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Abstract
This thesis is aimed at the formalization of a new theoretical framework,
arising from the algebra of Fredholm-Volterra linear integral operators act-
ing on Hilbert spaces, for the synthesis of non-asymptotic state and param-
eter estimators for continuous-time dynamical systems from input-output
measurements subject to time-varying perturbations.
In order to achieve non-asymptotic estimates of continuous-time dynamical
systems, classical methods usually augment the vector of decision variables
with the unknown initial conditions of the non measured states. How-
ever, this comes at the price of an increase of complexity for the algo-
rithm. Recently, several algebraic estimation methods have been devel-
oped, arising from an algebraic setting rather than from a statistical or
a systems-theoretic perspective. While the strong theoretical foundations
and the non-asymptotic convergence property represent oustanding fea-
tures of these methods, the major drawback is that the practical imple-
mentation ends up with an internally unstable dynamic. Therefore, the
design of estimation methods for these kind of systems is an important and
emergent topic.
The goal of this work is to present some recent results, considering different
frameworks and facing some of the issues emerging when dealing with the
design of identification algorithms. The target is to develop a comprehen-
sive estimation architecture with fast convergence properties and internally
stable.
Following a logical order, first of all we design the identification algorithm
by proposing a novel kernel-based architecture, by means of the algebra of
Fredholm-Volterra linear integral operators.
Besides, the proposed methodology is addressed in order to design esti-
mators with very fast convergence properties for continuous-time dynamic
systems characterized by bounded relative degree and possibly affected by
structured perturbations. More specifically, the design of suitable kernels
of non-anticipative linear integral operators gives rise to estimators char-
acterized by convergence properties ideally “non-asymptotic".
The analysis of the properties of the kernels guaranteeing such a fast con-
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vergence is addressed and two classes of admissible kernel functions are
introduced: one for the parameter estimation problem and one for the
state estimation problem. The operators induced by the proposed kernels
admit implementable (i.e., finite-dimensional and internally stable) state-
space realizations.
For the sake of completeness, the bias analysis of the proposed estimator
is addressed, deriving the asymptotic properties of the identification algo-
rithm and demonstrating that the kernel functions can be designed taking
in account the results obtained with this analysis.
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Chapter 1

Introduction

Modern systems are getting more and more complex and many engineer-
ing applications need a compact and accurate description of the dynamic
behavior of the system under consideration: this is especially true in the
field of automatic control applications. Dynamic models describing the sys-
tem of interest can be constructured using the first principles of physics,
chemistry, biology, and so forth. However, models constructured in this
way are difficult to derive, because they require detailed specialist knowl-
edge, which may be lacking, therefore the resulting models are often very
complex. Developing in such way models can be very labor-intensive, and
hence expensive. For poorly understood systems, the derivation of a model
from the first principles is even impossible: since the first-principles models
are often complex, their simulation takes considerable time on a computer;
therefore, they are not suitable for fast on-line applications for example.
Moreover, these models are not always very accurate, because of many rea-
sons, but the most important are the following two: first, it is difficult to
decide which effects are relevant and must be included in the model, and
which effects can be negligible; second, certain quantities needed to build
the model are unknown, and have to be estimated by performing dedicated
experiments. The resulting estimates often differ from the real quantities
and hence some model mismatch can occur.
An alternative way of building models is through system identification.

System identification is the process of developing or improving the mathe-
matical representation of a physical system using observed data: in general,

Systemu y

v

Fig. 1.1: Identification problem
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this problem can be seen as in Figure 1.1, whence a dynamic system is con-
sidered with input u, output y and disturbance v; we can observe u and
y but not v; we can directly manipulate the input u but not y. Even if
we do not know the inside structure of the system, the measured input
and output data provide useful informations about the system behavior;
thus we can construct mathematical models to describe dynamics of the
system of interest from observed input-output data. Therefore, first prin-
ciples are not directly used to model the system, but expert knowledge
about the system still plays an important and key role. Such knowledge
is of great value for setting up identification experiments to generate the
required measurements, for deciding upon the type of models to be used
and for determining the quality and validity of the estimated models. Sys-
tem identification often yelds compact accurate models that are suitable
for fast on-line applications and for model-based predictive control, which
has found widespread use in several branches of the industrial processes.
System identification still requires considerable human invention and ex-
pert knowledge to obtain models that are satisfactory for the application
in mind. Nevertheless, compared with the development of models from
first principles, it is not so labor-intensive. At present, several steps of the
identification procedure can be automated.
It is important to remark that building models from first principles only
and system identification based only on measurements are two extreme
cases. Quite often a combination of the two is encountered. In such a com-
bination, system identification is used to estimate the unknown parts or
parameters of a model based on first principles. Therefore, a whole range
of approaches exists that shows a gradual transition from first-principles
modeling to system identification.
We can look at the identification problem, using the definition [1]:
"Identification is the determination, on the basis of input and output, of a
system within a specified class of systems, to which the system under test
is equivalent."
Using Zadeh’s formulation it is necessary to specify a class of systems,
a class of input signals, and the meaning of "equivalent". Therefore, in
general, system identification proceeds as follows: first, a certain type of
model is selected that is considered to be suitable for the applicant at hand.
The model class is the set of systems that can be represented by a certain
model structure; the choice of model class requires some knowledge of the
system under observation: if the system is not within the model class (or
sufficiently close to it), the estimated model will not be useful. Different
classes of models can be used such as the Oe (Output Error), ARMAX
(Autoregressive Moving Average eXogenous), etc.. Also the representation
has to be determined, possible choices include the state space model, a
frequency response function or a transfer function model: transfer function
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Model class, structure determination

ARX,OE, State Space model, etc.

Experiment design

Choice of the sampling rate,
experiment duration, etc.
input signal design, etc.

I/O Experimental Measurements

Parameter Estimation

Validation

Fig. 1.2: Diagram of system identification process

models are most common due to their low number of parameters. Sec-
ond, a special input signal is designed such that the model captures the
behavior of the system to be modeled; third, an identification experiment
is carried out in which input and output signals are measured; in this part
we include the pre-processing of the data measured (filtering, detrending,
decimating, etc.). An identification method is then selected to estimate the
parameters that describe the model from the collected input and output
measurements; finally, the validity of the obtained model is evaluated (the
flow chart representation of the system identification procedure is depicted
in figure 1.2).
An important step in system identification is the determination of the type

of model to be used. This decision is based on knowledge of the system
under consideration, and on the properties of the model. Certain types of
models can be used to approximate the input-output behavior of a smooth
nonlinear dynamical system up to arbitrary accuracy. Such models have
the so-called universal approximation capability. An example of a universal
approximator are the neural networks [2]. The drawback of these models
is that they are complex, and difficult to estimate and analyze. Therefore
other models structures have received considerable attention over the years.

