This is not to gloss over

the wide range of problems that can and inevitably do occur with developing,

testing and running three models and an analysis suite of programs. But the

greater understanding of the data format that coding the models brought, and
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the flexibility and control it provided was felt necessary because of the range and

diversity of the systems being tested. The benefits of this approach was mainly

seen, for example, in the ability to capture input and output grids and re-run

analysis without having to repeat a simulation; as well as the ability to select

specific time steps or grids for rendering into html or xml.

6.4 Modelling

Modelling is an essential and fundamental part of the scientific process. But what

constitutes a suitable or good model varies between disciplines. A scientific model

can be seen as one reflecting reality. This ties the application of a model to the

real world, where the validity of the simulation is associated with the qualitative

assessment of both its input and output. In this way such in simulacra models

are akin to a mechanistic view of the world, where systems can be reduced to

component parts and their functions revealed. This is not only a valid approach,

it is the heart of the scientific method that has allowed scientific investigations

and discoveries to advance at such a pace over the recent centuries:

• a question is formulated through an observation of some process or event;

• a hypothesis is constructed to provide a possible explanation for the obser-

vation;

• predictions are made about the logical outcomes resulting from the hypo-

thesis; and

• tests, often in the form of models, are then constructed and used to invest-

igate if the hypothesis actually reflects the original observation of the real

world.

But if you were to consider that observation is itself an abstraction or modelling

process, then in simulacra models are part of a cyclic, reciprocal process of models

modelling models, confined by the bounds of our knowledge. Scientific advance-

ment is based on the recording, reproducing and validating of data and processes.

This has to be done through acceptable and universally agreed and understood

means. But, as was shown by Gödel’s incompleteness theorem, our understanding

has limits; limits that we can expand, but there will always be something outside

our range of understanding, at least in terms of being able to explain and validate

it within acceptable scientific rules.
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Computer simulation, its epistemic worth and its role as an opaque though ex-

periment were discussed in section 2.5. The three models used in the thesis not

only represent three different categories of CA, but also three different aspects of

computer simulations.

The particle model used a simulation of the observed behaviour of amoebae when

faced with a shortage of food to examine the problem of decentralised gathering of

agents connected only at a very localised level. Thus an abstraction of a real life

biological system was modelled to provide insight into how, for example, robots

could self organise into a group. The abstraction, modelling and simulation of the

amoebae within a computer environment has the potential to provide guidance

on the rules and attributes that could be used in the coding of the robots. So

the analogy is drawn between the behaviour of the amoebae and the decentralised

gathering of independent agents on a CA grid; and then between the decentralised

gathering and the way of getting robots to gather in a group without a centralised

control system.

The randomised model also abstracted and modelled a biological system, but its

purpose was to understand how the system worked. How delta-notch signalling

works is not fully agreed on, but the model showed how the process could, when a

certain amount of spatial noise was introduced, create a highly organised pattern.

This replication of how, for example, the patterns of skin pigmentation or hair

growth could be stimulated, was an example of how a CA could be used as an

experiment. This is further strengthened by the work in [Cohen et al., 2011]

being a replication of modelling work carried out with mathematical models using

partial differential equations in [Cohen et al., 2010]. While it is generally accepted

that experiments are of more epistemic value than simulations, and mathematical

models of more scientific validity than computational models, there is a role for

computational models as experiments in areas where the system is complex or its

operation still open to debate.

The deterministic model recreated the model of the abstraction of a theoretical

active network. The simulation provided the least useful information, both on

the system being modelled and for analysis by the metrics being used in the

thesis. While the two previous models had some reference and connection to a

real system, this model had none. In some ways it could be viewed as an opaque

thought experiment that attempts to look at how an active network might behave

under certain conditions and with a selection of attributes. However, it suffers

from being overly complicated, which directly affects any worth it might have as
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an opaque thought experiment as it assumes too much without having any ability

to verify, let alone validate any output from the simulation. Although this model

failed as an effective simulation, it did provide support for what did and did not

make a good model.

The simulation methodology adopted in chapter 3 took account of the fact that

the three models were all based on previous work (see Figure 3.1). While the ori-

ginal works, with the exception of the deterministic model, were validated against

real systems, the particle and deterministic models were validated against the

documentation of the original work. Both the particle and deterministic mod-

els were successfully validated against the original work in subsection 4.6.5 and

subsection 4.7.5 respectively. But this validation also works the other way; the

successful recreation of the original work using the same rules, but using a newly

built computational model, validates the findings of the original, in the same way

that an experiment gains credence when successfully replicated.

The deterministic model was based on a previous model that was not itself valid-

ated against a real system. This meant that there was no actual behaviour that

could be observed and any recreation was based on hypothetical behaviour. In

this way the deterministic model failed to comply with the simulation method-

ology. Consequently, its limitations as a model in turn validates the simulation

methodology.

6.5 The metrics

Four metrics were introduced in chapter 3. Three had been used in previous work

measuring 2D CA. The bounding box ratio (BBR) was a relatively simple metric

that was based on the distance between the outer active cells on an x, y axis. An

active cell might represent the state of the cell itself, or the presence of an agent

that is capable of moving around the grid. The mean density was a straightforward

measure of the number of active cells in respect to the number of cells on the grid.

The third known metric was a more involved entropic one looking at the cluster

size diversity. The fourth metric was newly proposed in this thesis, named the C-

Value, and evaluated how connected the active cells on a grid were. The C-Value

will be discussed in more detail in the next section. In this section the overall

performance of the metrics will be considered.

The scenarios and models confirmed the fundamental states of a 2D CA output

grid. It has two main characteristics that each have two extremes. Firstly there is
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the number of active cells, which can alternate from none to a grid full of active

cells. Secondly there is the formation or order of the cells on the grid, ranging

from random to tightly compressed or clustered. The order of the active cells on

the grid has the additional feature that they may form a pattern across the grid

that is not represented by a single cluster. Pattern recognition is a topic in its own

right, but it has to be considered because what may be a visually dispersed pattern

of small clusters of cells, may not register as clusters with an automated metric.

The other main problem with any measuring of 2D CA grid is differentiating when

there is a restriction on the amount of change that can be registered. This can

be seen both when there is a very small number of active cells and when there is

a densely packed grid. But the main point of a lot of measures is to identify a

change, expected or unexpected, in the current state of the grid; or even better to

predict such a change.

The performance of the metrics are considered in six areas that cover the key

aspects discussed in section 2.7 and in subsection 3.3.1.

(1) density - the detection of changes in active population density on a randomly

generated grid:

Two tests were run to assess how the density of active cells was registered

by the four metrics; the probability scenario test in subsection 5.2.1 and the

combined probability and dynamic scenario test in subsection 5.2.3. The mean

density obviously identified the density of active cells on the grid. The BBR

was ineffective due to the random spread of the cells across the grid, while the

entropy metric was only marginally better. The C-Value kept pace with the

mean density, so initially it could be seen as a good indicator of the density.

However, as will be seen in item (3), the C-Value is designed to measure the

the connectedness of the active cells and moves away from the mean density

as the active cells gather together. So the C-Value does not signify the density

of active cells on a grid, rather the connectedness of the active cells.

(2) gathering - the tracking of the centralised or decentralised gathering of agents

on a grid:

This was evaluated with the two tests using the dynamic scenario in subsec-

tion 5.2.2 and subsection 5.2.3, and in the particle automata simulation in

section 5.3. The mean density does not indicate any change on the state of

the grid unless there is a fluctuation in the number of active cells, (such as

when in the particle automaton model where more than one amoeba can oc-

cupy a single cell). Obviously as the percentage of active cells increases on
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the grid, the probability that the cells are connected increases, but it does

not indicate any movement of the agents into a less or more clustered state

on the grid. The entropy metric indicates the point at which the active cells

approach and then reach the stage where they span across the width or height

of a grid; for this to occur there have to be enough active cells on the grid

as well as a degree of gathering of the active cells. But once this spanning

cluster is formed, the entropy metric does not provide any additional level of

information, only that there is a pathway of active cells from one edge of the

grid across to the opposite edge. The difficulty, as has already been stated,

is that the entropy metric will show a value of zero for a number of different

reasons; such as when there are either no clusters, a single cluster, or multiple

clusters all of the same size. The BBR does indicate when dimensions of the

virtual 2D box encompassing all the active cells has shrunk. Thus a gathering

of active cells is shown in the BBR values where the simulation involved a

gathering of the all the active cells into one cluster. The C-Value likewise

illustrates when a gathering of active cells is occurring. But while the BBR

becomes stable in the closing stages of the gathering process, the C-Value

continues to register any changes. This can be seen on the tables in Appendix

B.1.2 relating to the test of 350 agents gathering on different sizes of grid.

This test terminates when there is no additional gathering process recorded

between two steps; thus the last two time steps will have the same values.

On the 25 by 25 grids the BBR stabilises for the last seven of the nine time

steps required to gather the agents together, whereas the C-Value continues

to rise until the concluding two time steps. On the 50 by 50 grid the BBR

settles at 0.4224 at time step thirteen, whereas the the C-Value is at 0.8551

at the same time step, but continues to increase until it settles down to the

same value, 0.9507, for the last two time steps, nineteen and twenty. This

trait is repeated for the 75 by 75 and 100 by 100 grids. In addition to this,

the BBR value is dependent on how many cells are gathered together as this

will affect the dimensions of the resulting cluster. Whereas the C-value, when

used to analyse a grid with a null boundary condition, moves to 0.9000 and

above when a single cluster is formed, regardless of the number of cells in the

cluster.

(3) low end - the performance in monitoring the movement of a population of

four, eight and twelve agents:

This was evaluated using the results from the scenario tests in subsection 5.2.2

and subsection 5.2.3, and in the particle automata simulation in section 5.3. As

would be expected, the mean density provided no useful information regarding
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any changes in the state of a grid with a very small number of agents on it.

The entropy also registers nothing of any use as there are too few agents to

form significant occurrences of different sized clusters needed to register a non

zero entropy value over a series of time steps, if at all. Both the BBR and

C-Value register the gathering of a small number of agents. Four agents are

initially more easily picked up by the BBR as they move together across the

grid as it, in effect, measures the reduction of the distance between them;

while the C-Value depends on an increase in the connectedness that occurs

once they have begun to get in closer proximity to each over. This can be

seen in Figure 5.8 and Figure 5.19. But as the number of agents increases to

eight or twelve the C-Value provides more information over the full range of

time steps with greater variance over the closing time steps, (see Figure 5.6,

Figure 5.9, Figure 5.10 and Appendix B.1.1).

(4) high end - how well the metrics tracked changes in state when the grid was

densely populated:

This was evaluated using the results from the scenario tests in subsection 5.2.2

and subsection 5.2.3, and in the particle automata simulation in section 5.3.

The mean density and entropy metrics both show no useful information on a

grid of 25 by 25 with 350 agents, (see Figure 5.4(a) and Appendix B.1.1). The

BBR also fails to register much information on any changes to the grid over

the eight time steps it takes to gather the agents together. Figure 5.5(a)shows

how the outer active cells are either on or next to the boundary of the grid even

when the gathering process has stopped. The C-Value succeeds in identifying

the changes in the layout of the agents on the grid as they gather together,

starting with a value of 0.5574 and rising to 0.9913 when the gathering process

is completed.

(5) randomness - the identification of randomness in the location of active cells

on the grid:

This was evaluated using the results from the scenario tests in subsection 5.2.1,

subsection 5.2.2 and subsection 5.2.3, and in the particle and randomised

model simulations in section 5.3 and section 5.4 respectively. Neither the

mean density nor the BBR are designed to capture anything specific about

the randomness of the active cells on the grid and the results reflect this.

The entropy and C-Value are based on identifying clusters of active cells and

the move towards a spanning or single cluster. As this is the opposite to a

random distribution of the active cells, it can be seen as a move away from

randomness. However, the entropy metric is based on cluster size diversity
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and a value of zero could indicate no clusters and, thus, a random state, or

only clusters of one size, or a single spanning cluster. The C-Value gives a

clear view of the gathering in the particle automata simulations using a null

boundary condition, moving up to above 0.9000 and even to 1.000. Thus lower

C-Values imply that the distribution of the active cells on the grid is more

random. In various of the scenario tests and in the simulations used to consider

how to identify randomness, active or occupied cells were set up randomly on

the initial grid. These initial grids with their random spread of active cells

had the distinction of having a mean density and C-Value with very similar

values. This is likewise the case with the extinction regime simulation of the

particle model in section 5.3, where the last grid for p value={0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9} have excited cells on them that have not been created with

rules dictating any order to their location, (see Table 5.5). This indicates a

link between randomness, the C-Value and the mean density. This is discussed

further below and in the next section.

(6) patterns

This aspect of measuring the 2D output space of a CA was considered with

reference to the simulations of delta-notch signalling model used as the ran-

domised CA. This model used a toroidal boundary and an asynchronous up-

dating scheme, which presented a different context to the rectangular grid and

synchronous updating scheme of the particle automaton model. The intention

of the original model in [Cohen et al., 2011] was to show how variances in the

spatial and temporal noise could be used to create patterns that reflected such

things as skin pigmentations or the distribution of hair follicles.

In the first group of simulations using no noise, (see Table 5.6, Figure 5.23

and Figure 5.25), the entropy metric provides no information on the state of

the grid. The mean density adds nothing beyond its basic purpose. The BBR

indicates that the occupied cells on each of the samples cover essentially the

same 2D dimensions. Although this does not encompass the full dimensions

of the grid as the selection of a threshold of one ensured that each occupied

cell was surrounded by unoccupied cells. The C-Value for each simulation is

at least 2.7 times the mean density, and excluding the simulation that has a

C-value of 1, the range is between 0.5625 and 0.7381. This indicates, with

reference to the C-Values generated in the scenarios tests and the simulations

of the particle model, that the distribution of the occupied cells is not random,

but has a certain degree of order.
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The second set of simulations produces two different patterns. One with a

highly ordered pattern of forty clusters, each with three occupied cells and

spread five to a row over eight rows; and the other with most of the occupied

cells linked in a sprawled looping pattern across the grid (see Figure 5.26(a)

and (b) respectively). The BBR and entropy do not provide any significant

information about the two grids. The C-Value in both examples keeps pace

with the mean density. This has been associated with a random distribution of

active cells on the grid, but in Figure 5.26(a) the pattern is far from random.

The contour of the C-Value graph in Figure 5.27(a) is similar to that of a

graph showing a gathering of active cells into a single cluster, but the C-Value

does not rise above 0.3371. The C-Value was set up to identify a gathering of

active cells into a single cluster, not a highly ordered pattern of small clusters.

In subsection 5.4.1 the C-Value was successfully set to calculate the localised

C-Value (LC-Value) of the clusters on the grid. In this specific example the

LC-Value successfully identified the highly ordered pattern. The LC-Value

will be discussed further in the next section. In contrast to Figure 5.26(a),

the graphs produced for Figure 5.26(b) in Figure 5.27(e), (f) and (h) show the

values fluctuate across the time steps. The mean density ranges from 0.4675

to 0.5550 and the C-Value from 0.4668 and 5546. The active cells are largely

contained in a single linked group that meanders across the grid, rather than

a pattern of small clusters. This indicates that the distribution of the active

cells is random, without any noticeable pattern or order.

Overall the tests and simulations have shown that the mean density, BBR and

entropy metrics generated the results that were expected of them. The mean

density does the job it is designed for, but on its own it does not provide any

real information aside from the density of the active cells on the grid. The BBR’s

strength is its relatively easy way of assessing the gathering of agents into a single

cluster. But its final value when measuring the active agents in the grid gathered

into a single, ordered cluster is dependent on their number. The entropy measure

selected was fairly specialised, but its purpose was to provide a closer comparison

to the new connectedness metric. However, it did not give a useful measure across

the full range of time steps in a simulation. It does have some use in indicating a

certain level of randomness as a high level of cluster size diversity indicates a state

removed from a compact, single cluster. The C-Value proved adept at identifying

the gathering of active agents into a single cluster and when aligned with the mean

density it indicated the randomness of the distribution of the active agents on the

grid. Its ability to identify patterns of clusters is affected by the level at which

the C-Value is calculated. The C-Value is discussed further in the next session.
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This section closes with comments on the choice of neighbourhood and range.

There was only a marginal difference in the tests comparing the von Neumann

and Moore neighbourhood, (see subsection 5.2.2). The expectation was that the

greater number of connection options of the Moore neighbourhood would allow a

finer, more distinctive measure, as well as finding larger clusters. But the metrics,

including the C-Value, performed in a similar way for both neighbourhoods. The

Moore neighbourhood was selected because it did show a very slight improvement

on the von Neumann. The Moore neighbourhood also includes all eight cells

surrounding the cell in focus, which is more closely aligned with the hexagonal

grid used in the delta-notch signalling model where all six surrounding cells are

part of the neighbourhood. The choice of range was three, although many of the

tests, especially the randomised CA model, gained no additional value than when

using a setting of two. However, the choice of three includes, rather than precludes,

searches for nodes two cells apart. Therefore the selection of a maximum range of

three acts as a catch all.

6.6 Measuring connectedness

This section discusses the performance of the C-Value connectedness metric pro-

posed in subsection 3.6.4. The judgement of the usefulness of the metric is first

based on whether it successfully measures anything of use in at least one CA model

type. Following it meeting that initial, but key criterion it is then a question of

whether it has any uses in other areas and CA model types. Finally, if it performs

across model types it is then a question of its level of commonality. The latter

is important, as something might have uses across domains, but not qualify as a

common metric. The question of commonality is discussed in the next section.

This section will focus on the first two questions, based on the tests and analysis

carried out in chapter 5.

The C-Value was initially set up to measure the level of connectedness between the

active agents or occupied cells on grid. This grid level view meant it was geared

towards registering the gathering of the active agents into a single cluster. On the

tests and simulations using grids with a null boundary condition and modelling the

gathering of active agents, as in subsection 5.2.2, subsection 5.2.3 and section 5.3,

the C-Value performed extremely well. The dynamic scenarios and the particle

CA using the model of amoebae grouping together showed the C-Value rising to

just below 1.000, regardless of the number of active agents on the grid.
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A key observation, starting with the grids randomly populated with different dens-

ities of active cells for the probability scenario in subsection 5.2.1, was that the

C-Value aligned with the mean density when the location of the active cells on the

grid had been randomly generated. This was confirmed in the tests combining the

probability and dynamic scenarios in subsection 5.2.3, where the C-Value started

at approximately the same value as the mean density and then increased as the

active agents gathered together. This has two linked significances. First, if the

C-Value is approximately the same value as the mean density then the spread of

active agents on a grid can be termed random. Secondly, the movement away

from this random state on the grid is indicated by the C-Value increasing towards

1.0000 and moving away from its correlation with the mean density. Obviously,

if the grid is densely packed both the mean density and C-Value will be high and

there is very little change between an initial random placement of the active cells

on the grid and the formation of a single highly connected cluster. In this way

randomness here refers to the state furthest away from the order of a single cluster

for the number of active cells on the grid. Thus it can be stated that:

1. the C-Value approaches 1.0000 as the active agents on a grid moves to a

single, ordered cluster

2. the active agents on a grid are farthest away from an ordered single cluster

when the C-Value is approximately the value of the mean density

This can also be seen in the extinction regime simulation of the reactive-diffusion

model (see Table 5.5 and Figure 5.15). The metrics measured the excited cells

on the grids. It was observed that the entropy measure reflected that it had not

peaked and, thus, a single spanning had not been formed; rather there was still a

high diversity of cluster sizes, which puts the state of the grid nearer to a random

one than a single, ordered cluster. The seven final grids that still have excited

cells on can be seen in Figure 5.15 and their C-Values and mean density are

approximately the same, although Figure 5.15(a) and (b) have higher differences

of 0.0706 and 0.0338 respectively, while the differences between the two values for

(c) to (g) ranges from 0.0046 and 0.0165. The actual C-Value range is 0.1999 to

0.3335, and 0.1293 to 0.3206 for the mean density. The excited cells are created

without any planned or coded order in mind, and can be seen as random, which

is reflected in the correlation of the C-Value and mean density.

This can be applied to the simulations of the delta-notch signalling model used

to demonstrate a randomised CA, where a toroidal boundary condition was used.

The first configuration of the model was run using no noise and a range of two or
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three and produced a simulation that has the optimum configuration for achieving

the maximum number of connections possible for the seventeen signalling cells,

giving it a C-Value of 1.0000, (see Figure 5.24). The other nineteen simulations

have a C-Value between 0.5625 and 0.7143, (see Table 5.6). As the mean density

ranges between 0.2031 and 0.2500, then the nineteen grids can be seen as moving

towards an ordered, single cluster. Visually the grids displayed in Figure 5.25

confirm that the grouping of the occupied cells to be generally ordered, with the

odd singleton cell unattached to the main cluster.

The simulation of the delta-notch signalling model using a spatial noise setting of

Ns = 0.9 also illustrate this correlation between the C-Value, mean density and

randomness or a lack of order, (see Figure 5.26(b)). The occupied cells are all

linked together in a single group, with the exception of three singletons and two

two-cell clusters. The C-Value approximates with the mean density, (see Table 5.8)

and the way the occupied cells are sprawled over the grid in Figure 5.26(b) affirms

that while the cells are linked, they are far from being grouped into a single

compact cluster.

The simulation of the delta-notch signalling model using a spatial noise setting

of Ns = 0.1 produced a highly ordered pattern of forty 3-cell clusters (see Fig-

ure 5.26(a)). This visually identifiable pattern is not picked up by the C-Value

that is geared towards identifying the level to which the active cells are gathered

into an single ordered or compact cluster. Instead, the C-Value runs alongside the

mean density. The pattern can be viewed as a cluster of 3-cell clusters, but as the

C-value is set to evaluate the connectedness of each active cell it can also be seen

as quite removed from a single, ordered cluster; so in the context of the latter, the

C-Value is performing as expected as it is not set to identify patterns of clusters.

In order to see if the pattern of clusters could be identified, the focus of the C-

Value was moved from the grid to the individual clusters found on the grid, (see

subsection 5.4.1). The series of C-Values gained from this localised evaluation of

clusters and singletons on the grid is then averaged to give a localised C-Value

(LC-Value). In the reanalysis of Figure 5.26(a) the LC-Value was 1.0000. This first

run of the LC-Value was successful, and it looks very promising when measuring

a highly ordered pattern. When the LC-Value was calculated for Figure 5.26(b)

it was 0.4880, as opposed to 0.5345 for the C-Value, (see Table 5.10). At some

of the time steps the difference was much more, such as time step 191 where the

LC-Value was 0.1329 and the C-Value 0.5166. This is fine in one way as the LC-

Value has no correlation with the mean density. But it does highlight the need
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for more work on the LC-Value in order to counter the effect of singletons and

small clusters on a grid that is mainly made up of a linked group of active cells.

This was demonstrated in subsection 5.4.1, where two 2-cell clusters raised the

LC-Value of time step 109 from 0.6478 to 0.8826, and four singletons in time step

191 dropped the LC-Value from 0.6646 to 0.1329. Some form of weighting needs

to be introduced in order to realise the potential that the LC-Value demonstrates

The C-Value showed that it was successful as an indicator of when the active

cells on a grid were gathering together into a single, ordered cluster. When the

C-Value is correlated with the mean density then an evaluation can be made

concerning the state of the grid with reference to an unordered state when the C-

Value approximated with the mean density and to a highly ordered, single cluster

when the C-Value approached 1.000.

6.7 In search of commonality

The pervasiveness of the modelling process has been mentioned on a number of

occasions. The importance of context and modelling was touched on in subsec-

tion 2.4.3, where it was noted that how a system is observed depends on the

context and how a complex system can be modelled in part by imposing a loc-

alised context. The context of the models used in this thesis include the CA

environment used to model the different systems, the perturbations selected to

use in the simulation of the model, the neighbourhood selected, the type of grids

and boundary conditions, and the update schemes.

One of the features that makes the modelling of everyday life and events by humans

so powerful is how commonality between different models and different contexts

is identified and used. New models are increasingly created from the experience

and feedback from existing models of diverse systems or with a different context.

This may be seen as using experience, lateral thinking, anticipation or some other

term expressing how to react to a developing situation. A key feature is either

the identification of a known model to cater for the situation, or the changing of

the context of a model, or the selection of parts of one or more models that can

be used quickly to form a new model. The new model is honed and tempered by

feedback, as all models should be.

This process of defining things within the bounds of our experience and knowledge

is part of how scientific investigation is approached. Existing metrics, experiments,

abstractions, models or other methods are applied to new areas of research, or used
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to develop or justify new avenues and methods of research. Work is recorded in a

way that it is possible to reproduce and verify it. This then facilitates the cross

pollination of ideas and methods to other research and even other disciplines. This

utilisation of commonality should not be surprising when the superb and invaluable

pattern recognition process that humans possess is considered. Elements of fuzzy

processing and the detecting of common features have to form part of this process,

otherwise it would paralyse a person into inaction while they handled all the

sensory data being fed in.

Skills learnt in one context are transferable by recognition of some degree of com-

monality to another context. Otherwise, no skill or experience would be trans-

ferable when faced with a new situation, but instead things would have to be

learnt again from basic concepts. A key part of problem solving in a new con-

text is through finding aspects of the new system that have some commonality

with experiences of other systems or contexts. But as with most things there is

a conceptual and a physical side. The discussion above on modelling touched on

the conceptual or theoretical side of modelling as compared to the physicality of

a mechanistic ‘real’ model. The validating of a traditional model can be seen as

giving physicality to the conceptual. In such a way the establishing of standard

measurements give physical reality to what started out as a conceptual idea of

commonality. Thus any search for a physical expression of commonality has to

start with the conceptual identification of commonality between models. There is

no guarantee that such an identification will lead to the realisation of a physical

commonality, the link may remain conceptual. Indeed where the model is one

of a hypothesis rather than something observed, then the process is conceptual

or theoretical unless the hypothesis and model are subsequently applied to some

observed event.

The approach of this thesis was to go one step further and to seek commonality

between models through the commonality of the technique used to model them.

This is an attempt to use the context of the modelling environment to provide the

conceptual commonality. The selected 2D CA provides a platform for measuring

different types of systems. This presented the opportunity to not only look for

commonality between the same types of CA models, but also between different

types using the same modelling environment in the shape of the two dimensional

grid used to visually show the simulation of the model. The measurement of the

number of active agents in relationship to the size of the grid is a common metric;

but the mean density has a very limited view. However, a strong argument could

be put that the mean density tells you the occupation state of a grid, whether
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in terms of active agents or active cells. But this is more a measurement of the

grid, rather than the activity on the grid. The object of the search was to find a

common metric that said more about the differing state of the output space.

