11,381 research outputs found

    282300 - Video Surveillance

    Get PDF

    Fast and accurate shot noise measurements on atomic-size junctions in the MHz regime

    Get PDF
    Shot noise measurements on atomic and molecular junctions provide rich information about the quantum transport properties of the junctions and on the inelastic scattering events taking place in the process. Dissipation at the nanoscale, a problem of central interest in nano-electronics, can be studied in its most explicit and simplified form. Here, we describe a measurement technique that permits extending previous noise measurements to a much higher frequency range, and to much higher bias voltage range, while maintaining a high accuracy in noise and conductance. We also demonstrate the advantages of having access to the spectral information for diagnostics.Comment: 8 figure

    Aircraft electromagnetic compatibility

    Get PDF
    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE

    Analysis of electrical transients created by lightning

    Get PDF
    A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke
    corecore