185 research outputs found

    Antenna subset selection for cyclic prefix assisted MIMO wireless communications over frequency selective channels

    Get PDF
    Antenna (subset) selection techniques are feasible to reduce the hardware complexity of multiple-input multiple-output (MIMO) systems, while keeping the benefits of higher-order MIMO systems. Many studies of antenna selection schemes are based on frequency-flat channel models, which are inconsistent to broadband MIMO systems employing spatial-multiplexing. In broadband MIMO systems aiming to provide high-data-rate links, the employed signal bandwidth is typically larger than the coherence bandwidth of the channel so that the channel will be of frequency selective nature. Within this contribution we provide an overview on joint transmitter- and receiver-side antenna subset selection methods for frequency selective channels and deploy them in MIMO orthogonal frequency division multiplexing (OFDM) systems and MIMO single-carrier (SC) systems employing frequency domain equalization (FDE).DFG/KA 1154/1

    Novel irregular LDPC codes and their application to iterative detection of MIMO systems

    Get PDF
    Low-density parity-check (LDPC) codes are among the best performing error correction codes currently known. For higher performing irregular LDPC codes, degree distributions have been found which produce codes with optimum performance in the infinite block length case. Significant performance degradation is seen at more practical short block lengths. A significant focus in the search for practical LDPC codes is to find a construction method which minimises this reduction in performance as codes approach short lengths. In this work, a novel irregular LDPC code is proposed which makes use of the SPA decoder at the design stage in order to make the best choice of edge placement with respect to iterative decoding performance in the presence of noise. This method, a modification of the progressive edge growth (PEG) algorithm for edge placement in parity-check matrix (PCM) construction is named the DOPEG algorithm. The DOPEG design algorithm is highly flexible in that the decoder optimisation stage may be applied to any modification or extension of the original PEG algorithm with relative ease. To illustrate this fact, the decoder optimisation step was applied to the IPEG modification to the PEG algorithm, which produces codes with comparatively excellent performance. This extension to the DOPEG is called the DOIPEG. A spatially multiplexed coded iteratively detected and decoded multiple-input multiple-output (MIMO) system is then considered. The MIMO system to be investigated is developed through theory and a number of results are presented which illustrate its performance characteristics. The novel DOPEG code is tested for the MIMO system under consideration and a significant performance gain is achieved

    Iterative Receiver Techniques for Data-Driven Channel Estimation and Interference Mitigation in Wireless Communications

    No full text
    Wireless mobile communications were initially a way for people to communicate through low data rate voice call connections. As data enabled devices allow users the ability to do much more with their mobile devices, so to will the demand for more reliable and pervasive wireless data. This is being addressed by so-called 4th generation wireless systems based on orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) antenna systems. Mobile wireless customers are becoming more demanding and expecting to have a great user experience over high speed broadband access at any time and anywhere, both indoor and outdoor. However, these promising improvements cannot be realized without an eΒ±cient design of the receiver. Recently, receivers utilizing iterative detection and decoding have changed the fundamental receiver design paradigm from traditional separated parameter estimation and data detection blocks to an integrated iterative parameter estimator and data detection unit. Motivated by this iterative data driven approach, we develop low complexity iterative receivers with improved sensitivity compared to the conventional receivers, this brings potential benefits for the wireless communication system, such as improving the overall system throughput, increasing the macro cell coverage, and reducing the cost of the equipments in both the base station and mobile terminal. It is a challenge to design receivers that have good performance in a highly dynamic mobile wireless environment. One of the challenges is to minimize overhead reference signal energy (preamble, pilot symbols) without compromising the performance. We investigate this problem, and develop an iterative receiver with enhanced data-driven channel estimation. We discuss practical realizations of the iterative receiver for SISO-OFDM system. We utilize the channel estimation from soft decoded data (the a priori information) through frequency-domain combining and time-domain combining strategies in parallel with limited pilot signals. We analyze the performance and complexity of the iterative receiver, and show that the receiver's sensitivity can be improved even with this low complexity solution. Hence, seamless communications can be achieved with better macro cell coverage and mobility without compromising the overall system performance. Another challenge is that a massive amount of interference caused by MIMO transmission (spatial multiplexing MIMO) reduces the performance of the channel estimation, and further degrades data detection performance. We extend the iterative channel estimation from SISO systems to MIMO systems, and work with linear detection methods to perform joint interference mitigation and channel estimation. We further show the robustness of the iterative receivers in both indoor and outdoor environment compared to the conventional receiver approach. Finally, we develop low complexity iterative spatial multiplexed MIMO receivers for nonlinear methods based on two known techniques, that is, the Sphere Decoder (SD) method and the Markov Chain Monte Carlo (MCMC) method. These methods have superior performance, however, they typically demand a substantial increase in computational complexity, which is not favorable in practical realizations. We investigate and show for the first time how to utilize the a priori information in these methods to achieve performance enhancement while simultaneously substantially reducing the computational complexity. In our modified sphere decoder method, we introduce a new accumulated a priori metric in the tree node enumeration process. We show how we can improve the performance by obtaining the reliable tree node candidate from the joint Maximum Likelihood (ML) metric and an approximated a priori metric. We also show how we can improve the convergence speed of the sphere decoder (i.e., reduce the com- plexity) by selecting the node with the highest a priori probability as the starting node in the enumeration process. In our modified MCMC method, the a priori information is utilized for the firrst time to qualify the reliably decoded bits from the entire signal space. Two new robust MCMC methods are developed to deal with the unreliable bits by using the reliably decoded bit information to cancel the interference that they generate. We show through complexity analysis and performance comparison that these new techniques have improved performance compared to the conventional approaches, and further complexity reduction can be obtained with the assistance of the a priori information. Therefore, the complexity and performance tradeoff of these nonlinear methods can be optimized for practical realizations