A new metric, the C-Value, was proposed as a possible candidate for acting as

a metric for measuring the common output grid used by the various CA model

types. The models, while sharing the context of the CA grid space, had other

differences. In the case of the particle CA a rectangular grid was used with a null

boundary condition and a synchronous updating scheme; perturbation was also

used in the simulation. The synchronous updating scheme was required to produce

the required reactive-diffusion waves that were necessary, with the chemotaxis, to

gather the amoebae together. In contrast the randomised CA used a hexagonal

grid with a toroidal boundary condition and an asynchronous updating scheme

for the simulation of the delta-notch signalling model. This simulation introduced

noise to create patterns of signalling cells. Thus the contexts of the two models

were used to observe two different phenomena, namely the gathering of active

agents into a single cluster and the formation of patterns. The C-Value, as was

discussed above, proved very adept at identifying the gathering of active agents

into an ordered, single cluster. When used with the mean density the random

non ordered state could be identified, and thus an appreciation of the degree to

which the grid had moved to or from a single, ordered cluster. The identification

of patterns of clusters of active cells involved changing the context of the C-Value

and moving it from a grid based view to a localised cluster one. This latter use

of the C-Value, in the form of the LC-Value, has only been proved in a selective

simulation and requires further work.

It is very difficult to separate a model from the specific purpose it was selected

for and from the type of behaviour that was being investigated. A modeller of

moving agents has different motives and objectives to a person who is modelling,

for example, the spread of a virus. It is likely that the level of abstraction that

would be required to achieve some real commonality would render the metric

as unusable in a realistic, mechanistic context. It would remain conceptual. A

conceptual commonality can exist across diverse systems. It may be in the form

of the concept of measuring or a specific type of measurement, but the application

is specific to the context and to the type of system. In this way the C-Value itself

required a change in context to offer a way of identifying two different outputs.



Chapter 7

Conclusions

This chapter compares the work documented in this thesis with the seven ob-

jectives outlined in chapter 1, highlighting achievements and limitations. This

is followed by a statement on the contribution made by the thesis. The chapter

concludes with some suggestions for future work.

7.1 Achievements and limitations

This section reviews the seven objectives set out in chapter 1 with reference to the

work completed in the thesis.

Objective 1 - to classify systems using 2D CA modelling by means of the type of

model used and the characteristics of the observed output

The diversity of systems modelled with 2D CA are shown in Table 2.1. [Ermen-

trout and Edelstein-Keshet, 1993] proposed three broad categories of CA models

within biology, deterministic, particle and growth automaton. Their deterministic

automaton excluded any use of probability in either the grid’s updating scheme

or the rules used to update a cell. A new category of randomised automata was

proposed in subsection 2.6.5 as an enhancement to their work to cover CA using

probability in its rules. This new category included CA models using asynchron-

ous updating and / or probability in their updating rules. Objective 1 is fulfilled

by the examples of the range of systems, including non-biological ones, in the four

categories laid out in Table 2.2.

Objective 2 - to establish any analogy between different systems using 2D CA

models

The enhancement of the work in [Ermentrout and Edelstein-Keshet, 1993] showed

the range of biological and non-biological systems modelled with 2D CA. The di-
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versity of systems is reflected within and across the four categories. The building

of three models representing two of the original CA classification and the newly

proposed randomised automaton showed the different uses of the same basic 2D

output space, meeting the second objective. This proved a useful analogy between

systems within the same type and different types in the context of a shared output

space, whilst illustrating that the analogy also needs to take into some considera-

tion the use the grid is being put to. Otherwise any commonality is restricted to

the basic measurement of the grid itself, rather than the activity on it.

Objectives 3 and 6 are evaluated together as they were both achieved by the

developing and testing of a new metric.

Objective 3 - to develop the basis of a measuring technique that can be used with

2D CA output from different domains and with different expected output

Objective 6 - to evaluate the effectiveness of the measure and metric

The idea and usage of the similar concepts of connectedness, connectivity and

compactness were outlined in subsection 3.3.5. The new metric proposed, the

connectedness C-Value, although developed separately and applied in a different

context, draws on these examples of assessing and using the connectivity between

elements. The C-Value is calculated by measuring the number of connections

between active cells or agents and dividing it by the optimised number of possible

connections for that number of cells. This was applied successfully against different

types of output. It provided a very good measure of the gathering of agents

on a grid into a single, compact cluster; as shown by the particle automaton

in section 5.3 and the randomised automaton in section 5.4. The start of the

gathering process from a random distribution of the active agents to a single,

compact cluster was marked by the correlation of the C-Value with the mean

density. The C-Value increased and moved away from the value of the mean

density as the agents gathered together. The correlation with the mean density

gave a clear indication of when the agents on a grid were moving from a random

distribution into an ordered state of a single cluster, or oscillating in an unstable

configuration. The C-Value was set up to evaluate the overall state of the active

cells or agents on the grid. This prevented it from identifying a pattern of clustered

cells, as seen in Figure 5.26(a). The shifting of the context of the C-Value from

an overall grid view to a localised one based on the groups of connected cells

identified on the grid, allowed the pattern to be identified by the localised C-Value

(LC-Value). The LC-Value was explored in subsection 5.4.1, where its success was

balanced against the need to apply further tests and tuning.
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Objectives 4 and 5 are discussed together as they involved the use of the metrics

selected to measure the output from programs coded for the thesis; the former

involved scenarios and the latter models.

Objective 4 - to evaluate the suitability of the measurement technique against

various 2D CA output scenarios

Objective 5 - to construct models to simulate and measure the output of three

types of CA models, deterministic, particle and randomised

Three models from different CA categories were built and provided the variety of

outputs to test the new metric against, thus satisfying objectives four and five.

In chapter 4, two of the three models built to provide varied output for the C-

Value to test were successfully validated against the findings in the work they

originated from. They also included different boundary conditions, the use of

probability in the updating rules and a variety of updating methods. The particle

automaton model employed reactive-diffusion and chemotaxis on a grid using a

null boundary condition to stimulate the decentralised gathering of agents on a

grid. The randomised automaton model used asynchronous updating, probability

and toroidal boundary conditions to generate patterns in a delta-notch signalling

simulation. The deterministic automaton model simulated the theoretical abstrac-

tion of an active network. This simulation had the least to contribute and with its

complicated structure was illustrative of how simpler models could provide better

output. The deterministic model, because of the theoretical nature of the model

and the original work, could not be successfully validated, whereas it was possible

to validate the other two simulations in the manner outlined in the simulation

methodology in chapter 3.

Objective 7 - to establish if the new metric provides the basis of tracking changes

in the overall state of the CA output from different domain models

The results from the tests enabled the final objective to be met. The C-Value

effectively measured the gathering of active agents on the output grids produced by

different domain models. The correlation of the C-Value with the mean density to

identify the random distribution of the active cells on a grid provided an extremely

useful indicator of the state of the output space. The initial example of using the

C-Value at a localised level showed that the C-Value has the potential to track

more than the movement between a random distribution and a single, compact

cluster.
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7.2 Contribution

The models built and run in the thesis replicated previous work. The thesis adop-

ted a simulation methodology in chapter 3 where the new versions of the models

were validated against the relevant original work. In this way, any validation

against a real life system was by proxy through the original work. In section 4.6

the particle automaton model confirmed the results of the coupling of reaction-

diffusion and chemotaxis to model amoebae gathering together in a mound at

times of food shortage found in [Fatès et al., 2008]. While in section 4.7 the ran-

domised automaton model reproduced the behaviour observed in the delta-notch

signalling simulation in [Cohen et al., 2011]. In this way the new models were

not only themselves validated but also validated the simulation and findings of

the original work. This meant that a new set of code had been implemented us-

ing the same rules and conditions to produce similar results. Thus any negative

view of the epistemic opaqueness of the computer models or the potential for the

computer simulations to produce artefacts was reduced and the epistemic worth

of the original work increased.

The three models represented three facets of the modelling process. The particle

automaton model uses a real life system as an analogy for studying the decent-

ralised gathering problem, which in turn was of interest in robotics and the self-

organising of autonomous robots. The randomised automaton model simulated

the real life system of delta-notch signalling to study how skin pigmentation and

the placement of hair follicles were generated. The deterministic automaton model

could be seen as an opaque thought experiment based on a theoretical active net-

work. Although the deterministic automaton model produced artefactual beha-

viour and failed to generate any significant output, it was important in the affirm-

ation of the simulation methodology; its failure can be seen as a consequence of its

inability to fulfil the validation process proposed by the simulation methodology.

It was built on the basis of the active network modelled in [de Silva, 2004], which

was itself a theoretical model. Consequently, there was no real life system used to

validate either the new or the original model. Indeed, the deterministic automaton

model highlights the pitfalls of a computer simulations as a thought experiment

mentioned in subsection 2.5.2; the epistemic opaqueness of the computer simula-

tion leads to artefacts and there is no means of validating the results against a

real life system.
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The thesis selected 2D CA as its modelling platform, as explained in subsec-

tion 2.6.1. The diverse range of systems that could be modelled using 2D CA

were listed, showing its versatility as a tool to explore how systems conceptually

interact and work. This work has shown that the classification of 2D CA model

types in biology proposed by Ermentrout and Edelstein-Keshet [1993] can be en-

hanced to include other disciplines. This enhancement included a recommend-

ation for a slight amendment to the definition of the classification of a particle

automaton. This was the removal of the implication that a particle automaton

included merely collision models where the collision invoke a state change. But

it was a clarification rather than a change to the definition, as the original work

contained examples that were not particle collision models. More importantly, a

new classification, randomised, was proposed to cover a growing trend for models

of cell state change that used asynchronous updating methods or probability in

their updating rules, or a combination of both. This enhancement was required

as the original deterministic classification was restricted to synchronous updating

and allowed no use of probability.

2D CA is a very visual modelling tool, with the simulation played out on a 2D grid.

The diversity of systems that use CA as a modelling environment means that they

share the commonality of that 2D grid. The three models selected were built to

provide different 2D grid based output that could then be measured. The models

were all from different CA classifications, two represented original classifications

and the third fell within the newly proposed randomised category. The models,

supported by the environment built to analyse the models, successfully produced

and tested the variety of CA output produced.

A new C-Value metric was proposed as one that might prove applicable across

the different type of output generated by the model types used. The metric re-

flected some of the ideas behind the concept of connectivity, connectedness and

compactness explored in subsection 3.3.5, especially the local density discussed in

[Barnes, 1969]; although the C-Value was developed separately and was applied in

a different context and environment and with none of the connotations of paths

or passage of information that were part of Barnes’s local density. The 2D CA

grid can be used to model agent movement and clustering, as well as the changing

state of ‘static’ cells on the grid. Each modeller will have their own reason for

using the environment and a fairly good expectation of what they will see, and

thus how it needs to be measured. The finding of a common metric that could

successfully cover the whole range needs to add more value than a simple measure

of the occupancy rate, such as provided by a mean density measure of the grid.
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The new metric was based on measuring the number of connections or edges that

existed between active or occupied cells on the grid. The distance, or range was

a minimum of one and a maximum of three cells, using a Manhattan distance. A

cell could only be allocated to one cluster and clusters formed under one range

could not then be joined together by the processing of the next, higher range. The

resulting number of edges was then divided by the ideal number of edges formed

by a compressed cluster of the number of active cells on the grid. The results from

the simulations were analysed in chapter 5 and discussed in section 6.6. Three key

conclusions were reached:

(1) the C-Value approaches 1.0000 as the active agents on a grid moves to a single,

ordered cluster,

(2) the active agents on a grid are farthest away from an ordered single cluster

when the C-Value is approximately the value of the mean density, and

(3) the changing of the context of the C-Value from the grid to individual clusters

and singletons on the gird produces a localised C-Value (LC-Value) that shows

potential for identifying patterns of clusters.

The combination of (2) and (1) marks the range between a random distribution

of active agents and their gathering into a single, compact cluster on the 2D CA

grid.
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7.3 Future work

The LC-Value was proposed and tested in subsection 5.4.1 and while the results

were promising, there were a number limitations highlighted that merit further

research. The analysis code written for the thesis incorporated the identification

of the number of clusters and singletons on a grid, as well as the number of agents

in each cluster that was then used to establish the cluster size diversity on a grid.

The correlation of the number and sizes of clusters on the grid, and the number of

singletons, along with an appropriate weighting system, could be used to enhance

the LC-Value to give an indicator of cluster pattern formation on the grid and both

its configuration and connectedness. Tsang [2000, p.130] defined the complexity

of the system he was examining in terms of the cluster size diversity, but he saw

the “diversity of patterns as a more general way to indicate the complexity of a

system”. In terms of a 2D CA grid space, this complexity can be better seen

as the level of randomness of the distribution of the active agents or clusters of

agents on the grid. In this way an improved LC-Value would provide a more

comprehensive indicator of randomness and the loss of it than the C-Value. It

would be useful then to take the LC-Value and adapt it and test it within a 3D

CA environment. This would require much more computational resources than

available for the research in this thesis, but in effect the underlying principles

of C-Value connectedness would remain the same, but the neighbourhood would

increase to incorporate all the 3D neighbours of an active cell.
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118(1Äı̀2):151 – 160.

Magg, S. and te Boekhorst, R. (2006). Interaction and emergent behaviour in

heterogeneous groups of artificial agents. Explorations in the Complexity of

Possible Life–GWAL 2007, pages 95–103.

Maignan, L. and Gruau, F. (2008a). A 1D cellular automaton that moves particles

until regular spatial placement. In Adamatzky, A., Alonso-Sanz, R., Lawniczak,

A., Martinez, G., Morita, M., and Worsch, T., editors, Automata-2008: Theory

and Applications of Cellular Automata, pages 323–337. Luniver Press, Frome

UK.

Maignan, L. and Gruau, F. (2008b). Integer Gradient for Cellular Automata:

Principle and Examples. In Proceedings of the 2008 Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems Workshops-Volume

00, pages 321–325. IEEE Computer Society.



REFERENCES 275

Makarenko, A., Krushinsky, D., and Goldengorin, B. (2008). Anticipation and

delocalization in cellular models of pedestrian traffic. Proc. INDS, pages 61–64.
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Appendix A

Modelling and Simulation

Framework

The range and combination of CAs that have been used to model complex systems

is extensive. An obvious issue when attempting to model and compare different

systems is to establish some measure of commonality in the abstraction and mod-

elling process. The abstraction of a system into a combination of coupled or linked

models reinforces the argument for some form of formal or semi formal framework;

especially when the decomposition of a single model reveals differences in spatial

and, or temporal scale between the sub-models.

In the case of the Active Network (AN) domain, (see section 4.8), there is a

spatial difference between the Active Data Packages (ADP) and the Active Nodes

(ANode); the ANodes themselves have a temporal difference in the processing of

ADPs being passed through and ones being processed; there is also a potential

spatial difference between a fine and a coarse grain view of the processing status

of the ANodes. The UAV domain has spatial differences between the clustering of

the agents in a swarm and the individual actions of each agent; in the temporal

scale there is the different velocities of the agents and, most importantly, the

underlying difference between the overview of the location of the agents and the

radar-like processing that needs to take place at a much quicker temporal pace to

maintain that overview.

This appendix looks at the EU funded COAST project1, and its associate software

toolkit in Java (MUSCLE2); this project has promoted Complex Cellular Auto-

mata (CxA) as a framework for abstracting and modelling systems along a spatial

and temporal axis and with a mixture of coupled CA and other modelling systems

1Complex Automata Simulation Technique, see http://www.complex-automata.org/
2Multi-scale Coupling Library and Environment, see http://muscle.berlios.de
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[Caiazzo et al., 2009; Evans et al., 2008; Hoekstra et al., 2010a, 2006, 2010b, 2007;

Kroc et al., 2010; Sloot and Hoekstra, 2010; Sloot et al., 1999; Wcis lo et al., 2008].

A.1 CxA

Modelling a complex system as a single CA model can be very restrictive when

there is a large difference in the micro and macro scales. The main premise for

CxA is that a single, or ‘flat’ model of a system, whether CA or agent-based,

often masks key differences in spatial and, or temporal scales between the main

processes of the system being modelled. A multi-scale system in CxA can be split

into a series of single-scale CA that are connected across the spatial and temporal

scales. CxA provides a formal definition, a scale separation map that identifies 5

classes of scale separation and a message passing paradigm3.

A.1.1 CxA Definition

A tuple defines a CA [Kroc et al., 2010]

C = {A(4x, L,4t, T ),F ,Φ, finit ∈ F ,u,O} (A.1)

where A is the spatio-temporal domain made up of the spatial units 4x in the

region L and the time-step units of 4t over the time period T, giving T/ 4 t

iterations. F represents all the possible state of each cell and is updated by rule

Φ : F → F , which can be defined in terms of the lattice gas automata framework

[Chopard and Droz, 1998] as collision + propagation,

Φ = PCB, (A.2)

where B is the boundary condition. The initial conditions are provided by finit; any

additional information concerning the boundaries of A is provided by the boundary

conditions of PCB; u acts as the conduit on each iteration for information between

the CA and its environment. O is the observable that specifies the quantity of

interest to the computation of the CA. Equation A.1 means that a CxA can be

defined as a graph X = (V,E) where V is the set of vertices and E the set of

edges with the following properties:

• Each vertex is a CA, Ci = {Ai(4xi, L,4ti, Ti),Fi,Φi, finit,i ∈ Fi,ui,Oi};
and

3this section is based on Hoekstra et al in [Hoekstra et al., 2010b, 2007], which should be
referred to for full details of CxA)
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• Each edge Eij describes how information is exchanged between the coupled

CAi and CAj.

A.1.2 The Scale Separation Map

The Scale Separation Map (SSM) is used to illustrate the decomposed subsystems

into areas representing the relevant spatial and temporal scales. The greater the

scale difference, the easier it is to identify the process’ position on the SSM. Figure

A.1 shows how the SSM is laid out. The hypothetical example on the right shows

how the system can be decomposed across the scales such that the processes

modelled could be operating across the micro-, meso- and micro scales. The

interaction regions on the SSM can be seen in figure A.2. A process in the bottom

L

T

x

t

spatial
scale

temporal
scale

spatial
scale

temporal scale

0

1

3.1 2 3.2

A

Figure A.1: Interaction regions on the scale map (left) and a hypo-
thetical CxA with 5 single scale CA modelling the same process (right)
(adapted from [Kroc et al., 2010])

left (region 3.1) runs at smaller spatial and temporal scale than the process in the

top right (region 0). In figure A.1 process A is in region 0; the scale relationship

between A and a second process depends on where it is placed on the SSM:

Region 0: Here there is no scale separation - a single scale model is required;

Region 1: Here the spatial scale is the same, while there is a difference in the

temporal scale;

Region 2: Here the temporal scale is the same, while the spatial scale differs;

Region 3.1: Both 3.1 and 3.2 have a different spatial and temporal scale. With 3.1

process B operates at a smaller temporal and spatial scale; this is a common

micro ⇐⇒ macro coupling; and

Region 3.2: With 3.2 B operates at a greater temporal scale and a smaller spatial

scale.
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Figure A.2: Interaction regions on the SSM [Kroc et al., 2010]

A.1.3 Sub-model Execution Loop

It has been observed [Hoekstra et al., 2010b; Kroc et al., 2010] that the vertex of

the CxA can be represented by a common instruction flow that uses the PCB for

of the update rule (see equation A.2). The pseudo-code below, referred to as the

Sub-model Execution Loop (SEL), has the operators written in bold and the state

variables as plain text.

D := Dinit /* initialisation of the domain */

f := finit /* initialisation of state variables */

t := 0 /* initialisation of time */

While Not EC /* run until end condition reached */

t+ = 4t /* increase time with one time step t */

D := U(D) /* update the domain */

f := B(f) /* apply the boundary conditions */

f := C(f) /* collision, update state of cells */

f := P(f) /* propagation, send information to neighbours */

Oi(f) /* compute observable from new state */

End /* end of iteration loop*/

Of(f) /* compute observable from final state */

The operator U is used in instances where the domain is dynamic to, for example,

add or delete cells. Operator B constructs any missing data that is required

to complete the update of the boundary cells when operator C updates all the
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cells. The propagation operator P sends information to neighbouring cells or

agents. The observables are computed by O at the end of each iteration and at

the termination of the main loop.

A further distinction raised by Hoekstra et al is whether the domain is a single

(sD) or a multi-domain (mD):

In case of sD processes A and B can access the whole simulated domain

and communication can occur everywhere, whereas in case of mD each

process is restricted to a different physical region and communication

can only occur across an interface or small overlap region.

[Hoekstra et al., 2010b]

The coupling between the sub-models in the CxA can be outlined in terms of

linked SELs once the SSM has been drawn up. Some observations can be made

in relationship of where sub-models are coupled [Kroc et al., 2010]:

• Time scale overlap coupling occurs inside the inner iteration loop;

• Time scale separation is coupled via the initialisation and final observation

operators;

• Single-domain models are coupled through the collision operator; and

• Multi-domain models are coupled via the domain operator or the boundary

operators.

Three modelling strategies have been observed: (1) time splitting - here process B

in region 3.1 will cycle through more than one cycle of its internal loop per cycle

of process A;(2) coarse graining - here A represents a coarse, less accurate repres-

entation of the system modelled by process B in region 2; and(3) amplification -

here if B is a very slow process in 3.2, A is used to compress the view in terms of

the temporal scale.

A.1.4 MUSCLE and the Execution Model

The Multi-scale Coupling Library and Environment (MUSCLE) is a Java based

toolkit that provides the framework to build a CxA (see [Hegewald, 2009]). The

key components of a MUSCLE built distributed CxA application are kernels,

portals, conduits and a communication protocol. Each of the single scale sub-

models identified in the SSM and represented by a SEL is built as a kernel; each

kernel has an inlet and outlet portal; each portal is linked, (output ⇒ input), via
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a conduit. The conduit allows two types of communications, (1) a non-blocking,

push mechanism, send(data), and (2) a blocking, pull mechanism, receive().

There can be only two conduits between two coupled kernels, but a kernel can be

coupled to multiple kernels. Each conduit should be set up with a large buffer that

acts on the FIFO basis. A conduit can have a filter on it that modifies the data

to suit the requirements of the receiving kernel. The initialisation of a MUSCLE

built CxA starts with the creation of the kernels and conduits; a special process

termed plumber then connects all the conduits to the appropriate portals. The

plumber then terminates and each kernel starts its computation; any send(data)

calls will be buffered until the receiving kernel is connected while the sending

kernel continues with its computations; a receive() in a kernel will cause the

computation to be suspended until some data has been received. The conduits

are robust, even if not connected at both ends, providing they have enough buffer

storage.

Figure A.3 shows a hypothetical example where sub-model A is a process in region

0 of the SSM and sub-model B one in region 3.1, making it a time splitting micro

(B) ⇐⇒ macro (A) coupling where the time scale separation is coupled via the

initialisation and final observation operators. After the plumber has connected the

Sub-model B

While true
D := D_init
f  :=  f_init
while not EC

D :=  U(D)
f  :=  B(f)
f  :=  C(f)
f  :=  P(f)
O_i[f]

end
O_f[f]

end

Sub-model A

D := D_init
f  :=  f_init
while not EC

D :=  U(D)
f  :=  B(f)
f  :=  C(f)
f  :=  P(f)
O_i[f]

end
O_f[f]

1
2

3

4

Figure A.3: Hypothetical coupling template for a time splitting mod-
elling strategy (adapted from [Kroc et al., 2010])

CxA application up, both kernels (sub-models) A and B will start. Kernel B will

pause at 2○ until kernel A sends some data from 1○. Kernel A will then pause

at 4○ until B has completed its cycle of internal loops and sends the required

information for A’s update from 3○; the interactive cycle between A and B is then

repeated until A’s end condition is met. It is important to note that a deadlock

problem would occur if both A and B were set to receive data before sending any.
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Test results

This appendix documents an expanded selection of grid displays, tables, and

graphs relevant to those outlined or mentioned in chapter 5. The relevant source

files, plus more data not illustrated below are contained on the CD that accom-

panies this thesis. The captions provide information on the parameters used in

the run of the simulation.

B.1 Dynamic scenario

This section shows a range of results from tests run relating to the dynamic scen-

ario model.

B.1.1 Dynamic scenario tables

The following are the tables used in the dynamic scenario tests using grids of four

sizes, (25x25, 50x50, 75x75 and 100x100), each occupied with 350 agents.