3



1.1 Structure and contributions

In this work, the results presented in [3], [4] and [5], where a kernel-based
system identification for continuous-time linear systems is designed, are
extended in orther to face some of the issues emerging when a noise with
stochastical structure arise. The objective is to prove that the synthesis of
an internally stable dynamic non-asymptotic estimator can be carried out
by devising the kernel of a non-anticipative linear integral operator, yelding
to a minimal nonlinear dynamic implementation.
Many problems of mathematical physics, theory of elasticity, viscodynamic
fluids and others reduce to Fredholm-Volterra integral equations whence
the kernel function could takes several special forms: the characterization
of the class of admissible kernels is of great interest, since the solution of
integral equations depends on the properties that those kernels have. The
use of kernels in our framework is aimed at obtaining implementable (non-
anticipative) dynamic filters with minimal realization, that is, in which
only the variables of interest appear explicetely. In conclusion, the use
of a kernel-based approach is then well suited for the synthesis of non-
asymptotic state and parameter estimators of continuous-time dynamical
systems from input-output measurements.
Indeed, by resorting to the algebra of linear integral operators, the effects
of unknown initial conditions on the states of the observed system could
in principle be eliminated from structural equations by a proper choice
of the kernel functions. In this setting, the proposed methodology aims
first at identifying a class of admissible kernels (i.e., those yielding to non-
anticipative internally stable non-asymptotic estimators), establishing the
relation with current literature, and finally at characterizing the properties
of specific kernel functions.

Summing up, the main idea is to use the algebra of linear integral operators
to design kernel functions such that the influence of initial conditions is re-
moved from the estimates. The iterated application of operators induced
by those kernels on both sides of the structural constraint of the unknown
system will allow to overcome the unavailability of signal derivatives (hid-
den internal states of the system).
Moreover we consider the following aspects that can augment the perfor-
mance of a system identification method:

• unified algebraic synthesis: to provide a comprehensive procedure
for both parametric and state estimators, it will be established com-
mon patterns toward the formulation of a unified algebraic synthesis
method;

4



• internal stability of the system: to avoid problems like wind-up of the
integrators and therefore periodical re-initialization of the identifica-
tion procedure, it will be characterized a class of admissible kernels,
in order to have a implementable (non-anticipative) internally stable
estimator;

• it will be formalized design methods, that is, introducing optimally
criteria for choosing one among admissible kernels

The first point is addressed introducing linear integral operators’ algebra,
that represents the theoretical basis underlying the present thesis. We will
consider the algebra of Fredholm-Volterrra linear integral operators, acting
on Hilbert spaces ([6]). This fact allows to consider a wide class of operators
with some strong relevant properties in terms of stability and convergence
time.
The second point will be tackled considering the properties of Volterra
operators: in particular, it will be shown that the stability of the Volterra
operators induced by the kernels reflects on the stability properties of the
estimator.
The last point will be addressed analyzing the stochastic properties of the
proposed estimator and deriving rules for the design of the kernel function.

The thesis is organized as follows: in Chapter 2 it will be presented the
theoretical foundations of the proposed methodology and it will be pro-
vided the tools for the further discussion. Later, in Part I, the proposed
methodology for parametric estimation is described in detail:

• Chapter 3 tackles the possible solutions for the kernel functions design
and its properties, in terms of stability and convergence time;

• Chapter 4 the simulation results are presented and discussed

In Part II it will be presented the kernel-based state estimation methodol-
ogy, in particular:

• Chapter 5 introduces a new possible instance of the kernel function
for observers design, that yields to an internal stable linear system

• Chapter 6 discusses and derives the bias analysis for the identification
technique proposed; it will be shown the dependency for the kernel
parameter with the sampling interval

• Chapter 7 the simulation results are presented and discussed with
respect to the observer design

5



Finally in Chapter 8 some concluding remarks are given and future devel-
opments are discussed.

1.2 The state of art

Identification of continuous-time (CT) linear time-invariant (LTI) models
for continuous-time dynamic processes was the initial goal in the earliest
work on sistem identification. This engineering filed has begun to blossom
in the 60’s with the works of Aström ([7], [8]), Bohlin ([9], [10]), Ho and
Kalman [11] Box and Jenkins [12], Eykhoff [13], Ljung [14] (and many oth-
ers, see e.g. [15] and [16]). Therefore we can state that the field of system
identification has its real roots in the 1960’s. The field has expanded enor-
mously in the last 50 years; system identification has become a popular
field of research and many articles and books have been published on the
topic. This led to rapid advances in the theoretical foundation as well as
in the practical application of system identidication. However, this large
variety of methods has made it difficult for the user to choose the best
suited method for the problem at hand.
The LTI models has been used succesfully in many engineering applica-
tions, and a considerable body of theory exists for system identification
and automatic control of linear systems. The authoritative guide for lin-
ear system identification is the book by Ljung ([14]); attractive methods
for linear systems identification are the subspace methods developed ([17],
[18], [19] and [20]): these are numerically robust methods that can easily
deal with systems having myltiple inputs and outputs and are noniterative,
unlike many other identification methods. Subspace methods were origi-
nally developed for the identification of linear systems and are based on
numerical methods from linear algebra.
However, due to the developments in the digital data acquisition and com-
puting technology and the concomitant sampled data, led to an emphasis
on the use of discrete-time (DT) system models, discrete-time control de-
signs and discrete-time-based system identification algorithms from the mid
1960s onward. The last decade has, however, witnessed a renewed interest
in the techniques for the identification of CT models from sampled data
and only early research on system identification focused on identification of
CT models from CT data. Well extablished theories have been devoloped
[16], [14] and many applications have been reported.
A simplistic way of estimating the parameters of a CT model by an indi-
rect approach is to use the sampled data to first estimate a DT model and
then convert it into an equivalent CT model. The difficulties to convert
a discrete-time transfer function to continuous-time transfer function are
well known and related to the accurate estimation of the zeros of a CT
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transfer function for non-uniform sampling ([21],[22]).
Direct continuous-time model identification and estimation is advantegeous
for a number of reasons that have pratical importance: first, most scientific
laws used in scientific model formulation (mass and energy conservation,
gravitational laws) are more naturally formulated in continuous-time dif-
ferential equation terms; second, while discret-time models have different
parameter values, depending upon the sampling interval of the data, CT
models are defined by a unique set of parameters that are independent of
the sampling interval. Third, in case of irregularly sampled data, there are
several CT methods that can be easily adapted to (see [23]). Finally, per-
haps most importantly, CT models can be identified and estimated from
rapidly sampled data, whereas DT models encounter difficulties when the
sampling frequency is too high in relation to the dominant frequencies of
the system under study ([24]): in this situation, the eigenvalues lie too
close to the unit circle in the complex domain and the DT model parame-
ter estimates become statistically ill-defined. The practical consequence of
this situation, are either that the DT estimation fails to converge properly,
providing an erroneous explanation of the data: or, even if the convergence
is achieved, the CT model, as obtained by standard conversion from the
estimated DT model, does not provide the correct CT model.
Another important issue whence system identification play a key role is, in
control system design, to obtain an accurate model of the plant to be con-
trolled. Though most of the existing identification methods are described in
discrete-time, it would often be convenient to have continuous-time models
directly from sampled I/O data. Indeed many controller design approaches
are cast in a continuous-time set-up and, moreover, it is often easier for us
to capture the plant dynamics intuitively in continuous-time rather than in
discrete-time. However, a basic difficulty of continuous-time identification
is that standard approaches (at times called standard methods) require
to compute the time-derivatives of I/O data, a nontrivial and very deli-
cate task in the presence of measurement noise. A comprehensive survey
and of the attempts made to overcome it, has been first given by [25] and
[26]. For more information on direct methods, the reader is referred to
the book [27]. Furthermore, the Continuous-Time System Identification
(CONTSID) toolbox has been developed on the basis of these direct meth-
ods [28][29] and [30].
In this context, it is important to cite iterative learning control (ILC) that
has attracted much attention over last two decades even in the identifica-
tion of continuous-time systems. Indeed this identification method provide
several advantages such as: 1) no time-derivatives I/O data are required,
2) it delivers unbiased estimation, and 3) the identified model quality can
be estimated by inspecting the tracking performance trough experiments.
However an important restriction applies to this method, that is only mod-
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els with no zeros can be dealt with. In this context several works can be
cited, among them [31], [32] and the recent contribute in which the restric-
tion above is removed [33]. It is worth noting that, although linear models
are attractive for several reasons, they also have their limitations: most
real-life systems show nonlinear dynamic behavior and a linear model can
only describe such a system for a small range of input and output values.
Therefore, a considerable interest in identification methods for nonlinear
systems has risen.
Most work in the area of nonlinear system identification has concentrated
on input-output models: a reccomended nice introduction to nonlinear
system identifiction was given in [34]. Becuase of the diversity of model
structures, the literature on nonlinear systems identification is vast: the
reader who wants to delve into it, some pointers to start from are: [35],
[36], [37], [38], [39], [40], [41].