    Contributions to network planning and operation of Flex-Grid/SDM optical core networks

    Get PDF
    Premi Extraordinari de Doctorat, promociΓ³ 2018-2019. Γ€mbit de les TICThe ever demanding bandwidth requirements for supporting emerging telecom services such as ultra-high-definition video streaming, cloud computing, connected car, virtual/augmented reality, etc., bring to the fore the necessity to upgrade continuously the technology behind transport networks in order to keep pace with this exponential traffic growth. Thus, everything seems to indicate that fixed-grid Wavelength-Division Multiplexed (WDM) networks will be upgraded by adopting a flexible-grid, thus providing finer bandwidth allocation granularities, and therefore, increasing the Grade-of-Service by packing more information in the same spectral band of standard Single-Mode Fibers (SMFs). Nevertheless, unfortunately, the fundamental Shannon’s limit of SMFs is rapidly approaching, and, then, the research efforts to increase the SMFs' capacity will be useless. One solution to overcome this capacity crunch effect is to enable one extra dimension in addition to the frequency one, namely, the spatial dimension, thus deploying S parallel paths in order to multiply, in the best case, by S the capacity of SMF-based networks. However, additionally, it is necessary to decrease the cost and energy per bit in order to provide economically attractive solutions. For this purpose, a smooth upgrade path has to be carried out as new integrated devices and system components are developed for Space Division Multiplexing (SDM). This thesis is concentrated on the planning and operation of the combined flexible WDM and SDM networks (i.e., Flex-Grid/SDM networks) proposing several strategies aimed at optimizing network resources usage with hardware complexity analysis. For this purpose, firstly, network problems are carefully studied and stated, and then, mathematical and/or heuristic algorithms are designed and implemented in an optical network simulator. Specifically, after an introduction to the thesis, chapter 2 presents the background and related work. Next, chapter 3 concentrates on the study of spatially fixed Flex-Grid/SDM networks, i.e., when a rigid number of spatial channels are reserved per allocated traffic demand. In its turn, chapter 4 studies the case of Spectrally-Spatially Flexible Optical Networks (SS-FONs), as the ones providing the upper-bound network capacity. Costs and hardware requirements implied on providing this flexibility are analyzed. Network nodes aimed at reducing the cost of SS-FONs are presented and evaluated in chapter 5. Finally, this thesis ends with the presentation of the main contributions and future research work in chapter 6.La demanda de ancho de banda cada vez mΓ‘s exigente para soportar servicios de telecomunicaciΓ³n emergentes tales como la transmisiΓ³n de video de alta calidad, computaciΓ³n en la nube, vehΓ­culo conectado, realidad virtual/aumentada, etc.…, ha puesto de manifiesto la necesidad de actualizar constantemente la tecnologΓ­a detrΓ‘s de las redes de transporte Γ³ptico con la finalidad de ir a la par de este incremento exponencial del trΓ‘fico. De esta manera, todo parece indicar que las redes basadas en la multiplexaciΓ³n por division de longitud de onda (Wavelength Division Multiplexing, WDM) de ancho espectral fijo serΓ‘n actualizadas adoptando un ancho de banda espectral flexible, que ofrece asignaciones de ancho de banda con granularidad mΓ‘s fina acorde a las demandas de trΓ‘fico; y por lo tanto, incremanta el Grado de Servicio de la red, ya que se permite acomodar mayor informaciΓ³n en la misma banda espectral de las fibras monomodo (Single Mode Fibers, SMFs). Sin embargo, desafortunadamente, el lΓ­mite de Shannon de las fibras monomodo se estΓ‘ aproximando cada vez mΓ‘s, y cuando esto ocurra las investigaciones para incrementar la capacidad de las fibras monomodo serΓ‘n infructuosas. Una posible soluciΓ³n para superar este colapso de las fibras monomodo es habilitar la dimensiΓ³n espacial a mΓ‘s de la frecuencial, desplegando οΏ½ caminos paralelos con la finalidad de multiplicar por οΏ½ (en el mejor de los casos) la capacidad de las fibras monomodo. No obstante, es necesario disminuir el costo y la energΓ­a por bit con la finalidad de proveer soluciones comerciales atractivas. Para tal propΓ³sito debe llevarse a cabo una actualizaciΓ³n moderada conforme nuevos dispositivos y componentes integrados son desarrollados para la implementaciΓ³n de la tecnologΓ­a basada en la multiplexaciΓ³n por divisiΓ³n de espacio (Space Division Multiplexing, SDM). Esta tesis se concentra en la planificaciΓ³n y operaciΓ³n de la combinaciΓ³n de las redes WDM flexibles