Table B.1: Dynamic scenario with 25 by 25 grid and 350 agents.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.5574 0.0000 0.9216 0.5600

1 1M3 0.6369 0.1125 0.9216 0.5600

2 1M3 0.7456 0.1105 0.8832 0.5600

3 1M3 0.8458 0.0353 0.8832 0.5600

4 1M3 0.9221 0.0000 0.8832 0.5600

5 1M3 0.9676 0.0000 0.8832 0.5600

6 1M3 0.9915 0.0000 0.8832 0.5600

7 1M3 0.9931 0.0000 0.8832 0.5600

8 1M3 0.9931 0.0000 0.8832 0.5600
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Table B.2: Dynamic scenario with 50 by 50 grid and 350 agents.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1962 1.8404 0.9604 0.1400

1 1M3 0.1997 1.8817 0.8836 0.1400

2 1M3 0.2221 2.0705 0.8100 0.1400

3 1M3 0.2537 2.1331 0.7396 0.1400

4 1M3 0.3153 2.1877 0.6724 0.1400

5 1M3 0.3801 1.9450 0.6400 0.1400

6 1M3 0.4595 1.4453 0.6084 0.1400

7 1M3 0.5374 1.3517 0.5624 0.1400

8 1M3 0.5998 0.7826 0.5328 0.1400

9 1M3 0.6685 0.6552 0.5040 0.1400

10 1M3 0.7247 0.5253 0.4624 0.1400

11 1M3 0.7872 0.4917 0.4356 0.1400

12 1M3 0.8204 0.3718 0.4356 0.1400

13 1M3 0.8551 0.3061 0.4224 0.1400

14 1M3 0.8805 0.2419 0.4224 0.1400

15 1M3 0.9075 0.1254 0.4224 0.1400

16 1M3 0.9268 0.0355 0.4224 0.1400

17 1M3 0.9399 0.0000 0.4224 0.1400

18 1M3 0.9468 0.0000 0.4224 0.1400

19 1M3 0.9507 0.0000 0.4224 0.1400

20 1M3 0.9507 0.0000 0.4224 0.1400

Table B.3: Dynamic scenario with 75 by 75 grid and 350 agents.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1384 1.0953 0.9735 0.0622

1 1M3 0.1430 1.1472 0.9216 0.0622

2 1M3 0.1527 1.3003 0.8711 0.0622

3 1M3 0.1812 1.4661 0.8220 0.0622

4 1M3 0.1966 1.5706 0.7744 0.0622

5 1M3 0.2113 1.6507 0.7396 0.0622

6 1M3 0.2429 1.8767 0.6944 0.0622

continued on next page
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ID C-Value Entropy BBR MeanDensity

7 1M3 0.2683 1.7203 0.6507 0.0622

8 1M3 0.3045 1.8166 0.6084 0.0622

9 1M3 0.3323 1.9251 0.5877 0.0622

10 1M3 0.3562 1.7079 0.5476 0.0622

11 1M3 0.3824 1.8597 0.5182 0.0622

12 1M3 0.4217 1.4517 0.4896 0.0622

13 1M3 0.4703 1.3982 0.4530 0.0622

14 1M3 0.5027 1.3945 0.4352 0.0622

15 1M3 0.5482 0.9332 0.4178 0.0622

16 1M3 0.5875 1.0953 0.3920 0.0622

17 1M3 0.6345 0.8047 0.3746 0.0622

18 1M3 0.6731 0.5316 0.3593 0.0622

19 1M3 0.7140 0.6947 0.3353 0.0622

20 1M3 0.7440 0.4198 0.3200 0.0622

21 1M3 0.7726 0.3380 0.3058 0.0622

22 1M3 0.8049 0.2453 0.2981 0.0622

23 1M3 0.8250 0.2447 0.2843 0.0622

24 1M3 0.8412 0.2004 0.2843 0.0622

25 1M3 0.8643 0.1375 0.2843 0.0622

26 1M3 0.8689 0.0877 0.2843 0.0622

27 1M3 0.8843 0.0355 0.2843 0.0622

28 1M3 0.8890 0.0355 0.2843 0.0622

29 1M3 0.8990 0.0000 0.2843 0.0622

30 1M3 0.9082 0.0000 0.2843 0.0622

31 1M3 0.9113 0.0000 0.2843 0.0622

32 1M3 0.9113 0.0000 0.2843 0.0622

Table B.4: Dynamic scenario with 100 by 100 grid and 350 agents.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1172 1.0443 0.9801 0.0350

1 1M3 0.1149 1.0947 0.9506 0.0350

2 1M3 0.1149 1.0510 0.9120 0.0350

3 1M3 0.1187 0.9993 0.8742 0.0350

4 1M3 0.1210 0.9707 0.8372 0.0350

5 1M3 0.1226 1.2094 0.8010 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

6 1M3 0.1280 1.2401 0.7656 0.0350

7 1M3 0.1396 1.3332 0.7310 0.0350

8 1M3 0.1542 1.6045 0.6972 0.0350

9 1M3 0.1658 1.6031 0.6642 0.0350

10 1M3 0.1781 1.6671 0.6320 0.0350

11 1M3 0.1904 1.7446 0.6006 0.0350

12 1M3 0.2136 1.7998 0.5775 0.0350

13 1M3 0.2282 2.0707 0.5475 0.0350

14 1M3 0.2452 2.0522 0.5256 0.0350

15 1M3 0.2706 2.1426 0.4970 0.0350

16 1M3 0.2992 2.1518 0.4830 0.0350

17 1M3 0.3231 2.1602 0.4556 0.0350

18 1M3 0.3315 2.0767 0.4290 0.0350

19 1M3 0.3631 2.0935 0.4160 0.0350

20 1M3 0.3978 1.9930 0.3906 0.0350

21 1M3 0.4248 1.3156 0.3720 0.0350

22 1M3 0.4541 1.1790 0.3540 0.0350

23 1M3 0.4734 1.3114 0.3306 0.0350

24 1M3 0.5127 0.9296 0.3136 0.0350

25 1M3 0.5443 1.1896 0.2916 0.0350

26 1M3 0.5875 0.8745 0.2756 0.0350

27 1M3 0.6361 0.8636 0.2652 0.0350

28 1M3 0.6469 0.6613 0.2550 0.0350

29 1M3 0.6739 0.5149 0.2400 0.0350

30 1M3 0.7032 0.4827 0.2352 0.0350

31 1M3 0.7232 0.4816 0.2162 0.0350

32 1M3 0.7440 0.4501 0.2115 0.0350

33 1M3 0.7579 0.3587 0.1978 0.0350

34 1M3 0.7787 0.3189 0.1978 0.0350

35 1M3 0.8057 0.2383 0.1886 0.0350

36 1M3 0.8157 0.1523 0.1840 0.0350

37 1M3 0.8358 0.0879 0.1840 0.0350

38 1M3 0.8520 0.0875 0.1840 0.0350

39 1M3 0.8635 0.0628 0.1840 0.0350

40 1M3 0.8774 0.0626 0.1840 0.0350

41 1M3 0.8820 0.0625 0.1840 0.0350

42 1M3 0.8867 0.0352 0.1840 0.0350
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43 1M3 0.8890 0.0000 0.1840 0.0350

44 1M3 0.8959 0.0000 0.1840 0.0350

45 1M3 0.8959 0.0000 0.1840 0.0350

The following are tables used in the dynamic tests using square grids 25, 50, 75

and 100 with 4, 8, 12 agents on.

Table B.5: Dynamic scenario with 25 by 25 grid and 8 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1765 0.6730 0.6624 0.0128

1 1M3 0.1765 0.6730 0.5376 0.0128

2 1M3 0.1765 0.6730 0.4256 0.0128

3 1M3 0.1765 0.6730 0.3264 0.0128

4 1M3 0.1765 0.6730 0.2400 0.0128

5 1M3 0.1765 0.6730 0.1664 0.0128

6 1M3 0.3529 0.6365 0.1056 0.0128

7 1M3 0.3529 0.6365 0.0720 0.0128

8 1M3 0.4706 0.6931 0.0336 0.0128

9 1M3 0.5882 0.0000 0.0240 0.0128

10 1M3 0.9412 0.0000 0.0096 0.0128

11 1M3 1.0000 0.0000 0.0064 0.0128

12 1M3 1.0000 0.0000 0.0064 0.0128

Table B.6: Dynamic scenario with 50 by 50 grid and 8 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0588 0.0000 0.5920 0.0032

1 1M3 0.0588 0.0000 0.5320 0.0032

2 1M3 0.0588 0.0000 0.4752 0.0032

3 1M3 0.0588 0.0000 0.4216 0.0032

4 1M3 0.0588 0.0000 0.3712 0.0032

5 1M3 0.0588 0.0000 0.3240 0.0032
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6 1M3 0.0588 0.0000 0.2800 0.0032

7 1M3 0.0588 0.0000 0.2392 0.0032

8 1M3 0.0588 0.0000 0.2016 0.0032

9 1M3 0.0588 0.0000 0.1672 0.0032

10 1M3 0.1176 0.0000 0.1360 0.0032

11 1M3 0.1176 0.0000 0.1080 0.0032

12 1M3 0.1176 0.0000 0.0832 0.0032

13 1M3 0.2941 0.0000 0.0616 0.0032

14 1M3 0.2353 0.6730 0.0432 0.0032

15 1M3 0.3529 0.6365 0.0280 0.0032

16 1M3 0.3529 0.6365 0.0160 0.0032

17 1M3 0.3529 0.6365 0.0128 0.0032

18 1M3 0.5294 0.6616 0.0084 0.0032

19 1M3 0.6471 0.5623 0.0048 0.0032

20 1M3 0.7059 0.5623 0.0040 0.0032

21 1M3 0.8235 0.0000 0.0032 0.0032

22 1M3 0.9412 0.0000 0.0024 0.0032

23 1M3 1.0000 0.0000 0.0024 0.0032

24 1M3 1.0000 0.0000 0.0024 0.0032

Table B.7: Dynamic scenario with 75 by 75 grid and 8 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0588 0.0000 0.5824 0.0014

1 1M3 0.0588 0.0000 0.5422 0.0014

2 1M3 0.0588 0.0000 0.5035 0.0014

3 1M3 0.0588 0.0000 0.4661 0.0014

4 1M3 0.0588 0.0000 0.4302 0.0014

5 1M3 0.0588 0.0000 0.3957 0.0014

6 1M3 0.0588 0.0000 0.3627 0.0014

7 1M3 0.0588 0.0000 0.3310 0.0014

8 1M3 0.0588 0.0000 0.3008 0.0014

9 1M3 0.0588 0.0000 0.2720 0.0014

10 1M3 0.0588 0.0000 0.2446 0.0014

11 1M3 0.0588 0.0000 0.2187 0.0014

12 1M3 0.1176 0.0000 0.1941 0.0014
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13 1M3 0.0588 0.0000 0.1710 0.0014

14 1M3 0.0588 0.0000 0.1493 0.0014

15 1M3 0.0588 0.0000 0.1291 0.0014

16 1M3 0.0588 0.0000 0.1102 0.0014

17 1M3 0.0588 0.0000 0.0928 0.0014

18 1M3 0.1176 0.0000 0.0768 0.0014

19 1M3 0.1176 0.0000 0.0622 0.0014

20 1M3 0.1176 0.0000 0.0491 0.0014

21 1M3 0.1176 0.0000 0.0411 0.0014

22 1M3 0.1176 0.0000 0.0338 0.0014

23 1M3 0.1176 0.0000 0.0272 0.0014

24 1M3 0.1765 0.0000 0.0213 0.0014

25 1M3 0.2353 0.0000 0.0162 0.0014

26 1M3 0.3529 0.0000 0.0098 0.0014

27 1M3 0.4706 0.0000 0.0080 0.0014

28 1M3 0.6471 0.0000 0.0050 0.0014

29 1M3 0.7059 0.0000 0.0032 0.0014

30 1M3 0.8235 0.0000 0.0018 0.0014

31 1M3 0.8235 0.0000 0.0014 0.0014

32 1M3 0.8824 0.0000 0.0011 0.0014

33 1M3 1.0000 0.0000 0.0007 0.0014

34 1M3 1.0000 0.0000 0.0007 0.0014

Table B.8: Dynamic scenario with 100 by 100 grid and 8 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0588 0.0000 0.2880 0.0008

1 1M3 0.0588 0.0000 0.2666 0.0008

2 1M3 0.0588 0.0000 0.2460 0.0008

3 1M3 0.0588 0.0000 0.2262 0.0008

4 1M3 0.1176 0.0000 0.2072 0.0008

5 1M3 0.0588 0.0000 0.1890 0.0008

6 1M3 0.0588 0.0000 0.1716 0.0008

7 1M3 0.0588 0.0000 0.1550 0.0008

8 1M3 0.0588 0.0000 0.1392 0.0008

9 1M3 0.0588 0.0000 0.1242 0.0008
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10 1M3 0.0588 0.0000 0.1144 0.0008

11 1M3 0.0588 0.0000 0.1050 0.0008

12 1M3 0.0588 0.0000 0.0960 0.0008

13 1M3 0.0588 0.0000 0.0874 0.0008

14 1M3 0.1176 0.0000 0.0792 0.0008

15 1M3 0.1176 0.0000 0.0714 0.0008

16 1M3 0.1176 0.0000 0.0640 0.0008

17 1M3 0.1765 0.0000 0.0600 0.0008

18 1M3 0.1765 0.0000 0.0522 0.0008

19 1M3 0.1765 0.0000 0.0504 0.0008

20 1M3 0.1765 0.0000 0.0432 0.0008

21 1M3 0.1765 0.0000 0.0416 0.0008

22 1M3 0.1765 0.0000 0.0350 0.0008

23 1M3 0.1765 0.0000 0.0336 0.0008

24 1M3 0.1765 0.0000 0.0276 0.0008

25 1M3 0.1765 0.0000 0.0264 0.0008

26 1M3 0.1765 0.0000 0.0210 0.0008

27 1M3 0.1765 0.0000 0.0200 0.0008

28 1M3 0.1765 0.0000 0.0152 0.0008

29 1M3 0.1765 0.0000 0.0144 0.0008

30 1M3 0.2353 0.6829 0.0102 0.0008

31 1M3 0.1765 0.0000 0.0096 0.0008

32 1M3 0.3529 0.6365 0.0075 0.0008

33 1M3 0.3529 0.6365 0.0060 0.0008

34 1M3 0.4118 0.5983 0.0039 0.0008

35 1M3 0.5294 0.5983 0.0026 0.0008

36 1M3 0.5294 0.5983 0.0024 0.0008

37 1M3 0.5294 0.5983 0.0022 0.0008

38 1M3 0.5294 0.5983 0.0020 0.0008

39 1M3 0.5294 0.5983 0.0018 0.0008

40 1M3 0.5882 0.5623 0.0016 0.0008

41 1M3 0.7059 0.5623 0.0014 0.0008

42 1M3 0.7059 0.5623 0.0012 0.0008

43 1M3 0.7647 0.0000 0.0010 0.0008

44 1M3 0.8235 0.0000 0.0008 0.0008

45 1M3 1.0000 0.0000 0.0006 0.0008

46 1M3 1.0000 0.0000 0.0006 0.0008
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Table B.9: Dynamic scenario with 25 by 25 grid and 12 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0690 0.0000 0.6720 0.0192

1 1M3 0.0690 0.0000 0.5472 0.0192

2 1M3 0.0690 0.0000 0.4352 0.0192

3 1M3 0.1379 0.6829 0.3584 0.0192

4 1M3 0.1724 0.6931 0.2688 0.0192

5 1M3 0.1379 0.6829 0.2080 0.0192

6 1M3 0.2069 0.6730 0.1408 0.0192

7 1M3 0.3103 0.6890 0.0864 0.0192

8 1M3 0.5517 0.5623 0.0448 0.0192

9 1M3 0.7931 0.0000 0.0224 0.0192

10 1M3 0.8966 0.0000 0.0192 0.0192

11 1M3 0.9310 0.0000 0.0160 0.0192

12 1M3 1.0000 0.0000 0.0128 0.0192

13 1M3 1.0000 0.0000 0.0128 0.0192

Table B.10: Dynamic scenario with 50 by 50 grid and 12 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0690 0.0000 0.7896 0.0048

1 1M3 0.0690 0.0000 0.7200 0.0048

2 1M3 0.0690 0.0000 0.6536 0.0048

3 1M3 0.0690 0.0000 0.5904 0.0048

4 1M3 0.0690 0.0000 0.5304 0.0048

5 1M3 0.0690 0.0000 0.4736 0.0048

6 1M3 0.0690 0.0000 0.4200 0.0048

7 1M3 0.0690 0.0000 0.3696 0.0048

8 1M3 0.0690 0.0000 0.3224 0.0048

9 1M3 0.0690 0.0000 0.2784 0.0048

10 1M3 0.1034 0.6730 0.2376 0.0048

11 1M3 0.2414 0.6829 0.2000 0.0048

12 1M3 0.2414 0.6365 0.1656 0.0048

13 1M3 0.2414 0.6931 0.1408 0.0048
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14 1M3 0.2414 0.6931 0.1120 0.0048

15 1M3 0.3448 0.6870 0.0864 0.0048

16 1M3 0.3448 0.6870 0.0640 0.0048

17 1M3 0.3793 0.6730 0.0448 0.0048

18 1M3 0.4483 0.6730 0.0288 0.0048

19 1M3 0.4483 0.5297 0.0200 0.0048

20 1M3 0.6552 0.6365 0.0128 0.0048

21 1M3 0.7586 0.0000 0.0072 0.0048

22 1M3 0.9655 0.0000 0.0032 0.0048

23 1M3 1.0000 0.0000 0.0024 0.0048

24 1M3 1.0000 0.0000 0.0024 0.0048

Table B.11: Dynamic scenario with 75 by 75 grid and 12 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0345 0.0000 0.5431 0.0021

1 1M3 0.0345 0.0000 0.5040 0.0021

2 1M3 0.0345 0.0000 0.4663 0.0021

3 1M3 0.0345 0.0000 0.4300 0.0021

4 1M3 0.0690 0.0000 0.3952 0.0021

5 1M3 0.0690 0.0000 0.3618 0.0021

6 1M3 0.0690 0.0000 0.3298 0.0021

7 1M3 0.0690 0.0000 0.2992 0.0021

8 1M3 0.0690 0.0000 0.2700 0.0021

9 1M3 0.0690 0.0000 0.2423 0.0021

10 1M3 0.1034 0.6730 0.2160 0.0021

11 1M3 0.1034 0.6730 0.1911 0.0021

12 1M3 0.1034 0.6730 0.1676 0.0021

13 1M3 0.1034 0.6730 0.1456 0.0021

14 1M3 0.1724 0.6365 0.1250 0.0021

15 1M3 0.2069 0.6365 0.1058 0.0021

16 1M3 0.2069 0.6365 0.0880 0.0021

17 1M3 0.2414 0.6931 0.0716 0.0021

18 1M3 0.3103 0.5623 0.0567 0.0021

19 1M3 0.4138 0.5623 0.0480 0.0021

20 1M3 0.4138 0.5623 0.0400 0.0021
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21 1M3 0.4138 0.5623 0.0327 0.0021

22 1M3 0.4483 0.5297 0.0261 0.0021

23 1M3 0.5172 0.5297 0.0203 0.0021

24 1M3 0.5172 0.5297 0.0151 0.0021

25 1M3 0.5172 0.5297 0.0107 0.0021

26 1M3 0.5517 0.5004 0.0069 0.0021

27 1M3 0.6207 0.5004 0.0039 0.0021

28 1M3 0.7931 0.0000 0.0032 0.0021

29 1M3 0.8966 0.0000 0.0025 0.0021

30 1M3 0.8966 0.0000 0.0021 0.0021

31 1M3 0.8966 0.0000 0.0018 0.0021

32 1M3 1.0000 0.0000 0.0014 0.0021

33 1M3 1.0000 0.0000 0.0014 0.0021

Table B.12: Dynamic scenario with 100 by 100 grid and 12 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.0345 0.0000 0.6298 0.0012

1 1M3 0.0345 0.0000 0.5980 0.0012

2 1M3 0.0345 0.0000 0.5670 0.0012

3 1M3 0.0345 0.0000 0.5368 0.0012

4 1M3 0.0345 0.0000 0.5074 0.0012

5 1M3 0.0690 0.0000 0.4788 0.0012

6 1M3 0.0345 0.0000 0.4510 0.0012

7 1M3 0.0345 0.0000 0.4240 0.0012

8 1M3 0.0345 0.0000 0.3978 0.0012

9 1M3 0.0345 0.0000 0.3724 0.0012

10 1M3 0.0345 0.0000 0.3478 0.0012

11 1M3 0.0345 0.0000 0.3240 0.0012

12 1M3 0.0345 0.0000 0.3010 0.0012

13 1M3 0.0345 0.0000 0.2788 0.0012

14 1M3 0.0345 0.0000 0.2574 0.0012

15 1M3 0.0345 0.0000 0.2368 0.0012

16 1M3 0.0345 0.0000 0.2170 0.0012

17 1M3 0.1034 0.0000 0.1980 0.0012

18 1M3 0.1034 0.0000 0.1798 0.0012
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19 1M3 0.1034 0.0000 0.1624 0.0012

20 1M3 0.1034 0.0000 0.1458 0.0012

21 1M3 0.1034 0.0000 0.1300 0.0012

22 1M3 0.1379 0.0000 0.1150 0.0012

23 1M3 0.1724 0.0000 0.1008 0.0012

24 1M3 0.2069 0.6365 0.0874 0.0012

25 1M3 0.2069 0.6365 0.0748 0.0012

26 1M3 0.2414 0.6931 0.0630 0.0012

27 1M3 0.3103 0.5983 0.0520 0.0012

28 1M3 0.4138 0.5623 0.0418 0.0012

29 1M3 0.4483 0.5297 0.0324 0.0012

30 1M3 0.5172 0.5297 0.0238 0.0012

31 1M3 0.5172 0.5297 0.0192 0.0012

32 1M3 0.5172 0.5297 0.0150 0.0012

33 1M3 0.5517 0.6555 0.0112 0.0012

34 1M3 0.6897 0.4741 0.0078 0.0012

35 1M3 0.7241 0.4741 0.0048 0.0012

36 1M3 0.7241 0.4741 0.0044 0.0012

37 1M3 0.7241 0.4741 0.0040 0.0012

38 1M3 0.7241 0.4741 0.0036 0.0012

39 1M3 0.7241 0.4741 0.0032 0.0012

40 1M3 0.7241 0.4741 0.0028 0.0012

41 1M3 0.7241 0.4741 0.0024 0.0012

42 1M3 0.7931 0.0000 0.0020 0.0012

43 1M3 0.8966 0.0000 0.0016 0.0012

44 1M3 0.8966 0.0000 0.0014 0.0012

45 1M3 0.8966 0.0000 0.0012 0.0012

46 1M3 0.9310 0.0000 0.0010 0.0012

47 1M3 1.0000 0.0000 0.0008 0.0012

48 1M3 1.0000 0.0000 0.0008 0.0012
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B.1.2 Dynamic scenario neighbourhood simulations

The following are the tables for the test and graphs described in a subsection 5.2.2

and relate to the graphs shown in Figure 5.11.

Table B.13: Metrics values for 350 agents randomly placed on a 100 by
100 grid and moving towards the centre of the grid over a maximum of
50 time steps. A Moore neighbourhood was used with a search range
depth of 1.

ID C-Value Entropy BBR MeanDensity

0 1M1 0.0370 0.5591 0.9801 0.0350

1 1M1 0.0355 0.4041 0.9409 0.0350

2 1M1 0.0355 0.5222 0.9025 0.0350

3 1M1 0.0439 0.7921 0.8649 0.0350

4 1M1 0.0493 1.1676 0.8281 0.0350

5 1M1 0.0609 1.4366 0.7921 0.0350

6 1M1 0.0694 1.4133 0.7569 0.0350

7 1M1 0.0848 1.4483 0.7225 0.0350

8 1M1 0.0979 1.6111 0.6889 0.0350

9 1M1 0.1110 1.7586 0.6561 0.0350

10 1M1 0.1457 2.1241 0.6241 0.0350

11 1M1 0.1689 2.0943 0.6006 0.0350

12 1M1 0.1958 2.1600 0.5700 0.0350

13 1M1 0.2213 1.8547 0.5402 0.0350

14 1M1 0.2444 2.1969 0.5112 0.0350

15 1M1 0.2722 2.0639 0.4899 0.0350

16 1M1 0.2992 2.0261 0.4623 0.0350

17 1M1 0.3277 1.8005 0.4355 0.0350

18 1M1 0.3485 1.3504 0.4095 0.0350

19 1M1 0.3778 1.4585 0.3904 0.0350

20 1M1 0.4079 0.9938 0.3717 0.0350

21 1M1 0.4441 1.1558 0.3538 0.0350

22 1M1 0.4719 0.7892 0.3360 0.0350

23 1M1 0.5127 1.0608 0.3190 0.0350

24 1M1 0.5405 1.1439 0.2968 0.0350

25 1M1 0.5613 0.8118 0.2862 0.0350

26 1M1 0.5921 0.1701 0.2703 0.0350

27 1M1 0.6230 0.1876 0.2600 0.0350

28 1M1 0.6530 0.1659 0.2450 0.0350
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29 1M1 0.6793 0.1638 0.2401 0.0350

30 1M1 0.6993 0.1411 0.2304 0.0350

31 1M1 0.7371 0.0670 0.2209 0.0350

32 1M1 0.7633 0.0660 0.2116 0.0350

33 1M1 0.7895 0.0657 0.2116 0.0350

34 1M1 0.7980 0.0652 0.2070 0.0350

35 1M1 0.8126 0.0646 0.2070 0.0350

36 1M1 0.8258 0.0363 0.2070 0.0350

37 1M1 0.8327 0.0361 0.2070 0.0350

38 1M1 0.8466 0.0358 0.2070 0.0350

39 1M1 0.8520 0.0356 0.2070 0.0350

40 1M1 0.8612 0.0356 0.2070 0.0350

41 1M1 0.8689 0.0000 0.2070 0.0350

42 1M1 0.8705 0.0000 0.2070 0.0350

43 1M1 0.8766 0.0000 0.2070 0.0350

44 1M1 0.8820 0.0000 0.2070 0.0350

45 1M1 0.8836 0.0000 0.2070 0.0350

46 1M1 0.8843 0.0000 0.2070 0.0350

47 1M1 0.8843 0.0000 0.2070 0.0350

Table B.14: Metrics values for 350 agents randomly placed on a 100 by
100 grid and moving towards the centre of the grid over a maximum of
50 time steps. A von Neumann neighbourhood was used with a search
range depth of 1.

ID C-Value Entropy BBR MeanDensity

0 1V1 0.0423 0.4556 0.9801 0.0350

1 1V1 0.0453 0.3326 0.9409 0.0350

2 1V1 0.0483 0.5627 0.9025 0.0350

3 1V1 0.0559 0.7418 0.8649 0.0350

4 1V1 0.0665 1.0043 0.8281 0.0350

5 1V1 0.0650 0.9649 0.7921 0.0350

6 1V1 0.0816 1.0499 0.7569 0.0350

7 1V1 0.0861 1.0861 0.7225 0.0350

8 1V1 0.1118 1.5158 0.6889 0.0350

9 1V1 0.1239 1.4537 0.6561 0.0350
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10 1V1 0.1677 1.9252 0.6241 0.0350

11 1V1 0.1767 1.7738 0.6006 0.0350

12 1V1 0.2175 1.8795 0.5700 0.0350

13 1V1 0.2341 1.8966 0.5402 0.0350

14 1V1 0.2613 1.9571 0.5112 0.0350

15 1V1 0.2825 1.9615 0.4899 0.0350

16 1V1 0.3202 1.9679 0.4623 0.0350

17 1V1 0.3505 2.0099 0.4355 0.0350

18 1V1 0.3595 2.0927 0.4095 0.0350

19 1V1 0.3943 1.8275 0.3904 0.0350

20 1V1 0.4245 1.9598 0.3717 0.0350

21 1V1 0.4713 1.7233 0.3538 0.0350

22 1V1 0.4985 1.6602 0.3360 0.0350

23 1V1 0.5378 1.5788 0.3190 0.0350

24 1V1 0.5755 1.5870 0.2968 0.0350

25 1V1 0.5937 0.8929 0.2862 0.0350

26 1V1 0.6148 0.4747 0.2703 0.0350

27 1V1 0.6495 0.2857 0.2600 0.0350

28 1V1 0.6858 0.3201 0.2450 0.0350

29 1V1 0.7100 0.1439 0.2401 0.0350

30 1V1 0.7266 0.2494 0.2304 0.0350

31 1V1 0.7568 0.0682 0.2209 0.0350

32 1V1 0.7840 0.0379 0.2116 0.0350

33 1V1 0.8157 0.0373 0.2116 0.0350

34 1V1 0.8233 0.0372 0.2070 0.0350

35 1V1 0.8399 0.0367 0.2070 0.0350

36 1V1 0.8535 0.0364 0.2070 0.0350

37 1V1 0.8625 0.0361 0.2070 0.0350

38 1V1 0.8761 0.0359 0.2070 0.0350

39 1V1 0.8837 0.0356 0.2070 0.0350

40 1V1 0.8943 0.0356 0.2070 0.0350

41 1V1 0.9018 0.0000 0.2070 0.0350

42 1V1 0.9018 0.0000 0.2070 0.0350

43 1V1 0.9079 0.0000 0.2070 0.0350

44 1V1 0.9139 0.0000 0.2070 0.0350

45 1V1 0.9154 0.0000 0.2070 0.0350

46 1V1 0.9169 0.0000 0.2070 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

47 1V1 0.9169 0.0000 0.2070 0.0350

Table B.15: Metrics values for 350 agents randomly placed on a 100 by
100 grid and moving towards the centre of the grid over a maximum of
50 time steps. A Moore neighbourhood was used with a search range
depth of 2.

