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ABSTRACT

A multiple-input multiple-output (MIMO) interference broadcast channel (IBC)
channel is considered. There are several base stations (BSs) transmitting use-
ful information to their own users and unwanted interference to its neighbo-
ring BS users. Our main interest is to maximize the system throughput by de-
signing transmit precoders with weighted sum rate maximization (WSRM) ob-
jective for a multi-user (MU)-MIMO transmission. In addition, we include the

quality of service (QoS) requirement in terms of guaranteed minimum rate for
the users in the system. Unfortunately, the problem considered is nonconvex and
known to be non-deterministic polynomial (NP) hard. Therefore, to determine the
transmit precoders, we first propose a centralized precoder design by considering
two closely related approaches, namely, direct signal-to-interference-plus-noise-
ratio (SINR) relaxation via sequential parametric convex approximation (SPCA),
and mean squared error (MSE) reformulation. In both approaches, we adopt

successive convex approximation (SCA) technique to solve the nonconvex opti-
mization problem by solving a sequence of convex subproblems. Due to the hu-
ge signaling requirements in the centralized design, we propose two different di-
stributed precoder designs, wherein each BS determines only the relevant set of
transmit precoders by exchanging minimal information among the coordinating
BSs. Initially, we consider designing precoders in a decentralized manner by using
alternating directions method of multipliers (ADMM), wherein each BS relaxes
inter-cell interference as an optimization variable by including it in the objective.
Then, we also propose a distributed precoder design by solving the Karush-Kuhn-
Tucker (KKT) expressions corresponding to the centralized problems. Numerical
simulations are provided to compare different system configurations with QoS
constraints for both centralized and distributed algorithms.

Keywords: ADMM, AO, IBC, KKT, MSE reformulation, MU-MIMO, nonconvex
optimization, precoder design, QoS, SCA, WSRM.
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1. INTRODUCTION

Traditionally, wireline communications are used to provide secured connectivity be-
tween any two interconnected terminals. Due to the lack of interference in the wireline
transmissions, the signal-to-noise-ratio (SNR) is used as a performance measure while
accessing the channel for transmissions. In order to provide multiple users to access
wireline systems, either time-division multiplex access (TDMA) or frequency-division
multiple access (FDMA) is employed among the contending users [1]. However, in
spite of all the above mentioned merits, the connectivity is often limited by the inter-
connectedness of the networking entities. Moreover, the cost of laying the cables to
facilitate wireline communications require huge capital investment, which predomi-
nantly limit the underlying benefits of wireline systems.

On the contrary, optical fibers or high capacity cables are used to interconnect only
the base stations (BSs) in a wireless communication systems, thereby avoiding huge
capital investment to create a ecosystem of devices and BSs. Currently, wireless com-
munication is gaining more importance due to its seamless and ubiquitous connectivity.
In addition, it also provides various other advantages such as improved data rate though
spatial multiplexing and range extensions by utilizing channel diversity through multi-
antenna transmission [2]. In our day-to-day life, the dependency on wireless services
has increased with the advent of smart phones due to on-demand availability and easy
accessibility of the desired contents.

However, due to the broadcast nature of wireless transmissions, inter-cell interfer-
ence cannot be ignored while designing the transmission. Even though it can be min-
imized by the use of frequency reuse factors, it often reduces the achievable through-
put due to the limited utilization of the available spectrum [3]. With the advent of
multiple antenna transmission, i.e., by using multiple-input multiple-output (MIMO)
technique, both spatial multiplexing and range extension through diversity combining
can be performed to improve the overall throughput of the network [4]. Multiplex-
ing multiple user data streams over spatial dimension improves the achievable rate
tremendously without increasing the available spectrum or power, which is termed as
multi-user (MU)-MIMO transmission.

In order to facilitate MU-MIMO transmission by multiplexing different user data
streams, precoders are to be designed efficiently to minimize the inter-user interfer-
ence in addition to the inter-cell interference that exists in the wireless transmissions.
Therefore, with the advent of every capacity improving schemes for a MIMO systems,
the overall system complexity and the overhead involved in obtaining the relevant in-
formation, i.e., the channel state information (CSI) knowledge, increases significantly

[4]. In addition, the availability of wireless spectrum is limited and different for each



country, therefore, mobile devices are obligated to support multiple frequency bands
in order to facilitate the roaming of user, which is one of the core feature of wireless
service.

In wireless model, multiple user data streams are multiplexed over both time and
frequency by using both time-division multiplexing (TDM) and orthogonal frequency
division multiplexing (OFDM) (superior over frequency-division multiplexing (FDM)
technique due to zero guard band transmission). Moreover, in MU-MIMO technique,
the available users are also multiplexed across the spatial dimension by using transmit
precoders. By properly designing the transmit precoders at the BS, receiver complex-
ity can be greatly reduced. However, to design transmit precoders, the knowledge of
CSI corresponding to each user is required at the BS [4]. It is often obtained by trans-
mitting orthogonal pilots in both uplink and downlink to measure CSI with respect to
eachuser. Upon obtaining the CSI between each user and the respective serving BS,
transmit precoders are designed with the objective of maximizing or minimizing cer-
tain utility function. Since the design problem involves additional system limitations
as constraints, it is often formulated as an optimization problem, which is solved by
using existing solvers or can be solve iteratively by solving a subproblem of original
problem in each iteration. In order to design precoders for MU-MIMO scenario, the
interference model can be considered as either interference broadcast channel (IBC)
or interference channel (IC). Even though both IBC and IC are used to model wire-
less systems [5], however, in practice, IBC is often used to model cellular transmission
scenarios.

In the MIMO IBC with multiple BSs, each transmitting data streams to users in the
respective cell by interfering the transmissions on neighboring cells. Some practical
examples that can be modeled as MIMO IBC are Cognitive Radio systems, ad-hoc
wireless networks, wireless cellular communication, and etc. For a MIMO IBC sce-
nario, dirty paper coding (DPC) is known to be the capacity-achieving scheme [6, 7],
however, it requires the knowledge of interference, and the receiver complexity is sig-
nificantly higher due to the requirement of interference cancellation based detectors.
Therefore, to reduce the design complexity, we rely on linear precoding techniques
only at both transmitters and receivers.

In this thesis, we consider weighted sum rate maximization (WSRM) as the objec-
tive while designing the transmit precoders for the spatially multiplexed users in MU-
MIMO technique. The precoder design with the WSRM objective is studied in the
literature by considering various extensions. Since we know that the WSRM problem
is nonconvex and NP-hard even for single-antenna receivers [8], there exists a class of
beamformer designs which are based on achieving the necessary optimal conditions
of the WSRM problem, as can be seen in, [9, 10, 11, 12]. In [13], transmit precoders
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are designed by using branch and bound technique to solve WSRM problem via fea-
sibility subproblems for a given signal-to-interference-plus-noise-ratio (SINR). It is
also numerically shown that the suboptimal designs that achieve the necessary optimal
conditions of the WSRM problem perform very close to the optimal design.

In this thesis, we analyze the WSRM objective for a MU-MIMO transmission. The
beamformers (or precoders) are designed to maximize the sum rate of all users with
minimal or no interference among the multiplexed users. Note that the existing WSRM
formulation presented in [14] utilizes the inequality between arithmetic mean and ge-
ometric mean to reduce the nonconvex constraint into a series of convex constraints.
However, as the SINR of a user approaches zero, the problem becomes unstable and
the algorithm may not converge at all. In order to address this design issue, we propose
alternative formulations to overcome the same.

Moreover, the main contribution of this thesis is on the design of transmit precoders
with the WSRM objective in addition to the user specific quality of service (QoS) re-
quirements in terms of guaranteed minimum rate [15, 16, 17]. We first propose the
centralized precoder design for the aforementioned problem, which is followed by the
distributed approaches for a practical implementation. In both design problems, we
consider two different approaches to solve the precoder design problem, namely, by di-
rectly relaxing the SINR constraint, and by utilizing mean squared error (MSE) equiv-
alence with the SINR expression upon using minimum mean squared error (MMSE)
receivers. The effectiveness of the proposed algorithm is evaluated in the numerical
experiments and is discussed in the simulation results section.

In order to improve the convergence speed of distributed precoder design, we use
the corresponding Karush-Kuhn-Tucker (KKT) expression of the centralized problem
by associating the coupling variables across the respective BSs. The KKT method of
the distributed precoder design is discussed for both direct SINR relaxation and also
for the MSE reformulation approach. For comparison purposes, we also provide alter-
nating directions method of multipliers (ADMM) based distributed precoder design.
We compare the performance of various algorithms by using numerical simulations.

Even though there exists several methods to obtain optimal beamformers [13, 18,
19], they may not be practically feasible, since the complexity of finding optimal de-
signs grows exponentially with the problem size. Hence, the need of computationally
conducive suboptimal solutions to the WSRM problem still remains, as discussed in
[14]. In [9], the iterative coordinated beamforming algorithm was proposed by ma-
nipulating the KKT equations. However, this method is not provably convergent. On
the contrary, [11, 12] solved the WSRM problem by utilizing the relation between
SINR and MSE expression upon using MMSE receivers. The resulting problem of

joint transceiver design is then solved using alternating optimization (AO) approach
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between transmit and receive beamforming. Similarly, in [20], the WSRM problem
is solved by employing successive convex approximation (SCA) method for the MSE
reformulated problem. It has been shown that the algorithm proposed in [20] has a
better initial convergence than the methods proposed in [11, 12] in spite of reaching
the same objective upon convergence. As we show by numerical results, these meth-
ods have a slower convergence rate compared to our proposed design, since the MSE
based methods involves receiver updates even for single receive antenna.

The thesis is outlined as follows. The central object of interest is the transmit pre-
coder design. Chapter 2 reviews background and literature. It also covers the intro-
ductory details on the MIMO model and its capacity. Starting from MIMO basics we
discuss various models like the MIMO-IC and MIMO-IBC, in brief we also discuss
the MIMO channel capacity. In addition, Chapter 2 also introduces the mathematical
preliminaries of an optimization problem that will be used extensively in the remaining
chapters. This section provides insight about convex functions and sets, by explaining
a convex optimization problem. The goal is to have a small set of example model in
our report to evaluate the performance in our further chapters.

Chapter 3 introduces the proposed two centralized MU-MIMO precoder design for-
mulations with additional user specific quality of service (QoS) requirements. As, a
baseline we look into the design of transmit precoders with WSRM objective in a MU-
MIMO scenario, for which the system model and problem formulation is discussed.
We propose two different centralized formulations (i) Direct SINR Relaxation for AP-
GP Approach and (ii) Reformulation via MSE. Based on these methods we propose
a distributed solution in Chapter 4. We also propose the ADMM based decentraliza-
tion scheme for the comparison purposes. In Chapter 5, we compare the performance
of various proposed algorithms using numerical simulations. Finally, conclusions are

drawn and summary is given in Chapter 6.
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2. BACKGROUND

2.1. MIMO Communications

The MIMO technology is a breakthrough in wireless communication that utilizes the
available spatial dimension provided by Nr transmit and Ng receive antennas. How-
ever, due to the contention for accessing the wireless resources by a multitude of de-
vices, efficient utilization and scheduling of the available resources to the contend-
ing devices or users has become a challenging task. Therefore, to utilize the avail-
able wireless resources such as spatial, temporal and frequency dimensions efficiently,
knowledge of each user CSI is required to be known at the transmitter prior to any
transmission or resource allocation. Moreover, due to the increase in number of de-
vices accessing the available resources, complexity of both transmitter and receiver
side algorithms has become significantly complex such that the processing power re-
quirement can be compared to that of a personal computer.