This thesis is focused on the identification of linear Single-Input-Single-
Output (SISO) CT systems models, based on noisy output measurements;
this problem is of great interest in many applications, including radar,
sonar, seismics, ocean acustic, communications, control and others. It will
be addressed this problem through a kernel-based approach: in particular
it will be exploited well established theoretic achievements in the field of
algebra of linear integral operators to develop a novel formalism for the
synthesis of non-asymptotic parametric and state estimators.

1.2.1 Parameter estimation design techniques

Among the various techniques proposed in literature for CT parametric
identification of linear dynamical systems ([42], [14], [16], [43] and the con-
tributed volume [44]), we can recognize two main classes depending on the
approach used to overcome the impossibility to measure the derivatives of
the input-output signals of the system under concern: i) State Variable
Filtering (SVF) and ii) Integral Methods (IM).
The SVF approach consists in filtering the system’s inputs and outputs
in order to obtain prefiltered time-derivatives in the bandwidth of inter-
est that may be exploited, in place of the unmeasured derivatives of the
signals, to estimate the model parameters. Instead, integral methods are
related to the proposed methodology and they have quite a long history
in the field of continuous-time identification. Among integral techniques,
we recall i) the Modulating Function (MF) method, which relies on the
repeated integration of input-output signals over finite-length intervals to
minimize the effect of unknown initial conditions on the estimates; ii) the
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linear integral filter method, in which the initial conditions must be con-
sidered explicitly, by augmenting the dimension of the decision space with
the unknown initialization variables; iii) the reinitialized partial moments
method, that consists in integrating the input-output signals over finite-
length time windows, in sampling the integrals, and finally in performing
the regression over a discrete time-series, making the overall estimator an
inherently hybrid dynamical system.

Typically, in the context of CT identification, asymptotic convergence prop-
erties can be proved and several algorithms have been devised to provide
good performance in terms of transient behavior of the estimates (see, for
example, [45] and the references cited therein). However, in order to achieve
estimates’ modes of behavior characterized by very fast convergence prop-
erties, it is usually necessary to augment the vector of decision variables
with the unknown initial conditions of the unmeasured states. The main
drawback of this technique is related to numerical issues in estimating the
initial hidden states as time goes on.
Within the IM cclas we can also include the Algebraic Estimators recently
developed by M.Fliess and co-workers (see [46, 47, 48, 49, 50], the book [51]
for the underlying theory and [52, 53, 54, 55] for applications of the method
are worth mentioning). While most of the classic CT dynamic estimations
techniques rely on model fitting criteria (least-squares, maximum likely-
hood), the Algebraic Estimation setting makes use of differential algebra
and operational calculus to derive an estimator that provides instantaneous
estimates of the system’s parameters with a minimal realization. The pos-
sibility to obtain non-asymptotic estimates by non-anticipative minimal fil-
tering represents an outstanding peculiar feature of the algebraic approach.
Indeed, there is no need to choose initial conditions and first guess esti-
mates, that are conversely critical quantities in classical methods, deeply
affecting the transitory behavior of the estimators.
On the other side, the structure of the algebraic estimator is fixed by the
synthesis approach, based on the algebraic differentation, in the Laplace’s
operational domain, of the transformed system’s dynamical constraints (in
other words, assuming an upper bound on the relative degree of the system,
the structural differential constraint is recast in the Laplace’s operational
domain and then manipulated algebraically to remove the influence of un-
known initial conditions on hidden states/output derivatives). By "fixed
structure" it is meaning that the estimated quantities can be expressed in
a closed-form expression that always involves nested integrals of terms di-
verging with time. The presence of diverging integrals impacts negatively
in the pratical implementation, which always yields to an internally un-
stable (nonlinear) dynamical system: successive re-initializations are then
required for practical implementation, in order to avoid wind-up of the in-
tegrators, whose integrands are unbounded functions of time.
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On the other side, within the SVF class we include the Instrumental Vari-
able (IV) approach to the identification and estimation of trasfer function
models: this technique has a rich history in the control and systems lit-
erature, with the earliest algorithm of this type dating back to the 1960s
([56], [57], [58], [59], [60]). This techinque allowed to approach the identi-
fication of both discrete-time (RIV) and continuous-time (RIVC) Transfer
Function (TF) models using the statistically optimal Refined Instrumental
Variable method ([61], [62], [63], [64], [65], [66]).
The RIV/RIVC algorithms together consitute a unified, time domain fam-
ily of algorithms that provide statisticaly optimal solutions of both discrete-
time and "hybrid" continuous-time TF models of the Box-Jenkins type
([12]). In this regard, they have advantages over alternative algorithms,
such as the well knwon Prediction Error Minimization (PEM) approach
([14]) used in the MatlabTM System Identification Toolbox, where the gen-
eral time domain algorithms for direct TF model estimation are only avail-
able for DT models.