ID C-Value Entropy BBR MeanDensity

0 1M2 0.0848 0.9626 0.9801 0.0350

1 1M2 0.0848 0.8996 0.9409 0.0350

2 1M2 0.0948 1.0464 0.9025 0.0350

3 1M2 0.0995 1.0811 0.8649 0.0350

4 1M2 0.1049 1.2291 0.8281 0.0350

5 1M2 0.1172 1.4139 0.7921 0.0350

6 1M2 0.1234 1.4720 0.7569 0.0350

7 1M2 0.1334 1.4136 0.7225 0.0350

8 1M2 0.1465 1.5497 0.6889 0.0350

9 1M2 0.1565 1.7364 0.6561 0.0350

10 1M2 0.1796 2.0078 0.6241 0.0350

11 1M2 0.2020 2.0696 0.6006 0.0350

12 1M2 0.2274 2.1315 0.5700 0.0350

13 1M2 0.2513 1.9543 0.5402 0.0350

14 1M2 0.2753 2.2555 0.5112 0.0350

15 1M2 0.2938 2.1681 0.4899 0.0350

16 1M2 0.3192 2.1421 0.4623 0.0350

17 1M2 0.3477 1.9843 0.4355 0.0350

18 1M2 0.3662 1.5763 0.4095 0.0350

19 1M2 0.3948 1.6741 0.3904 0.0350

20 1M2 0.4233 1.2305 0.3717 0.0350

21 1M2 0.4580 1.3677 0.3538 0.0350

22 1M2 0.4842 1.0246 0.3360 0.0350

23 1M2 0.5243 1.2624 0.3190 0.0350

24 1M2 0.5520 1.3388 0.2968 0.0350

25 1M2 0.5729 1.0290 0.2862 0.0350

26 1M2 0.6029 0.4070 0.2703 0.0350

27 1M2 0.6330 0.4022 0.2600 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

28 1M2 0.6631 0.3825 0.2450 0.0350

29 1M2 0.6870 0.3536 0.2401 0.0350

30 1M2 0.7055 0.2953 0.2304 0.0350

31 1M2 0.7402 0.1665 0.2209 0.0350

32 1M2 0.7656 0.1418 0.2116 0.0350

33 1M2 0.7911 0.1133 0.2116 0.0350

34 1M2 0.7995 0.1125 0.2070 0.0350

35 1M2 0.8134 0.0892 0.2070 0.0350

36 1M2 0.8258 0.0363 0.2070 0.0350

37 1M2 0.8327 0.0361 0.2070 0.0350

38 1M2 0.8466 0.0358 0.2070 0.0350

39 1M2 0.8520 0.0356 0.2070 0.0350

40 1M2 0.8612 0.0356 0.2070 0.0350

41 1M2 0.8689 0.0000 0.2070 0.0350

42 1M2 0.8705 0.0000 0.2070 0.0350

43 1M2 0.8766 0.0000 0.2070 0.0350

44 1M2 0.8820 0.0000 0.2070 0.0350

45 1M2 0.8836 0.0000 0.2070 0.0350

46 1M2 0.8843 0.0000 0.2070 0.0350

47 1M2 0.8843 0.0000 0.2070 0.0350

Table B.16: Metrics values for 350 agents randomly placed on a 100 by
100 grid and moving towards the centre of the grid over a maximum of
50 time steps. A von Neumann neighbourhood was used with a search
range depth of 2.

ID C-Value Entropy BBR MeanDensity

0 1V2 0.0665 0.4725 0.9801 0.0350

1 1V2 0.0695 0.3983 0.9409 0.0350

2 1V2 0.0755 0.6699 0.9025 0.0350

3 1V2 0.0906 0.7360 0.8649 0.0350

4 1V2 0.0997 0.8932 0.8281 0.0350

5 1V2 0.1073 0.9366 0.7921 0.0350

6 1V2 0.1163 0.9854 0.7569 0.0350

7 1V2 0.1224 1.0104 0.7225 0.0350

8 1V2 0.1465 1.3655 0.6889 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

9 1V2 0.1541 1.4172 0.6561 0.0350

10 1V2 0.1858 1.8448 0.6241 0.0350

11 1V2 0.1994 1.6787 0.6006 0.0350

12 1V2 0.2356 1.8357 0.5700 0.0350

13 1V2 0.2477 1.8618 0.5402 0.0350

14 1V2 0.2779 1.9343 0.5112 0.0350

15 1V2 0.2991 1.9205 0.4899 0.0350

16 1V2 0.3278 1.9534 0.4623 0.0350

17 1V2 0.3625 1.9934 0.4355 0.0350

18 1V2 0.3746 2.0607 0.4095 0.0350

19 1V2 0.4033 1.8469 0.3904 0.0350

20 1V2 0.4320 1.9697 0.3717 0.0350

21 1V2 0.4834 1.7797 0.3538 0.0350

22 1V2 0.5076 1.6974 0.3360 0.0350

23 1V2 0.5423 1.6076 0.3190 0.0350

24 1V2 0.5801 1.6128 0.2968 0.0350

25 1V2 0.5982 0.9386 0.2862 0.0350

26 1V2 0.6193 0.5258 0.2703 0.0350

27 1V2 0.6526 0.3277 0.2600 0.0350

28 1V2 0.6888 0.3608 0.2450 0.0350

29 1V2 0.7130 0.1840 0.2401 0.0350

30 1V2 0.7296 0.2932 0.2304 0.0350

31 1V2 0.7598 0.1211 0.2209 0.0350

32 1V2 0.7840 0.0379 0.2116 0.0350

33 1V2 0.8157 0.0373 0.2116 0.0350

34 1V2 0.8233 0.0372 0.2070 0.0350

35 1V2 0.8399 0.0367 0.2070 0.0350

36 1V2 0.8535 0.0364 0.2070 0.0350

37 1V2 0.8625 0.0361 0.2070 0.0350

38 1V2 0.8761 0.0359 0.2070 0.0350

39 1V2 0.8837 0.0356 0.2070 0.0350

40 1V2 0.8943 0.0356 0.2070 0.0350

41 1V2 0.9018 0.0000 0.2070 0.0350

42 1V2 0.9018 0.0000 0.2070 0.0350

43 1V2 0.9079 0.0000 0.2070 0.0350

44 1V2 0.9139 0.0000 0.2070 0.0350

45 1V2 0.9154 0.0000 0.2070 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

46 1V2 0.9169 0.0000 0.2070 0.0350

47 1V2 0.9169 0.0000 0.2070 0.0350

Table B.17: Metrics values for 350 agents randomly placed on a 100 by
100 grid and moving towards the centre of the grid over a maximum of
50 time steps. A Moore neighbourhood was used with a search range
depth of 3.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1203 1.0918 0.9801 0.0350

1 1M3 0.1195 0.9928 0.9409 0.0350

2 1M3 0.1264 1.1306 0.9025 0.0350

3 1M3 0.1288 1.1135 0.8649 0.0350

4 1M3 0.1357 1.2178 0.8281 0.0350

5 1M3 0.1465 1.3778 0.7921 0.0350

6 1M3 0.1519 1.4425 0.7569 0.0350

7 1M3 0.1611 1.4358 0.7225 0.0350

8 1M3 0.1727 1.5525 0.6889 0.0350

9 1M3 0.1843 1.6722 0.6561 0.0350

10 1M3 0.2066 1.9245 0.6241 0.0350

11 1M3 0.2228 2.0195 0.6006 0.0350

12 1M3 0.2483 2.0725 0.5700 0.0350

13 1M3 0.2706 1.9655 0.5402 0.0350

14 1M3 0.2922 2.2292 0.5112 0.0350

15 1M3 0.3107 2.1461 0.4899 0.0350

16 1M3 0.3338 2.1480 0.4623 0.0350

17 1M3 0.3616 2.0147 0.4355 0.0350

18 1M3 0.3793 1.6386 0.4095 0.0350

19 1M3 0.4056 1.7238 0.3904 0.0350

20 1M3 0.4318 1.2985 0.3717 0.0350

21 1M3 0.4688 1.4425 0.3538 0.0350

22 1M3 0.4950 1.1367 0.3360 0.0350

23 1M3 0.5320 1.3427 0.3190 0.0350

24 1M3 0.5598 1.4151 0.2968 0.0350

25 1M3 0.5806 1.1226 0.2862 0.0350

26 1M3 0.6083 0.5084 0.2703 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

27 1M3 0.6369 0.4681 0.2600 0.0350

28 1M3 0.6669 0.4511 0.2450 0.0350

29 1M3 0.6893 0.3990 0.2401 0.0350

30 1M3 0.7078 0.3437 0.2304 0.0350

31 1M3 0.7425 0.2249 0.2209 0.0350

32 1M3 0.7672 0.1847 0.2116 0.0350

33 1M3 0.7926 0.1537 0.2116 0.0350

34 1M3 0.8011 0.1527 0.2070 0.0350

35 1M3 0.8150 0.1321 0.2070 0.0350

36 1M3 0.8273 0.0883 0.2070 0.0350

37 1M3 0.8335 0.0637 0.2070 0.0350

38 1M3 0.8473 0.0632 0.2070 0.0350

39 1M3 0.8527 0.0629 0.2070 0.0350

40 1M3 0.8620 0.0628 0.2070 0.0350

41 1M3 0.8689 0.0000 0.2070 0.0350

42 1M3 0.8705 0.0000 0.2070 0.0350

43 1M3 0.8766 0.0000 0.2070 0.0350

44 1M3 0.8820 0.0000 0.2070 0.0350

45 1M3 0.8836 0.0000 0.2070 0.0350

46 1M3 0.8843 0.0000 0.2070 0.0350

47 1M3 0.8843 0.0000 0.2070 0.0350

Table B.18: Metrics values for 350 agents randomly placed on a 100 by
100 grid and moving towards the centre of the grid over a maximum of
50 time steps. A von Neumann neighbourhood was used with a search
range depth of 3.

ID C-Value Entropy BBR MeanDensity

0 1V3 0.0876 0.5297 0.9801 0.0350

1 1V3 0.0921 0.4753 0.9409 0.0350

2 1V3 0.0997 0.6919 0.9025 0.0350

3 1V3 0.1133 0.7362 0.8649 0.0350

4 1V3 0.1193 0.8874 0.8281 0.0350

5 1V3 0.1299 0.9150 0.7921 0.0350

6 1V3 0.1360 0.9616 0.7569 0.0350

7 1V3 0.1465 1.0114 0.7225 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

8 1V3 0.1631 1.3326 0.6889 0.0350

9 1V3 0.1737 1.3738 0.6561 0.0350

10 1V3 0.2100 1.7653 0.6241 0.0350

11 1V3 0.2130 1.6511 0.6006 0.0350

12 1V3 0.2523 1.8310 0.5700 0.0350

13 1V3 0.2674 1.8444 0.5402 0.0350

14 1V3 0.2946 1.9183 0.5112 0.0350

15 1V3 0.3127 1.9154 0.4899 0.0350

16 1V3 0.3429 1.9578 0.4623 0.0350

17 1V3 0.3776 2.0218 0.4355 0.0350

18 1V3 0.3867 2.0755 0.4095 0.0350

19 1V3 0.4169 1.8971 0.3904 0.0350

20 1V3 0.4426 2.0082 0.3717 0.0350

21 1V3 0.4909 1.8066 0.3538 0.0350

22 1V3 0.5166 1.7365 0.3360 0.0350

23 1V3 0.5483 1.6435 0.3190 0.0350

24 1V3 0.5846 1.6604 0.2968 0.0350

25 1V3 0.6027 0.9987 0.2862 0.0350

26 1V3 0.6208 0.5409 0.2703 0.0350

27 1V3 0.6541 0.3466 0.2600 0.0350

28 1V3 0.6903 0.3791 0.2450 0.0350

29 1V3 0.7145 0.2023 0.2401 0.0350

30 1V3 0.7311 0.3127 0.2304 0.0350

31 1V3 0.7613 0.1464 0.2209 0.0350

32 1V3 0.7855 0.0667 0.2116 0.0350

33 1V3 0.8157 0.0373 0.2116 0.0350

34 1V3 0.8233 0.0372 0.2070 0.0350

35 1V3 0.8399 0.0367 0.2070 0.0350

36 1V3 0.8535 0.0364 0.2070 0.0350

37 1V3 0.8625 0.0361 0.2070 0.0350

38 1V3 0.8761 0.0359 0.2070 0.0350

39 1V3 0.8837 0.0356 0.2070 0.0350

40 1V3 0.8943 0.0356 0.2070 0.0350

41 1V3 0.9018 0.0000 0.2070 0.0350

42 1V3 0.9018 0.0000 0.2070 0.0350

43 1V3 0.9079 0.0000 0.2070 0.0350

44 1V3 0.9139 0.0000 0.2070 0.0350

continued on next page
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ID C-Value Entropy BBR MeanDensity

45 1V3 0.9154 0.0000 0.2070 0.0350

46 1V3 0.9169 0.0000 0.2070 0.0350

47 1V3 0.9169 0.0000 0.2070 0.0350



APPENDIX B. TEST RESULTS 313

B.1.3 Dynamic scenario graphs

Figure B.1: Graphs showing the metric analysis of a 25 by 25 dynamic
scenario run up to 50 time steps for agents of R={4, 8, 12, 16, 20, 30,
40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350}
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Figure B.2: Graphs showing the metric analysis of a 50 by 50 dynamic
scenario run up to 50 time steps for agents of R={4, 8, 12, 16, 20, 30,
40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350}
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Figure B.3: Graphs showing the metric analysis of a 75 by 75 dynamic
scenario run up to 50 time steps for agents of R={4, 8, 12, 16, 20, 30,
40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350}
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Figure B.4: Graphs showing the metric analysis of a 100 by 100 dy-
namic scenario run up to 50 time steps for agents of R={4, 8, 12, 16,
20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350}
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Figure B.5: Low agents - test 1 of 8 : Graphs showing the metric
analysis of a 5 by 5 dynamic scenario run up to 50 time steps for
agents of R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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Figure B.6: Low agents - test 2 of 8: Graphs showing the metric ana-
lysis of a 5 by 5 dynamic scenario run up to 50 time steps for agents of
R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Figure B.7: Low agents - test 3 of 8: Graphs showing the metric ana-
lysis of a 5 by 5 dynamic scenario run up to 50 time steps for agents of
R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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Figure B.8: Low agents - test 4 of 8: Graphs showing the metric ana-
lysis of a 5 by 5 dynamic scenario run up to 50 time steps for agents of
R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Figure B.9: Low agents - test 5 of 8: Graphs showing the metric ana-
lysis of a 25 by 25 dynamic scenario run up to 50 time steps for agents
of R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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Figure B.10: Low agents - test 6 of 8: Graphs showing the metric
analysis of a 25 by 25 dynamic scenario run up to 50 time steps for
agents of R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Figure B.11: Low agents - test 7 of 8: Graphs showing the metric
analysis of a 25 by 25 dynamic scenario run up to 50 time steps for
agents of R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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Figure B.12: Low agents - test 8 of 8: Graphs showing the metric
analysis of a 25 by 25 dynamic scenario run up to 50 time steps for
agents of R={4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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B.1.4 Dynamic and probability scenario combination

This section contains the tables relevant to the tests shown in subsection 5.2.3.

In general the C-Value of the initial grid starts aligned with the mean density,

indicating that the random displacement of the active agents on the initial grid is

indicated when the C-Value ≈ the mean density.

Table B.19: Dynamic scenario using an initial probability grid with
p value=0.1. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a range
of 3. The C-Value of the initial grid starts just above the mean density
value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1660 1.3653 0.9506 0.0931

1 1M3 0.1736 1.4533 0.8788 0.0931

2 1M3 0.2094 1.8114 0.8094 0.0931

3 1M3 0.2528 2.0248 0.7656 0.0931

4 1M3 0.3245 1.6831 0.7013 0.0931

5 1M3 0.3755 1.5609 0.6200 0.0931

6 1M3 0.4660 0.7631 0.5437 0.0931

7 1M3 0.5453 0.7506 0.4900 0.0931

8 1M3 0.6075 0.6661 0.4225 0.0931

9 1M3 0.6604 0.5949 0.3750 0.0931

10 1M3 0.7057 0.4680 0.3300 0.0931

11 1M3 0.7623 0.4073 0.2875 0.0931

12 1M3 0.7906 0.3381 0.2475 0.0931

13 1M3 0.8189 0.2693 0.2338 0.0931

14 1M3 0.8642 0.0000 0.2338 0.0931

15 1M3 0.9151 0.0000 0.2338 0.0931

16 1M3 0.9226 0.0000 0.2338 0.0931

17 1M3 0.9245 0.0000 0.2338 0.0931

18 1M3 0.9245 0.0000 0.2338 0.0931
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Table B.20: Dynamic scenario using an initial probability grid with
p value=0.2. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the
mean density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.2188 2.0308 0.9506 0.1969

1 1M3 0.2347 2.3148 0.8788 0.1969

2 1M3 0.2889 2.4749 0.8100 0.1969

3 1M3 0.3603 1.8940 0.7650 0.1969

4 1M3 0.4282 1.2160 0.6800 0.1969

5 1M3 0.5159 1.0630 0.6587 0.1969

6 1M3 0.5993 0.9951 0.6188 0.1969

7 1M3 0.6724 0.7621 0.5800 0.1969

8 1M3 0.7360 0.6554 0.5800 0.1969

9 1M3 0.7859 0.4966 0.5800 0.1969

10 1M3 0.8220 0.3571 0.5800 0.1969

11 1M3 0.8719 0.2112 0.5800 0.1969

12 1M3 0.9089 0.0387 0.5800 0.1969

13 1M3 0.9338 0.0000 0.5800 0.1969

14 1M3 0.9536 0.0000 0.5800 0.1969

15 1M3 0.9544 0.0000 0.5800 0.1969

16 1M3 0.9544 0.0000 0.5800 0.1969

Table B.21: Dynamic scenario using an initial probability grid with
p value=0.3. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the
mean density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.3192 2.7373 0.9506 0.2988

1 1M3 0.3382 2.7220 0.9506 0.2988

2 1M3 0.3800 2.3553 0.8788 0.2988

3 1M3 0.4459 2.2061 0.8325 0.2988

4 1M3 0.5179 1.4151 0.7875 0.2988

5 1M3 0.6077 1.0900 0.7219 0.2988

6 1M3 0.6769 0.7695 0.7219 0.2988

continued on next page
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ID C-Value Entropy BBR MeanDensity

7 1M3 0.7522 0.5483 0.7013 0.2988

8 1M3 0.8214 0.3800 0.7013 0.2988

9 1M3 0.8783 0.1984 0.7013 0.2988

10 1M3 0.9141 0.1060 0.7013 0.2988

11 1M3 0.9509 0.0000 0.7013 0.2988

12 1M3 0.9732 0.0000 0.7013 0.2988

13 1M3 0.9760 0.0000 0.7013 0.2988

14 1M3 0.9760 0.0000 0.7013 0.2988

Table B.22: Dynamic scenario using an initial probability grid with
p value==0.4. The ID starts with the time step and the 1M3, signify-
ing the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the mean
density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.4120 1.2739 0.9506 0.4019

1 1M3 0.4445 0.7745 0.9506 0.4019

2 1M3 0.5095 0.7348 0.8788 0.4019

3 1M3 0.5991 0.7026 0.8325 0.4019

4 1M3 0.6756 0.6351 0.8094 0.4019

5 1M3 0.7405 0.5858 0.7438 0.4019

6 1M3 0.8055 0.3414 0.7438 0.4019

7 1M3 0.8573 0.2474 0.7438 0.4019

8 1M3 0.9071 0.2284 0.7438 0.4019

9 1M3 0.9428 0.0677 0.7438 0.4019

10 1M3 0.9712 0.0211 0.7438 0.4019

11 1M3 0.9856 0.0000 0.7438 0.4019

12 1M3 0.9889 0.0000 0.7438 0.4019

13 1M3 0.9901 0.0000 0.7438 0.4019

14 1M3 0.9901 0.0000 0.7438 0.4019
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Table B.23: Dynamic scenario using an initial probability grid with
p value=0.5. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a range
of 3. The C-Value of the initial grid starts just above the mean density
value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.5203 0.0902 0.9506 0.4894

1 1M3 0.5341 0.0752 0.9506 0.4894

2 1M3 0.5841 0.1356 0.9263 0.4894

3 1M3 0.6564 0.1286 0.8556 0.4894

4 1M3 0.7279 0.0810 0.8325 0.4894

5 1M3 0.7991 0.1796 0.8325 0.4894

6 1M3 0.8643 0.0431 0.8325 0.4894

7 1M3 0.9096 0.0322 0.8325 0.4894

8 1M3 0.9513 0.0499 0.8325 0.4894

9 1M3 0.9768 0.0000 0.8325 0.4894

10 1M3 0.9919 0.0000 0.8325 0.4894

11 1M3 0.9936 0.0000 0.8325 0.4894

12 1M3 0.9940 0.0000 0.8325 0.4894

13 1M3 0.9940 0.0000 0.8325 0.4894

Table B.24: Dynamic scenario using an initial probability grid with
p value=0.6. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the
mean density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.6177 0.0000 0.9506 0.6112

1 1M3 0.6434 0.0208 0.9506 0.6112

2 1M3 0.7030 0.0426 0.9263 0.6112

3 1M3 0.7651 0.0752 0.9263 0.6112

4 1M3 0.8256 0.0148 0.9263 0.6112

5 1M3 0.8796 0.0522 0.9263 0.6112

6 1M3 0.9181 0.0266 0.9263 0.6112

7 1M3 0.9551 0.0266 0.9263 0.6112

8 1M3 0.9778 0.0000 0.9263 0.6112

9 1M3 0.9920 0.0000 0.9263 0.6112
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ID C-Value Entropy BBR MeanDensity

10 1M3 0.9957 0.0000 0.9263 0.6112

11 1M3 0.9965 0.0000 0.9263 0.6112

12 1M3 0.9965 0.0000 0.9263 0.6112

Table B.25: Dynamic scenario using an initial probability grid with
p value=0.7. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the
mean density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.7003 0.0000 0.9506 0.6900

1 1M3 0.7296 0.0000 0.9506 0.6900

2 1M3 0.7745 0.0338 0.9506 0.6900

3 1M3 0.8152 0.0000 0.9263 0.6900

4 1M3 0.8624 0.0188 0.9263 0.6900

5 1M3 0.9029 0.0000 0.9263 0.6900

6 1M3 0.9333 0.0188 0.9263 0.6900

7 1M3 0.9648 0.0000 0.9263 0.6900

8 1M3 0.9868 0.0000 0.9263 0.6900

9 1M3 0.9969 0.0000 0.9263 0.6900

10 1M3 0.9986 0.0000 0.9263 0.6900

11 1M3 0.9986 0.0000 0.9263 0.6900

Table B.26: Dynamic scenario using an initial probability grid with
p value=0.8. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the
mean density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.7989 0.0000 0.9506 0.7956

1 1M3 0.8261 0.0166 0.9506 0.7956

2 1M3 0.8602 0.0000 0.9506 0.7956

3 1M3 0.8945 0.0000 0.9506 0.7956

4 1M3 0.9248 0.0000 0.9506 0.7956
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ID C-Value Entropy BBR MeanDensity

5 1M3 0.9526 0.0000 0.9506 0.7956

6 1M3 0.9785 0.0000 0.9506 0.7956

7 1M3 0.9898 0.0000 0.9506 0.7956

8 1M3 0.9971 0.0000 0.9506 0.7956

9 1M3 0.9982 0.0000 0.9506 0.7956

10 1M3 0.9986 0.0000 0.9506 0.7956

11 1M3 0.9986 0.0000 0.9506 0.7956

12 1M3 0.9988 0.0000 0.9506 0.7956

13 1M3 0.9988 0.0000 0.9506 0.7956

Table B.27: Dynamic scenario using an initial probability grid with
p value=0.9. The ID starts with the time step and the 1M3, signifying
the value of an active cell (1), a Moore neighbourhood (M) and a
range of 3. The C-Value of the initial grid approximates with the
mean density value.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.9034 0.0000 0.9506 0.9038

1 1M3 0.9173 0.0000 0.9506 0.9038

2 1M3 0.9356 0.0000 0.9506 0.9038

3 1M3 0.9515 0.0000 0.9506 0.9038

4 1M3 0.9686 0.0000 0.9506 0.9038

5 1M3 0.9783 0.0000 0.9506 0.9038

6 1M3 0.9869 0.0000 0.9506 0.9038

7 1M3 0.9939 0.0000 0.9506 0.9038

8 1M3 0.9962 0.0000 0.9506 0.9038

9 1M3 0.9982 0.0000 0.9506 0.9038

10 1M3 0.9987 0.0000 0.9506 0.9038

11 1M3 0.9993 0.0000 0.9506 0.9038

12 1M3 0.9995 0.0000 0.9506 0.9038

13 1M3 0.9995 0.0000 0.9506 0.9038
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B.2 Particle model

This section contains tables relevant to the the reactive-diffusion and chemotaxis

model and the C-Value for low and high population tests.