A typical MIMO system is presented in Figure 1, which consists of various system
blocks that performs a specific task in the order as shown [2]. The underlying assump-
tion on the input bits is that the source coding is already performed on the incoming
bits to remove any redundancy to make the input source distribution Gaussian. Then,
the incoming data of each user is modified by channel coding to increase the redun-
dancy and then interleaved to avoid the ill-effects of burst errors in the channel. Note
that the channel coding performs the opposite of source coding technique, i.e., by in-
creasing the redundancy. It is carried out to ensure that the transmitted symbols can be

decoded correctly at the receiver, thereby reducing the bit error probability.

Transmitter

|:> Coding and |:> Symbol mapping |:> Space-Time Space-Time
Interleaving (Modulation) encoding precoding %

Receiver @

Symbol Z

; dmy Space-Time Space-Time
demaeeine decoding processing
(Demodulation)

4w Deinterleaving 4.
and Decoding

Figure 1: MIMO system model.
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The channel entries corresponding to each independent transmit-receive pair is de-
noted by a complex entry h;; € C, where 7 corresponds to the receive element and j

denotes the transmit element. Using this notation, MIMO channel matrix H € CVr* M

is given as
hin hie ... hiu
h has ... h
H-— 21 22 2M ' (1)
hni hna ... hnu

Let x € CN7*! be the transmitted symbol that can possibly includes the data corre-

sponding to

e single stream for providing the diversity and beamforming benefits (transmit

diversity mode), or

e multiple data streams corresponding to single user for increasing the total through-

put, i.e., single-user MIMO, or

e multiple data streams, where each stream is intended for different user MU-

MIMO transmission mode.

In all the above mode of transmissions, the knowledge of CSI at the transmitter is
assumed. Even if the CSI is not available at the transmitter, we can still achieve the
above mentioned benefits but with noticeably worse performance than the one with CSI
at the transmitter. Note that x;, Vi € {1,2,..., Ny} corresponds to the transmitted
signal from each antenna element <. Using the above notations, the received signal
y € CVrxlig given by

y = Hx + n, (2)

where n ~ CN (0, Ny) denotes the complex Gaussian noise with zero-mean and vari-
ance N.

In order to characterize the benefit of using multiple antenna elements, let us now
consider the capacity improvements provided by the MIMO system under the assump-
tion that CSI is known at the transmitter. Note that the capacity C' is defined as the
maximum data rate at which the reliable communication is possible. Therefore, for an

additive white Gaussian noise (AWGN) channel, the capacity is given by
Cawan = log(1 + ) bps/Hz, 3)

where 7 is the link SNR, and (3) measures the maximum achievable spectral efficiency
through the AWGN channel as a function of the SNR.
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2.2. MIMO Configuration

The main issue in the study of MIMO transmission schemes is how to mitigate multi-
user interference. We know that the interference is a major set back and a limiting
factor in the wireless communication networks. In practice, there are several com-
monly used methods for dealing with interference arising due to inter and intra cell
transmissions. The problem of interference is in general dealt with planning of radio
resource management (RRM). Initially, we can treat the interference as a noise and just
focus on extracting the desired signals as discussed in [21, 22] or we can design the
transmit covariance matrix and receive equalizers to consider the interference present
in the network.

The BS consisting of multiple transmit antennas can serves more users simultane-
ously by utilizing the spatial degrees of freedom, which is the underlying concept of
space-division multiple access (SDMA) or MU-MIMO transmissions. However, MU-
MIMO systems impose precise requirements for CSI at the transmitter, which is often
difficult to acquire in practice than the knowledge of CSI at receivers. Therefore, we
consider only the downlink (DL) systems due to the challenges involved in the design
of broadcast precoders that can multiplex different users data streams spatially. In cel-
lular systems, one can distinguish between the in-cell users, where the SINR is mainly
limited by the intra-cell transmissions, and the cell-edge users, where in addition inter-
cell interference should also be considered while performing resource allocation to
maximize the network throughput or to provide fairness among the users.

Depending on the type of scenario, we can characterize the MIMO system models
as MIMO IBC or MIMO interference channel (IC) model. The MIMO IBC consists
of both in-cell and cell-edge users in the consideration. The spatial streams provided
by the MIMO channel can be used for either single-user MIMO or MU-MIMO trans-
mission. On the contrary, the MIMO IC scenario considers only the cell-edge users,
thereby allocates the spatial streams by considering both intra- and inter-cell interfer-

ence from the neighboring BSs.

2.2.1. MIMO-IC

A systematic study of the performance of cellular communication systems where each
cell communicates multiple streams to its users while causing interference from and to
the neighboring cells due to transmission over a common shared resource known as,
MIMO-IC. A K-user MIMO-IC model consists of a network of K transmit-receive

pairs where each transmitter communicates multiple data streams to its respective re-
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Figure 2: MIMO-IC model.

ceiver. In doing so, it generates interference at all other receivers present in the system.

This MIMO model is mentioned in [23] and [24]. In [5], precoder design for such a
system has discussed based on interference alignment (IA) concept.

2.2.2. MIMO-IBC
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Interference link
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Figure 3: MIMO-IBC model.
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A linear transceiver design problem is considered in MIMO-IBC whereby multiple
BSs in a cellular network simultaneously transmit signals to a group of users in their
own cells while causing interference to the users in other cells. Both the BSs and the
users are equipped with multiple antennas, and they share the same time/frequency
resource for transmission. This model is used in [12] to design transmit and receive
precoders by using the equivalence between MSE and SINR expression while using
MMSE receivers.

2.3. MIMO Precoding Design with CSI at Transmitter

In this thesis report optimal precoder design for WSRM in MIMO interference net-
works is studied. For this well known non-convex optimization problem, convex ap-
proximations based on interference alignment are developed, for multi-beam cases.
Considering that each user treats interference from other users as noise. It is well
known that, due to interference coupling, the problem is a non-convex optimization
and is hard to solve. In the high SNR regime, there has been recent progress on max-
imizing the sum degrees of freedom, exploiting the idea of interference alignment. It
has been shown that maximizing the sum degrees of freedom is still an NP hard prob-
lem [25].

2.4. Mathematical Preliminaries - Convex Optimization

2.4.1. Convexity

Convex analysis is the study of mathematics dealing about convex sets and functions
[26]. Convex analysis is considered to be the core for optimization. This plays a major
role in study of statistics, mathematical economics, and also has several applications
in the field of wireless communication such as MIMO precoder designs, user schedul-
ing algorithms, wireless resource allocation problems, energy efficiency designs, and
sparse solutions etc.

We note that set I C R" is said to be convex, if any line segment through the points
x,y belongs to K [26, 27]. If a set is defined by the intersection of several convex
sets, then the resulting set is convex, whereas the union of two or more convex sets
is not necessarily convex. Furthermore, when a set is not convex then it is called as
nonconvex set, i.e., every points in a line segment joining x,y need not be in set K.

A set is said to be affine, iff any two points in /C lies in K. Every affine set is also
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convex, since it contains the entire line between the two distinct points in it [26]. Few

examples of convex sets are triangle, rectangle, polyhedron and quadratic functions

such as f(z) = ax? + bx + c is convex if and only if @ > 0.

~J)

Convex Set Nonconvex Set

Figure 4: Representation of Convex and Nonconvex Sets.

A function is convex if and only if the region above the graph as shown in figure is

convex set. As mentioned in [26], a function f is convex if Vz,y € K, V0 € [0, 1]:

fOx+ (1 —0)y) <0f(x)+(1—-0)f(y) (4)

Pseudo Convex Function Exponential Function Logarithmic Function

Figure 5: Representation of Convex Functions.

Depending on the type of convexity as discussed in [26, 27, 28], we can classify

convex functions further as follows.

e Function f is said to be strictly convex if strict inequality holds in (4) when
ever Vo # y € K, V0 € (0,1). A function f is said to be concave if function
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— f is convex and strictly concave when function — f is strictly convex. Strict
convexity means that the graph of f lies below the segment S. Certain examples

of strict convex functions are exponential and quadratic function.

e For affine functions, there is equality in (4), so an affine function is said to be

both convex and concave.

e A function is said to be strongly convex, whenever Vz,y € K and § € (0,1)

there exists a constant ¢ > 0, so that,
c
FOz+ (1= 0)y) <0f(x) + (1 =0)f(y) =501 -0)[la - ylI?. 4

The relationship between strict strong and convex function as in [27] can be outlined
as: a strongly convex function is strictly convex which is convex, but the reverse is not
possible. For instance, a linear function is a convex function that is not strictly convex,
an exponential function is strictly convex but not strongly convex, and a quadratic

function is an example of strong convex function.

2.4.2. Optimization Problem Formulation

A generic optimization problem is similar to linear programming problem, that can be
solved quickly depending on the variables and the constraints. A standard optimization

problem can be written as

minimize f(x) (6a)

xT

subject to x € IC, (6b)

where f(x) : R™ — R is the objective function that has to be minimized with respect
to the constraint x and X C R" is the feasible set. A feasible point x* € K is said
to be optimal if f(x*) < f(x)Vx € K ie., x* has the least value of f amongst all
vectors that satisfies the constraint. It is always assumed that X is closed and convex
and the function f is differentiable on /C [27]. Similarly, a maximization problem can
be written by negating the objective function.

Generic optimization problems are used in the data fitting problem, device sizing
in electronic circuits, and portfolio optimization etc. However, it is considered that
general optimization problems are time consuming, complex in finding solutions and at

times it is seen to not provide the actual solutions. Nevertheless, there are certain class



19

of problems such as least square, linear programming and general convex optimization
problems, which are discussed in [26], can be solved efficiently in polynomial time.
A convex optimization problem can be defined so that all of its constraints are convex
functions, and the objective is a convex function as well. The problem can be minimiz-
ing a convex function, or maximizing a concave function. In general, linear functions
are convex so the linear programming problem is a convex problem. A general convex

optimization problem can be written as

minimize f(x) (7a)
subject to 9:(x) <0,i=1,..m (7b)
hij(x)=0,j=1,..p, (7c)

where, f(x) : R" — R is the objective function or the cost function and X C R" is
the feasible set and is called convex when X is closed convex set and f(x) is convex
on R”. (7b) is an inequality constraint and the corresponding function ¢;(x) is the
inequality constraint function, and (7¢) is the equality constraint. Function h;(x) is the
equality constraint function in the optimization problem.