1.2.2 Observers design techniques

The problem of estimating the state of a dynamical system from outputs
and inputs (commonly known as "observing the state", hence the name
"observer") is an important problem in the theory of systems. Their main
function is extracting variables, otherwise unmeasureble, for a vast number
of applications including feedback control [67] or system health monitoring
[68]. In engineering practice, an observer is used for a number of purposes,
such as removing phase lag in feedback, reducing the use of costly sensors
[69] and estimating disturbances [70, 71].
Classical observer design techniques for linear continuous-time (CT) sys-
tems are characterized by asymptotic convergence of the estimates (see
[72, 73]). In many applications, such as fault isolation or change-point
detection, the estimates of the hidden states are often required to con-
verge in a neighborhood of the true values within a predetermined finite
time, independently from the unknown initial conditions. Several algo-
rithms have been proposed to provide state estimates with finite conver-
gence time. Among others, we recall the moving-horizon observer without a
priori information on initial conditions described in [74], the convolutional
observer proposed by [75] and the delay-based filters proposed in [76, 77].
The implementation of the aforementioned observers is however difficult
or computationally demanding. Indeed, moving-horizon observers need to
solve repeated dynamic optimization problems on-line, whose complexity
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depends on the system’s dimension and on the horizon length. Moreover,
huge memory resources are required to construct the delayed signals needed
by [76, 77], or to compute numerically the convolution integrals over moving
time-windows required by the method described in [75].

A different approach to finite-time state estimation relies on sliding-mode
(SM) based update laws (see [78]). Conventional SM observers however
can only guarantee the semi-global stability of the estimation-error dy-
namics, i.e., the convergence can be proven for initial system states con-
tained in a bounded region. Higher-order SM update laws can be shown to
achieve global convergence, at the cost of increased implementation com-
plexity. Indeed these observers are expensive from a computational point
of view because they require a large (infinite) amount of memory due to the
storage of trajectory pieces, and/or the instantaneous solution of convolu-
tion integrals over a finite time horizon, and/or by an increased order of
the observed dynamics. Notably, the SM methodology achieves finite-time
convergence by discontinuous high-gain output injection, so measurement
noise may prevent its applicability. An alternative finite-time convergent
observer, based on impulsive innovation updates, has been proposed in
[79]. This method, originally implemented by dynamic augmentation, has
been recently improved by [80] to reduce the dimension of the estimator.
The computational complexity of the latter method is reduced with respect
to moving-horizon and convolutional approaches, moreover, compared to
sliding-mode observes, the stability of the estimation error dynamics can
be guaranteed globally and no high-gain output injections are used.
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1.3 Publications

The research presented in this thesis has been extensively presented at
international conferences and are based on the following publications:

• G.Pin, A.Assalone, M.Lovera and T.Parisini, "Kernel-based Non-
Asymptotic Parameter Estimation of Continuous-Time Systems", in
Proc. 51st IEEE Conference on Decision and Control, Maui, Hawaii,
pp. 2832-2839, 2012.

• G.Pin, M.Lovera, A.Assalone and T.Parisini, "Kernel-Based Non-
Asymptotic State Estimation for Linear Continuous-Time Systems",
in Proc. 2013 American Control Conference, Washington, pp. 3123-
3128, 2013

• G.Pin, A.Assalone, M.Lovera and T.Parisini, "Kernel-based Non-
Asymptotic Parameter Estimation of Continuous-time Linear Sys-
tems", Submitted in revised form (as a full paper) to the IEEE Trans-
actions on Automatic Control, 2013.
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Chapter 2

Methodology

In this Chapter it will be introduced the mathematical background needed
in the sequel, fundamental notions and statements of the theory of linear
and integral operators will be presented; besides, the Volterra and Fred-
holm theory is set forth in the Hilbert spaces. It will be analized the
fundamental aspects of this field of research, considering the more relevant
properties that will be exploited along this work. The notions discussed in
this Chapter dont’t provide innovative results, therefore this part will be
used as a basic instrument, with the purpose to obtain state and parametric
estimators with specified properties.

2.1 Linear integral operators

The problems of physics and mechanics relative rarely lead directly to an
integral equation; these problems can be described mostly by differential
equations. However, many of these dfferential equations can be transformed
into integral equations, together with the initial and boundary values. This
chapter is aimed at explain with the concept of integral equations, focusing
our attention in Volterra equations. We will focus in depth the problem of
existence for Volterra equations in spaces of continuous/measurable func-
tions. Besides classical Volterra equations involving integral operators, we
shall also deal with general Volterra equations that involve causal (or non-
anticipative) operators not necessarily of integral type [81] .

2.1.1 Volterra operators

An integral equation is an equation in which the unknown function appears
under the integral sign. There is no universal method for solving integral
equations. Solution methods and even the existence of a solution depends
on the particular form of the integral equation.
An integral equation is called linear if linear operations are performed on
the unknown function. The general form of a linear integral equation is
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[82]:

g(x)φ(x) = f(x) + λ

∫ b(x)

a(x)

K(x, y)φ(y)dy

The unknown function is φ(x), the function K(x, y) is called the kernel of
the integral function, f(x) is the so-called perturbation function and λ is
usually a complex parameter.
Two types of integral equation are of special importance. If the limits of the
integral are independent, i.e., a(x) = a and b(x) = n, we call it a Fredholm
integral equation.
If a(x) = a and b(x) = x, we call it a Volterra integral equation.
Moreover, if the unknown function φ(x) appears only under the integral
sign, i.e., g(x) = 0 holds, we have an integral equation of the first kind and
takes the form:

0 = f(x) + λ

∫ b

a

K(x, y)φ(y)dy, 0 = f(x) + λ

∫ x

a

K(x, y)φ(y)dy

Instead, if g(x) = 1 the equation is called of the second kind, as:

φ(x) = f(x)+λ

∫ b

a

K(x, y)φ(y)dy, φ(x) = f(x)+λ

∫ x

a

K(x, y)φ(y)dy

In the following we will focus our attention in the second type of integral
equations that will be used in our methodology.