Table B.28: Selected results from the simulation of amoebae and de-
centralisation gathering with barriers. A 40 by 40 grid was used
with 600 amoebae placed randomly on the initial grid. An additional
222 cells were randomly selected as blocked. A probability setting of
(pT , pE, pA) = (1, 0.01, 0). The run was for 2000 time steps, but gath-
ering had been achieved by 650 time steps. The time steps 0 to 649
are shown below.

ID C-Value Entropy BBR MeanDensity

0 1M3 0.4053 2.1912 0.9506 0.3750

1 1M3 0.4002 2.3942 0.9506 0.3700

2 1M3 0.3931 2.4573 0.9506 0.3644

3 1M3 0.3946 2.7035 0.9506 0.3588

4 1M3 0.3865 2.8353 0.9506 0.3488

5 1M3 0.3632 2.8833 0.9506 0.3250

6 1M3 0.3438 2.8411 0.9506 0.3069

7 1M3 0.3295 2.9469 0.9506 0.2919

8 1M3 0.3375 2.9298 0.9506 0.2794

9 1M3 0.3312 2.8113 0.9506 0.2669

10 1M3 0.3318 2.8992 0.9506 0.2575

20 1M3 0.3974 2.6834 0.9506 0.2437

30 1M3 0.4235 2.5886 0.9506 0.2362

40 1M3 0.4617 2.4002 0.9506 0.2456

50 1M3 0.4810 2.4272 0.9019 0.2306

60 1M3 0.5248 2.3956 0.8775 0.2244

70 1M3 0.5434 1.9393 0.8775 0.2119

80 1M3 0.5567 2.2162 0.8775 0.2112

90 1M3 0.5748 2.1151 0.8287 0.2000

100 1M3 0.5918 1.9450 0.7800 0.1894

110 1M3 0.6184 1.5896 0.7800 0.1875

120 1M3 0.6229 1.7376 0.7600 0.1938

130 1M3 0.6264 1.5902 0.7600 0.1950

140 1M3 0.6549 1.7401 0.7362 0.1831

150 1M3 0.6857 1.4580 0.6975 0.1812

160 1M3 0.6683 1.0359 0.6750 0.1781
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ID C-Value Entropy BBR MeanDensity

170 1M3 0.7017 1.3804 0.6562 0.1750

180 1M3 0.7017 1.1956 0.6525 0.1750

190 1M3 0.7286 1.3014 0.6344 0.1731

200 1M3 0.7243 1.2050 0.6344 0.1675

210 1M3 0.7505 1.2535 0.6344 0.1694

220 1M3 0.7701 0.9222 0.6562 0.1719

230 1M3 0.7691 1.1660 0.6562 0.1675

240 1M3 0.7759 0.8630 0.6344 0.1681

250 1M3 0.7940 1.1291 0.5906 0.1656

260 1M3 0.8044 0.7972 0.5850 0.1625

270 1M3 0.8282 0.6693 0.5625 0.1562

280 1M3 0.8293 0.9709 0.5469 0.1544

290 1M3 0.8427 0.6561 0.5469 0.1525

300 1M3 0.8462 0.7035 0.5250 0.1556

310 1M3 0.8620 0.7374 0.5250 0.1550

320 1M3 0.8504 0.7910 0.5250 0.1588

330 1M3 0.8384 0.8002 0.5469 0.1575

340 1M3 0.8614 0.7014 0.5250 0.1544

350 1M3 0.8643 0.6648 0.5250 0.1562

360 1M3 0.8576 0.8496 0.5031 0.1506

370 1M3 0.8486 0.8279 0.5031 0.1581

380 1M3 0.8444 0.8889 0.5031 0.1625

390 1M3 0.8403 0.6974 0.4813 0.1606

400 1M3 0.8349 0.6623 0.4813 0.1594

410 1M3 0.8264 0.9355 0.4813 0.1606

420 1M3 0.8232 0.6511 0.4594 0.1650

430 1M3 0.8227 0.6908 0.4594 0.1638

440 1M3 0.8433 0.1342 0.4594 0.1675

450 1M3 0.8363 0.7251 0.4156 0.1638

460 1M3 0.8519 0.0628 0.4156 0.1638

470 1M3 0.8422 0.0788 0.3937 0.1644

480 1M3 0.8467 0.7788 0.3937 0.1638

490 1M3 0.8730 0.6837 0.3719 0.1600

500 1M3 0.8650 0.1654 0.3613 0.1594

510 1M3 0.8741 0.0000 0.3613 0.1600

520 1M3 0.8800 0.1262 0.3613 0.1594

530 1M3 0.8598 0.0000 0.3300 0.1456
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ID C-Value Entropy BBR MeanDensity

540 1M3 0.8836 0.0000 0.3000 0.1487

550 1M3 0.8878 0.0000 0.3200 0.1512

560 1M3 0.8792 0.0000 0.3300 0.1475

570 1M3 0.8871 0.0000 0.3300 0.1487

580 1M3 0.8980 0.0000 0.3300 0.1462

590 1M3 0.9051 0.0000 0.3094 0.1481

600 1M3 0.9048 0.0000 0.3094 0.1494

610 1M3 0.9106 0.0000 0.3094 0.1494

620 1M3 0.9101 0.0000 0.3094 0.1487

630 1M3 0.9221 0.0000 0.3094 0.1519

640 1M3 0.9255 0.0000 0.3094 0.1494

649 1M3 0.9210 0.0000 0.2888 0.1475

Table B.29: Selected values for reactive-diffusion chemataxis test using
a 20 by 20 grid and 4 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.1667 0.0000 0.2925 0.0100

1 1M3 0.1667 0.0000 0.2925 0.0100

2 1M3 0.1667 0.0000 0.2925 0.0100

3 1M3 0.1667 0.0000 0.2925 0.0100

4 1M3 0.1667 0.0000 0.2925 0.0100

5 1M3 0.1667 0.0000 0.2925 0.0100

6 1M3 0.1667 0.0000 0.2925 0.0100

7 1M3 0.1667 0.0000 0.2925 0.0100

8 1M3 0.1667 0.0000 0.2925 0.0100

9 1M3 0.1667 0.0000 0.2925 0.0100

10 1M3 0.1667 0.0000 0.2925 0.0100

20 1M3 0.1667 0.0000 0.2400 0.0100

30 1M3 0.1667 0.0000 0.2400 0.0100

40 1M3 0.1667 0.0000 0.2400 0.0100

50 1M3 0.1667 0.0000 0.2400 0.0100

60 1M3 0.1667 0.0000 0.2400 0.0100

70 1M3 0.1667 0.0000 0.1925 0.0100

80 1M3 0.1667 0.0000 0.1925 0.0100

90 1M3 0.1667 0.0000 0.1925 0.0100
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ID C-Value Entropy BBR MeanDensity

100 1M3 0.1667 0.0000 0.1925 0.0100

110 1M3 0.1667 0.0000 0.1925 0.0100

120 1M3 0.1667 0.0000 0.2200 0.0100

130 1M3 0.1667 0.0000 0.2000 0.0100

140 1M3 0.1667 0.0000 0.2000 0.0100

150 1M3 0.1667 0.0000 0.2000 0.0100

160 1M3 0.1667 0.0000 0.1575 0.0100

170 1M3 0.1667 0.0000 0.1575 0.0100

180 1M3 0.1667 0.0000 0.1400 0.0100

190 1M3 0.1667 0.0000 0.1225 0.0100

200 1M3 0.5000 0.0000 0.0900 0.0075

210 1M3 0.5000 0.0000 0.0500 0.0075

220 1M3 0.5000 0.0000 0.0300 0.0075

230 1M3 0.5000 0.0000 0.0300 0.0075

240 1M3 0.5000 0.0000 0.0150 0.0075

250 1M3 0.5000 0.0000 0.0150 0.0075

260 1M3 0.5000 0.0000 0.0150 0.0075

270 1M3 0.5000 0.0000 0.0150 0.0075

280 1M3 1.0000 0.0000 0.0050 0.0075

290 1M3 1.0000 0.0000 0.0000 0.0050

Table B.30: Selected statistics for a reactive-diffusion test using a 20
by 20 grid with 360 agents

ID C-Value Entropy BBR MeanDensity

0 1M3 0.9049 0.0000 0.9025 0.9000

1 1M3 0.8539 0.0000 0.9025 0.8325

2 1M3 0.7550 0.5677 0.9025 0.7125

3 1M3 0.7059 1.3622 0.9025 0.6275

4 1M3 0.6564 1.5161 0.9025 0.5600

5 1M3 0.6083 1.3196 0.9025 0.5125

6 1M3 0.5841 1.1564 0.9025 0.4775

7 1M3 0.5933 1.0027 0.9025 0.4750

8 1M3 0.5933 1.0027 0.9025 0.4750

9 1M3 0.5865 0.4712 0.9025 0.4725

10 1M3 0.6000 0.4684 0.9025 0.4775
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ID C-Value Entropy BBR MeanDensity

20 1M3 0.6787 0.0000 0.9025 0.5150

30 1M3 0.6436 1.1530 0.9025 0.4525

40 1M3 0.6758 0.6377 0.9025 0.4800

50 1M3 0.6802 0.1110 0.9025 0.4300

60 1M3 0.7197 0.0628 0.9025 0.4375

70 1M3 0.7527 0.0000 0.9025 0.4525

80 1M3 0.7696 0.0000 0.8100 0.4275

90 1M3 0.8064 0.0000 0.8100 0.4150

100 1M3 0.7824 0.0000 0.7650 0.4200

110 1M3 0.7991 0.0000 0.8075 0.4400

120 1M3 0.8045 0.0662 0.7200 0.4075

130 1M3 0.8318 0.0000 0.7225 0.4425

140 1M3 0.8301 0.0000 0.7600 0.4275

150 1M3 0.8628 0.0000 0.6400 0.4075

160 1M3 0.9108 0.0000 0.6000 0.4150

170 1M3 0.9252 0.0000 0.5600 0.4025

180 1M3 0.9405 0.0000 0.5625 0.3775

190 1M3 0.9453 0.0000 0.5250 0.3600

200 1M3 0.9685 0.0000 0.4550 0.3575

210 1M3 0.9767 0.0000 0.4900 0.3625

220 1M3 0.9360 0.0000 0.4900 0.3325

230 1M3 0.9489 0.0000 0.4900 0.3450

240 1M3 0.9591 0.0000 0.5200 0.3450

249 1M3 0.9767 0.0000 0.4550 0.3350
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B.3 Randomised model

ts 1000, range=1, range=1

file:///Users/cwdjohnson/PhD/perl/displays/10-214330_DNH...

1 of 1 10/04/2014 21:46

ts 1000, range=1, threshold=2

file:///Users/cwdjohnson/PhD/perl/displays/10-212554_DNH...

1 of 1 10/04/2014 21:29

ts 1000, range=1, threshold=3

file:///Users/cwdjohnson/PhD/perl/displays/10-212136_DNH...

1 of 1 10/04/2014 21:23

ts 1000, range=1, threshold=4

file:///Users/cwdjohnson/PhD/perl/displays/10-21131_DNH_...

1 of 1 10/04/2014 21:16

ts 1000, range=1, threshold=5

file:///Users/cwdjohnson/PhD/perl/displays/10-21635_DNH_...

1 of 1 12/04/2014 10:50

ts 1000, range=1, threshold=6

file:///Users/cwdjohnson/PhD/perl/displays/10-205919_DNH...

1 of 1 10/04/2014 21:03

ts 1000, range=1, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-214218_DNH...

1 of 1 10/04/2014 21:44

ts 1000, range=1, threshold=2

file:///Users/cwdjohnson/PhD/perl/displays/10-212811_DNH...

1 of 1 10/04/2014 21:31

ts 1000, range=1, threshold=3

file:///Users/cwdjohnson/PhD/perl/displays/10-212224_DNH...

1 of 1 10/04/2014 21:25

ts 1000, range=1, threshold=4

file:///Users/cwdjohnson/PhD/perl/displays/10-21155_DNH_...

1 of 1 10/04/2014 21:18

ts 1000, range=1, threshold=5

file:///Users/cwdjohnson/PhD/perl/displays/10-21635_DNH_...

1 of 1 10/04/2014 21:10

ts 1000, range=1, threshold=6

file:///Users/cwdjohnson/PhD/perl/displays/10-2119_DNH_1...

1 of 1 10/04/2014 21:05

ts 1000, range=1, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-213313_DNH...

1 of 1 10/04/2014 21:39

ts 1000, range=1, threshold=2

file:///Users/cwdjohnson/PhD/perl/displays/10-213816_DNH...

1 of 1 10/04/2014 21:41

ts 1000, range=1, threshold=3

file:///Users/cwdjohnson/PhD/perl/displays/10-21249_DNH_...

1 of 1 10/04/2014 21:27

ts 1000, range=1, threshold=4

file:///Users/cwdjohnson/PhD/perl/displays/10-211635_DNH...

1 of 1 10/04/2014 21:20

ts 1000, range=1, threshold=5

file:///Users/cwdjohnson/PhD/perl/displays/10-211050_DNH...

1 of 1 10/04/2014 21:14

ts 1000, range=1, threshold=6

file:///Users/cwdjohnson/PhD/perl/displays/10-21343_DNH_...

1 of 1 10/04/2014 21:08

H=1 H=2 H=3 H=4 H=5 H=6(a)

ts 1000, range 2, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-205726_DNH...

1 of 1 10/04/2014 21:00

ts 1000, range=2, threshold=4

file:///Users/cwdjohnson/PhD/perl/displays/10-204642_DNH...

1 of 1 10/04/2014 20:50

ts 1000, range=2, threshold=6

file:///Users/cwdjohnson/PhD/perl/displays/10-203911_DNH...

1 of 1 10/04/2014 20:44

ts 1000, range=2, threshold=10

file:///Users/cwdjohnson/PhD/perl/displays/10-203630_DNH...

1 of 1 10/04/2014 20:41

ts 1000, range=2, threshold=14

file:///Users/cwdjohnson/PhD/perl/displays/10-202746_DNH...

1 of 1 10/04/2014 20:31

ts 1000, range=2, threshold=18

file:///Users/cwdjohnson/PhD/perl/displays/10-201252_DNH...

1 of 1 10/04/2014 20:18

ts 1000, range=2, threshold=2

file:///Users/cwdjohnson/PhD/perl/displays/10-205342_DNH...

1 of 1 10/04/2014 20:56

ts 1000, range=2, threshold=4

file:///Users/cwdjohnson/PhD/perl/displays/10-204922_DNH...

1 of 1 10/04/2014 20:52

ts 1000, range=2, threshold=6

file:///Users/cwdjohnson/PhD/perl/displays/10-204137_DNH...

1 of 1 10/04/2014 20:45

ts 1000, range=2, threshold=10

file:///Users/cwdjohnson/PhD/perl/displays/10-203421_DNH...

1 of 1 10/04/2014 20:38

ts 1000, range =2, threshold=14

file:///Users/cwdjohnson/PhD/perl/displays/10-202152_DNH...

1 of 1 10/04/2014 20:27

ts 1000, range=2, threshold=18

file:///Users/cwdjohnson/PhD/perl/displays/10-201649_DNH...

1 of 1 10/04/2014 20:20

ts 1000, range=2, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-205526_DNH...

1 of 1 10/04/2014 20:58

ts 1000, range=2, threshold=4

file:///Users/cwdjohnson/PhD/perl/displays/10-205118_DNH...

1 of 1 10/04/2014 20:54

ts 1000, range=2, threshold=6

file:///Users/cwdjohnson/PhD/perl/displays/10-204439_DNH...

1 of 1 10/04/2014 20:48

ts 1000, range=2, threshold=10

file:///Users/cwdjohnson/PhD/perl/displays/10-203256_DNH...

1 of 1 10/04/2014 20:35

ts 1000, range=2, threshold=14

file:///Users/cwdjohnson/PhD/perl/displays/10-202416_DNH...

1 of 1 10/04/2014 20:29

ts 1000, range=2, threshold=18

file:///Users/cwdjohnson/PhD/perl/displays/10-201917_DNH...

1 of 1 10/04/2014 20:23

H=1 H=4 H=6 H=10 H=14 H=18(b)

ts 1000, range=3, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-19471_DNH_...

1 of 1 10/04/2014 20:09

ts 1000, range=3, threshold=10

file:///Users/cwdjohnson/PhD/perl/displays/10-193628_DNH...

1 of 1 10/04/2014 20:03

ts 1000, range=3, threshold=14

file:///Users/cwdjohnson/PhD/perl/displays/10-192741_DNH...

1 of 1 10/04/2014 19:33

ts 1000, range=3, threshold=20

file:///Users/cwdjohnson/PhD/perl/displays/10-192033_DNH...

1 of 1 10/04/2014 19:26

ts 1000 range=3, threshold=28

file:///Users/cwdjohnson/PhD/perl/displays/10-182643_DNH...

1 of 1 10/04/2014 18:33

ts 1000, Range=3, threshold =36

file:///Users/cwdjohnson/PhD/perl/displays/10-181233_DNH...

1 of 1 10/04/2014 18:20

ts 1000, range=3, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-20735_DNH_...

1 of 1 10/04/2014 20:11

ts 1000, range=3, threshold=10

file:///Users/cwdjohnson/PhD/perl/displays/10-193859_DNH...

1 of 1 10/04/2014 19:46

ts 1000, range=3, threshold=14

file:///Users/cwdjohnson/PhD/perl/displays/10-193011_DNH...

1 of 1 10/04/2014 19:35

ts 1000, range=3, threshold=20

file:///Users/cwdjohnson/PhD/perl/displays/10-192431_DNH...

1 of 1 10/04/2014 19:29

ts 1000 range=3, threshold=28

file:///Users/cwdjohnson/PhD/perl/displays/10-18317_DNH_...

1 of 1 10/04/2014 18:37

ts 1000, range=3,threshold=36

file:///Users/cwdjohnson/PhD/perl/displays/10-181542_DNH...

1 of 1 10/04/2014 18:25

ts 1000, range=3, threshold=1

file:///Users/cwdjohnson/PhD/perl/displays/10-20101_DNH_...

1 of 1 10/04/2014 20:16

ts 1000, range=3, threshold=10

file:///Users/cwdjohnson/PhD/perl/displays/10-194348_DNH...

1 of 1 10/04/2014 19:59

ts 1000, range=3, threshold=14

file:///Users/cwdjohnson/PhD/perl/displays/10-193341_DNH...

1 of 1 10/04/2014 19:58

ts 1000 range=3, threshold=20

file:///Users/cwdjohnson/PhD/perl/displays/10-183837_DNH...

1 of 1 10/04/2014 19:23

ts 1000, range=3, threshold=28

file:///Users/cwdjohnson/PhD/perl/displays/10-183411_DNH...

1 of 1 10/04/2014 20:06

ts 1000, range 3, threshold=36

file:///Users/cwdjohnson/PhD/perl/displays/10-165842_DNH...

1 of 1 10/04/2014 17:52

H=1 H=10 H=14 H=20 H=28 H=36(c)

signalling H-1 H H+1

H+2 H+3

< H-1

> H+3

Figure B.13: Some more pattern formation using lateral inhibition with
different thresholds, using a 20 by 20 grid over 1000 time steps (last
time step shown). (a) range=1; (b) range =2; and (c) range=3. The
top row in each grouping used a RSA update with no noise settings;
the middle row used RSA with Nt = 0.1, Ns = 0; and the bottom row
used ROA update with Nt = 0.1, Ns = 0.
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B.3.1 Localised C-Value and randomised model

This section has the full tables showing the LC-Value and C-Value simulations

using spatial noise settings of pS = 0.1 and 0.9. The simulations are discussed in

subsection 5.4.1.

Table B.31: Comparison of the C-Value and the Localised C-Value of
simulation using a spatial noise setting of pS = 0.1; range = 3, threshold
= 4, a hexagonal grid was used with RSA updating with full toroidal
wrap around boundary. See subsection 5.4.1 for details.

ID C-Value LC-Value

1 1HR3 0.2109 0.6826

2 1HR3 0.2007 0.7667

3 1HR3 0.2365 0.8000

4 1HR3 0.2359 0.7037

5 1HR3 0.2509 0.7500

6 1HR3 0.2591 0.7969

7 1HR3 0.2647 0.8206

8 1HR3 0.2612 0.7935

9 1HR3 0.2605 0.7683

10 1HR3 0.2549 0.8124

11 1HR3 0.2525 0.7814

12 1HR3 0.2558 0.7953

13 1HR3 0.2563 0.8171

14 1HR3 0.2614 0.8403

15 1HR3 0.2862 0.8636

16 1HR3 0.2648 0.8501

17 1HR3 0.2605 0.8326

18 1HR3 0.2605 0.8636

19 1HR3 0.2627 0.8746

20 1HR3 0.2617 0.7725

21 1HR3 0.2555 0.8207

22 1HR3 0.2412 0.8014

23 1HR3 0.2532 0.8008

24 1HR3 0.2617 0.8524

25 1HR3 0.2697 0.8387

26 1HR3 0.2773 0.8583

27 1HR3 0.2753 0.8409

28 1HR3 0.2804 0.8485
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ID C-Value LC-Value

29 1HR3 0.2773 0.8583

30 1HR3 0.2785 0.8485

31 1HR3 0.2773 0.8409

32 1HR3 0.2788 0.8837

33 1HR3 0.2765 0.8485

34 1HR3 0.2669 0.8222

35 1HR3 0.2733 0.8409

36 1HR3 0.2741 0.8394

37 1HR3 0.2722 0.8939

38 1HR3 0.2753 0.9015

39 1HR3 0.2727 0.8939

40 1HR3 0.2710 0.9167

41 1HR3 0.2804 0.9147

42 1HR3 0.3006 0.9380

43 1HR3 0.3038 0.9457

44 1HR3 0.3023 0.9457

45 1HR3 0.3038 0.9457

46 1HR3 0.3038 0.9457

47 1HR3 0.3023 0.9457

48 1HR3 0.3023 0.9147

49 1HR3 0.2773 0.9070

50 1HR3 0.2975 0.9302

51 1HR3 0.2818 0.8915

52 1HR3 0.3006 0.9070

53 1HR3 0.3053 0.9147

54 1HR3 0.3023 0.9147

55 1HR3 0.3023 0.9147

56 1HR3 0.3084 0.9225

57 1HR3 0.3055 0.9225

58 1HR3 0.3023 0.9457

59 1HR3 0.3087 0.8992

60 1HR3 0.3115 0.8682

61 1HR3 0.3067 0.8485

62 1HR3 0.3084 0.8605

63 1HR3 0.3165 0.8889

64 1HR3 0.3165 0.8889

65 1HR3 0.3196 0.8968
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ID C-Value LC-Value

66 1HR3 0.3178 0.9206

67 1HR3 0.3190 0.9206

68 1HR3 0.3165 0.9206

69 1HR3 0.3221 0.9286

70 1HR3 0.3263 0.9756

71 1HR3 0.3226 0.9238

72 1HR3 0.3244 0.9415

73 1HR3 0.3244 0.9415

74 1HR3 0.3282 0.9512

75 1HR3 0.3333 1.0000

76 1HR3 0.3323 1.0000

77 1HR3 0.3302 1.0000

78 1HR3 0.3323 1.0000

79 1HR3 0.3313 1.0000

80 1HR3 0.3323 1.0000

81 1HR3 0.3323 1.0000

82 1HR3 0.3333 1.0000

83 1HR3 0.3323 1.0000

84 1HR3 0.3323 1.0000

85 1HR3 0.3323 1.0000

86 1HR3 0.3313 1.0000

87 1HR3 0.3323 1.0000

88 1HR3 0.3333 1.0000

89 1HR3 0.3302 1.0000

90 1HR3 0.3259 0.9512

91 1HR3 0.3252 0.9431

92 1HR3 0.3313 1.0000

93 1HR3 0.3323 1.0000

94 1HR3 0.3333 1.0000

95 1HR3 0.3323 1.0000

96 1HR3 0.3333 1.0000

97 1HR3 0.3304 0.9917

98 1HR3 0.3323 1.0000

99 1HR3 0.3323 1.0000

100 1HR3 0.3333 1.0000

101 1HR3 0.3333 1.0000

102 1HR3 0.3333 1.0000
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ID C-Value LC-Value

103 1HR3 0.3343 1.0000

104 1HR3 0.3293 0.9917

105 1HR3 0.3282 0.9512

106 1HR3 0.3282 0.9512

107 1HR3 0.3323 1.0000

108 1HR3 0.3333 1.0000

109 1HR3 0.3323 1.0000

110 1HR3 0.3323 1.0000

111 1HR3 0.3333 1.0000

112 1HR3 0.3323 1.0000

113 1HR3 0.3323 1.0000

114 1HR3 0.3323 1.0000

115 1HR3 0.3333 1.0000

116 1HR3 0.3323 1.0000

117 1HR3 0.3343 1.0000

118 1HR3 0.3314 0.9917

119 1HR3 0.3353 1.0000

120 1HR3 0.3353 1.0000

121 1HR3 0.3353 1.0000

122 1HR3 0.3353 1.0000

123 1HR3 0.3353 1.0000

124 1HR3 0.3362 1.0000

125 1HR3 0.3353 1.0000

126 1HR3 0.3353 1.0000

127 1HR3 0.3333 0.9917

128 1HR3 0.3324 0.9917

129 1HR3 0.3343 1.0000

130 1HR3 0.3353 1.0000

131 1HR3 0.3362 1.0000

132 1HR3 0.3343 0.9917

133 1HR3 0.3333 0.9917

134 1HR3 0.3353 1.0000

135 1HR3 0.3371 1.0000

136 1HR3 0.3371 1.0000

137 1HR3 0.3371 1.0000

138 1HR3 0.3371 1.0000

139 1HR3 0.3371 1.0000
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ID C-Value LC-Value

140 1HR3 0.3371 1.0000

141 1HR3 0.3371 1.0000

142 1HR3 0.3371 1.0000

143 1HR3 0.3371 1.0000

144 1HR3 0.3371 1.0000

145 1HR3 0.3371 1.0000

146 1HR3 0.3371 1.0000

147 1HR3 0.3362 1.0000

148 1HR3 0.3371 1.0000

149 1HR3 0.3371 1.0000

150 1HR3 0.3371 1.0000

151 1HR3 0.3371 1.0000

152 1HR3 0.3371 1.0000

153 1HR3 0.3371 1.0000

154 1HR3 0.3371 1.0000

155 1HR3 0.3371 1.0000

156 1HR3 0.3371 1.0000

157 1HR3 0.3371 1.0000

158 1HR3 0.3371 1.0000

159 1HR3 0.3371 1.0000

160 1HR3 0.3371 1.0000

161 1HR3 0.3371 1.0000

162 1HR3 0.3362 1.0000

163 1HR3 0.3333 0.9512

164 1HR3 0.3324 0.9512

165 1HR3 0.3371 1.0000

166 1HR3 0.3371 1.0000

167 1HR3 0.3371 1.0000

168 1HR3 0.3371 1.0000

169 1HR3 0.3371 1.0000

170 1HR3 0.3371 1.0000

171 1HR3 0.3371 1.0000

172 1HR3 0.3371 1.0000

173 1HR3 0.3371 1.0000

174 1HR3 0.3371 1.0000

175 1HR3 0.3371 1.0000

176 1HR3 0.3371 1.0000
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ID C-Value LC-Value

177 1HR3 0.3371 1.0000

178 1HR3 0.3371 1.0000

179 1HR3 0.3371 1.0000

180 1HR3 0.3371 1.0000

181 1HR3 0.3371 1.0000

182 1HR3 0.3371 1.0000

183 1HR3 0.3371 1.0000

184 1HR3 0.3371 1.0000

185 1HR3 0.3371 1.0000

186 1HR3 0.3371 1.0000

187 1HR3 0.3371 1.0000

188 1HR3 0.3371 1.0000

189 1HR3 0.3371 1.0000

190 1HR3 0.3371 1.0000

191 1HR3 0.3371 1.0000

192 1HR3 0.3371 1.0000

193 1HR3 0.3371 1.0000

194 1HR3 0.3371 1.0000

195 1HR3 0.3371 1.0000

196 1HR3 0.3371 1.0000

197 1HR3 0.3343 1.0000

198 1HR3 0.3353 1.0000

199 1HR3 0.3353 1.0000

200 1HR3 0.3353 1.0000

Table B.32: Comparison of the C-Value and the Localised C-Value of
simulation using a spatial noise setting of pS = 0.9; range = 3, threshold
= 4, a hexagonal grid was used with RSA updating with full toroidal
wrap around boundary. See subsection 5.4.1 for details.