To find a solution for an unconstrained objective, we differentiate the objective func-
tion with respect to the optimization variable x and equate it to zero as V f(x) = 0.
However, for an constrained problem as in (7), we solve the Lagrangian of the problem
(7) as

A x

m p
maximize minimize L(x, A, p) = f(x) + Z Aigi(x) + Z pih;(x),  (8)
i=1 j=1

where \; > 0 and p; are Lagrange multipliers. The vectors A and p denotes the
stacked entries of dual variables A; and p;, respectively. Now, the Lagrangian in (8)

for (7) is solved by using KKT conditions as
o V.L(x, A\, u) =07,

o VaL(x, A, pu) =07,

VuL(x, A, p) =07,

e \>0,

and complementary slackness conditions A\1g; = 0, 290 = 0,..., \gm = 0

and Mlhl = 0, ,ughg = 0, Ce ,,uphp = 0.

Using the above system of the KKT expressions, (7) can be solve for an optimal solu-

tion if the problem is convex. However, if the considered formulation is not convex,
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then we can only solve for a stationary point. More details on solving nonconvex

problems will be discussed in the forthcoming sections.



21

3. CENTRALIZED FRAMEWORK FOR PRECODER DESIGNS

3.1. Introduction to Precoder design

Precoding can be explained as a transmitter side processing that can provide multi-
stream transmission in a MIMO communication model. Multiple data streams are
sent from the transmit antenna elements with appropriate weights to maximize certain
network utility by improving the receiver side SINR. The precoder design can aim
at maximizing certain utility, for example, the sum rate of a multi-user system by
performing spatial multiplexing or by extending the coverage and the received signal
quality. Closed loop precoding techniques are used for both point-to-point single-user
and also for multi-user MIMO scenarios in the current wireless standards.

In a point-to-point MIMO system, the transmitter is equipped with multiple antenna
which transmit spatially multiplexed data to a receiver equipped with multiple anten-
nas. Since both single-user and multi-user MIMO technique require huge processing
complexity, performing multi-user detection over an inter-symbol interference (ISI)
channel demands exponential complexity. However, upon using OFDM based trans-
mission, spatially multiplexed MIMO techniques are possible in real-time by the virtue
of narrow-band channels provided by the OFDM transmission [29], which increases
the symbol duration to obtain narrow-band sub-carriers.

If the transmitter knows only the statistical information about CSI and the receivers
are aware of the respective channel matrices, then the optimal precoding technique is to
broadcast data symbols by considering the covariance of channel matrices. However,
by knowing the complete CSI at the transmitter, eigen-beamforming based on singular
value decomposition (SVD) achieves the full MIMO capacity for a given configuration.
Note that as mentioned in [4] the transmitter emits multiple streams over all Eigen
directions corresponding to the channel matrix and the power allocation across each
stream is based on water-filling solution.

In MU-MIMO system, a multi-antenna transmitter communicates simultaneously
with multiple receivers with one or more antennas known as SDMA. Precoding al-
gorithms for the SDMA systems can be sub-divided into linear and nonlinear pre-
coding types. The capacity achieving algorithms are nonlinear but linear precod-
ing approaches usually achieves reasonable performance with much lower complex-
ity. Linear precoding strategies include maximum ratio transmission (MRT), zero-
forcing (ZF) precoding, and transmit Wiener precoding [4]. In addition, there are also
precoding strategies for low-rate feedback of channel state information, which is usu-

ally the channel covariance feedback [30, 31].
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Nonlinear precoding is designed based on the concept of DPC [6], which shows that
any known interference at the transmitter can be subtracted without wasting any of the
available transmit power. The transmitter only needs to know the interference to cancel
it from the users in the network. However, to perform DPC, the transmitter requires
the CSI knowledge of all served users. Due to nonlinear processing, it is often difficult

to implement in practice. Thus, linear precoding techniques are often considered.

3.2. System Model and Problem Formulation
3.2.1. System Model

Let us consider a downlink MIMO IBC system consisting of Ng coordinating BSs
with N transmit antennas each and K single antenna receivers. By coordination, we
mean that all BSs design the transmit precoders to minimize the inter-cell interference
without sharing the data symbols among them. The set of all /K" user indices is denoted
by = {1,2,..., K}. We assume that data for the k" user is transmitted from one BS,
which is denoted by b, € B, where B = {1,2,..., Ng} is the set of all coordinating
BS indices. The set of all users served by BS 0 is denoted by 4,. Assuming flat fading

channel conditions, the input-output relation for the k" user channel is given as

K
Y = hy, 1 Xp + Z hy, 1x; +ny 9)

i=1
itk

where hy, ; € CN7 is the channel coefficient between BS b; and user k. Note that
n ~ CN(0,0?) is zero-mean circularly symmetric complex Gaussian noise with vari-
ance o2, and x;, € C7*! is the transmit symbol corresponding to user k. Without
loss of generality, we assume that all receivers know the corresponding CSI between
serving BS, i.e., hy, 1, to decode the transmitted symbols associated with each user £.

Under the assumption that linear precoding is used for spatial multiplexing, trans-

mitted symbol from BS b is given by

Z X = Z widy, (10

kel kel
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where dj, is the normalized data symbol, and w;, € CM7*! is the linear precoding

vector. Now, by using (10) in the expression (9), the received symbol is written as

K

Yp = hbk,kwkdk + Z hbi,kwidi + ng. (11)
i=1,ik

The term Zf; itk hy, ,w;d; in (11) includes both intra-cell and inter-cell interference
components. The total transmit power of BS b is given by the constraint ), _,, [|wy[|* <
P, with P, as the maximum available transmit power budget, and the SINR -, corre-

sponding to user k is given as

|hbk7kwk|2
T .
o?+ Zi:l,i;ﬁk by, w2

Tk = (12)

3.2.2. Problem Formulation

In order to formulate the problem of designing linear transmit precoders with WSRM
objective, we consider including the constraint on total transmit power. By doing so,
the WSRM problem can be formulated as

K
maximize Z a log(1 + %) (13a)
Yk —1
subject to > lwill* < R,VbeB (13b)
ke,
h 2
[ 1w > o, Vk (13¢)

K
0%+ D s iz Bk Wil?

where «y, is a positive weighting factor for user £ which are typically introduced to
maintain a certain degree of fairness among the users. Then, note that the constraint
(13c) is an over-estimator for the SINR term -y, since the expression in (12) cannot be
used directly in the optimization framework. However, note that at optimal solution,
the relaxed SINR expression in (13c) will be tight.

The precoder design for the MIMO-IBC scenario is difficult due to the non convex
nature of the problem formulation [8]. In general, the rate maximizing beamformer
designs has an inherent complexity due to existence of optimization variables, i.e.,
transmit precoders, in both the numerator and in the denominator of the SINR ex-
pression. In addition, the beamformer design can be classified into centralized and

distributed approaches depending on the type of processing, i.e., whether the design is
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performed by a centralized entity or by each BS independently through some coupling
information exchange. In the centralized approach, the common controller is assumed
to have the complete CSI of all BS-user links in order to design precoders for all BSs.
In the distributed approach, practical difficulties of distributing CSI over the backhaul
network and high complexity of joint precoding design motivates the analysis. The
beamforming and power allocation strategies can be computed locally using only the
local CSI in a distributed design. In particular, for a single receive antenna scenario,
the goal of transmit precoding is to maximize the received signal power at the intended
terminal while minimizing the interference caused to the others.

The core prior work on the centralized design can be found in [9, 10, 11, 12] and
references therein solve the problem of precoder design by the centralized approaches.
Moreover, [11, 12, 20] addressed the WSRM problem as a MSE minimization problem
by using the relation between MSE and SINR while using MMSE receivers at the user
terminals. At first, we propose a precoder design based on [32], which utilizes the
relation between arithmetic and geometric mean. This method has been utilized in [14]
to design transmit precoders in an iterative manner. In the following discussion, we
present two different approaches of designing transmit precoders based on the above

approximations.

3.3. Direct SINR Relaxation via SPCA

At first, we discuss centralized transmit precoder design based on sequential paramet-
ric convex approximation (SPCA) algorithm proposed in [32] and further extended to
wireless systems in [14]. The centralized coordinated DL transmission requires CSI to
be fed back from the users to their respective serving BS, and aggregated at the cen-
tral coordination node to form the channel matrix for precoding, so that interference
can be mitigated. Before discussing the solutions, let us look at the existing WSRM
algorithm for centralized precoder design with constraints required to formulate it as
an optimization problem.

Let us consider the problem in (13), where we relaxed the SINR expression in (12)

by introducing inequality constraints as

K

maximize oy log(1 + 14a

WYk Bk ; b g( 71{) ( )
h 2

subject to M > v, Vk eU (14b)

B
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K
Br >0+ Z by, owil*, Yk € U, (14c)
i=1,i#k
> lwill3 < B, Vb e B (144d)
kel

where the SINR expression in (12) is relaxed by using the inequalities in (14b) and
(14c). We can see that (14b) is an under-estimator of SINR and (14c) provides an
upper-bound on the total interference seen by all the users £ € U, denoted as .
Thus, we can replace problem (13) by an equivalent and tractable formulation in (14)
to solve the WSRM problem.

In order to find an optimal solution for problem (14), we can observe that (14d) and
(14c¢) are convex constraints with the involved variables. Moreover, we note that (14b)
is the only nonconvex constraint in (14). In order to solve the nonconvex problem (14),
we find a convex subset for the nonconvex constraint (14b). To do so, we consider the

following equivalent representation for constraint (14b) as

R(hy, xWe) > /B (15a)
%(hbk’kwk) = 0, Vkel (15b)

where (15b) is used to restrict the transmit phase of w;, without affecting the objective.
Moreover, making the imaginary part to zero does not affect the optimality of (14),
since phase rotation on wj, will result in the same objective while satisfying all con-
straints. Secondly, we can also show that all the constraints in (14) hold with equality at
optimum. It follows from the fact that to maximize sum rate, ; has to be maximized,
i.e., the interference limit term 3, has to decrease. In order to reduce [, (14c) must
be tight, thereby making the above relaxation to hold with equality at optimum. Us-
ing the above equivalent representations, we can reformulate (14) to find the transmit

beamformers w, as

K
mflfii%fe ; ay log(1 + ) (16a)
subject to R(hy, xWi) > /6B Vk € U (16b)
S(hy, swi) = 0,Vk € U, (16¢)
B > 0%+ i lhy, Wi |?, Vh €U, (16d)
i=1,i#k
> Iwill3 < B, Wb € B, (16¢)

ke,
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Since the r.h.s of (16b) is a geometric mean, we can bound it by a suitable convex
upper approximation, i.e., the arithmetic mean, as
(i) 1

VBe < %%*—&W = f (ks Br, ;(f)) (17)
k

where (;5,(;) is a parametric constant, which is given as

i i—1)
o) =1/ 2. (18)
Tk

Note that (3 ,Ef) and 7,(;‘) are the solution obtained by solving (16) with the approximation
(17) in ith iteration for Sy and ~;, respectively. Using (17) and (18), we can easily
show that

lim £y, B, 61) = VB (19)

where /7, 03; is the optimal value upon convergence of the SPCA procedure [32].
Finally, the approximate SPCA based iterative precoder design problem with the ob-
jective of WSRM is given as

K
maximize log(1 + 20a
aximiz ;ak og(1 -+ ) (20a)
¢(i) 1
subject to R(hy, gwy) > %% + @gm,wg eu (20b)
k
%(hbk’kwk) = O,Vk S Z/{, (20C)
K
B>+ > |hyewi|’,VE €U, (20d)
i=1,ik
> llwill3 < P, Wb € B. (20e)
kel

The above iterative problem is solved until convergence, i.e., = — oco. Upon the
convergence of above algorithm, the approximation in (17) will be tight, and the KKT

condition of (20) is equivalent to (16) as shown in Appendix 9.1.