A Volterra integral equation has the form:

φ(x) = f(x) +

∫ x

a

K(x, y)φ(y)dy (2.1)

The solution function φ(x) with the independent variable x from the closed
interval I = [a, b] or from the semi-open interval I = [a,∞] is required; the
following theorem provides the existence of a unique solution of the integral
equation [82].

Theorem 2.1.1 If the functions f(x) for x ∈ I and y ∈ [a, x] are contin-
uous, then there exists a unique solution φ(x) of the integral equation such
that it is continuous for x ∈ I

The Volterra integral equation of the first kind can be transformed into
an equation of the second kind. Hence, theorems about existence and
uniqueness of the solution are valid with some modifications.
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Remark 2.1.1 (Transformation by differentiation) Assuming that
φ(x), K(x, y) are continuous functions, we can tranform the integral equa-
tion of the first kind

f(x) =

∫ x

a

K(x, y)φ(y)dy (2.2)

into the form

f
′
(x) = K(x, x)φ(x) +

∫ x

a

∂

∂x
K(x, y)φ(y)dy

by differentiation with respect to x. If K(x, x) $= 0 ∀ x ∈ I, then dividing
the equation by K(x, x) we get an integral equation of the second kind.

Remark 2.1.2 (Transformation by partial integration) Assuming
that φ(x), K(x, y) are continuous, we can evaluate the integral (2.2)
by partial integration. Substituting

∫ x

a

φ(y)dy = ψ(x)

gives

f(x) =
[
K(x, y)ψ(y)

]y=x

y=a
−

∫ x

a

( ∂
∂y

K(x, y)
)
ψ(y)dy

= K(x, x)ψ(x)−
∫ x

a

( ∂
∂y

K(x, y)
)
ψ(y)dy

If K(x, x) $= 0 for x ∈ I, then dividing by K(x, x) we have an integral
equation of the second kind:

ψ(x) =
f(x)

K(x, x)
+

1

K(x, x)

∫ x

a

( ∂
∂y

K(x, y)
)
ψ(y)dy

Differentiating the solution ψ(x) we get the solution φ(x) of (2.2).

Most ordinary differential equations can be expressed as integral equation,
but the reverse is not true [83]. Given an n−th order differential equation

x(n)(t) = f(t, x, x
′
, · · · , x(n−1))

it is possible to express this differential equation as a system of n first order
equations and then formally integrated. For example if x

′′
= f(t, x, x

′
),

then it is possible to assign x = x1 and x
′
= x

′
1 = x2, such that x

′′
= x

′
2 =

f(t, x1, x2), in vectorial notation:
[
x1

x2

]
=

[
x2

f(t, x1, x2)

]
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Therefore, in general, if x ∈ Rn then:

x′
= G(t,x), x(t0) = x0

is a system of n first order equations with initial conditions (called an
initial − value problem), written as

x(t) = x0 +

∫ t

t0

G(s,x(s))ds

is a system of n integral equations. Thus, it is trivial to express such dif-
ferential equations as integral equations, it is mainly a matter of renaming
variables.
As we already mentioned, the more general case of integral operator is
called Fredholm integral operator, and its kernel is called Fredholm exten-
sion of the Volterra kernel K(t, τ). The Fredholm kernel extension can
be exploited to specialize to Volterra operators the properties and the re-
sults conceived within the Fredholm operator theory. In particular, we will
use the Fredholm kernel extension to characterize the kernel of composed
Volterra operators (see the Appendix).

A signal is defined as a generic function of time u(t) : t &→ ut, ut ∈ R, such
that u(·) ∈ L2

loc(R≥0). Furthermore, given two scalars a, b ∈ R≥0, with
a < b, let us denote by u[a,b ](·) and u(a,b ](·) the restriction of a signal u(·)
to the closed interval [a, b] and to the left-open interval (a, b], respectively.
Indeed, we have the following:

Definition 2.1.1 (Weak (generalized) Derivative) Let
u(·) ∈ L1

loc(R≥0). We say that u(1)(·) is a weak derivative of u(·) if
∫ t

0

u(τ)

(
d

dτ
φ(τ)

)
dτ = −

∫ t

0

u(1)(τ)φ(τ)dτ, ∀t ∈ R≥0

for all φ ∈ C∞, with φ(0) = φ(t) = 0. !

We remark that u(1)(.) is unique up to a set of Lebesgue measure zero, i.e.,
it is defined almost everywhere. If u(.) is differentiable in the conventional
sense, then its weak derivative is identical to its conventional derivative.
Classical rules for the derivation of sum or products of functions also hold
for the weak derivative. In analogy with the conventional derivative, we
will denote the i−th derivative (if exists) as:

u(i)(τ) =
di

dτ i
u(τ)
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with i ∈ Z≥0.
The notion of generalized partial derivative may be extended to functions
of many variables: given a kernel function K(., .) ∈ HS, we will denote the
weak derivative with respect to the second argument (if exists) as:

K(i)(t, τ) =
∂

∂τ i
K(t, τ)

Let us also introduce the integral function:

u[1](τ) =

∫ τ

0

u(σ)dσ

and the i−th integral function

u[i](τ) =

∫ τ

0

∫ σi−1

0

· · ·
∫ σ3

0

∫ σ2

0

K(σ1)dσ1dσ2 · · · dσi−1dσi

Moreover, for a HS kernel, let

K [i](t, τ) =

∫ τ

0

∫ σi−1

0

· · ·
∫ σ3

0

∫ σ2

0

K(t, σ1)dσ1dσ2 · · · dσi−1dσi

where we can note that K [0](t, τ) = K(0)(t, τ) = K(t, τ), ∀t ∈ R≥0, ∀τ
∈ R≥0

Finally, the notion of BIBO stability for an integral operator is introduced.

Definition 2.1.2 (BIBO Stability) A bounded linear operator T ,
T ∈ B(L2

loc(R≥0), L2
loc(R≥0)) is said BIBO-stable if:

∣∣∣[Tx](t)
∣∣∣<∞,∀t∈R≥0,∀x(·)∈L2

loc(R≥0):
{∣∣x(τ)

∣∣<∞,∀τ∈R≥0
}
.

!