ID C-Value LC-Value

1 1HR3 0.4668 0.4441

2 1HR3 0.5546 0.6168

3 1HR3 0.4992 0.2132

4 1HR3 0.5156 0.5771

5 1HR3 0.5238 0.7984

continued on next page



APPENDIX B. TEST RESULTS 340

ID C-Value LC-Value

6 1HR3 0.5333 0.5657

7 1HR3 0.5466 0.8373

8 1HR3 0.5237 0.4294

9 1HR3 0.5079 0.6598

10 1HR3 0.5441 0.3424

11 1HR3 0.5184 0.5717

12 1HR3 0.5056 0.5725

13 1HR3 0.5250 0.8386

14 1HR3 0.5265 0.5814

15 1HR3 0.5035 0.6706

16 1HR3 0.4931 0.6572

17 1HR3 0.5201 0.8368

18 1HR3 0.5434 0.3447

19 1HR3 0.5324 0.6689

20 1HR3 0.5631 0.2367

21 1HR3 0.5077 0.6764

22 1HR3 0.5187 0.5754

23 1HR3 0.5461 0.7383

24 1HR3 0.5502 0.6384

25 1HR3 0.5377 0.4609

26 1HR3 0.5185 0.5907

27 1HR3 0.5201 0.6582

28 1HR3 0.4826 0.6525

29 1HR3 0.4835 0.2099

30 1HR3 0.4939 0.6652

31 1HR3 0.5526 0.3853

32 1HR3 0.4991 0.2624

33 1HR3 0.5017 0.5420

34 1HR3 0.5025 0.6214

35 1HR3 0.5220 0.5730

36 1HR3 0.4984 0.7697

37 1HR3 0.5056 0.1649

38 1HR3 0.4940 0.6197

39 1HR3 0.5205 0.3424

40 1HR3 0.5175 0.1705

41 1HR3 0.5498 0.4741

42 1HR3 0.5546 0.3469
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ID C-Value LC-Value

43 1HR3 0.5095 0.1349

44 1HR3 0.5000 0.5372

45 1HR3 0.5110 0.4136

46 1HR3 0.4975 0.8149

47 1HR3 0.4764 0.5888

48 1HR3 0.4950 0.4037

49 1HR3 0.4649 0.5187

50 1HR3 0.5026 0.7943

51 1HR3 0.5534 0.7418

52 1HR3 0.5341 0.8761

53 1HR3 0.5137 0.6605

54 1HR3 0.5371 0.5616

55 1HR3 0.5017 0.2316

56 1HR3 0.5474 0.2337

57 1HR3 0.5116 0.5529

58 1HR3 0.4898 0.5399

59 1HR3 0.4830 0.6057

60 1HR3 0.4910 0.5273

61 1HR3 0.4908 0.4911

62 1HR3 0.5340 0.5558

63 1HR3 0.5087 0.3291

64 1HR3 0.4524 0.4706

65 1HR3 0.5048 0.3338

66 1HR3 0.5026 0.5550

67 1HR3 0.5048 0.7038

68 1HR3 0.5084 0.4916

69 1HR3 0.5323 0.3667

70 1HR3 0.4629 0.5562

71 1HR3 0.5206 0.6720

72 1HR3 0.4919 0.5289

73 1HR3 0.5253 0.4219

74 1HR3 0.5425 0.3174

75 1HR3 0.5425 0.8283

76 1HR3 0.4815 0.4951

77 1HR3 0.5465 0.8549

78 1HR3 0.5641 0.7248

79 1HR3 0.5208 0.4473
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ID C-Value LC-Value

80 1HR3 0.5411 0.4205

81 1HR3 0.5034 0.5162

82 1HR3 0.5653 0.3640

83 1HR3 0.5123 0.5515

84 1HR3 0.5125 0.5851

85 1HR3 0.5139 0.4444

86 1HR3 0.5270 0.6522

87 1HR3 0.5116 0.3270

88 1HR3 0.5104 0.7070

89 1HR3 0.4955 0.5221

90 1HR3 0.5191 0.3227

91 1HR3 0.4925 0.3587

92 1HR3 0.5410 0.4933

93 1HR3 0.4983 0.6640

94 1HR3 0.5132 0.3336

95 1HR3 0.5075 0.6971

96 1HR3 0.5177 0.6399

97 1HR3 0.5212 0.5117

98 1HR3 0.5008 0.4090

99 1HR3 0.5513 0.6952

100 1HR3 0.4948 0.5661

101 1HR3 0.4674 0.5902

102 1HR3 0.5040 0.3254

103 1HR3 0.5481 0.5631

104 1HR3 0.5233 0.3293

105 1HR3 0.5065 0.4908

106 1HR3 0.5357 0.8333

107 1HR3 0.5350 0.4723

108 1HR3 0.5116 0.7148

109 1HR3 0.5076 0.8826

110 1HR3 0.4939 0.6078

111 1HR3 0.5444 0.4486

112 1HR3 0.5191 0.4546

113 1HR3 0.5467 0.2352

114 1HR3 0.4966 0.3385

115 1HR3 0.5119 0.6265

116 1HR3 0.4890 0.7328
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ID C-Value LC-Value

117 1HR3 0.4795 0.6656

118 1HR3 0.5432 0.5947

119 1HR3 0.5245 0.5562

120 1HR3 0.5385 0.2607

121 1HR3 0.5123 0.5341

122 1HR3 0.5188 0.5876

123 1HR3 0.4991 0.5895

124 1HR3 0.5546 0.6757

125 1HR3 0.5414 0.5683

126 1HR3 0.5072 0.3274

127 1HR3 0.5111 0.4102

128 1HR3 0.5149 0.4752

129 1HR3 0.4949 0.3963

130 1HR3 0.5237 0.7367

131 1HR3 0.5123 0.2201

132 1HR3 0.4916 0.3111

133 1HR3 0.5195 0.6739

134 1HR3 0.4982 0.6364

135 1HR3 0.4992 0.4416

136 1HR3 0.5563 0.8631

137 1HR3 0.5493 0.6736

138 1HR3 0.5351 0.3347

139 1HR3 0.5382 0.4976

140 1HR3 0.5241 0.5569

141 1HR3 0.5334 0.3370

142 1HR3 0.4842 0.5733

143 1HR3 0.5247 0.2226

144 1HR3 0.4875 0.6597

145 1HR3 0.5127 0.4066

146 1HR3 0.5104 0.5428

147 1HR3 0.4949 0.7332

148 1HR3 0.5437 0.6729

149 1HR3 0.5060 0.5295

150 1HR3 0.5457 0.1735

151 1HR3 0.5561 0.8531

152 1HR3 0.5284 0.2249

153 1HR3 0.5098 0.6698
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ID C-Value LC-Value

154 1HR3 0.4898 0.7756

155 1HR3 0.4731 0.3801

156 1HR3 0.5137 0.2225

157 1HR3 0.5453 0.3236

158 1HR3 0.5490 0.6976

159 1HR3 0.4992 0.5102

160 1HR3 0.5077 0.3553

161 1HR3 0.5009 0.3776

162 1HR3 0.5330 0.2429

163 1HR3 0.4520 0.5529

164 1HR3 0.5069 0.6162

165 1HR3 0.5274 0.3396

166 1HR3 0.5416 0.3388

167 1HR3 0.5116 0.6858

168 1HR3 0.5466 0.3467

169 1HR3 0.4983 0.3362

170 1HR3 0.4908 0.2478

171 1HR3 0.5153 0.4620

172 1HR3 0.4984 0.8011

173 1HR3 0.4781 0.2502

174 1HR3 0.5595 0.7085

175 1HR3 0.5481 0.3429

176 1HR3 0.4725 0.7355

177 1HR3 0.5076 0.7311

178 1HR3 0.5048 0.6557

179 1HR3 0.4724 0.5571

180 1HR3 0.4983 0.7152

181 1HR3 0.4935 0.3316

182 1HR3 0.4834 0.7208

183 1HR3 0.4883 0.6791

184 1HR3 0.5489 0.6753

185 1HR3 0.5016 0.5896

186 1HR3 0.5095 0.6113

187 1HR3 0.5334 0.3356

188 1HR3 0.5144 0.5551

189 1HR3 0.5075 0.7322

190 1HR3 0.5482 0.3014
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ID C-Value LC-Value

191 1HR3 0.5166 0.1329

192 1HR3 0.5137 0.3494

193 1HR3 0.5324 0.3343

194 1HR3 0.4923 0.4998

195 1HR3 0.5410 0.2331

196 1HR3 0.5324 0.6706

197 1HR3 0.5291 0.3679

198 1HR3 0.5267 0.5625

199 1HR3 0.5450 0.6392

200 1HR3 0.5345 0.4480
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o
c

a
t
e

d
n

e
ig

h
b

o
u

r
(
$l

o
c

,
$m

d
is

t
,

$s
t
a

t
e

)
)
{

#
y

e
s
−

w
e

h
a

v
e

th
e

s
ta

r
t

o
f

a
c

o
n

n
e

c
te

d
g

r
id

m
y

$g
r
id

=
H

G
ri

d
−>

n
ew

(
m

a
n

h
a

tt
a

n
d

is
ta

n
c
e

=
>

$m
d

is
t

)
;

m
y

@
to

c
h

e
c
k

=
(
)

;

m
y

$n
e
x

t
n

o
d

e
=

$l
o

c
;

#
fl

a
g

th
is

s
ta

r
tu

p
o

n
e

a
s

c
o

n
n

e
c

te
d

(
r

e
fi

r
s

t
o

n
e

)

$
s
e

lf
−>

n
o

d
e
s
−>

[$
lo

c
]−
>

s
e

t
c

o
n

n
e

c
t
e

d
;

d
o
{

#
u

n
p

a
c

k
th

e
lo

c
a

ti
o

n
a

s
w

e
n

e
e

d
to

h
a

n
d

le
th

in
g

s
a

s
c

a
r

te
s

ia
n

v
a

lu
e

s
:

m
y

(
$r

o
w

,
$c

o
l
)

=
(
in

t
$n

e
x

t
n

o
d

e
/

$
s
e

lf
−>

c
o

lu
m

n
s

,

$n
e
x

t
n

o
d

e
%

$
s
e

lf
−>

c
o

lu
m

n
s

)
;

#
if

it
is

a
n

o
d

d
v

a
lu

e
,

th
e

n
it

is
o

n
th

e
lo

w
e

r
h

a
lf

ro
w
−

so
a

d
d

o
n

e
:

m
y

$l
o

w
e
r

=
0

;
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if
(

$n
e
x

t
n

o
d

e
%

2
=

=
1

)
{

$l
o

w
e
r

=
1

;

} m
y

$e
d

g
e
s

=
0

;

if
(

$m
d

is
t
>

=
1

)
{

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

$m
d

is
t

,
$c

o
l

,
$s

t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

(
$m

d
is

t
−

$l
o

w
e
r

)
,

$c
o

l
+

1
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
(
$m

d
is

t
−

1
+

$l
o

w
e
r

)
,

$c
o

l
+

1
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
$m

d
is

t
,

$c
o

l
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
(
$m

d
is

t
−

1
+

$l
o

w
e
r

)
,

$c
o

l
−

1
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

(
$m

d
is

t
−

$l
o

w
e
r

)
,

$c
o

l
−

1
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

} if
(

$m
d

is
t
>

1
)
{

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

1
,

$c
o

l
+

$m
d

is
t

,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

,
$c

o
l

+
$m

d
is

t
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
1

,
$c

o
l

+
$m

d
is

t
,
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$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
1

,
$c

o
l
−

$m
d

is
t

,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

,
$c

o
l
−

$m
d

is
t

,
$s

t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

1
,

$c
o

l
−

$m
d

is
t

,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

} if
(

$m
d

is
t

=
=

3
)
{

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

2
,

$c
o

l
+

2
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
2

,
$c

o
l

+
2

,
$s

t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
2

,
$c

o
l
−

2
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

2
,

$c
o

l
−

2
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

if
(

$l
o

w
e
r

e
q

’1
’

)
{

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
2

,
$c

o
l
−

3
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w

+
2

,
$c

o
l

+
3

,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

}
e

ls
e
{

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

2
,

$c
o

l
−

3
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;

$e
d

g
e
s

+
=

$
s
e

lf
−>

c
h

e
c
k

n
o

d
e

(
$r

o
w
−

2
,

$c
o

l
+

3
,

$s
t
a

t
e

,
\@

to
c
h

e
c
k

)
;
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}
} #

o
k
−

s
e

t
u

p
th

e
n

o
d

e
in

fo
c

u
s

$g
ri

d
−>

a
d

d
n

o
d

e
(
$n

e
x

t
n

o
d

e
,

$e
d

g
e
s

)
;

}
w

h
il

e
(
d

e
fi

n
e
d

(
$n

e
x

t
n

o
d

e
=

s
h

if
t

(
@

to
c
h

e
c
k

)
)

)
;

#
s

e
t

D
N

H
n

o
d

es
in

m
g

r
id

to
a

ll
o

c
a

te
d

fo
r
e
a
c
h

(
$g

ri
d
−>

a
ll

n
o

d
e

s
)
{

$
s
e

lf
−>

n
o

d
e
s
−>

[$
−>

lo
c

a
t
io

n
]−
>

s
e

t
a

ll
o

c
a

t
e

d
;

} #
a

d
d

g
r

id
to

c
o

n
n

e
c

te
d

s
u

b
g

r
id

a
r

r
a

y

$
s
e

lf
−>

a
d

d
c

o
n

n
e

c
t
e

d
s
u

b
g

r
id

(
$g

r
id

)
;

}
#

if
p

o
te

n
ti

a
l

s
ta

r
te

r
n

o
d

e

#
in

c
r

e
m

e
n

t
th

e
lo

c
a

ti
o

n
:

$l
o

c
+

+
;

} r
e
tu

r
n

;

} su
b

c
h

e
c
k

n
o

d
e
{
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m
y

$
s

e
lf

=
s
h

if
t

;

m
y

(
$x

,
$y

,
$s

t
a

t
e

,
$t

o
c

h
e

c
k

a
r
r
a

y
)

=
@

;

m
y

$e
d

g
e

=
0

;

if
(

n
o

t
d

e
fi

n
e
d

(
$x

)
o

r
n

o
t

d
e
fi

n
e
d

(
$y

)
o

r
n

o
t

d
e
fi

n
e
d

(
$s

t
a

t
e

)

o
r

n
o

t
d

e
fi

n
e
d

(
$t

o
c

h
e

c
k

a
r
r
a

y
)

)
{

c
ro

a
k

”
Y

ou
n

e
e
d

to
s
p

e
c

if
y

ro
w

,
c

o
l

,
s
t
a

t
e

a
n

d
a

rr
a

y
fo

r
c
h

e
c
k

n
o

d
e

”
;

} #
O

K
−

g
e

t
th

e
lo

c
a

ti
o

n
,

a
d

ju
s

ti
n

g
fo

r
th

e
to

r
o

id
a

l
b

o
u

n
d

a
ry

:

m
y

$l
o

c
=

$
s
e

lf
−>

g
e

t
t

o
r

o
id

a
l

lo
c

a
t

io
n

(
$x

,
$y

)
;

if
(

$s
t
a

t
e

e
q

$
s
e

lf
−>

n
o

d
e
s
−>

[$
lo

c
]−
>

g
e

t
s
t
a

t
e

&
&

!
$

s
e

lf
−>

n
o

d
e
s
−>

[$
lo

c
]−
>

g
e

t
a

ll
o

c
a

t
e

d
)
{

#
y

e
s
−

c
h

e
c

k
if

a
lr

e
a

d
y

o
n

th
e

li
s

t
,

a
d

d
if

n
o

t

if
(
$

s
e

lf
−>

n
o

d
e
s
−>

[$
lo

c
]−
>

g
e

t
c

o
n

n
e

c
t
e

d
=

=
0

)
{

#
a

d
d

to
th

e
to

c
h

e
c

k
li

s
t

a
n

d
m

a
rk

a
s

c
o

n
n

e
c

te
d

p
u

sh
(

@
$t

o
c
h

e
c
k

a
rr

a
y

,
$l

o
c

)
;

$
s
e

lf
−>

n
o

d
e
s
−>

[$
lo

c
]−
>

s
e

t
c

o
n

n
e

c
t
e

d
;

} #
s

e
t

e
d

g
e

to
1

:

$e
d

g
e
+

+
;

} r
e
tu

r
n

$e
d

g
e

;
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} su
b

g
e

t
t

o
r

o
id

a
l

lo
c

a
t

io
n
{

m
y

$
s

e
lf

=
s
h

if
t

;

m
y

$i
=

s
h

if
t

;

m
y

$j
=

s
h

if
t

;

#
c

h
e

c
k

if
th

e
v

a
lu

e
s

n
e

e
d

a
d

ju
s

ti
n

g
fo

r
to

r
o

id
a

l
b

o
u

n
d

a
ry

:

if
(

$i
<

0
)
{

$i
=

$
s
e

lf
−>

ro
w

s
+

$i
;

}
e

ls
if

(
$i

>
=

$
s
e

lf
−>

ro
w

s
)
{

$i
=

$i
−

$
s
e

lf
−>

ro
w

s
;

} if
(

$j
<

0
)
{

$j
=

$
s
e

lf
−>

c
o

lu
m

n
s

+
$j

;

}
e

ls
if

(
$j

>
=

$
s
e

lf
−>

c
o

lu
m

n
s

)
{

$j
=

$j
−

$
s
e

lf
−>

c
o

lu
m

n
s

;

} #
c

o
n

v
e

r
t

to
lo

c
a

ti
o

n
:

m
y

$l
o

c
=

(
$i

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$j
;
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r
e
tu

r
n

$l
o

c
;

} C
.2

A
sy

n
ch

ro
n
o
u
s

u
p

d
a
ti

n
g

T
h
is

se
ct

io
n

sh
ow

s
th

e
co

d
e

fo
r

as
y
n
ch

ro
n
ou

s
u
p

d
at

in
g.

su
b

a
s
y

n
c

h
r
o

n
o

u
s

u
p

d
a

t
e

w
it

h
n

o
is

e
{

m
y

$
s

e
lf

=
s
h

if
t

;

m
y

$i
=

0
;

m
y

$j
=

0
;

m
y

$
h

a
s

h
li

s
t

r
e

f
;

m
y

(
$n

t
r
a

t
e

,
$n

s
r
a

t
e

)
=

(
0

,
0

)
;

$
h

a
s

h
li

s
t

r
e

f
=

$
s
e

lf
−>

g
e

t
a

s
y

n
c

u
p

d
a

t
e

li
s
t

;

#
g

o
th

r
o

u
g

h
th

e
li

s
t

fo
r
e
a
c
h

m
y

$k
e
y

2
(

s
o

r
t
{$

a
<

=
>

$b
}

k
e
y

s
%

$
h

a
s

h
li

s
t

r
e

f
)
{

m
y

$l
o

c
=

$
h

a
s

h
li

s
t

r
e

f
−>
{$

k
e
y

2
};

#
u

n
p

a
c

k
th

e
lo

c
a

ti
o

n
a

s
w

e
n

e
e

d
to

h
a

n
d

le
th

in
g

s
a

s
c

a
r

te
s

ia
n

v
a

lu
e

s
:

(
$i

,
$j

)
=

(
in

t
$l

o
c

/
$

s
e

lf
−>

c
o

lu
m

n
s

,
$l

o
c

%
$

s
e

lf
−>

c
o

lu
m

n
s

)
;
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#
n

o
w

g
e

t
th

e
v

a
r

io
u

s
li

s
t

w
e

n
e

e
d

o
f

th
e

s
ta

te
o

f
th

e
M

o
o

re
n

e
ig

h
b

o
u

r
h

o
o

d

m
y

$a
c

t
iv

e
c

o
u

n
t

=
$

s
e

lf
−>

g
e

t
n

e
ig

h
b

o
u

r
h

o
o

d
a

c
t
iv

e
c

o
u

n
t

(
$i

,
$j

,
−1

)
;

if
(

$a
c

t
iv

e
c

o
u

n
t
<

$
s
e

lf
−>

t
h

r
e

s
h

o
ld

)
{

#
c

h
e

c
k

te
m

p
o

r
a

l
n

o
is

e
:

if
(

ra
n

d
(
1

)
>

$
s
e

lf
−>

t
e

m
p

o
r
a

l
n

o
is

e
)
{

#
p

r
o

b
a

b
il

it
y

n
o

t
m

et
,

so
g

o
a

h
e

a
d

a
n

d
a

c
ti

v
a

te
,

if
n

o
t

a
lr

e
a

d
y

a
c

ti
v

e
:

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
s
t
a

t
e

(
$l

o
c

)
e
q

’0
’

)
{

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

a
c

t
iv

a
t
e

n
o

d
e

(
$l

o
c

)
;

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

t
n

a
c

t
iv

a
t
e

d
a

d
d

;

}
}

e
ls

e
{

#
p

r
o

b
a

b
il

it
y

m
et

,
so

ig
n

o
r

e
a

c
ti

v
a

ti
o

n
a

n
d

d
e−

a
c

ti
v

a
te

if
n

e
c

e
s

s
a

r
y

:

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
s
t
a

t
e

(
$l

o
c

)
e
q

’1
’

)
{

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

d
e

a
c

t
iv

a
t
e

n
o

d
e

(
$l

o
c

)
;

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

t
n

d
e

a
c

t
iv

a
t
e

d
a

d
d

;

}
}

}
e

ls
e
{

#
c

h
e

c
k

s
p

a
ti

a
l

n
o

is
e
−

a
c

ti
v

a
te

c
e

ll
r

e
g

a
r

d
le

s
s

if
it

m
e

e
ts

th
e

p
r

o
b

a
b

il
it

y
:

if
(

ra
n

d
(
1

)
<

=
$

s
e

lf
−>

s
p

a
t

ia
l

n
o

is
e

∗∗
(

1
+

$a
c

t
iv

e
c

o
u

n
t
−

$
s
e

lf
−>

t
h

r
e

s
h

o
ld

)
)
{

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
s
t
a

t
e

(
$l

o
c

)
e
q

’0
’

)
{
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$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

a
c

t
iv

a
t
e

n
o

d
e

(
$l

o
c

)
;

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

s
n

a
c

t
iv

a
t
e

d
a

d
d

;

}
}

e
ls

e
{

#
n

o
c

h
a

n
c

e
o

f
r

e
d

e
m

p
ti

o
n
−

in
h

ib
it

th
e

c
e

ll
if

it
is

a
c

ti
v

e
:

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
s
t
a

t
e

(
$l

o
c

)
e
q

’1
’

)
{

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

d
e

a
c

t
iv

a
t
e

n
o

d
e

(
$l

o
c

)
;

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

s
n

d
e

a
c

t
iv

a
t
e

d
a

d
d

;

}
}

}
} $

s
e

lf
−>

se
t

u
p

n
h

o
o

d
;

r
e
tu

r
n

;

} su
b

g
e

t
a

s
y

n
c

u
p

d
a

t
e

li
s
t
{

m
y

$
s

e
lf

=
s
h

if
t

;

m
y

$
s
iz

e
=

(
$

s
e

lf
−>

ro
w

s
∗

$
s
e

lf
−>

c
o

lu
m

n
s

)
;

m
y

%
h

a
s

h
li

s
t

;

#
is

th
is

a
c

o
m

p
le

te
ly

ra
n

d
o

m
/

a
sy

n
c

h
r

o
n

o
u

s
li

s
t

,
w

it
h

p
o

s
s

ib
le

d
u

p
li

c
a

ti
o

n
s

:

if
(

$
s
e

lf
−>

u
p

d
a

te
ty

p
e

e
q

’r
’

o
r

$
s
e

lf
−>

u
p

d
a

te
ty

p
e

e
q

’R
’
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o
r

$
s
e

lf
−>

u
p

d
a

te
ty

p
e

e
q

’a
’

o
r

$
s
e

lf
−>

u
p

d
a

te
ty

p
e

e
q

’A
’

)
{

#
a

ra
n

d
o

m
ly

g
e

n
e

r
a

te
d

li
s

t
o

f
th

e
sa

m
e

s
iz

e
a

s
th

e
g

r
id

w
il

l
b

e
u

se
d

to
u

p
d

a
te

in

#
o

n
e

ti
m

e
s

te
p
−

b
u

t
th

e
r

e
is

n
o

g
u

a
r

a
n

te
e

th
a

t
a

ll
th

e
c

e
ll

s
w

il
l

b
e

u
p

d
a

te
d
−

#
th

e
o

r
e

ti
c

a
ll

y
o

n
e

c
e

ll
c

o
u

ld
b

e
u

p
d

a
te

d
c

o
n

ti
n

u
o

u
s

ly
.