y SDM (es decir, de las redes Flex-Grid/SDM) proponiendo varias estrategias dirigidas a optimizar el uso de los recursos de red junto con el anΓ‘lisis de la complejidad del hardware que viene acompaΓ±ada. Para este fin, primeramente, los problemas de red son cuidadosamente estudiados y descritos. A continuaciΓ³n, se han diseΓ±ado e implementado algoritmos basados en programaciΓ³n lineal entera o heurΓ­sticas en un simulador de redes Γ³pticas. DespuΓ©s de una introducciΓ³n inicial, el capΓ­tulo 2 de esta tesis presenta el marco teΓ³rico sobre los conceptos tratados y los trabajos publicados anteriormente. A continuaciΓ³n, el capΓ­tulo 3 se concentra en el estudio de las redes Flex-Grid/SDM con la dimensiΓ³n espacial rΓ­gida; es decir, cuando un nΓΊmero fijo de canales espaciales son reservados por cada demanda de trΓ‘fico establecida. Por su parte, el capΓ­tulo 4 estudia las redes Flex-Grid/SDM considerando flexibilidad tanto en el dominio espacial como espectral (Spectrally and Spatially Flexible Optical Networks, SS-FONs), las cuales proveerΓ­an la capacidad mΓ‘xima de las redes SDM. Adicionalmente, los costos y requerimientos de hardware implicados en la provisiΓ³n de esta flexibilidad son analizados. El capΓ­tulo 5 presenta la evaluaciΓ³n de nodos orientados a reducir los costos de las SS-FONs. Finalmente, el capΓ­tulo 6 expone las principales contribuciones y las posibles lΓ­neas de trabajo futuroEls requisits incessants d’ample de banda per al suport de nous serveis de telecomunicaciΓ³, com poden ser la difusiΓ³ en directe de vΓ­deo de molt alta definiciΓ³, la informΓ tica en el nΓΊvol, els cotxes intelΒ·ligents connectats a la xarxa, la realitat virtual/augmentada, etc…, han exigit una millora contΓ­nua de les tecnologΓ­es de les actuals xarxes de transport de dades. Tot sembla indicar que les xarxes de transport Γ²ptiques actuals, basades en la tecnologia de multiplexaciΓ³ per divisiΓ³ de longitud d’ona (Wavelength Division Multiplexing, WDM) sobre un grid espectral rΓ­gid, hauran de ser reemplaΓ§ades per tecnologies Γ²ptiques mΓ©s flexibles, amb una granularitat mΓ©s fina a l’hora de suportar noves connexions, incrementat el grau de servei de les xarxes grΓ cies a aprofitament major de l’ample de banda espectral proporcionat per les fibres Γ²ptiques monomode (Single Mode Fibers, SMFs). Tanmateix, estem exhaurint ja la capacitat mΓ xima de les fibres Γ²ptiques SMF segons ens indica el lΓ­mit fonamental de Shannon. Per tant, qualsevol esforΓ§ enfocat a millorar la capacitat d’aquestes xarxes basades en SMFs pot acabar sent infructuΓ³s. Una possible soluciΓ³ per superar aquestes limitacions de capacitat Γ©s explorar la dimensiΓ³ espacial, a mΓ©s de l’espectral, desplegant camins en paralΒ·lel per tal de multiplicar per , en el millor cas, la capacitat de les SMFs. Tot i aixΓ², Γ©s necessari reduir el cost i el consum energΓ¨tic per bit transmΓ¨s, per tal de proporcionar solucions econΓ²micament viables. Amb aquest propΓ²sit, pot ser necessΓ ria una migraciΓ³ progressiva, a mesura que es desenvolupen nous dispositius i components per aquesta nova tecnologia de multiplexaciΓ³ per divisiΓ³ espacial (Spatial Division Multiplexing, SDM). La present tesi es centra en la planificaciΓ³ i operaciΓ³ de xarxes Γ²ptiques de nova generaciΓ³ que combinin tecnologies de xarxa WDM flexible i SDM (Γ©s a dir, xarxes Flex-Grid/SDM), proposant estratΓ¨gies per a l’optimitzaciΓ³ de l’ús dels recursos de xarxa i, en definitiva, el seu cost (CapEx). Amb aquest propΓ²sit, s’analitzen en primer moment els problemes adreΓ§ats. Tot seguit, es dissenyen algorismes per tal de solucionar-los, basats en tΓ¨cniques de programaciΓ³ matemΓ tica i heurΓ­stiques, els quals s’implementen i es proven en un simulador de xarxa Γ²ptica. DesprΓ©s d’una introducciΓ³ inicial, el capΓ­tol 2 d’aquesta tesi presenta tots els conceptes tractats i treballs relacionats publicats amb anterioritat. Tot seguit, el capΓ­tol 3 es centra en l’estudi de les xarxes Flex-Grid/SDM fixes en el domini espai, Γ©s a dir, on sempre es reserva un nombre rΓ­gid de canals espacials per qualsevol demanda suportada. El capΓ­tol 4 estudia les xarxes flexibles en els dominis espectrals i espacials (Spectrally-Spatially Flexible Optical Nextworks, SS-FONs), com aquelles que poden proporcionar una capacitat de xarxa mΓ xima. En aquest context, s’analitzen els requeriments en termes de cost i hardware per tal de proporcionar aquesta flexibilitat. Llavors, en el capΓ­tol 6 es presenten opcions de node de xarxa capaces de reduir els costos de les xarxes SS-FONs. Finalment, en el capΓ­tol 7 es repassen totes les contribucions de la tesi, aixΓ­ com posibles lΓ­nies de treball futurAward-winningPostprint (published version

