6 research outputs found

    Kernel - based continous - time systems identification: methods and tools

    Get PDF
    2012/2013Questa tesi ha lo scopo di formalizzare un nuovo filone teorico, che deriva dallā€™algebra degli operatori lineari integrali di Fredholm-Volterra agenti su spazi di Hilbert, per la sintesi di stimatori dello stato e parametrici per sistemi dinamici a tempo continuo sfruttando le misure ingressi/uscite, soggetti a perturbazione tempo-varianti. In maniera da ottenere stime non-asintotiche di sistemi dinamici a tempo continuo, i metodi classici tipicamente aumentano la dimensione del vettore delle variabili di decisione con le condizioni iniziali incognite di stati non misurati. Tuttavia, questo porta ad un accrescimento della complessitaĢ dellā€™algoritmo. Recentemente, diversi metodi di stima algebrici sono stati sviluppati, sfruttando un approccio algebrico piuttosto che da una prospettiva statistica o teorica. Mentre le forti fondamenta teoriche e le proprietaĢ di convergenza non asintotiche rappresentano caratteristiche notevoli per questi metodi, il principale inconveniente eĢ che lā€™implementazione pratica produce una dinamica internamente instabile. Quindi, la progettazione di metodi di stima per questi tipi di sistemi eĢ un argomento importante ed emergente. Lā€™obiettivo di questo lavoro eĢ quello di presentare alcuni risultati recenti, considerando diversi aspetti e affrontando alcuni dei problemi che emergono quando si progettano algoritmi di identificazione. Lo scopo eĢ sviluppare unā€™architettura di stima con proprietaĢ di convergenza molto veloci e internamente stabile. Seguendo un ordine logico, prima di tutto verraĢ progettato lā€™algoritmo di identificazione proponendo una nuova architettura basata sui kernel, utilizzando lā€™algebra degli operatori lineari integrali di Fredholm-Volterra. Inoltre, la metodologia proposta saraĢ affrontata in maniera da progettare stimatori per sistemi dinamici a tempo continuo con proprietaĢ di convergenza molto veloci, caratterizzati da gradi relativi limitati e possibilmente affetti da perturbazioni strutturate. PiuĢ nello specifico, il progetto di adeguati kernel di operatori lineari integrali non-anticipativi daraĢ origine a stimatori caratterizzati da proprietaĢ di convergenza idealmente "non- asintotiche".Le analisi delle proprietaĢ dei kernel verraĢ affrontata e due classi di funzioni kernel ammissibili saranno introdotte: una per il problema di stima parametrica e uno per il problema di stima dello stato. Gli operatori che verranno indotti da tali funzioni kernel proposte, ammettono realizzazione spazio-stato implementabile (cioeĢ a dimensione finita e internamente stabile). Allo scopo di dare maggior completezza, lā€™analisi del bias dello stimatore proposto verraĢ esaminata, derivando le proprietaĢ asintotiche dellā€™algoritmo di identificazione e dimostrando che le funzioni kernel possono essere pro- gettate tenendo in debito conto i risultati ottenuti in questa analisi.This thesis is aimed at the formalization of a new theoretical framework, arising from the algebra of Fredholm-Volterra linear integral operators acting on Hilbert spaces, for the synthesis of non-asymptotic state and parameter estimators for continuous-time dynamical systems from input-output measurements subject to time-varying perturbations. In order to achieve non-asymptotic estimates of continuous-time dynamical systems, classical methods usually augment the vector of decision variables with the unknown initial conditions of the non measured states. However, this comes at the price of an increase of complexity for the algorithm. Recently, several algebraic estimation methods have been developed, arising from an algebraic setting rather than from a statistical or a systems-theoretic perspective. While the strong theoretical foundations and the non-asymptotic convergence property represent oustanding features of these methods, the major drawback is that the practical implementation ends up with an internally unstable dynamic. Therefore, the design of estimation methods for these kind of systems is an important and emergent topic. The goal of this work is to present some recent results, considering different frameworks and facing some of the issues emerging when dealing with the design of identification algorithms. The target is to develop a comprehensive estimation architecture with fast convergence properties and internally stable. Following a logical order, first of all we design the identification algorithm by proposing a novel kernel-based architecture, by means of the algebra of Fredholm-Volterra linear integral operators. Besides, the proposed methodology is addressed in order to design estimators with very fast convergence properties for continuous-time dynamic systems characterized by bounded relative degree and possibly affected by structured perturbations. More specifically, the design of suitable kernels of non-anticipative linear integral operators gives rise to estimators characterized by convergence properties ideally ā€œnon-asymptotic". The analysis of the properties of the kernels guaranteeing such a fast convergence is addressed and two classes of admissible kernel functions are introduced: one for the parameter estimation problem and one for the state estimation problem. The operators induced by the proposed kernels admit implementable (i.e., finite-dimensional and internally stable) state- space realizations. For the sake of completeness, the bias analysis of the proposed estimator is addressed, deriving the asymptotic properties of the identification algorithm and demonstrating that the kernel functions can be designed taking in account the results obtained with this analysis.XXVI Ciclo198

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    An integrative computational modelling of music structure apprehension

    Get PDF

    The end of stigma? Understanding the dynamics of legitimisation in the context of TV series consumption

    Get PDF
    This research contributes to prior work on stigmatisation by looking at stigmatisation and legitimisation as social processes in the context of TV series consumption. Using in-depth interviews, we show that the dynamics of legitimisation are complex and accompanied by the reproduction of existing stigmas and creation of new stigmas
    corecore