#
R

an
do

m
S

e
le

c
ti

o
n

A
sy

n
c

h
ro

n
o

u
s

u
p

d
a

te
:

fo
r

(
m

y
$i

n
d

e
x

=
0

;
$i

n
d

e
x
<

$
s
iz

e
;

$i
n

d
e
x
+

+
)
{

$
h

a
s

h
li

s
t
{$

in
d

e
x
}

=
in

t
(
ra

n
d

(
$

s
iz

e
)

)
;

}
}

e
ls

e
{

#
e

v
e

r
y

c
e

ll
w

il
l

b
e

u
p

d
a

te
d

in
a

s
y

n
c

h
r

o
n

o
u

s
ly

fr
o

m
a

n
a

sy
n

c
h

r
o

n
o

u
s

li
s

t
.

#
R

an
do

m
O

rd
e

r
A

sy
n

c
h

ro
n

o
u

s
u

p
d

a
te

:

m
y

@
a

rr
a

y
=

(
0

..
(
$s

iz
e
−

1
)

)
;

fo
r

(
m

y
$i

n
d

e
x

=
$

s
iz

e
−

1
;

$i
n

d
e
x
>

0
;

$i
n

d
e
x
−−

)
{

m
y

$l
o

c
=

in
t

(
ra

n
d

(
$i

n
d

e
x

+
1

)
)

;

$
h

a
s

h
li

s
t
{$

in
d

e
x
}

=
$a

rr
a

y
[
$l

o
c

];

s
p

li
c
e

@
a

rr
a

y
,

$l
o

c
,

1
;

} #
s

h
o

u
ld

o
n

ly
b

e
o

n
e

le
f

t
in

th
e

a
r

r
a

y
−

m
a

tc
h

e
s

a
g

a
in

s
t

0
;

$
h

a
s

h
li

s
t
{0
}

=
$a

rr
a

y
[0

];

} r
e
tu

r
n
\%

h
a

s
h

li
s

t
;
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} C
.3

C
a
lc

u
la

ti
n
g

th
e

id
e
a
l

co
n
n
e
ct

e
d
n
e
ss

o
f

a
M

o
o
re

n
e
ig

h
b

o
u
rh

o
o
d

T
h
is

sh
ow

s
th

e
ro

u
ti

n
e

fo
r

ca
lc

u
la

ti
n
g

th
e

id
ea

l
n
u
m

b
er

of
co

n
n
ec

ti
on

s
fo

r
a

su
p
p
li
ed

n
u
m

b
er

of
ac

ti
ve

ce
ll
s

on
a

re
ct

an
gu

la
r

gr
id

w
it

h

n
u
ll

b
ou

n
d
ar

y
co

n
d
it

io
n
s.

su
b

g
e

t
M

o
o

r
e

id
e

a
l

c
o

n
fi

g
{

m
y

$
s

e
lf

=
s
h

if
t

;

m
y

$n
o

d
e
s

=
s
h

if
t

;

m
y

$i
d

e
a

l
r
o

w
s

=
0

;

m
y

$
id

e
a

l
c

o
ls

=
0

;

m
y

$r
e
m

a
in

d
e
r

=
0

;

m
y

$
id

e
a

l
e

d
g

e
s

=
0

;

m
y

$a
d

ju
st

m
e
n

t
=

0
;

if
(
$n

o
d

e
s
>

2
)
{

#
s

e
t

u
p

v
a

r
ia

b
le

s

$i
d

e
a

l
r
o

w
s

=
in

t
(
0

.5
+

s
q

r
t

(
$n

o
d

e
s

)
)

;
#

D
8

ro
w

s

$
id

e
a

l
c

o
ls

=
in

t
(
$n

o
d

e
s

/
$i

d
e

a
l

r
o

w
s

)
;

#
E

8
c

o
ls

fr
o

m
q

u
o

ti
e

n
t

$r
e
m

a
in

d
e
r

=
in

t
(
$n

o
d

e
s

%
$i

d
e

a
l

r
o

w
s

)
;

#
F

8
r

e
m

a
in

d
e

r
fr

o
m

m
od
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m
y

$
s
t
a

r
t
e

r
b

lo
c

k
=

0
;

m
y

$o
t
h

e
r

b
lo

c
k

s
=

0
;

m
y

$s
u

r
p

lu
s

n
o

d
e

s
=

0
;

#
3

n
o

d
e

s
d

o
n

o
t

h
a

v
e

a
s

ta
r

te
r

b
lo

c
k

o
r

o
th

e
r

b
lo

c
k

if
(
$n

o
d

e
s
>

3
)
{

$
s
t
a

r
t
e

r
b

lo
c

k
=

6
+

(
5
∗(

$i
d

e
a

l
r
o

w
s
−

2
)
)

;

$o
t
h

e
r

b
lo

c
k

s
=

(
$

id
e

a
l

c
o

ls
−

2
)

∗
(5

+
(4

∗
(
$i

d
e

a
l

r
o

w
s
−

2
)
)

)
;

} #
is

it
th

e
o

n
e

n
o

d
e

fr
o

m
a

c
o

m
p

le
te

c
o

l
(

ro
w

s
a

r
e

lo
n

g
e

r
)

if
(
$r

e
m

a
in

d
e
r

e
q

$i
d

e
a

l
r
o

w
s
−

1
)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

=
2

;

if
(
$r

e
m

a
in

d
e
r
−1

>
0

)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

=
(4

∗
(
$r

e
m

a
in

d
e
r
−

1
)
)

;

} if
(

$i
d

e
a

l
r
o

w
s
>

3
)
{

#
O

K
−

w
e

c
a

n
m

o
ve

tw
o

c
o

r
n

e
r

s
a

n
d

g
a

in
a

n
e

d
g

e
:

if
(

$i
d

e
a

l
r
o

w
s
<

6
)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

+
;

}
e

ls
e
{

#
c

a
n

m
o

ve
3

c
o

r
n

e
r

s
:

$s
u

r
p

lu
s

n
o

d
e

s
+

=
2

;
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}
}

}
e

ls
e
{

if
(

$r
e
m

a
in

d
e
r
>

0
)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

=
3

+
(4

∗
(
$r

e
m

a
in

d
e
r
−

1
)
)

;

#
is

it
th

e
o

n
e

n
o

d
e

fr
o

m
a

c
o

m
p

le
te

c
o

l
−

N
O

T
E

:
th

e
w

a
y

th
e

id
e

a
l

#
ro

w
s

a
n

d
c

o
ls

a
r

e
c

a
lc

u
la

te
d

m
ea

n
s

th
a

t
th

e
ro

w
s

w
il

l
a

lw
a

y
s

b
e

#
e

q
u

a
l

to
o

r
m

o
re

th
a

n
th

e
n

u
m

be
r

o
f

c
o

ls
,

so

#
a

d
d

in
g

a
c

o
lu

m
n

g
iv

e
s

th
e

s
c

o
p

e
fo

r
m

o
re

e
d

g
e

s
:

if
(

$r
e
m

a
in

d
e
r
<

$i
d

e
a

l
r
o

w
s
−2

)
{

if
(

(
$i

d
e

a
l

r
o

w
s
−

$r
e
m

a
in

d
e
r

)
e
q

’3
’

)
{

#
ro

o
m

to
m

o
ve

o
n

e
−

so
a

d
d

o
n

e
:

$s
u

r
p

lu
s

n
o

d
e

s
+

+
;

}
e

ls
e
{

#
ro

o
m

to
m

o
ve

b
o

th
:

$s
u

r
p

lu
s

n
o

d
e

s
+

=
2

;

}
}

e
ls

e
{

#
O

K
−

w
e

c
a

n
n

o
t

jo
in

th
e

in
c

o
m

p
le

te
ro

w
,

b
u

t
w

e
m

ig
h

t
s

t
i

ll
b

e

#
a

b
le

to
m

o
ve

th
e

tw
o

o
p

p
o

s
it

e
c

o
r

n
e

r
s

a
n

d
g

a
in

a
n

o
th

e
r

e
d

g
e

:

if
(

$i
d

e
a

l
r
o

w
s
>

3
)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

+
;

}
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}
}

e
ls

if
(

$i
d

e
a

l
r
o

w
s
>

3
)
{

#
O

K
−

w
e

c
a

n
m

o
ve

a
t

le
a

s
t

o
n

e
c

o
r

n
e

r
a

n
d

g
a

in
so

m
e

m
o

re
e

d
g

e
s

:

if
(

$i
d

e
a

l
r
o

w
s
<

6
)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

+
;

}
e

ls
if

(
$i

d
e

a
l

r
o

w
s

=
=

6
)
{

$s
u

r
p

lu
s

n
o

d
e

s
+

=
2

;

}
e

ls
e
{

$s
u

r
p

lu
s

n
o

d
e

s
+

=
3

;

}
}

} #
A

s
th

e
g

r
id

e
n

la
r

g
e

s
,

m
o

re
th

a
n

th
e

c
o

r
n

e
r

s
c

a
n

b
e

c
o

m
e

m
o

re

#
”

ro
u

n
d

e
d

”
a

n
d

m
o

re
e

d
g

e
s

c
r

e
a

te
d

b
y

s
te

p
p

in
g

th
e

e
d

g
e

s
a

n
d

c
o

r
n

e
r

s
.

#
T

h
is

a
d

d
s

e
d

g
e

s
.

A
r

o
u

g
h

m
e

a
su

re
is

to
a

d
d

th
e

q
u

o
ti

e
n

t
o

f
th

e
ro

w
s

#
d

iv
id

e
d

b
y

3
,

b
u

t
th

is
o

n
ly

k
ic

k
s

in
o

n
c

e
th

e
ro

w
is

5
o

r
m

o
re

,
so

r
e

d
u

c
e

b
y

.

$a
d

ju
st

m
e
n

t
=

in
t

(
(

$i
d

e
a

l
r
o

w
s
−

2
)

/
3

)
;

$
id

e
a

l
e

d
g

e
s

=
$

s
t
a

r
t
e

r
b

lo
c

k
+

$o
t
h

e
r

b
lo

c
k

s
+

$s
u

r
p

lu
s

n
o

d
e

s
+

$a
d

ju
st

m
e
n

t
;

#
p

r
in

t
”

ir
<

$i
d

e
a

l
r

o
w

s
>

,
ic

<
$

id
e

a
l

c
o

ls
>

,
re

m
<

$r
e

m
a

in
d

e
r
>
\n

”
;

#
p

r
in

t
”

ie
<

$
id

e
a

l
e

d
g

e
s
>

,
s

b
<

$
s

ta
r

te
r

b
lo

c
k
>

,
o

b
<

$
o

th
e

r
b

lo
c

k
s
>

,
sn

<
$s

u
r

p
lu

s
n

o
d

e
s
>
\n

”
;

}
e

ls
e
{

$i
d

e
a

l
r
o

w
s

=
$n

o
d

e
s
−

1
;
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$
id

e
a

l
c

o
ls

=
$n

o
d

e
s
−

1
;

$
id

e
a

l
e

d
g

e
s

=
$n

o
d

e
s
−

1
;

} r
e
tu

r
n

(
$i

d
e

a
l

e
d

g
e

s
,

$i
d

e
a

l
r
o

w
s

,
$

id
e

a
l

c
o

ls
,

$r
e
m

a
in

d
e
r

)
;

} T
h
is

sh
ow

s
th

e
ro

u
ti

n
e

fo
r

ca
lc

u
la

ti
n
g

th
e

op
ti

m
u
m

n
u
m

b
er

of
co

n
n
ec

ti
on

s
fo

r
a

su
p
p
li
ed

n
u
m

b
er

of
ac

ti
ve

ce
ll
s

on
a

h
ex

ag
on

al
gr

id
w

it
h

to
ro

id
al

b
ou

n
d
ar

y
co

n
d
it

io
n
s

su
b

g
e

t
fu

ll
t
o

r
r
id

a
l

m
a

x
e

d
g

e
s
{

m
y

$
s

e
lf

=
s
h

if
t

;

m
y

$n
o

d
e
s

=
s
h

if
t

;

m
y

$r
o

w
s

=
s
h

if
t

;

m
y

$
c

o
ls

=
s
h

if
t

;

m
y

$e
d

g
e
s

=
0

;

#
s

e
t

u
p

v
a

r
ia

b
le

s

m
y

$i
d

e
a

l
r
o

w
s

=
in

t
(
0

.5
+

s
q

r
t

(
$n

o
d

e
s

)
)

;
#

D
8

ro
w

s

m
y

$
id

e
a

l
c

o
ls

=
in

t
(
$n

o
d

e
s

/
$i

d
e

a
l

r
o

w
s

)
;

#
E

8
c

o
ls

fr
o

m
q

u
o

ti
e

n
t

m
y

$r
e
m

a
in

d
e
r

=
in

t
(
$n

o
d

e
s

%
$i

d
e

a
l

r
o

w
s

)
;

#
F

8
r

e
m

a
in

d
e

r
fr

o
m

m
od

m
y

$n
u

m
o

f
e
d

g
e
s

=
6

;
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m
y

$l
o

w
e

s
t

=
0

;

#
s

e
t

u
p

lo
w

e
s

t
b

e
tw

e
e

n
ro

w
s

a
n

d
c

o
ls

:

if
(

$i
d

e
a

l
r
o

w
s

=
=

$
id

e
a

l
c

o
ls

)
{

$l
o

w
e

s
t

=
$i

d
e

a
l

r
o

w
s

;

}
e

ls
if

(
$i

d
e

a
l

r
o

w
s
<

$
id

e
a

l
c

o
ls

)
{

$l
o

w
e

s
t

=
$i

d
e

a
l

r
o

w
s

;

}
e

ls
e
{

$l
o

w
e

s
t

=
$

id
e

a
l

c
o

ls
;

} if
(

$n
o

d
e
s

=
=

(
$r

o
w

s
∗

$
c

o
ls

)
)
{

#
w

e
h

a
v

e
a

f
u

ll
g

r
id

w
it

h
f

u
ll

w
ra

p
a

ro
u

n
d

:

$e
d

g
e
s

=
$n

o
d

e
s

∗
$n

u
m

o
f

e
d

g
e
s

/
2

;

}
e

ls
e
{

#
fi

r
s

t
c

a
lc

u
la

te
fo

r
r

e
c

ta
n

g
le
−

tr
e

a
t

a
s

to
ta

l
w

ra
p

a
ro

u
n

d
;

#
e

v
e

r
y

e
d

g
e

is
c

o
n

n
e

c
te

d
,

so
to

ta
l

h
a

lv
e

d
:

$e
d

g
e
s

=
$i

d
e

a
l

r
o

w
s

∗
$

id
e

a
l

c
o

ls
∗

$n
u

m
o

f
e
d

g
e
s

/
2

;

#
n

o
w

c
h

e
c

k
if

in
fa

c
t

it
is

n
o

t
a

p
e

r
fe

c
t

r
e

c
ta

n
g

le
−

if
n

o
t

d
o

#
s

p
e

c
ia

li
s

e
d

c
a

lc
u

la
ti

o
n

:

if
(

$r
e
m

a
in

d
e
r
>

0
)
{

#
O

K
−

le
t

’s
ta

k
e

a
w

a
y

th
e

w
ra

p
a

ro
u

n
d

o
f

th
e

lo
w

e
s

t
b

o
u

n
d

a
ry

:

m
y

$
lo

s
s

=
7

+
(

4
∗

in
t

(
(
$l

o
w

e
s
t
−

2
)

/
2

)
)

+
(

1
∗

in
t

(
$l

o
w

e
s
t

%
2

)
)

;
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m
y

$g
a

in
=

4
+

(
(
$r

e
m

a
in

d
e
r
−

1
)

∗
5

)
;

$e
d

g
e
s

=
$e

d
g

e
s
−

$
lo

s
s

+
$g

a
in

;

}
} r
e
tu

r
n

$e
d

g
e
s

;

} C
.4

D
y
n
a
m

ic
sc

e
n
a
ri

o
g
a
th

e
ri

n
g

a
lg

o
ri

th
m

T
h
is

co
d
e

fr
om

T
S
M

K
er

n
el

.p
m

sh
ow

s
th

e
si

m
p
le

ga
th

er
in

g
al

go
ri

th
m

u
se

d
in

th
e

d
y
n
am

ic
sc

en
ar

io
.

su
b

g
e

t
n

e
w

lo
c

a
t
io

n
{

m
y

$
s

e
lf

=
s
h

if
t

;

m
y

$o
ld

=
s
h

if
t

;

#
s

e
t

u
p

th
e

n
ew

lo
c

a
ti

o
n

a
s

th
e

o
ld

in
c

a
s

e
n

o
m

o
ve

m
en

t
is

p
o

s
s

ib
le

:

m
y

$n
ew

=
$o

ld
;

#
c

a
lc

u
la

te
th

e
c

a
r

te
s

ia
n

c
o

o
r

d
in

a
te

s
:

m
y

(
$x

,
$y

)
=

(
in

t
$o

ld
/

$
s
e

lf
−>

c
o

lu
m

n
s

,
$o

ld
%

$
s
e

lf
−>

c
o

lu
m

n
s

)
;

#
c

a
lc

u
la

te
th

e
c

e
n

tr
e

o
f

th
e

g
r

id
:
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m
y

$c
e

n
t
r
e

x
=

in
t

(
$

s
e

lf
−>

ro
w

s
/

2
)

;

m
y

$c
e

n
t
r
e

y
=

in
t

(
$

s
e

lf
−>

c
o

lu
m

n
s

/
2

)
;

#
O

K
:

le
t

’s
fi

n
d

o
u

r
o

r
ie

n
ta

te
.

#
F

ir
s

t
w

e
re

a
r

e
w

e
w

it
h

r
e

la
ti

o
n

s
h

ip
to

th
e

c
e

n
tr

e
o

f
th

e
x−

a
x

is
−

to
th

e
le

ft
,

o
n

it
,

#
o

r
to

th
e

r
ig

h
t

.
T

h
en

w
it

h
in

th
e

r
e

le
v

a
n

t
x−

o
r

ie
n

ta
ti

o
n

,
w

h
e

re
a

r
e

w
e

in
r

e
la

ti
o

n
s

h
ip

#
to

th
e

c
e

n
tr

e
o

f
th

e
y−

a
x

is
−

a
b

o
v

e
,

o
n

,
o

r
b

e
lo

w
.

T
h

e
o

r
ie

n
ta

ti
o

n
th

e
n

d
e

te
r

m
in

e
s

#
th

e
o

r
d

e
r

/
lo

c
a

ti
o

n
o

f
th

e
th

r
e

e
c

e
ll

s
c

h
e

c
k

e
d

;
a

s
so

o
n

a
s

o
n

e
is

fo
u

n
d

e
m

p
ty

,
it

is

#
s

e
t

a
s

th
e

n
ew

lo
c

a
ti

o
n

,
b

u
t

if
a

ll
a

r
e

o
c

c
u

p
ie

d
th

e
a

c
ti

v
e

a
g

e
n

t
d

o
e

s
n

o
t

m
o

ve
.

#
is

it
le

f
t

o
f

th
e

c
e

n
tr

e
o

f
th

e
x−

a
x

is
:

if
(

$x
<

$c
e

n
t
r
e

x
)
{

#
Y

es
−

fi
n

d
w

h
e

re
it

is
r

e
th

e
c

e
n

tr
e

o
f

th
e

y−
a

x
is

&
c

h
e

c
k

p
o

te
n

ti
a

l
n

ew
lo

c
a

ti
o

n
s

:

if
(

$y
<

$c
e

n
t
r
e

y
)
{

#
u

p
p

e
r

le
f

t

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y

+
1

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
+

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

,
$y

+
1

)
e
q

’0
’

)
{

$n
ew

=
(

$x
∗

$
s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
+

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
;

}
}

e
ls

if
(

$y
=

=
$c

e
n

t
r
e

y
)
{
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#
u

p
p

e
r

c
e

n
tr

e

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y

+
1

)
e
q

’0
’

)
{

$n
ew

=
(

(
$x

+
1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
+

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y
−1

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
−

1
;

}
}

e
ls

if
(

$y
>

$c
e

n
t
r
e

y
)
{

#
u

p
p

e
r

r
ig

h
t

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y
−1

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
−

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

,
$y
−1

)
e
q

’0
’

)
{

$n
ew

=
(

$x
∗

$
s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
−

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
;

}
}

#
O

K
:

is
it

o
n

c
e

n
tr

e
o

f
th

e
x−

a
x

is
:

}
e

ls
if

(
$x

=
=

$c
e

n
t
r
e

x
)
{

#
Y

es
−

fi
n

d
w

h
e

re
it

is
r

e
th

e
c

e
n

tr
e

o
f

th
e

y−
a

x
is

&
c

h
e

c
k

p
o

te
n

ti
a

l
n

ew
lo

c
a

ti
o

n
s

:

if
(

$y
<

$c
e

n
t
r
e

y
)
{

#
c

e
n

tr
e

le
f

t
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if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

,
$y

+
1

)
e
q

’0
’

)
{

$n
ew

=
(

$x
∗

$
s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
+

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x
−

1
,

$y
+

1
)

e
q

’0
’

)
{

$n
ew

=
(

(
$x
−

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
+

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y

+
1

)
e
q

’0
’

)
{

$n
ew

=
(
(

$x
+

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
+

1
;

}
}

e
ls

if
(

$y
=

=
$c

e
n

t
r
e

y
)
{

#
C

E
N

T
R

E
−

a
t

ta
r

g
e

t
lo

c
a

ti
o

n
−

d
o

n
o

th
in

g

}
e

ls
if

(
$y

>
$c

e
n

t
r
e

y
)
{

#
c

e
n

tr
e

r
ig

h
t

if
(

$
s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

,
$y
−1

)
e
q

’0
’

)
{

$n
ew

=
(

$x
∗

$
s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
−

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x
−

1
,

$y
−1

)
e
q

’0
’

)
{

$n
ew

=
(

(
$x
−

1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
−

1
;

}
e

ls
if

(
$

s
e

lf
−>

ti
m

e
st

e
p

s
−>

[−
1]
−>

g
e

t
n

o
d

e
s
t
a

t
e

(
$x

+
1

,
$y
−1

)
e
q

’0
’

)
{

$n
ew

=
(

(
$x

+
1
)

∗
$

s
e

lf
−>

c
o

lu
m

n
s

)
+

$y
−

1
;

}
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;

}



Appendix D

Outline of programs and utilities

This appendix outlines the main utilities and programs used in the thesis. It

is is divided into three main sections. The first lists name and functions of the

main shell scripts and Perl utilities written and used. The second deals with the

Perl programs coded to create, run and analyse the scenarios and the particle

and randomised automaton models. This section also outlines how the object

orientated programs are constructed and illustrates how they work. The final

section details the Java program built on the MUSCLE code base to provide the

deterministic automaton model. The code and basic manuals can be found on the

CD accompanying the thesis.

D.1 Shell and Perl utilities

This section lists examples of the main shell and Perl scripts written to facilitate

the test, simulations and analysis carried out as part of this thesis. The shell

scripts end with .sh and the Perl scripts with .pl. This list does not include the

.pl files that are used to log and manage the calls to the Perl programs that create

and simulate the dynamic scenario and the particle and randomised automaton

models; these are outlined in section D.2

• create prob-array.pl - this creates initial probability arrays. A p value

between 0.1 and 0.9, row and column size, and number of grids to create

are passed in from the command line invocation. The grid is output in text

format to the terminal and can be redirected into a file. This code also

provided the basis for the internal creation of probability grids in the prob-

ability scenario program, (TSM Kernel). A cell is set as active by the testing

of a pseudo random number generated to fifteen decimal places between, but

not including, 0 and 1 against the supplied p value, if it is less or equal to

the p value the cell is flagged as active.

369
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• DNH ALL and last as pdf.pl - this Perl script invokes the delta notch

signalling simulation. The following parameters are passed in: the row and

column size of the grid, the threshold value, the range, the temporal noise

probability value, the spatial noise value, the number of time steps, and the

update type (ROA or RSA). The grids produced by the simulation are saved

in a number of ways, including text and xml, (the last xml grid is extracted

and saved as a pdf file). The statistics are saved for use in the analysis

program.

• DNH get xml records.pl - this Perl script takes in a file created from a

previous run of the delta-notch signalling model that holds the grids created

at each time step in text format. The script outputs a xml rendition of the

grids.

• dnh noise.sh - example of a script used to automate the running of multiple

instances of one of the other programs or scripts. In this case the Perl script

DNH ALL and last as pdf.pl is called through a series of three loops and

a number of times in each loop. The called script runs the randomised

delta notch signalling model, (DNH Kernel). The three loops cover the

three range settings of 1, 2 and 3; the calls to DNH ALL and last as pdf.pl

are passed different noise, asynchronous updating schemes and threshold

settings for the invocation of the randomised automaton model. The called

program runs the simulation and also extracts a xml rendition of the last

grid as a pdf files, (as used in Figure 4.31.

• extract grids.sh - this script extracts a grid or sequence of grids into a

separate file. The parameters are the input file that is having the grid(s) ex-

tracted, the first grid to be extracted and the number of grids to be extracted

- so fname 24 1, extracts just the 24th grid, whereas fname 24 4, extracts

the 24th, 25th, 26th and 27th grids. This allows further processing, such as

rendering the grids into a different format, without having to reprocess the

whole simulation again.

• extract record.sh - this script takes in a html file and extracts a specified

‘grid’ display into a new html file, which is then rendered into a pdf file via

the script pdffile.sh. The output can then be used in the LATEX files used to

write up this thesis.

• g csv.pl - This program takes in a csv file from a spreadsheet and converts

it into the grid text format used in the program suite. This is used to convert

grids and patterns created in a spreadsheet for use with the hand crafted

scenarios in subsection 4.4.1.
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• MemoryUse.pl - this script extracts the memory use of each ANode on an

AN grid, and for each time step.

• p value text.sh - this script creates a range of probability grids from 0.1,

0.125, 0.150, 0.175, 0.2, 0.225, ... 0.875, 0.9. These are used in the testing

of the probability scenario.