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Precoder design for multi-antenna transmission in MU-MIMO with QoS requirements

    Get PDF
    Abstract. A multiple-input multiple-output (MIMO) interference broadcast channel (IBC) channel is considered. There are several base stations (BSs) transmitting useful information to their own users and unwanted interference to its neighboring BS users. Our main interest is to maximize the system throughput by designing transmit precoders with weighted sum rate maximization (WSRM) objective for a multi-user (MU)-MIMO transmission. In addition, we include the quality of service (QoS) requirement in terms of guaranteed minimum rate for the users in the system. Unfortunately, the problem considered is nonconvex and known to be non-deterministic polynomial (NP) hard. Therefore, to determine the transmit precoders, we first propose a centralized precoder design by considering two closely related approaches, namely, direct signal-to-interference-plus-noise-ratio (SINR) relaxation via sequential parametric convex approximation (SPCA), and mean squared error (MSE) reformulation. In both approaches, we adopt successive convex approximation (SCA) technique to solve the nonconvex optimization problem by solving a sequence of convex subproblems. Due to the huge signaling requirements in the centralized design, we propose two different distributed precoder designs, wherein each BS determines only the relevant set of transmit precoders by exchanging minimal information among the coordinating BSs. Initially, we consider designing precoders in a decentralized manner by using alternating directions method of multipliers (ADMM), wherein each BS relaxes inter-cell interference as an optimization variable by including it in the objective. Then, we also propose a distributed precoder design by solving the Karush-Kuhn-Tucker (KKT) expressions corresponding to the centralized problems. Numerical simulations are provided to compare different system configurations with QoS constraints for both centralized and distributed algorithms
    • …
    corecore