3.4. Reformulation via MSE

As an alternative method of solving the WSRM problem subject to convex transmit

power constraint, we exploit the relationship between the MSE and the achievable
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SINR while using the MMSE receivers at the user terminals [11, 12]. Let us denote
MSE as ¢, which is defined for data symbol dj, as

e =E[(dy — di)’] = 1 — uphy swi* + ) uphy owil* + No - @21)

=

where d, is the estimated data symbol of the corresponding transmit symbol dj, Ny =
|ug|?c?, and uy, € C is the receive beamformer of user k. For a fixed receivers, (21) is
a convex function in terms of transmit beamformers w;Vk. Upon solving for transmit
precoders, the receive beamformers u;Vk can be solved directly by using the MMSE

receiver, which is defined as

K
Rk,’ = Z |hbi7kWi|2 + 0'2, (22)
i=1
Up = Rizlhbk,kwka (23)

where R, € C corresponds to both inter-cell and intra-cell interference term, since the
users are equipped with single receive antenna.

Note that the optimal receive beamformers turn out to be the MMSE receivers, since
the relation between the MSE and the received SINR is due to the assumption that the
receivers are based on the MMSE criterion. The MMSE receiver in (23) can also be
used without compromising the performance.

Now, by using (23) in the MSE expression (21), we obtain the following relation
with the corresponding SINR as

e =(1+m)" (24)

Therefore, we utilize the above relation in (16) to reformulate the WSRM problem as

K K
maximize Zak log (1 + ) < minimize Zak log (ex). (25)

k €k
B i=1 i=1

Using the relation (25) in (13), we obtain the following reformulated problem

K
minimize Z oy log(ex) (26a)
* k=1
subject to > lwel* < P,VbeB (26b)
kel

|1 — UZhbk’kaF + Z |u",;hbk’iwi|2 + N() S €k, vk (26C)

€Uy
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where (26¢) is a relaxed over-estimator for the MSE expression in (21).

In spite of using the MSE formulation, the problem is still nonconvex. Therefore,
(26) cannot be solved directly. Thus, we resort to SCA approach by relaxing the non-
convex constraint by a sequence of convex approximations [33]. In order to find a
suitable convex upper bound for the logarithmic objective function, we linearize the
objective as mentioned in [20] with proper variable change and perform SCA for the

difference of convex constraint as in (26¢) around some fixed MSE point, say, €, as

log(e) < {log & + — 6’“}. 27
€L

where log(€;) is a constant and (&) !¢y, is the first-order linear approximation log(ez).
The above inequality follows from the fact that concave functions are upper bounded
by the first order Taylor approximation. Now, by using the above approximation, the

iterative MSE minimization problem for the ith SCA step is given as

K
e ,@) -1
minimize 28a
linimi ;ak (% €k (28a)
subjectto €, > |1 — ujhy, ywi|* + Z luihy, swi|? + No (28b)
i€Uy
S Iwil3 < R Vb € B. (28¢)

kel

The above problem is solved iteratively by first fixing the receive beamformers uy
and optimized for transmit precoders wy. After each SCA iteration, the receiver beam-
formers are updated by using the expression in (23) for the fixed transmit precoders
obtained at that step. The above procedure of alternating the optimization variables
in each step is called as AO. Upon convergence of the above procedure, the optimal
solution satisfies the KKT expression of the original nonconvex problem (13) as shown
in Appendix 9.1. Alternatively, SCA steps can be iterated until convergence for fixed
receiver update as well. However, by doing so, the total number of iterations required

for the overall convergence is significantly large.
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4. DISTRIBUTED PRECODER DESIGN VIA ADMM

So far, we have discussed the centralized precoder design solutions. In this chap-
ter, we discuss the distributed precoder design techniques wherein the precoders are
designed at each BS with the local CSI knowledge by exchanging some coupling vari-
ables among the coordinating BSs. In addition, we also consider certain guaranteed
QoS requirement in the form of minimum rate as an additional constraint to each user
in the system.

Note that to distribute the precoder design procedure, we can use either backhaul
to exchange the coupling interference variables or by using over-the-air (OTA) tech-
nique to update the respective precoders at each BS. We will explore both possibilities
by analyzing different techniques and the procedure to update the involved variables.
Even though we claim that the distributed schemes require significantly less overhead
as compared to the centralized one, it is not always true. For example, if we consider
a semi-static fading scenario, where the channel remains relatively constant over mul-
tiple transmission slots, centralized scheme would be more beneficial as there is only
one time overhead involved in updating CSI knowledge at the centralized controller.

However, in practice, we can always limit the number of iterations in the distributed
scenario to have a compromise between the achievable rate to the involved overhead.
Moreover, it is often enough to update only once per frame if the time correlated fad-
ing is slow enough, since the operating point can be initialized by the precoders ob-
tained from previous transmission. Therefore, it would be beneficial to consider both
procedures and to understand the update procedure in order to minimize the involved
overhead. We consider the ADMM based distributed design due to its fast convergence
properties [34]. Then, we study the distributed design of SPCA and MSE based cen-
tralized approach by using KKT expressions. In all cases, we consider both with and

without guaranteed rate requirement constraint.

4.1. SPCA Formulation without QoS Requirements

In this section, we consider the problem of distributed precoder design using the ADMM
with WSRM objective. In this decomposition scheme, the precoders are designed at
each BS by exchanging the coupling interference information across backhaul that

interconnects the coordinating BSs. In this procedure, users are not involved in the
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precoder design unlike the OTA based approach discussed in the following chapter.

Let us consider the convex subproblem (20) for the :th iteration, rewritten as

K
maximize log(1 + 29a
aximi ;ak g(1+ %) (292)
¢(i) 1
subject to %{hbhkwk} > /Yk% + 6kW7Vk’ cu (29b)
2 kl
K
B>+ > |hyewi’VE €U, (29¢)
i=1,i#k

ST w2 < R, Vo € B (29d)

kel

where S{h,, W} = 0 is implicitly assumed. In order to perform a distributed design
of the above convex subproblem in (29), we adopt ADMM technique by introducing

additional optimization variables [35] as

K
maximize oy log(1 + 30a
WiV »Bk b, 5 kz; F g( fYk) ( )
¢(i) 1
subject to R{hy, xwy} > %% + BkW’ Vk el (30b)
2 k’
o? -+ Z |hbk,kWi|2 + Z 5b,k < ﬁk,Vk c Ubk, (30c)
iUy, beBy,,
itk
5b,k > Z ’hb,kwi‘27 Vk € Z/[bk,Vb < Bbk (30d)
€U
S w3 < P Wb € B. (30e)
ke,

where B, = {1,2,...,b—1,b,..., Ng}, and d;, is the interference caused from BS b to
user ¢. Equation (30d) is a relaxed interference constraint used to favor the distributed
implementation.

Even after relaxing the interference terms from the respective neighboring BSs for
each of the user k, (30) is still not in the form to be distributed across the coordinating
BSs. Therefore, we now introduce additional BS specific variables that hold the local

copy of the interference caused by the neighboring BS transmissions as

maximize ap log(1 + 312
WYk 5Bl -0b,5 bEZBI;ub k g( ’Yk) (31a)
¢(i)
subject o Sifhu v} 2 ney- kg ThEU (31b)
k
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o+ >y wilP+ D 0P < B Vk €Uy, (3lo)

ieubk bEBbk
ik
ST w2 < R,Vo e B 31d)
kel
ops > [y wil, Vk € Uy, V0 € By, (3le)
1EUY
O = > w2, Vi € Uy, 31
JEUs,
Oy = by Yk € Uy, Vb € By, (31g)
Oy ;= Opi, Vi € Uy, (31h)

where Uy, = U\Uy, 52’% denotes the local copy of the total interference caused by BS
b to user k, which is served by BS b;. Similarly, (5&’:1 represents the local copy of the
actual interference caused by BS b, to user ¢, which is served by some other BS, say,
b. The constraints in (31g) and (31h) are used to ensure that the local copies of the

interference terms maintained at each BS are equal, i.e., it ensures
b b

which relates the actual interference 4y, caused by BS b to user k € U, to the one
assumed by BS by, for user k as 52’2

Note that in order for the distributed implementation to be identical with the cen-
tralized design, (32) must be satisfied at the optimum. Therefore, to decentralize the
precoder design, we consider using a partial Lagrangian for the equality constraint (32)

and by collecting the variables that are relevant to BS by, as

maxirrl}izebk Z ag log(1 + ) + Z (52”} — 5b7k> Up e

WYk 5Bk 0 10y, i kEUy, k€U,

+ 7 (3 = o) (33a)
iel/_{bk
(b(l) 1

subject to R{hy, pwi} > yk— + Br—= ¢ , Yk € U, (33b)
o+ > [y awilP+ Y 6k < B Yk €Uy, (330)

ZEZ/{bk bEBbk

itk
0k =) [hyewil?, Vi € U, (33d)
’LEZ/{b

> lIwell3 < P, VE € Uy, (33e)

ke,
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where U, = U \Us, the dual variable corresponding to the constraint (32) is denoted
by Vg"k, and (33d) denotes the total interference caused by BS b, transmission to the
neighboring user i € U, . Additionally, note that &, is the global consensus inter-
ference corresponding to user k£ from BS b. The above formulation is called as dual
decomposition, and due to the instability involved in updating the consensus variable,
we rely on the robust ADMM counterpart [36].