In the case of a Volterra operator VK , BIBO stability is equivalent to the
following property of the kernel:

sup
t∈R>0

{∫ t

0

|K(t, τ)|dτ
}

< ∞. (2.3)

Condition (2.3) will be used in the sequel to assess the stability of the
operators in our setting. A kernel fulfilling (2.3) will be called a BIBO
stable kernel. In this respect, it is worth noting that BIBO stability per se
is not sufficient to establish the existence of a finite-dimensional state-space
realization for an operator, that is, its implementability. The order of the
realization can be determined only when an analytical expression for the
kernel is available.
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2.1.2 Operator Theory and Hilbert Spaces

Intuitively, a system is a black box whose input and output are function of
time (or vectors of such function): as such, a natural model for a system
is an operator defined on a function space. This observation has the effect
that system theory is a subset of operator theory ([84]). The difficulties lie
in the fact that the operators encountered in systems theory are defined on
spaces of time functions and, as such, must satisfy a physical realizability
(causality) condition to the effect that the operator cannot predict the
future.
In an effort to alleviate these and similar problems, encountered for instance
in the design of regulators, passive filters and stochastic systems, the theory
of operators defined on a Hilbert resolution space was developed in the mid-
1960s. In essence, a Hilbert resolution space is simply a Hilbert space to
which a time structure has been axiomatically adjoined, thereby, allowing
one to define such concepts as causality, stability, memory and passivity in
an operator theoretic settings([6],[84]).
A real linear space R with the inner product satisfying

(x, y) = (y, x) ∀x, y ∈ R,
(x1 + x2, y) = (x1, y) + (x2, y), ∀x1, x2 ∈ R,

(λx, y) = λ(x, y), ∀x, y ∈ R,
(x, x) ≥ 0, ∀x ∈ R, (x, x) = 0 ⇐⇒ x = 0.

(2.4)

is called the Euclidian space.
A Hilbert space H is a complete infinite-dimensional Euclidian space and
the operator A∗ adjoint to an operator A is defined by

(Ax, y) = (x,A∗y), ∀x, y ∈ H

In the context of Integral equations, Hilbert space fullfill an important role.
Let’s consider the integral equation (2.1) and let’s assume that K(x, y) is
a Hilbert-Schmidt kernel, i.e., a square-integrable function in the square
Pi = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b}, so that:

∫ b

a

∫ b

a

|K(x, y)|2dxdy ≤ ∞ (2.5)

and f(x) ∈ L2[a, b], i.e. ∫ b

a

|f(x)|2dx ≤ ∞

Defining a linear Fredholm integral operator corrisponding to (2.1), we
have:

Aφ(x) =

∫ b

a

K(x, y)φ(y)dy (2.6)
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If K(x, y) is a Hilbert-Schimdt kernel, then the operator (2.6) will be called
a Hilbert-Schimdt operator.
Rewriting now (2.1) as a linear operator equation:

φ = Aφ(x) + f, f,φ ∈ L2[a, b] (2.7)

we can derive the result of the following theorem (see [85] and [86]).

Theorem 2.1.2 Equality (2.7) and condition (2.6) define a complitely
continuous linear operator in the space L2[a, b]

2.1.3 Non-anticipativity and non-asymptotic Volterra
operator

The notions of causality and non-anticipativity play a key role in character-
izing the implementability (existence of a stable finite-dimensional state-
space realization for the integral operators) of the proposed methodology
[3], [4]. In non-formal terms, an operator
T ∈ B(L2

loc(R≥0),L2
loc(R≥0)) is said to be causal (non-anticipative) if at

any time t > 0 (respectively, t ≥ 0) the image of a signal x(·) at time t,
[Tx] (t), depends only on the restriction x[0,t)(·) (respectively, x[0,t](·)). Be-
ing the Volterra operator inherently non-anticipative, the signal [VKx] (t),
for t ≥ 0, can be obtained as the output of a dynamic system described by
the following scalar integro-differential equation:






ξ(1)(t)=





K(t, t)x(t) +

∫ t

0

(
∂

∂t
K(t, τ)

)
x(τ)dτ , t∈R>0;

0, t = 0;

ξ(0) = ξ0 =

∫ 0

0

K(0, τ)x(τ)dτ ;

[VKx] (t) = ξ(t), ∀t ∈ R>0,

(2.8)

where ξ(1)(t) = d
dt [VKx](t) has been obtained by applying the Leibnitz rule

in deriving the integral.

Now, we will introduce some useful results dealing with the application of
Volterra operators to the derivatives of a signal.

Lemma 2.1.1 (Volterra Integral of a function derivative) For a
given i ≥ 0, consider a signal x(·) ∈ L2(R≥0) that admits a i-th weak
derivative in R≥0 and a kernel function K(·, ·) ∈ HS that admits the i-th
derivative (in the conventional sense) with respect to the second argument,
∀t ∈ R≥0. Then, it holds that:
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[
VKx

(i)
]
(t) =

i−1∑

j=0

(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+
i−1∑

j=0

(−1)i−jx(j)(0)K(i−j−1)(t, 0)

+(−1)i
[
VK(i) x

]
(t), ∀t ∈ R≥0,

(2.9)

that is, the function
[
VKh

x(i)
]
(·) is non-anticipative with respect to the

lower-order derivatives x(·), . . . , x(i−1)(·). !

Proof 1 The following result can be obtained by integrating by parts:
[
VKx

(i)
]
(t) =

∫ t

0

K(t, τ)x(i)(τ)dτ

= x(i−1)(t)K(t, t)− x(i−1)(0)K(t, 0)

−
∫ t

0

K(1)(t, τ)x(i−1)(τ)dτ.

(2.10)

The integral operator on the right-hand side of (2.10) can be further split
by parts:

−
∫ t

0

K(1)(t, τ)x(i−1)(τ)dτ =

= −x(i−2)(t)K(1)(t, t) + x(i−2)(0)K(1)(t, 0)

+

∫ t

0

K(2)(t, τ)x(i−2)(τ)dτ.

Proceeding by induction we obtain the expression
∫ t

0

K(t, τ)x(i)(τ)dτ =
i∑

j=1

(−1)j+1x(i−j)(t)K(j−1)(t, t)

+
i∑

j=1

(−1)jx(i−j)(0)K(j−1)(t, 0)

+ (−1)i
∫ t

0

K(i)(t, τ)x(τ)dτ

(2.11)

that is, the function obtained by applying the Volterra operator to the i-th
derivative is non-anticipative with respect to lower-order derivatives.

Finally, by rearranging the indexing of the summation in the right hand
side of (2.11), the statement of the lemma trivially follows.

By exploiting the identity (2.9), we now characterize the kernels for which
the transformed signal

[
VKx(i)

]
(·) is independent from the initial values of

the derivatives x(0), x(1)(0), . . . , x(i−1)(0). The following definition charac-
terizes the kernels yielding non-asymptotic Volterra operators.

20



Definition 2.1.3 (i-th Order Non-Asymptotic Kernel) Consider a
kernel K(·, ·) satisfying the assumptions posed in the statement of Lemma
2.1.1; if for a given i ≥ 1, the kernel verifies the supplementary condition

K(j)(t, 0) = 0, ∀t ∈ R≥0, ∀j ∈ {0, . . . , i− 1} ,

then, it is called an i-th order non-asymptotic kernel. !