• pdffile.sh - this script takes the input in a html file created from a simula-

tion, amends the height and width so that it will display well within an A4

page and then renders it into a pdf file:

• process grids.sh - this is an example of a script that extracts blocks of

records from the output of a simulation. In this case the script is set up

to extract and process blocks of records from the delta notch signalling

simulation output. The parameters passed into the script are the number of

records to be extracted in each block and the file from which they are to be

extracted from. Each extraction is placed in a separate file and reprocessed

by the DNH Kernel suite.

• rename.pl - this replicates the ‘rename’ file utility.

• s-data-it.sh - this script takes in a stats file and then produces separate

and combined graphs (.png) and LATEX tables (.tex ) for the four metrics.

• tsm combined2b.sh - example of a script running a series of tests and then

combining selected elements, (usually the last time step grid), to produce

statistics and graphs. This script processes the output grids resulting from

the dynamic scenario run with a 20 by 20 grid and for 300 to 390 agents.

Each output is run with the C Kernel program to produce statistics that

are then combined into one file; this file is then processed by the S Date

program to produce a graph.

D.2 Perl programs

There are five Perl programs in the software suite created for this thesis:

dynamic scenarios TSM Kernel,

randomised model RDC Kernel,

statistics program C Kernel,

particle model DNH Kernel, and

analysis program S Data
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The programs use the Perl Moose object orientated environment. Each program

is made up of a series of .pm files, with the entry point through a .pm file with

the program name, such as TSM Kernel.pm. The invocation of each program is

handled through a .pl Perl script with the equivalent name, i.e., TSM Kernel.pl.

The five programs and their scripts are outlined in the subsections below.

D.2.1 TSM Kernel

This program represents a view of the basic structure used in the Perl programs.

Its purpose is to create and run the dynamic scenario, as outlined and ana-

lysed in subsection 4.4.3 & subsection 5.2.2. The program is invoked through

TSM Kernel.pm, which has an array of grids, each representing a time step. The

grids are coded in TSMGrid.pm, which has an array of nodes matching the num-

ber of cells on the grid. The nodes are coded in TMS Node.pm A schematic

of the program is shown in Figure D.1, and the options for invoking it through

TMS Kernel.pl in Figure D.2.

TMS_Kernel.pm

Purpose: entry point and controller

Main attributes: contains an array of 
grids, one for each time step in a 
simulation - instances of TMS_Grid

Main functions: 
(a) creates the initial random grid, or 

reads in a text file with the grid.
(b) runs the rules of the simulation, 

creating the time step grids.
(c) outputs text representation of the 

grids (this can be read back in 
again)

(d) outputs the grids in html (image of 
grid, highlighting the states of 
each cell).

TMS_Grid.pm

Purpose: represents a time step grid

Main attributes: 
(1) number of rows and columns
(2) contains an array of the nodes 

(aka cells) on the grid - instances 
of TMS_Node.

Functions: gives access to the nodes.

TMS_Node.pm

Purpose: represents a node

Main attributes: location and state of 
the node

Function: holds the location and the 
state of the node.

TSM_Kernel.pm
Controller

TSM_Grid.pm
Time step grid

TMS_Node
Node (cell)

TMS_Node
Node (cell)

Figure D.1: Schematic of TMS Kernel.
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TMS_Kernel.pl   ! (invokes the dynamic scenario)

RUN! ! perl TMS_Kernel.pl    run-type 
! ! ! [if 'r' then -> rows cols a-count loop-count output-style] 
! !   OR [if 'f' then -> input_file loop-count output-style]

run-type:! ! ! -! r - create the required random grid
! ! ! ! ! f - read grid in from file
input_file:! ! ! -! input file with starter grid in it
rows:!! ! ! -! number rows 
cols:! ! ! ! - ! number columns
a-count:! ! ! -! number of agents
loop-count! ! ! -! number of iterations (aka time steps)
output-style! sg! -! save the grids as text! --> output to txt file in
! ! ! ! ! ! ! ! ! ! ! output_grids/
! ! ! sh! -! save the grids as html! --> output to html file in 
! ! ! ! ! ! ! ! ! ! ! displays/
! ! ! st! -! save the state as text! --> output to txt file in 
! ! ! ! ! ! ! ! ! ! ! output_texts/
! ! ! all! -! perform the equivalent of sg and sh

Process:!
(1) read in the parameters based on whether the first one is 'r' or 'f'.
(2) set up the log file.
(3) process the output-style.
(4) output the relevant file(s)

Files created:
Log files: everything is logged to a log file related to the run of the program

logs/ + month day + - + hour + minute + second + _RDC_  + rows + by + cols 
+ w + a-count + pt + pT + e + pE  + a + pA + m + m-range + ts + ts-count + _ 
+ update-type + _log.txt

e.g.    logs/19-141344_DNH_1H3_20by20t1r1tn0.1sn0utR_log.txt

The output files are also made up and put in relevant directories:
directory/ + month day + - + hour + minute + second + _CK_ + inputfile pre . 
name + active + nhood + range + _option.file-type

Figure D.2: TMS Kernel-pl - used to invoke the TMS Kernel program.
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D.2.2 RDC Kernel

This program creates and runs the reactive-diffusion chemotaxis amoebae model

used as the particle automaton model. The structure is the same as TSM Kernel,

but with RDC Kernel.pm, RDC Grid.pm and RDC Node.pm A schematic of the

RDC Kernel program is shown in Figure D.3, and the options for invoking it

through TMS Kernel.pl in Figure D.4.

RDC_Kernel.pm

Purpose: entry point and controller

Main attributes: contains an array of 
grids, one for each time step in a 
simulation - instances of RDC_Grid

Main functions: 
(a) creates the initial random grid, or 

reads in a text file with the grid.
(b) runs the rules of the simulation, 

creating the time step grids - 
including noise perturbation and 
different updating schemes.

(c) outputs text representation of the 
grids (this can be read back in 
again)

(d) outputs the grids in html (image of 
grid, highlighting the states of 
each cell).

RDC_Grid.pm

Purpose: represents a time step grid

Main attributes: 
(1) the number of rows and columns
(2) contains an array of the nodes 

(aka cells) on the grid - instances 
of RDC_Node.

Functions: gives access to the nodes

RDC_Node.pm

Purpose: represents a node

Main attributes: location and state of 
the node and the number of amoeba 
on the node

Function: holds the location, the state 
of the node and the number of 
amoeba on it. The state can be empty, 
occupied or in a refractory or excited 
state. The node can be empty or have 
one or more amoeba in it.  

RDC_Kernel.pm
Controller

RDC_Grid.pm
Time step grid

RDC_Node
Node (cell)

RDC_Node
Node (cell)

Figure D.3: Schematic of RDC Kernel.
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RDC_Kernel.pl   (invokes the particle automaton model of amoebae and 
reaction-diffusion and chemotaxis)
RUN:!! perl RDC_Kernel.pl    run-type 
! ! ! [if 'r' then -> rows cols a-count pT pE pA m-range ts-count
! ! ! ! update-type ts-range] 
! !   OR [if 'f' then -> input_file pT pE pA m-range ts-count 
! ! ! ! update-type ts-range]

run-type:! ! ! -! r - create the required grid
! ! ! ! ! f - read grid in from file
input_file:! ! ! -! input file with starter grid in it
rows:!! ! ! -! number rows 
cols:! ! ! ! - ! number columns
a-count:! ! ! -! amoeba count
pT:! ! ! ! -! 0 =< transmission probability setting =< 1
pE:! ! ! ! -! 0 =< environment probability setting =< 1
pA:! ! ! ! -! 0 =< agitation probability setting =< 1
m-range:! ! ! -! 1 =< Manhattan range =< 3
ts-count:! ! ! -! number of time steps
update-type:! ! -! a/A, or s/A  [synchronous or asynchronous - 
! ! ! ! ! defaults to S if not provided 
ts-range:! ! ! -! time steps to be processed; if none specified 
! ! ! ! ! then all time steps are processed

Process:! (A) if r then (1) create a random grid with rows cols a-count, (2) 
run the simulation with pT pE pA m-range ts-count update-type, (3) save 
amoeba grid for analysis in output_grids/ with _ag.txt, (4) save all the grids or 
the ones specified in ts-range as html in displays/ with _eh.html and (5) save 
the last grid as text in output_grids/ with _eg.txt.
! ! (B) if f then (1) use input file name to set up log, (2) read in file 
and set up initial grid. (3) run the simulation with pT pE pA m-range ts-count 
update-type, (4) save amoeba grid for analysis in output_grids/ with _ag.txt, 
(5) save all the grids or the ones specified in ts-range as html in displays/ with 
_eh.html and (6) save the last grid as text in output_grids/ with _eg.txt.

Files created:
Log files: everything is logged to a log file related to the run of the program
logs/ + month day + - + hour + minute + second + _RDC_  + rows + by + cols 
+ w + a-count + pt + pT + e + pE  + a + pA + m + m-range + ts + ts-count + _ 
+ update-type + _log.txt
e.g.    logs/19-141344_DNH_1H3_20by20t1r1tn0.1sn0utR_log.txt

The output files are also made up and put in relevant directories:
directory/ + month day + - + hour + minute + second + _CK_ + input-file pre . 
name + active + nhood + range + _option.file-type

Figure D.4: RDC Kernel.pl - used to invoke the RDC Kernel program.
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D.2.3 C Kernel

This program is used calculate the statistics from the output of the programs using

a rectangular grid, (TSM Kernel and RDC Kernel. The basis program structure

is the same as the previous programs, but with C Kernel.pm, C Grid.pm and

C Node.pm. In addition, each ‘time step’ or instance of C Grid.pm has an array

of sub-grids that individually holds each cluster and singleton on the grid; the array

holds instances of M Grid.pm, which holds an array of instances of M Node.pm, (M

signifies Manhattan distance). A schematic of the program is shown in Figure D.5,

and the options for invoking it through C Kernel.pl in Figure D.6.

D.2.4 DNH Kernel

This program holds both the code for the delta notch signalling model used as

the randomised automaton model, and the code to perform for the hexagonal grid

the statistical analysis equivalent to that found in C Kernel.pm. Consequently its

structure follows that of C Kernel.pm, with DNH Kernel.pm providing the entry

point and control code, DNH Grid.pm and DNH Node.pm providing the code

representing the time step array of grids, and H Grid and H Node providing the

code for the instances of sub-grids for each time step grid, (H signifies hexagonal

grid). A schematic of the program is shown in Figure D.7, and the options for

invoking it through DNH Kernel.pl in Figure D.8 and Figure D.9.
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C_Kernel.pm

Purpose: entry point and controller

Main attributes: contains an array of 
grids, one for each time step in a 
simulation - instances of C_Grid

Main functions: 
(a) reads in the time step grids 

produced from a simulation using 
a rectangular grid.

(b) gives access to the time step 
grids - including the sub-grids set 
up for each time step grid.

(c) outputs text representation of the 
sub-grids (this can be read back 
in again)

(d) outputs the sub-grids in html 
(image of grid, highlighting the 
states of each cell).

(e) outputs the metrics’ statistics of 
the simulation.

C_Grid.pm

Purpose: represents a time step grid

Main attributes: 
(1) number of rows and columns 
(2) contains an array of the nodes 

(aka cells) on the grid - instances 
of C_Node.

(3) contains an array of sub-grids 
each holding a cluster or singleton 
identified on the grid - instances of 
M_Grid.

Functions: 
(a) creates and gives access to the 

nodes.
(b) creates and gives access to the 

sub-grids
(c) runs the metrics to produce the 

statistics.

C_Node.pm

Purpose: represents a node

Main attributes: location and state of 
the node

Function: holds the location and state 
of the node.

M_Grid.pm

Purpose: represents a grid holding a 
cluster or just a singleton identified on 
the time step grid.

Main attributes: contains an array of 
the nodes (aka cells) - instances of 
M_Node.

Functions: 
(a) creates and gives access to the 

nodes.
(b) used to calculate the optimum 

number of connections for a given 
number of cells.

M_Node.pm

Purpose: represents a node

Main attributes: location and number 
of connected edges.

Function: holds the location and 
number of connected edges of the 
node.

C_Kernel.pm
Controller

C_Grid.pm
Time step grid

C_Node
Node (cell)

C_Node
Node (cell)

M_Grid.pm
sub-grid

M_Grid.pm
sub-grid

M_Node
Node (cell)

M_Node
Node (cell)

M_Node
Node (cell)

M_Node
Node (cell)

Figure D.5: Schematic of C Kernel.
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C_Kernel.pl! (generates statistics from the measurement of  
rectangular grids)
RUN:!! perl C_Kernel.pl    input_file.txt    active    nhood   range    option  
! ! ! ! ! [option2 [stat name(s)] ] 
Parameters:
active: ! ! ! designates the value that identifies a cell as active - 
! ! ! ! usually 1
n[eighbour]hood! ! M or V
[Manhatten] range:! 1, 2, or 3
option: ! ! ! sh! - state as html; output to html file in displays/
! ! ! ! st! - state as text; output to txt file in output_texts/
! ! ! ! ch! - connected grids as html; output to html file in 
! ! ! ! !   displays/
! ! ! ! cst! - this option has to have option 2 supplied
option 2: ! ! ! only used with option cst, so cst 1, or cst 2.... cst 8
! ! ! ! 1! - output to screen or to file redirection the 
! ! ! ! !   connected sub-grids as text
! ! ! ! 2! - output to screen or to file redirection the stats
! ! ! ! !   as text
! ! ! ! 3! - output to screen or to file redirection any 
! ! ! ! !   experimental stats as text
(this combines 7 & 8)! 4! - get specified stats and output to stats/ directory
! ! ! ! !   and create a table and output to thesis_files/ 
! ! ! ! 5! - output to screen or to file redirection ALL 
! ! ! ! !   experimental stats as text
! ! ! ! 6! - output to screen or to file redirection a 
! ! ! ! !    summary of the stats as text
! ! ! ! 7! - get stats and output to stats/ directory
! ! ! ! 8! - get specified stats and create a table and
! ! ! ! !   output to thesis_files/

Process: (1) read in date from input_file, (2) setup connected sub-grids, then 
if option is one of sh, st, ch, or cst with no further option do as above, ELSE if 
cst with a further option do as above.

files created (using the input file TSM_pv_0-6.txt as an example):
The '.txt' is removed from the input file name, giving a shortname; e.g. 
TSM_pv_0-6.txt has a shortname = TSM_pv_0-6
The shortname is then supplimented with and '_' plus the active, nhood and 
range parameters, giving a mid-filename of TSM_pv_0-6_1M3
This is prefixed with a date / time stamp and a program ID and postfixed with 
the option (except for log files) and the relevant file type.
e.g.! ! logs/24-153938_CK_TSM_pv_0-6_1M3_log.txt
! ! displays/24-153938_CK_TSM_pv_0-6_1M3_sh.html
! ! stats/24-153938_CK_TSM_pv_0-6_1M3_cst-gs.txt
! ! thesis_files/24-153938_CK_TSM_pv_0-6_1M3_cst-sbt8.txt

Figure D.6: C Kernel.pl - Perl script used to invoke the C Kernel
program.
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DNH_Kernel.pm

Purpose: entry point and controller

Main attributes: contains an array of 
grids, one for each time step in a 
simulation - instances of DNH_Grid

Main functions: 
(a) creates the initial grid or reads in 

a file.
(b) runs the rules of the simulation, 

creating the time step grids - 
including noise perturbation and 
different asynchronous updating 
schemes. 

(c) outputs text representation of the 
time step grids (this can be read 
back in again)

(d) outputs the time step grids in xml 
(image of grid, highlighting the 
states of each cell).

(e) gives access to the time step 
grids - including the sub-grids set 
up for each time step grid.

(f) outputs text representation of the 
sub-grids (this can be read back 
in again)

(g) outputs the sub-grids in xml 
(image of grid, highlighting the 
states of each cell).

(h) outputs the metrics’ statistics of 
the simulation.

DNH_Grid.pm

Purpose: represents a time step grid

Main attributes: 
(1) number of rows and columns 
(2) contains an array of the nodes 

(aka cells) on the grid - instances 
of DNH_Node.

(3) contains an array of sub-grids 
each holding a cluster or singleton 
identified on the grid - instances of 
H_Grid.

Functions: 
(a) creates and gives access to the 

nodes.
(b) creates and gives access to the 

sub-grids
(c) runs the metrics to produce the 

statistics.

DNH_Node.pm

Purpose: represents a node

Main attributes: location and state of 
the node

Function: holds the location and state 
of the node.

H_Grid.pm

Purpose: represents a grid holding a 
cluster or just a singleton identified on 
the time step grid.

Main attributes: contains an array of 
the nodes (aka cells) on the grid - 
instances of H_Node.

Functions: 
(a) creates and gives access to the 

nodes.
(b) used to calculate the optimum 

number of connections for a given 
number of cells.

H_Node.pm

Purpose: represents a node

Main attributes: location and number 
of connected edges.

Function: holds the location and 
number of connected edges of the 
node.

H_Node
Node (cell)

DNH_Kernel.pm
Controller

DNH_Grid.pm
Time step grid

H_Grid.pm
sub-grid H_Node

Node (cell)

H_Grid.pm
sub-grid

H_Node
Node (cell)

H_Node
Node (cell)

DNH_Node
Node (cell)

DNH_Node
Node (cell)

Figure D.7: Schematic of DNH Kernel.
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DNH_Kernel.pl! ! (invokes the randomised automaton model of 
delta notch signalling)
RUN! ! perl DNH_Kernel.pl  active range  run-type 
! ! ! [if 'f' or 'F' then -> input-file  output-option [ts-range]] 
! !   OR [if 'c' or 'C' then -> i   j threshold  range   t-noise-prob   
! ! ! s-noise-prob   loop-count   update-type   output-option]

active: ! ! - usually 1 (for active cell)
range:! ! - Manhattan distance of 1, 2 or 3 
run-type:! ! - c or C - Creates the grids and performs the required
! ! !    ! action specified in other arguments below
! ! !    f or F - uses an input File and then actions the 
! ! !   !  output-option
i:! ! ! - numeric number for rows 
j:!  ! ! - numeric number for columns
threshold: ! ! - numeric number
range:! ! - 1, 2 or 3 for neighbourhood count
t-noise-prob: ! - 0 =< temporal noise probability =< 1
s-noise-prob:! - 0 =< spatial noise probability =< 1
loop-count: ! - numeric number
update-type:! - n or N for ROA update WITH noise
    ! ! ! - r or R forRSA update WITH noise
    ! ! ! -a or A for RSA update WITHOUT !noise!

- [DEFAULT]  ROA update WITHOUT noise

output-option:!
- test! - [c/C] only:!    return the activity as text
!    [f/F] only:     run setup_connectedsubgrids 
- all! - [c/C] only:    (1) save state as grid for future re-runs; saved in 
! ! ! ! output_grids/ with _sg.txt, (2) runs activity as text;  
! ! ! ! saved in stats/ with _percentage_at.txt, (3) gets the 
! ! ! ! stats as text; saved in stats/  with _gs_stats.txt and (4) 
! ! ! ! gets time steps as xml; saved in displays/ with _tx.xml
- tx! - [c/C] only:     gets time steps as xml; saved in displays/ with _tx.xml 
!   [f/F] only: !     gets time steps as specified by ts-range as xml; saved in 
! ! ! ! displays/ with _tx.xml 
- txl! - [c/C] only:    (1) save state as grid for future re-runs; saved in
! ! ! ! output_grids/ with _sg.txt, (2) runs activity as text; 
! ! ! ! saved in stats/ with _percentage_at.txt and (3) gets 
! ! ! ! time steps as xml; saved in displays/ with _tx.xml
- st! - [c/C] only:     save state as grid for future re-runs; saved in
! ! !   ! output_grids/ with _sg.txt, 
- sx! - [c/C, f/F]]:     save the state as xml; saved in displays/ with _sx.xml

[continued in next figure]

Figure D.8: DNH Kernel - invokes the DNH Kernel program. [contin-
ued in Figure D.9].
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[DNH_Kernel.pl - continued from previous Figure]

output-option: [continued]

- csgx - [c/C] only:   save connectedsubgrids as xml; saved in displays/ with
! ! ! ! _csgx.xml
!     [f/F] only:    (1) set up the connectedsubgrids, (2) save 
! ! ! ! connectedsubgrids as xml; saved in displays/ with 
! ! ! ! _csgx.xml
- gs! - [c/C] only:     gets the stats as text; saved in stats/  with _gs_stats.txt
!    [f/F] only:!    (1) set up the connectedsubgrids, (2) gets the stats as
! ! ! ! text; saved in stats/  with _gs_stats.txt
- sg! - [c/C] only:     get the state as grids for text output; save in 
! ! ! ! output_grids/ with _sg.txt
- sed!- [f/F] only:      (1) save timesteps as xml; saved in displays/ with 
! ! ! ! _sx.xml, (2) turn file into a pdf by calling pdffile.sh

ts-range:! ! - time steps to be processed; if none specified then all time 
! ! ! ! steps are processed

Process: !
(A) if creating a file then (1) the hexagonal grid is created using i and j, (2) the 
simulation is run using threshold range t-noise-prob s-noise-prob loop-count 
update-type, (3) the connectedsubgrids are set up, and (4) the output-option 
is actioned.
(B) if reading in a file then (1) read in file and (2) action the output-option 
(C) if no parameters are supplied then (1) a random grid of 10 by 10 is 
created, (2) it is run with [1, 1, 0.4, 0.6, 1, R] and (3) the time steps printed 
out as xml

files created:
Log files: everything is logged to a log file related to the run of the program
logs/ + month day + - + hour + minute + second + _DNH_ + active + H + 
range + i + by + j + t + threshold + r + range + tn + t-noise-prob  + sn + s-
noise-prob + ut + update-type + _log.txt
e.g.    logs/19-141344_DNH_1H3_20by20t1r1tn0.1sn0utR_log.txt

The output files are also made up and put in relevant directories:
directory/ + month day + - + hour + minute + second + _CK_ + inputfile pre . 
name + active + nhood + range + _option.file-type

Figure D.9: DNH Kernel - invokes the DNH Kernel program. [contin-
ued from Figure D.8].
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D.2.5 S Data

This program performs the analysis of the statistics produced by C Kernel and

DNH Kernel, producing graphs and tables suitably formatted for inclusion in

LATEX. Its format differs from the previous programs as it deals with statist-

ical information, not grids. The entry and control program is S Data.pm, which

has a hash array of samples (S Sample.pm), each of which holds a hash array of

statistics (S Stats.pm). A schematic of the program is shown in Figure D.10, and

the options for invoking it through S Datal.pl in Figure D.11.

S_Data.pm

Purpose: entry point and controller

Main attributes: contains a hash array 
of data samples - instances of 
S_Sample.

Main functions: 
(a) reads in a file with the stats from 

the simulations and builds the 
samples and stats (aka metric 
value(s) of the simulations).

(b) creates and outputs a graph of 
the data (.png file format). This 
can be for all the metrics, or for 
specific ones.

(c) outputs a table of the data in 
a .tex file format - either all 
metrics, or specified ones.

S_Sample.pm

Purpose: represents a data sample, 
which aligns to the stats produced for 
a simulation or an amalgamation of 
simulations.

Main attributes: hash array of stats 
indexed with the names of the metrics 
passed in.

Functions: gives access to the stats.

S_Stats.pm

Purpose: represents a statistic, which 
aligns to a metric set up by the 
sample. Relates to a single or series 
of simulations.

Main attributes: 
(1) accumulated value
(2) number of samples used
(3) average value of the stat
(4) maximum stat value
(5) minimum stat value

Function: hold details concerning the 
value of the metric for the simulation 
or an amalgamation of simulations.

S_Data.pm
Controller

S_Sample.pm
simulation(s) 

statistics

S_Stats
metric value

S_Stats
metric value

Figure D.10: Schematic of S Data.
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S_Data.pl! ! (generates graphs and tables from the statistics 
produced from C_Kernel and DNH_Kernel)
This controls the processing of stat blocks passed in for analysis.

RUN! ! perl S_Data.pl    input_file    [option] [output_file] [stats-names]

parameters:
option: ! [default]! TEXT!! - return stats specified in stats-names 
! ! ! ! ! !   as a stats block as text (if no option,
! ! ! ! ! !   then defaulst to ALL stats)
! ! ! ! TABLE! - return stats specified in stats-names as a
! ! ! ! ! !   stats block as a table
! ! ! ! GRAPH! - return stats specified in stats-names as a 
! ! ! ! ! !   stats block as a graph in  .png file whose
! ! ! ! ! !   name has to be supplied before the 
! ! ! ! ! !   stats-names
! ! ! ! STAT!! - returns a stats block for a single 
! ! ! ! ! !   stat-name (first of any supplied)
! ! ! ! DIFF!! - returns difference between average, min 
! ! ! ! ! !   and max of ALL stats
! ! ! ! DATA!! - returns textual breakdown of ALL stats

stats-names:! ! 1 or more ! - MeanDensity, Entropy, BBR, C-Value

Process: ! read in input file into a S_Data object, then: 
(a) if no second option or the second param is TEXT, print to screen the stats 

block as text (can be redirected there) - either all the stats or based on 
further parameters (they must all be valid ones)

! OR

(b) if TABLE, there must be at least another parameter which is the output 
file; if no further params then all stats, else based on further parameters 
(they must all be valid ones)

! OR

(c) if GRAPH, there must be at least another parameter which is the 
output .png file;if no further params then all stats, else based on further 
parameters (they must all be valid ones)
!
! OR

(d) if STAT, DIFF or DATA the output is printed to the terminal (can be 
redirected from there into a file)

Figure D.11: S Data.pl - used to invoke the S Data program.
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D.3 Java program

The design of the deterministic automaton model of a theoretical active network

is outlined in section 4.8. The program is written in Java as an extension of the

MUSCLE Java based toolkit that provides the framework to build a CxA, (see

appendix A). The key components of a MUSCLE built distributed CxA applica-

tion are kernels, portals, conduits and a communication protocol. The entry and

control module for the deterministic automaton model is ActiveNodeFlow DS ; this

holds the array of time step grids and links via a conduit to ActiveNode DS, which

itself has a conduit to ActiverNodeProcessor DS module. The operation of the

program is controlled by the ActiveNodeModel DS.ini file, which is used to set

variables; for example, the size of the active network grid, the resources allocated

to each node, the process to carry out (such as Replicate), and a node’s memory

requirements. The messages between the modules are text based. The code, ini

file and basic manuals can be found for the Java and Perl programs on the CD

distributed with the thesis.
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