The ADMM based distributed precoder design is obtained by augmenting a strongly

convex proximal term in the objective of each BS by, as

maximize Z ay log(1+vi)+ Z (5ka - (51,,;,3) Up et Z (52’:71- - 5bk,i> Vb i

R A =7 = icth,
+ g S 1605 = Sull® + g 360 = Sl (34)

keubk iEZ/_lbk

The proximal term H(Sf’“k — Oy x||* ensures the uniqueness of the final solution and also
stabilizes the update expression. Now, by using (34) in (33), we obtain the ADMM
based distributed precoder design for each BS 0y, as

maximize Z aglog(1 4+ ) + Z ((52’2 — (5;,7;6) Vlik

wkakvﬁk"S:fck’éZ:,i kely, kelty,
P b b i
83 b =l D7 (00 = ) v
kely,, i€y,
+8 D7 g = Sul? (350)
ielf{bk
. ¢ 1
subject to %{hbk’kwk} > ’}/kT + ﬁkW’ vk € Z/{bk (35b)
k
o+ Wi+ > G < B VEeU,  (350)
ieubk bEBbk
ik
O s =) [y pwil?, Vi € U, (35d)
i€Uy
> lIwll3 < By, VE € Uy, (35¢)
kel

The problem (35) is solved for fixed dual variable 1 ;, as ”li, . and &y . Upon solving
(35) independently across each BS, the coupling variables such as d, x, ya ;. heed to be
updated for obtaining the centralized solution. In order to do so, we need to exchange

the interference variables 5212' and 5§7k across the BSs b and b,. Upon obtaining the
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coupling interference variables, the global consensus variable 0 is updated at the

corresponding BSs b and by, as

b b,k
_ Opgt Oy,

O,k 5

(36)

Once the consensus terms are updated, the corresponding dual variable v, 5, 1s modified

by the subgradient update at BS by, as

Vli,—il;l = Vzi,k —-p <6ll))kk - 5b,k> . (37)
The algorithmic representation of the distributed ADMM based precoder design is
outlined in Algorithm 1. The total number of variables, i.e., the consensus interference

vk, that is exchanged across the coordinating BSs is given by (Np — 1) x K, since

each user will see interference from Ng — 1 BSs excluding the serving BS.

Algorithm 1 ADMM Method

Input: O, hbk,k; Vb € B,Vk’ € U,.
Output: wy,Vk € {1,2,..., K}
Initialization: ; = 0 and w;, by satisfying total transmit power constraint
initialize global interference vector 0y, = 0"
initialize the dual variables vVb € B, Vk
for each BS b € B perform the following procedure
repeat

begin with 7 =0

repeat

solve the precoders w;, and local interference 55—;]{ using (35)

exchange 527 . and 52’% among the coordinating BSs b and b, via backhaul
update the global consensus interference term as in (36)
update the dual variables v using (37)
until do until convergence
update the operating point qbg) with (18) by using the solution obtained from
ADMM design
until perform until SPCA problem convergence

4.2. SPCA Formulation with QoS Requirements

In this section, we consider the above problem of maximizing the sum rate of all users
with an additional QoS constraint in the form of minimum guaranteed rate requirement
[15, 16, 17] The QoS requirements are usually guided by the service type associated

with each transmission. For example, in order to provide an appreciable call quality
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in voice over IP (VoIP) service, a BS should ensure certain minimum guaranteed rate
requirement for VoIP users. Furthermore, in long term evolution (LTE), guaranteed bit
rate service (GBS) is one of the service qualifiers for data transmission.

In order to formulate the WSRM problem with a guaranteed rate requirement for

each user, we include an additional constraint that ensures it as
log(1 4+ ) > Ry, VE e U (38)

where Ry is the user specific minimum rate requirement. Since our objective is to
distribute the precoder design with the minimum rate requirement, we reuse the final
distributed precoder design formulation in (35) to provide the guaranteed minimum
rate requirement. Because (38) is convex and it includes the optimization variable
that is associated to the respective user k& only, therefore, we can write the precoder

design problem associated with BS by, as

. b i
maxmbl;zebk Z aglog(1 4+ ) + Z (55;,'2 - 51,7;.3) Vb i
wkv”/kvﬁkv‘sb,kv(sbk,i kelty, keUy,
p b b i
+§ Z H(Sb,kk — ol + Z (517:,1‘ - 5bk,i> Vi
kel iclly,
p .
+5 2 10— 0l (3%)
iEI;fbk
. o 1
subjectto  R{hy, ywi} > Ty + Bkm, Vk € Uy, (39b)
k
o?+ > [y wiP+ > G < B Yk €Uy, (39)
iEubk bEBbk
itk
0 s = ) [y ewil?, Vi € U, (39d)
i€ty
ST will? < B,k € U, (39)
kel
log(1+ %) > Rk, Vk € Uy, (39f)

The problem in (39) is convex in each SCA step ¢. Moreover, it involves only the
variables that are associated to BS b;. Therefore, (39) can be performed in parallel
among each BS in B until convergence. Upon the convergence of the ADMM itera-
tions, the SPCA update for variable gzﬁ,(f) is performed to proceed with the next iteration.
The above procedure is performed until convergence of the objective sequence. The

iterative procedure is similar to that of Algorithm 1.
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Similarly, the centralized precoder design problem via MSE reformulation in (28)
can also be performed in a decentralized manner by following the same steps as men-
tioned in Section 4.1. Since the ADMM procedure is straightforward, we refer the
interested readers to [15]. The total number of variables, i.e., the consensus interfer-
ence ¢y, that are exchanged across the coordinating BSs is given by (Np — 1) x K,

since each user will see interference from N — 1 BSs excluding the serving BS.
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S. DISTRIBUTED PRECODER DESIGN VIA KKT
EXPRESSIONS

Even though the ADMM method of distributed precoder design has better convergence
behavior compared to the other schemes like the primal and dual decomposition, the
number of iterations and the overhead involved in the signaling limit its practical us-
age. In this chapter, we discuss an alternative precoder design by solving the KKT
expressions in each SCA step across the coordinating BSs. Unlike the ADMM tech-
nique, where the precoders are designed at the BSs in a coordinated manner, the KKT
approach includes users as well in the precoder design procedure via OTA, thereby
reducing the utilization of the backhaul.

We formulate distributed precoder designs for the centralized problems in (20) and
(28) by solving the respective KKT expressions. In addition, we also discuss the dis-
tributed precoder design to provide guaranteed minimum rate to all users in the system
[15, 16, 17]. The main objective of the distributed design is to obtain a set of transmit
precoders to all users in the system by reducing the amount of signaling overhead. It
is due to the fact that the ADMM requires significant number of iterations before con-
vergence, the overhead involved is dependent on the size of system, i.e., the number
users and BSs in the network. Even though distributed designs via the KKT expres-
sions depends on the system size, the overhead involved and the number of iterations
required to converge are significantly smaller compared to ADMM scheme. Therefore,

the proposed methods are more suitable for the practical implementation.

5.1. SINR Relaxation via SPCA without QoS Requirements

Before proceeding with the distributed precoder design, we note that the OTA approach
is not required to perform the SPCA based design while considering single-antenna re-
ceiver at user terminals. The precoders for the SPCA method can be designed explicitly
by exchanging the coupling interference variables among the coordinating BSs via the
backhaul. Even though it is similar to that of ADMM based distributed design, the
number of iterations required to obtain an efficient set of precoders is significantly less
when compared to the former approach. It follows from the fact that ADMM requires
multiple iterations in each SCA step whereas the KKT based solution updates only at
each SCA iteration. However, when the number of receive antenna is greater than one,

then OTA based training can be considered as a viable practical implementation.
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Let us proceed with the distributed design by writing the SPCA based centralized

problem (20) along with the respective dual variables for each of the constraint as

maximize ay log(1 + 40a
laximiz ; klog(1+ ) (402)
Subject to

¢(i) 1
ag - ’hbk ka| > ’)/k— + 6k Vk' cu (40b)

26
er:  Br>0+ Z Iy, wi|%, VE € U, (40c)

i=1,ik
a: Y w3 <P, vheB (40d)
kel

where ay, e, and ¢, are dual variables corresponding to constraints (40b), (40c), and
(40b), respectively. Note that we drop the R{.} operator from constraint (40b), since
we solve (40) by using the KKT expressions. Moreover, we drop the weights from
objective function for clarity.

Because the problem defined by (40) is convex, it can be solved by using the KKT
expressions. Let us write the Lagrangian of (40) with the corresponding dual variables

as

L(Vk, Bres Wi, g, €k, ) = Zak log(1+7) + Y (Z [wll* — 5k>

beB kel

K (@)
+Z€k o "‘Z’hb sz’ — B +Zak< ’Yk+¢—5k—|hbkkwk\>

k=1
z;ék
(41)

Note that dual variable ¢, is associated with each BS whereas the dual variables a; and

ey, are related to each user. Now, the optimization problem is given by

maximize minimize L(7g, Ok, Wk, Gk, €k, Cp) (42)

ak,€k,Ch wkﬁkﬁk
where the solution is obtained by differentiating (41) with respect to each of the asso-
ciated optimization and dual variables as presented in Appendix 9.3.1. Note that the
objective is reversed in the Lagrangian expression due to the negative operator before

the actual sum rate objective in (41).
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Upon solving the KKT expressions in Appendix 9.3.1, we obtain the following sys-

tem of update equations to design transmit precoders with fixed operating point

i i—1)
o =\ o (43)

Tk

Now, by using fixed gzﬁ,(f), other optimization variables are updated as

| (i)
o) = &(’11) (44a)
1+
| (9 40
el = TPk 2¢k (44b)
(i) -
O - Lk Ohf by, ; + ¢ h!! 44
Wy 9 Zei bye,i by.,i T Colng b (44c)
i#K
BY = o+ > |hywl? (44d)
j=1,j#k
= 2 () - ). e

Since the dual variable a,(f) depends on gb,(f), the initial operating point <b,(€1) is fixed by
using some feasible transmit precoders w,(co). It follows from the fact that (;SS) is given
by (43) in which 7,20) and /B,(CO) can be obtained for a fixed transmit precoder W](€0)_ Once
(b,(;) is fixed, rest of the variables are updated in the order as outlined in (44). The dual
variable ¢, is obtained at each BS such that the total power budget P, is satisfied by the
transmit precoders wy. It is usually found by using the bisection search.

To obtain a practical distributed precoder design, we note that (44c) is the only con-
straint that involves the neighboring BSs dual variables eg). Since the coupling dual
variable is a scalar, it can shared among the respective BSs in B via backhaul to eval-
uate (44c). Upon obtaining the coupling dual variables e,(f), the respective transmit
precoders can be designed locally by updating the rest of the equations in (44). Once
the transmit precoders w,ii) are evaluated, the interference variable B,gi) needs to be
identified at each BS to update 7,(:). Since B,(f) in (44d) has transmit precoders of the
neighboring BSs, it cannot be obtained directly by using the available local informa-
tion. Therefore, we require an additional backhaul transmission from all the neighbor-
ing BSs to notify the total interference caused by the current transmit precoders. Now,

(44d) can be equivalently written as

ﬂl(;) = 0’2—|— Z |hbk7ij|2—|— Z Z |hb7ij|2 (4521)

jel/{bk\k bEBbk jEZ/{b
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O = D uswsl?, Vb € By, (45b)
JEUy
B = ot X0 w4+ D00 (450)
jeubk\k bEBbk

where 61% is evaluated at each BS 0 and notified to the corresponding serving BS. Upon
receiving 6151,1 with the updated precoders, each BS then evaluates (44d) via (45) and
proceed with the fy,ii) calculation. The above procedure is performed until convergence
in the same sequence as outlined in (44). The practical implementation of the above

distributed scheme is outlined in Algorithm 2.