Lemma 2.1.2 (Non-asymptoticity Implication)
If a kernel K(·, ·), is at least i-th order non-asymptotic, then the image
function of x(i)(·) at time t,

[
VKx(i)

]
(t), depends only on the instantaneous

values of the lower-order derivatives (x(t), x(1)(t), . . . , x(i−1)(t)) and on the
restriction x(0,t](·), but not on the initial states
x(0), x(1)(0), . . . , x(i−1)(0). !

The proof of Lemma 2.1.2 follows immediately from Lemma 2.1.1 and is
therefore omitted.

Up to now, we have characterized a candidate class of kernels which al-
lows to remove the influence of the unknown initial derivatives from the
transformed signal

[
VKx(i)

]
(t). However, beyond depending on the cur-

rent value x(t) and its past time-behaviour, such a signal depends also
on the unmeasurable instantaneous values of the lower-order derivatives
x(j)(t), with j ∈ {1, . . . , n−1}. To address this issue, we need to introduce
the notion of composed (or nested) Volterra operators and to discuss some
relevant properties.

Let us denote by
[
VKN•···•K1

x(i)
]
(·), the image function obtained by com-

posing N Volterra integral operators to x(i)(·):
[
VKN•···•K1

x(i)
]
=

[
VKN · · ·

[
VK2

[
VK1x

(i)
]]]

.

In view of the composition property of Volterra operators (see (8.1) and
(8.2) in the Appendix), it holds that the composed operator is in turn a
Volterra operator with kernel KN •KN−1 • · · · •Ki • · · · •K2 •K1, where
· • · denotes the kernel-composition integral (see (8.2) in the Appendix).

Theorem 2.1.3 (Non-asymptotic Derivative Image) Let x(i)(·) be
the i-th derivative of the signal x(·) and let N ≥ i be an arbitrary integer.
Given N kernel functions K1(·, ·), . . . , KN(·, ·), such that K1 is d-th order
non-asymptotic, with d ≥ i − 1 and Kj ∈ HS, ∀j ∈ {1, . . . , N}, consider
the composed operator VPN , with kernel

PN " KN • · · · •K2 •K1.
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The image of x(i)(·) through VPN , [VPNx
(i)](·), can be obtained as the image

of the restriction x[0,t](·) through a non-anticipative operator. Indeed, there
exists an operator VRN,i, induced by the kernel

RN,i " −KN •KN−1 • · · · •Ki+1 • Ti,

with Ti(·, ·) defined recursively by




Tj(t, τ) "−

(
Kj • T (1)

j−1

)
(t, τ)+Kj(t, τ)Tj−1(τ, τ),

T1 "K1, ∀j∈{2, . . . , i}, ∀(t, τ) ∈ R2,
(2.12)

such that
[
VPN

x(i)
]
(t)=RN,i(t, t)x(t)−RN,i(t, 0)x(0)−

[
V
R(1)

N,i
x
]
(t). (2.13)

!

Proof 2 First, by integrating by parts, the innermost operator can be de-
composed as

[
VPNx

(i)
]
(t) =

[
VKN· · ·

[
VK2

(
x̃1 −

[
V
K(1)

1
x(i−1)

])]]
(t) (2.14)

where x̃1(t) = K1(t, t)x(i−1)(t) −K1(t, 0)x(i−1)(0). Consider now the com-
posed kernel

T2(t, τ) = −(K2 •K(1)
1 )(t, τ) +K2(t, τ)K1(τ, τ),

obtained by (2.12) (recall that K2 •K(1)
1 =

∫ t
τK2(t, σ)K

(1)
1 (σ, τ)dσ, see also

the Appendix). By the non-asymptoticity property of K1: K1(t, 0) = 0, ∀t ∈
R≥0, and in view of (2.12) and (2.14) we obtain

[VPNx
(i)] =

[
VKN· · ·

[
VK3

[
VT2(−x(i−1))

]]]
(t). (2.15)

Integrating by parts, the innermost operator in (2.15) can be decomposed
as

[VPNx
(i)] =

[
VKN· · ·

[
VK3

(
x̃2 + [V

T
(1)
2
x(i−2)]

)]]
(t),

where x̃2(t) " −T2(t, t)x(i−2)(t) + T2(t, 0)x(i−2)(0). Since the kernel K1(·, ·)
subsumes the i-th order non-asymptoticity condition, then, by (2.12),
T2(t, 0) = 0, ∀t ∈ R≥0, i.e., also T2(·, ·) is non-asymptotic. We can then
write [

VPN
x(i)

]
(t)=

[
VKN· · ·

[
VK4

[
VT3(−x(i−2))

]]]
(t).

Integrating again by parts, the innermost operator can be decomposed as
[
VPN

x(i)
]
(t)=

[
VKN· · ·

[
VK4

(
x̃3+

[
V
T (1)
3
x(i−3)

])]]
(t)
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where x̃3(t) " −T3(t, t)x(i−3)(t) + T3(t, 0)x(i−3)(0). Due to the fact that the
kernel K1(·, ·) is at least i− 1-th order non-asymptotic, then
Tj(t, 0) = 0, ∀j ∈ 1, . . . , i− 1. By iterating this line of reasoning we get

[
VPN

x(i)
]
(t)=

[
VKN · · ·

[
VKi+1

[
VTi(−x(1))

]]]
(t)

=
[
VRN,ix

(1)
]
(t)

=RN,i(t, t)x(t)−RN,i(t, 0)x(0)−
[
V
R

(1)
N,i
x
]
(t).

The following Remark sheds some light on significant implications of The-
orem 2.1.3.

Remark 2.1.3 (Implications) In Theorem 2.1.3, the existence of a com-
posed Volterra integral operator has been shown, namely VPN = VKN•···•K1

,
that, fed by the i−th derivative x(i)(·) of a signal, produces an image signal,
say

[
VPN

x(i)
]
(·), which, in turn, can be expressed, in the most general case,

in terms of the sole restriction x[0,t](·) (or x(0,t)(·) under slightly stronger
assumptions) and that, in any case, does not depend on the initial condi-
tions of the hidden derivatives. Assume now that x(i)(·) is not measurable
while x(·) is available; then, thanks to (2.13), the signal

[
VPN

x(i)
]
(·) can be

obtained by applying a non-anticipative operator (see (2.13)) to the mea-
surable signal x(·).