Algorithm 2 SINR Relaxation via SPCA without QoS Requirements
Input: oy, hy, ., Vb € B,VE € U,
Output: w;, Vk € U
Initialization: ; = 1, gbl(:) using some feasible transmit precoders w,(f)
repeat
VBSsbe B .
solve (44a) and (44b) with gb,(j) using (43), Vk € U,
perform backhaul exchange among coordinating BSs to notify dual variables e,(f)

with the updated dual variables e,(f) from neighboring BSs, solve (44c¢)

upon finding w'”, all BSs evaluate 8, ;, Yk € U, and notify the same to respective
serving BS
after obtaining dy, from each b € B, and for all k£ € U, , BSs then update ﬁliz')
and 7" by using (45) and (44e) locally

until convergence

5.2. SINR Relaxation via SPCA with QoS Requirements

Now, we extend the above method of precoder design with SPCA method to include
an additional QoS constraint. By including a minimum guaranteed rate constraint as
log(1 + ) > Ry, the problem in (40) can be rewritten by representing the dual

variables as

K

maximize o log(1 + 46a
laximiz ’; klog(1 + ) (462)
Subject to

(@)
1
ar: |hy pwi| > %—(ﬁk + 5’f—(i) Vkelu (46b)
2 20,



40

K
ert Bzo’+ Y [hywl’ vk el, (46¢)
j=1,j#k
a: Y w3 < B, YbeB (46d)
kel
di: log(1+ ) > Ry (46¢)

where the additional dual variable d; corresponds to the guaranteed minimum rate
requirement associated with user £.

Following the similar procedure as in Section 5.1, we formulate the Lagrangian of
(46) as

Lk, Br, Wi Gk, €k, Cy, di) = Zak log(1 + &) Zcb (Z [wlls — Pb)

= beB kel
(i)

K
+ Z ay ( — T ¢2 Br — |hbk,ka|> + Z dy, (Rk — log(1 + %))
k=1

+Zek o +Z|hb wWil? = By [ (47)
z;ék

and the corresponding optimization problem is given by

maximize minimize L(7g, Bk, Wk, Gk, €k, Cb, d,) (48)
ag,bi,cp,dy W, Yk Bk
To solve the above optimization problem, we equate the derivative of (47) with respect
to each of the optimization and dual variables to zero as shown in Appendix 9.3.1.
Upon solving the KKT expression in (67) and (68b), we obtain the following update

expressions with ¢,(;) = B?, 7 as

arof) (1+d( V)

(2)
O (49a)
k 1 —1—7(1 1)
o) % (49b)
0) o
i a
W](g) — % < Z hi zhbk i T CbINT ) hik (49C)
i£K
D o 9)

i=Li#k
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. . , (4) p(4)
W= 20 ('h"k,kwg)l——% QBk ) o
d) = &+ p [Ry—log(1+1)] (496)

where (49f) denotes the subgradient update for dual variable dj and p is some step size.
The operator [x]" in (49f) is defined as [z]* = max (x,0), which ensures d,(f) > 0.
The step size parameter p can either be a constant or diminishing one by following the
discussions in [34]. The dual variable ¢, is obtained such that the total power budget
P, is satisfied by the transmit precoders wy. It is usually found by using the bisection
search. To conclude this section, a practical way of implementing the above set of
equations in (49), we can follow Algorithm 2.

Even though the distributed methods proposed to solve (44) and (49) requires only
the backhaul exchanges to update the coupling dual variables eg), it is not the case
when the receivers are equipped with multiple antennas. The receiver side beamform-
ers are also required to design an efficient set of transmit precoders, since (44¢) and
(49c) will include receive beamformers of all the interfering users. Therefore, for a
multi-antenna receive scenario, the overhead involved in feeding back all the inter-
ference channels seen by users to the respective BSs is significantly larger, thereby
requiring high capacity backhaul links between BSs.

Due to the limited capacity of the existing backhaul fibers, it is often not possible
to carry out the iterative distributed precoder designs via backhaul alone. As an alter-
native, we can consider including users in the precoder design via OTA signaling as
discussed in [37]. In such a case, users will perform all the necessary updates based
on the downlink precoded pilot transmissions from all BSs to design receive beam-
former. It is then notified to all BSs through uplink sounding pilots so as to update the
respective transmit precoders at the BSs for next iteration. This procedure is discussed
below on distributed designs for MSE reformulated problem, since MMSE equalizer
is required even for single antenna receivers to utilize the relation between MSE and
SINR. The algorithmic representation is presented in Algorithm 3.

The total number of variables exchanged via backhaul can be calculated as follows.
At first, we consider dual variable e that corresponds to each user in the system,
therefore, it contributes K scalar variables. Secondly, we have 0, that corresponds to
each interference link, contributing (Np — 1) x K. Therefore, the overall number of
scalar entries that are exchanged via backhaul is (Np — 1) x K + K, which is larger
than the ADMM overhead by K. However, the ADMM involves multiple iterations for
each SCA update point unlike the KKT method, which operates at SCA step. Unless
the number of ADMM iterations is one, the KKT based schemes will always have less

signaling for the given throughput improvement.



42

Algorithm 3 SINR relaxation via SPCA with QoS Requirements

Input: A, hbk,lme € B,Vk € U,,.
Output: w,,Vk € U
Initialization: ¢ = 1, gb,(:) using some feasible transmit precoders W,(CO)
repeat

VBSsbe B 4

solve (49a) and (49b) with ¢\ using (43), Vk € U,

(i)

perform backhaul exchange among coordinating BSs to notify dual variables e,
)

with the updated dual variables e,(f
upon finding W](;), all BSs evaluate & ;, Vk € U, and notify the same to respective
serving BS

after obtaining oy from each b € By, and for all & € U, , BSs then update 6,(;),
A% and d\ by using (45), (49¢), and (49f) locally
until convergence

from neighboring BSs, solve (49c¢)

5.3. MSE Reformulation without QoS Requirements

In this section, we discuss an alternative approach of designing the transmit precoders
by considering the MSE based problem in (28). Let us proceed further by rewriting the

MSE reformulated convex subproblem for the :th SCA iteration with dual variables as

e _(¢)>_1
minimize 50a
linimiz ;ak <€k €k (50a)
subject to
ay e > |1 — u};hbk,]ﬁ;wk]2 + Z |u;‘hbk7iwi|2 + N, (50b)
7:62/717
o Y w3 <P, vbeB (50¢)
kel

where a; and ¢, are dual variables corresponding to the constraints (50b) and (50c),
respectively. The SCA operating point is given by fixed MSE point obtained from
previous SCA iteration as 6,(5).

In order to solve the convex subproblem (50), we write the corresponding Lagrangian

with the dual variables as

K N\ -1
L(Ek,Wk,ak,Cb) = Zak <€]({,‘z)> + Zcb (Z ||Wk||§ - Pb)

k=1 beB kel
K
* 2 * 2 \7
E a | |1 — uphy, gwi|” + E |uihy, w;|* + No — €
k=1 €Uy

(D
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The dual variable ¢, is associated with each BS, and ay, is the dual variable associated
with the MSE constraint of each user k. Using this, the optimization problem is given
as

maximize minimize L(eg, Wi, ay, ¢p) (52)
ag,Cp Wi €k

and the convex subproblem is solved by equating the derivative of the Lagrangian with
respect to each of the optimization and dual variables to zero. For further details on
the KKT conditions, readers are referred to Appendix 9.4.1.

By using the gradient conditions (69), primal constraints in (50), and the slackness

criterion in (70), we obtain the following iterative solution as

o = % (53a)
K —1
K "~ -1
= (S ) st0
j=1
6 = 1=y w7 g g w P PN (53d)

jeU,

The dual variable ¢, is obtained such that the total power budget P, is satisfied by the
transmit precoder wy. It is usually found by using the bisection search. The above
KKT expressions are solved iteratively until convergence to obtain an efficient set of
transmit and receive beamformers.

In order to the evaluate the precoder w;Vk, the MMSE receivers corresponding to
all interfering users are required at each BS b € 3. Moreover, to evaluate the MMSE
receivers associated with each user in the system, complete interference channel in-
formation should be available at the BSs. Therefore, implementing the MSE based
precoder design via backhaul exchange is not viable as it requires complexity similar
to that of the centralized schemes.

However, by following various approaches presented in [37], the OTA based pre-
coder training procedure is a viable option for practical implementation. It is achieved
by the following procedure. Each BS evaluate the transmit precoders wy, of the as-
sociated users from (53b) with arbitrary dual variables a;. Upon finding the transmit
precoders, all BSs will then transmit precoded pilots in an orthogonal manner with wy,
as precoders in the downlink training phase. All users in the system receive orthogonal
pilot transmissions from each BS and then evaluate the effective channels, i.e., user k&

will estimate hbﬁkw](i) from each BS b; € B.
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Now, each user updates the respective MMSE receivers by using (53c) with the
desired hbk’kw,(:) and interfering hbjykwgi)
updated as u,(f), each user then proceeds to update the MSE operating point e,(f) with

effective channels. Once the receivers are

(53d). Note that users can also consider using an alternate MSE expression for (53d),
which is given as
e =1 —u"hy, pwl. (54)

Since all the necessary variables are already present at the user terminal. Upon eval-

uating €}, each user then update a,(fﬂ) by using (53a). Now, users will send an uplink

precoded pilot to inform both receive beamformer u,(f) and dual variable a,(fﬂ). Itis

achieved by using a,(fﬂ)uz(i) and agﬂ)uzu) as precoders for pilots that are transmit-
ted orthogonally in the uplink direction, where u;, denotes the complex conjugate of

ug. Each BS then receives an equivalent channel as
hgjk a,(fﬂ)uz(i) (35)

where hy is the reciprocal uplink channel with dimension C7*! since h,,, € C'*7.

By using the effective uplink channel, each BS then updates the corresponding trans-
mit precoders W,i”l) by using (53b). The above discussed procedure is carried out until
convergence or for limited number of iterations depending on the signaling overhead

involved. This is also briefly outlined in Algorithm 4.

Algorithm 4 MSE Reformulation without QoS Requirements

Input: oy, hy,;, V0 € B,Vk € U.
Output: w;, ug, Vk € U

Initialization: i = 1, dual variables a;”) = 1, transmit precoders wy(*), MMSE
receivers u,(go) using (53c¢)
repeat

for all BS b € B, update W](j) with (53b) and use it to perform downlink precoded
pilot transmission
for all user k € U, execute the following steps

evaluate MMSE receiver u,(;) by using (53c) with effective downlink channel

update MSE operating point e,(f) with (54)
evaluate dual variable a,(;H) by using (53a)

using 4/ a,(jﬂ)uz(i) and a,(fH)u}:,(i) as precoders, uplink precoded pilots are sent

from each user orthogonally to all BS in B
until convergence
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5.4. MSE Reformulation with QoS Requirements

In this section, we discuss the MSE reformulated distributed precoder design presented
in section 5.3 with the additional guaranteed minimum rate requirement for all users
[15, 16]. Since the formulation is very much similar to (50), we rewrite with the

corresponding dual variables as

K
. _(i)) -1
minimize 56a
inime 3w (&) e 36
subject to
Qg . €k 2 |1 — UZhbk,kaF + Z |ujhbk,iwi|2 + No (56b)
€Uy
a: Y Iwl3< P, vbeB (56¢)
kel
dk . — log (% 2 Rk (56(1)

where ay, ¢, and dy are dual variables corresponding to the constraints (56b), (56¢),

and (56d), respectively. The SCA operating point is given by fixed MSE point obtained
from previous SCA iteration as E,(f). However, note that (56d) is nonconvex due to the
involved variables, therefore, (56) is a nonconvex problem.

In order to solve (56), we use first order Taylor approximation for the convex func-

tion — log(ex) as B
—log(e) — =% > R, (57)
€k

which is a convex constraint. Let us now replace (56d) with (57) to obtain a convex

problem as
S @)~
minimize € 58a
wk,ek,tf ;ak (Ek ) Ek ( )
subject to
Qg . €k 2 ‘1 — UZhbk’kka + Z ]u;‘hbk,iwf + No (58b)
iEZJb
a: Y Iwl3< P, vbeB (58¢)
kel
di: log(@) + 2% 4 R <0 (58d)

€k

and the associated Lagrangian with the corresponding dual variables is given by
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K A\ —1
Liet, Wi arsendi) = Yo (&) +Da (Z Iwill3 - Pb)
k=1

beB kel

K
Z Q. |1 — UZhbk,kaF + Z |u2‘hbk,iwi|2 + Ng — €k
k=1

i€Uy

K
+ Z dy; (log(Ek) + T % + Rk> (59)
k=1

€k

The dual variable ¢, is associated with each BS, and a;, d;, are dual variables corre-
sponding to MSE and QoS constraint of each user k. Using this, the optimization
problem is given by

maximize minimize L(eg, Wy, ay, cp, d,) (60)
aj,coydi Wh ek
and the convex subproblem is solved by equating the derivative of the Lagrangian with
respect to each of the optimization and dual variables to zero. The further details of
the KKT conditions are included in Appendix 9.4.2.
By using the gradient conditions (71), the primal constraints in (58), and the slack-

ness criterion in (72), we obtain the following iterative solution as

W _ di Y o

log (e,0-D) | e

K -1

(61a)

7j=1
-1
u = (Zhb ewy i bl k+021NR> b o
6 = = e w P+ e WP+ PNy (61d)
JEU,
(0 (i-1) | () TN o )
4 = d 7 +py |logley ) + s+ Ry (6le)
€

where pfj) is the subgradient step size, which can either be constant or diminishing in
each update step. The dual variable ¢, is obtained such that the total power budget P,
is satisfied by the transmit precoders wy. It is usually found by using the bisection
search. The distributed implementation follows the same procedure as that of the one
presented in Section 5.3 without QoS constraint. For completeness, the algorithmic
representation is presented in Algorithm 5 to illustrate the distributed precoder design

to provide guaranteed minimum rate.
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Algorithm 5 MSE Reformulation with QoS Requirements

Input: oy, hb7k,Vb e B.Vkel.
Output: wy, u,, Vk € U
Initialization: i = 1, dual variables a;?) = 1, transmit precoders w(?), MMSE
receivers ué,o) using (53c), and dual variables d;o) = 1.
repeat
for all BS b € B, update W/(:) with (61b) and use it to perform downlink precoded
pilot transmission
for all user k € U, execute the following steps

evaluate MMSE receiver ul(f) by using (61c) with effective downlink channel

update MSE operating point e,(f) with (54)

dual variable d,(f) is updated by using subgradient method in (61e)

evaluate dual variable a,(fﬂ) by using (61a)

using ) and a,(fﬂ)u,:(i) as precoders, uplink precoded pilots are sent
from each user orthogonally to all BS in B

until convergence

(i4+1) =*(z
Uy

Since the subgradient method is used to update the dual variable dj, corresponding to
the guaranteed minimum rate constraint, the convergence is typically slower as com-
pared to Algorithm 4. However, performing distributed updates until convergence is
not efficient. It follows from the fact that performance improvement is noticeably large
in the first few iterations than in the final stages. Therefore, it is worthwhile to perform
distributed approach for few iterations and use it as a starting point for the forthcoming
transmission slots by considering time-correlated fading nature [35]. Note that there is

no need for any backhaul transmission in MSE based design unlike SPCA method.
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6. NUMERICAL RESULTS

In this section, we analyze the performance of MIMO IBC precoder design for various
scenarios. At first, we demonstrate the sum rate behavior of various precoder designs

presented in Sections 4.1, 5.1, and 5.3, then, we present the same with minimum QoS

requirement.
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Figure 6: Sum rate performance for Nt = 8, Ng = 2, K = 4 model at 10 dB SNR
with users at cell-edge.

Figure 6 illustrates the convergence of the proposed algorithms by distributing the
users around the cell-edge. The scenario considered involves Ng = 2 BSs, having
Nt = 8 transmit antennas, operating at 10dB SNR and serving K = 2 single receive
antenna users in a coordinated manner. Figure 6 demonstrates the sum rate perfor-
mance of various algorithms. The sum rate plot is shown only at the SCA update
points.

Figure 7 demonstrates a scenario with Nz = 2 BSs, each equipped with Nt = 8
transmit elements operating at 10 dB SNR, serving K’ = 6 single receive antenna
users in a coordinated manner. The users are assumed to be distributed with signal-
to-interference-ratio (SIR) in [0, 12] dB. The performances of the ADMM, SPCA, and
MSE based distributed precoder designs are shown in Figure 7. The initial values
of the precoders are generated based on single user transmit beamformer. The KKT
based SPCA and MSE reformulation methods converge monotonically, whereas the
convergence of ADMM need not be monotonic in each the ADMM update.



49

18
Pl
16 I.-"
|
N J
= 14 | i ADMM requires more
E i number of iterations
E II.
m ||
= |
c 12r II:,
& i
B 0F |
-1 ]
— ADMM with § inner iterations in each SCA step
gr ¢ |77 KKT based SPCA method
KKT based MSE reformulation schemse

] 5 10 15 20 25
SCA update steps

Figure 7: Sum rate performance for Ny = 8, Np = 2, K = 6 model with pathloss in
[0,—6] dB at 10 dB SNR.
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Figure 8: Behavior of users at 10 dB for SPCA Approach with and without QoS con-
straints Ny = 8, Ny = 2, K = 6 model.

Figures 8-11 demonstrates the behavior of the proposed algorithms with and without
QoS constraints in the formulation. A cell edge scenario is illustrated. Each user with

a QoS constraint is subject to a minimum guaranteed rate in nats. The convergences
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for the proposed algorithms are studied with a constant or diminishing step size and
the user rates are updated after every iteration.
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Figure 9: Behavior of users at 10 dB for MSE Approach with and without QoS con-
straints Ny = 8, Ny = 2, K = 6 model.

In Figure 8, the behavior for SINR relaxation via SPCA with QoS requirement, con-
sidering Ny = 2 BSs, each having Nt = 8 transmit antennas, and serving K = 6 users
in the system. For this setup, we observe that all the 6 users are provided a minimum
QoS rate of 3.5 nats, where most of the users attain the QoS requirement. In addition,
it can be observed that the convergence has several glitches and is not monotonic due
to the sub gradient update used for the QoS constraint.

Similarly, Figure. 9 exemplifies the behavior of the MSE reformulation with QoS
requirement, where the system consists of Ny = 2 BSs, each having Ny = 8 transmit
antennas, operating at 10 dB SNR and serving K’ = 6 users. A minimum rate of
3.5 nats is provided for each user in the system. We observe that all the 6 users in the
system obtain the minimum QoS rate. Similar to the above discussion, the convergence
may not be monotonic due to the sub gradient update.

Figure 10, demonstrates the infeasible case of QoS requirements, i.e., by fixing min-
imum guaranteed rate requirement of 3.5 nats for each user. The users are distributed
in such a way that the SIR seen by any user lies in [0, 12] dB. Since the algorithm can-
not guarantee the QoS requirement for the given transmit power, it can be seen from
Figure 10 that one of the user rate is in fact decreasing as highlighted in the figure.

Figure 11 illustrates the performance of the ADMM scheme with and without QoS
constraints. The model involves Ny = 2 BSs, equipped with Nt = 8 transmit ele-



51

5 -
dashed lines denotes user rate without QoS constraint——y,,
a5F - . . . , ,
T 3st e
o i} '1"‘"---_._._.‘ solid lines commesponds to
= 25 user rate with 3.5 nats QoS constraints
g 2f/
E o \ """""---.._._,_‘ infeasille user rate
S 150 (3.5 nats as QoS requirement)
-
i
!
osf!
!
o L

0 5 10 15 20 25 30 35 40 45 S0
SCA update steps

Figure 10: Behavior of users at 10 dB for MSE Approach with and without QoS con-
straints Ny = 8, Ny = 3, K = 6 model.
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Figure 11: Behavior of users at 10 dB for ADMM method with and without QoS
constraints N = 8, Ny = 2, K = 4 model.

ments serving ' = 4 single antenna users. As seen from Figure 11 that the minimum
rate provided for a user is = 2.75 nats with the WSRM objective. However, when we
included an additional guaranteed rate constraint of 3 nats to each user, the proposed
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ADMM based distributed algorithm provided the required QoS of 3 nats to all users as
highlighted in Figure 11.
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7. SUMMARY AND CONCLUSIONS

In this work, we designed transmit precoders for a multi-cell multi-user multiple-input
multiple-output system with user specific minimum rate as quality of service require-
ments. In general, the goal of precoding is to maximize the signal power at the intended
terminal while minimizing the interference caused at other terminals. In order to de-
sign transmit precoders, we considered three distributed precoder designs and analyzed
the practical feasibility of the proposed schemes.

In this thesis, we first discussed centralized precoder design by using two approaches,
namely, direct signal-to-interference-plus-noise-ratio relaxation via sequential para-
metric convex approximation and mean squared error reformulation. In the centralized
approach, the common controller is assumed to have the complete channel state infor-
mation of all base station-user links in order to design precoders for all base station. We
adopted successive convex approximation technique to handle the nonconvex nature of
the original problem by solving a sequence of convex subproblems.

We proposed two related distributed precoder design algorithms, wherein the pre-
coders are designed at each base station with the local channel state information knowl-
edge by exchanging coupling variables among the coordinating base stations. In addi-
tion, we also considered the problem of imposing certain minimum quality of service
requirements in the form of guaranteed rate to the users in the system. For the proposed
algorithms, the interference exchange to update the precoders at each base station is
carried out via either backhaul or over-the-air.

In distributed designs, we initially designed transmit precoders at each base sta-
tion in a decentralized manner by employing alternating directions method of multi-
pliers (ADMM) technique. It is carried out by relaxing the inter-cell interference as
an optimization variable by including it in each base station objective. The precoders
are designed in each base station (BS) by exchanging the interference information via
backhaul which interconnects two base stations. The direct relaxation of signal-to-
interference-plus-noise-ratio via sequential parametric convex approximation formu-
lation was formulated for both with and without guaranteed quality of service rate
constraints.

We further investigated an alternative precoder design by solving the Karush-Kuhn-
Tucker expressions in each successive convex approximation step across the coordi-
nating base station. Using the centralized approaches we formulated a distributed
precoder design by solving the respective Karush-Kuhn-Tucker expressions. In ad-
dition, we also discussed the distributed precoder design to provide guaranteed min-
imum rate to all users in the system. The reason for considering the Karush-Kuhn-

Tucker based distributed precoder design is that the alternating directions method of
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multipliers requires several steps of iterations in each successive convex approxima-
tion step. Moreover, the complexity involved in backhaul exchange increases with the
system size. Due to the above said reasons, the Karush-Kuhn-Tucker based solutions
are more preferable for practical implementation owing to the closed form updates in
each successive convex approximation iteration.

In the Karush-Kuhn-Tucker approach, we begin with the sequential parametric con-
vex approximation based centralized design was extended to the Karush-Kuhn-Tucker
based distributed for both with and without quality of service rate constraint. Since we
considered a single antenna receive, the interference coupling variable is exchanged via
backhaul. Similarly the mean squared error design was also extended to the Karush-
Kuhn-Tucker based approach for both with and without quality of service user rate
constraint, over-the-air based precoder training procedure is considered as an viable
option for practical implementation.

Numerical analysis for the alternating directions method of multipliers and the Karush-
Kuhn-Tucker based algorithms without quality of service constraints suggested that the
convergence is monotonic. However, algorithm involving the Karush-Kuhn-Tucker
expressions is shown to converge quickly when compared to alternating directions
method of multipliers approach. Similarly, for minimum quality of service rate meth-
ods, we observed that all the users attained certain rate above the guaranteed minimum
rate due to the available transmit power budget.

As future work, we consider extending the precoder design for the following sce-
narios. At first, we extend the precoder design with the guaranteed rate requirement
for primary users in a cognitive radio framework. In this case, the secondary users
may take any rate without affecting the primary users quality of service requirements.
Secondly, we can consider extending the precoder design over a time correlated fading
scenario, wherein we perform the partial over-the-air and backhaul based exchanges to
design precoders. As a final extension, we can consider selecting a subset of user for
precoder design to reduce the number of iterations required for the precoder conver-

gence.
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9. APPENDICES

9.1. Convergence Proof for Centralized Algorithms

The centralized problem formulations in (13) and (26) are nonconvex, therefore, we
adopt successive convex approximation (SCA) technique to solve the problem in an
iterative manner by solving a sequence of convex subproblems. The centralized algo-
rithms outlined in Algorithm 1 generates a sequence of objective values and a corre-
sponding sequence of beamformer iterates. The convergence of the iterate sequence

follows Theorem 1.

Theorem 1. Every limit point of the sequence generated by above algorithms is a

Stationary point.

Proof. In order to prove the above statement about the sequence of iterates generated

by the centralized algorithm, let us consider a following generalized problem structure

as
minimize f(x) (62a)
subject to g:(x)<0,i=1,...,m (62b)
hij(x)=0,j=1,...,p. (62¢)

where x is a vector formed by stacking all the optimization variables of nonconvex
problems (13) and (26), respectively. Without loss of generality, let us proceed further
with the following assumptions. Let the inequality constraints ¢;(x), Vi € {1,...,n}
are all differentiable and convex functions, ¢;(x), Vi € {n + 1,...,m} are all differ-
entiable and possibly nonconvex, and the linearity constraints are all affine.

In order to solve the above nonconvex problem (62), we refer to SCA method dis-
cussed in [33, 32]. The problem (62) is solved by approximating the nonconvex set by
a convex subset and solved iteratively by updating the convex subset in each iteration.
As shown in [33], the inner SCA algorithm for the minimization problem can be done

in the following steps,

e Set a starting point for the variable and constraint x° € F' and set A’ = go(x°).
Let A° = {x|h° = go(x) and x € F'}, where F' can be defined as the feasible

region.
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e In the k" iteration replace the constraint g;(x) < 0,4 = (n + 1),...,m, by
gi(x,x") < 0, where g;(x,x") is a differentiable convex function and x* €

AP, Each function g;(x,x") must have the following properties

g:(x) < g(xx") vxeF* (63a)
gi(x) = g(x"x" (63b)
Vai(x¥) = Vg (x"x", Vi=1,....n (63c)

The feasible region F* = {x|g;(x) < 0, Vi = 1,...,n, and g;(z,2"*) <
0, Vi = n+1,...,m} should satisfy slaters constraint qualification condition

for convex programs.

e Solve the approximation convex program

minimize go(x) (64a)
subject to g(x)<0,i=1,...,n (64b)
Gi(x,x") <0, i=n+1,...,m. (64¢)

Let h* = min{go(x)|x € F¥}.

o If ¥ = h*~1) then x* is a Karush-Kuhn-Tucker (KKT) solution for the mini-
mization problem. Otherwise, let a* = {x | h* = go(x) and x € F*} and return

to step 1.

Note that the monotonic decrease of sequence {f(x*)} is guaranteed by using the
following argument. Since each subproblem (64) includes the solution from previous
iteration, i.e., x*~ € F* (see (63)), f(x*) < f(x*~1). Therefore, monotonic decrease
of the objective sequence is guaranteed. Now, by using [38 Prop. A.3], we can show
that { f(x*)} is bounded and monotonically decreasing, therefore, it converges as k —
00.

Now by following [32, 39, 40], we can show that the sequence of iterates converges
to a set of limit points, since in each SCA step, the problem (64) is convex, and there-
fore can have multiple minimizers. Due to this, we can have oscillatory behavior in
the sequence of iterates, which may lead to lack of convergence. However, we note
that as limy_,,, x* — F*, where F* is the set of all limit points. Therefore, by using
[40 Theorem 3.1], we can show that {xk} converges to a continuum of limit points,
or every limit point is a stationary point. The stationarity of limit points can be easily
established by considering that x* is a solution of (64), therefore, as k — oo, by using
[32], we can show that every point in F™* is a stationary point of (62).

]
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9.2. Convergence Proof for Distributed Algorithms

The convergence of ADMM based distributed precoder design can be guaranteed by
the following.

e In each SCA step, the subproblem considered for ADMM is convex
e The ADMM updates are performed until convergence.

Then, the convergence of ADMM follows the discussions in [34].

Similarly, for the KKT based distributed precoder designs, if the number of iterations
is significantly large or iterated as ¢ — oo, convergence is guaranteed by following
Theorem 1. It is due to the fact that KKT based design solves the convex subproblem
in each SCA iteration using system of equations, which is similar to the respective
centralized algorithms.

On the contrary, in case of KKT based precoder designs with quality of service
(QoS) constraints, convergence cannot be ensured directly. However, if the step size
parameter p used in the subgradient update of the dual variable dj is diminishing in
each step, i.e., > po, p¥ = oo, and lim;_,., p — 0, then the convergence can be

ensured by following [41 Prop. 8.2.6].

9.3. KKT Conditions for SPCA method
In order to obtain an iterative precoder design algorithm, the KKT expressions of
problem (40) and (49) are required, which is found by differentiating the associated
Lagrangian function with respect to each of the optimization and dual variables.

9.3.1. SPCA without QoS Requirements

Upon differentiating and grouping the associated variables of (40), we obtain the fol-

lowing relations as

1 Qg
Vy | ———+—==0 65a
(i)
Vs, a'“f’“ —ep =0 (65b)
Ve, © 2Wy (Z ehf hy,  +aly, ) = ayhfl . (65¢)
ik
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In addition to (65), it also includes the complementary slackness conditions as

¢(i) 1
ar | w + By — Ihpawi| | =0 (66a)

2 20,

K
€k (02 + > by ew]* — 5kz) =0 (66b)
i=1,i#k

¢ (Z w2 — Pb> = 0. (66¢)

ke,

Note that to obtain a tractable solution, we consider the following assumptions on
dual variables as a; # 0 and ¢, # 0, thereby making the respective constraints to be

tight or satisfies with equality.

9.3.2. SPCA with QoS Requirements

Upon differentiating and grouping the associated variables of (40), we obtain the fol-

lowing relations as

1 a
v - —dp+—— =0 (67a)
b Tty 20®
(i
Vs —“’“f’f e =0 (67b)
Ve, @ 2Wg (Z ehy! hy, i+ Iy, ) = a;hf! . (67¢)
i£k

In addition to (67), it also includes the complementary slackness conditions as

(i)
1
ag (%% + 51@51(;) — |hy, eWi| | =0 (68a)
K
ex (02 + ) by ewi]* = B | =0 (68b)
i=1,i#k
o (Z wel2—P, | =0 (68¢)
kel
di (R —log(1+ ) = 0. (68d)

Note that to obtain a tractable solution, we consider the following assumptions on

dual variables as a;, # 0 and e, # 0, thereby making the respective constraints to
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be tight or satisfies with equality. However, (68d) cannot be assumed with equality,

therefore, we need to adopt subgradient approach to find the optimal dual variable dj.

9.4. KKT Conditions for mean squared error (MSE) Reformulation

9.4.1. MSE without QoS Requirements

By considering the Lagrangian function in (51), we obtain the following expression by

taking the gradient of (51) with respect to each of the associated optimization variables

as
1
Ve, @ ——ap=0 (69a)
€k
Vwk . Wi <ak2hﬁ’iuiHuihbk7i + CbINT ) = akuthbk’k. (69b)
i#k

In addition to (69), it also includes the complementary slackness conditions as

ag |1 — ughbk,kka + Z ]|ufhbk7iwi||2 + Ng — €L =0 (703)
€Uy

¢ (Z w2 — Pb) =0. (70b)

kel

In addition to (70), the primal constraints given in (50) are also considered while de-

signing an iterative approach to solve the involved variables.

9.4.2. MSE with QoS Requirements

By considering the Lagrangian function in (59), we obtain the following expression by
taking the gradient of (59) with respect to each of the associated optimization variables

as

—ap =0 (71a)

Vwk LW (ak ZhkaJug{uihbk,i + CbINT ) = akuthkak (71b)
i#k
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(71c)

In addition to (71), it also includes the complementary slackness conditions as
H 2 H 2 N _
ag |1 — Uy hbk,kwk| + Z HllZ hbk,iwiH + Ng — €L =0 (723)

€Uy

c (Z [wi |3 — Pb> =0 (72b)

ke,

dy (1og<ek> + & — %y Rk> (72¢)
k

In addition to (72), the primal constraints given in (58) are also considered while de-

signing an iterative approach to solve the involved variables.