2.2 Concluding remarks

In this chapter has been illustrated the fundamental theoretical background
of the proposed methodology. Volterra integrals and its properties have
been introduced, providing the basis for the further discussion. In the
following, the proposed approach will be formalized, analytic details and
results will be derived for both parametric and state estimation.
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Part I

Kernel-based Parameter
Estimation
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Chapter 3

Non-asymptotic kernels for
parameter estimation

This Chapter aims at deriving some analytic instances of non-asymptotic
kernels. In particular, we will show that the Bounded-Input-Bounded-
Output (BIBO) stability of the Volterra operators induced by the kernels
reflects on the stability properties of the estimator. It will be considered the
unstable and stable realizations given by a class of univariate kernel func-
tions (U-NK), implementable by time-weighted integrals of the input and
output signals. It will be shown that in the U-NK framework it is possible
to enforce the internal stability of the non-asymptotic estimator by a suit-
able choice of the kernels. However, the internal stability of U-NK-based
estimators can only be enforced by damping the kernels asymptotically,
therefore internal stability comes at the price of a practical freeze of the
estimator as time proceeds.
To avoid the problem of estimator-freeze, it will be presented a relevant
contribution of the work, consisting in the analytical expression of a Bi-
variate Causal Non-Asymptotic Kernel (BC-NK). The operators induced
by the proposed BC-NK yield an estimator that admits a finite-dimensional
time-varying linear state-space realization. Moreover, the dynamics of BC-
NK-based estimator asymptotically tend to a time-invariant (stable) linear
dynamical system, in which input and output injections are never sup-
pressed.

3.1 Preliminares

Let’s consider a general SISO (Single Input Single Output) Continuous-
time system Su→y, whence y and u represent respectively the output and
the input of the system:






y(n)(t) =
n−1∑
i=0

aiy(i)(t) +
m−1∑
k=0

bku(k)(t)∀t∈R≥0;

y(i)(0) = y(i)0 , i ∈ {0, . . . , n− 1};
u(k)(0)= u(k)

0 , k ∈ {0, . . . , m− 1}

(3.1)
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with m ∈ Z>0, n ∈ Z>0, m ≤ n and p ∈ Z≥0. The values of the con-
stant parameters ai ∈ R, i ∈ {0, . . . , n − 1}, bk ∈ R, k ∈ {0, . . . , m − 1}
are unknown. The only measurable signals are y(t) and u(t), while their
time-derivatives are not assumed to be available. Our objective consists
in estimating the system’s parameters ai and bk by suitably processing the
input and output signals u(t) and y(t).

Let’s now focus on the structural constraint (3.1) which relates the unknown
parameters with the time-derivatives of the signals u(·) and y(·). In the
sequel, the results presented in the previous section will be exploited to
overcome the unavailability of signal derivatives (hidden internal states
of the system) in (3.1), thus obtaining non-asymptotic estimates of the
unknown parameters by means of causal filtering.

First, in order to get rid of the structured perturbation term, let us take
the p-th generalized derivative of both sides of the structural constraint,
obtaining:

y(n+p)(t) =
n−1∑
i=0

aiy(i+p)(t) +
m−1∑
k=0

bku(k+p)(t). (3.2)

Moreover, after choosing an integer N ≥ n + p, let us apply the Volterra
operator VPN = VKN•···•K1 (with kernels taken as in Theorem 2.1.3) to both
sides of (3.2):

[VPNy
(n+p)](·)=

n−1∑
i=0

ai[VPNy
(i+p)](·)+

m−1∑
k=0

bk[VPNu
(k+p)](·). (3.3)

In view of (2.13), we can rewrite (3.3) as

ry,n+p(t)=
n−1∑
i=0

airy,i+p(t)+
m−1∑
k=0

bkru,k+p(t), ∀t ∈ R≥0, (3.4)

where the auxiliary signals in (3.4) can be obtained as the image of mea-
surable signals y(·) and u(·) through non-anticipative operators:

ry,j(t)=RN,j(t, t)y(t)−RN,j(t, 0)y(0)−[V
R(1)

N,j
y ](t),

ru,j(t)=RN,j(t, t)u(t)−RN,j(t, 0)u(0)−[V
R(1)

N,j
u](t),

(3.5)

with j ∈ {p, . . . , n + p} and j ∈ {p, . . . , m + p − 1}, respectively. Finally,
by introducing the true parameter vector

θ∗ " [a0, . . . , an−1, b0, . . . , bm−1]
',

and the vector of auxiliary signals

z(t) " [ry,p(t), . . . , ry,p+n−1(t), ru,p(t), . . . , ru,p+m−1(t)]
',

equation (3.4) can be rewritten in compact notation as

z'(t)θ∗ = ry,n+p(t), t ∈ R≥0. (3.6)
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Now, assuming that all the operators in our formulation admit a stable
realization, we need to collect a suitable number of equations like (3.4)
in order to form a well-posed algebraic system, to be solved in the un-
known parameters. Several approaches can be used to obtain the needed
set of constraints, among which we will discuss the following augmentation
methods : A) time sampling, B) successive integration, and C) covariance
filtering.

Time Sampling

This method consists in collecting Ns ≥ n+m samples of ry,n+p(·) and z(·)
(see (3.6)) at the time instants t− T1, t− T2, . . . , t− TNs with
0 ≤ T1 < T2 < . . . < TNs ≤ t, and forming, at time t, the algebraic system




ry,n+p(t− T1)...
ry,n+p(t− TNs)





︸ ︷︷ ︸
r(t)

=




z'(t− T1)...
z'(t− TNs)





︸ ︷︷ ︸
Z(t)

θ∗, (3.7)

which is known to be satisfied at any time instant by the parameter vec-
tor θ∗. An estimate θ̂(t) of the parameter vector θ∗ can be obtained by
minimizing the quadratic fitting criterion

θ̂(t) = arg min
θ∈Rm+n

||Z(t)θ − r(t)||2, (3.8)

that admits the well-known solution θ̂(t) = (Z(t))† r(t), where (·)† denotes
the Moore-Penrose matrix pseudoinverse. In the case Ns = m+n and Z(t)
is invertible, then the solution can be simply written as θ̂ = (Z(t))−1 r(t).
A sufficient condition for the existence of a unique solution to the estimation
problem (3.8) at a time instant t ∈ R>0 is that the following excitation
condition holds:

Z'(t)Z(t) > 0. (3.9)

Therefore, it is possible to establish the existence of a solution to the es-
timation problem at time t by checking the conditioning of a matrix. Re-
markably, in order to ensure the well-posedness of the problem, the time-
sampling method requires that a sufficient number of samples has been
collected.

Successive Integration

This methods consists in computing supplementary auxiliary signals by
the cascaded application of Volterra operators, in order to augment (3.6)
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with Ns − 1 transformed equations that are verified at any time t by the
parameter vector θ∗:





ry,n+p(t)

[VG ry,n+p] (t)

[VG•G ry,n+p] (t)...
[VG•···•G ry,n+p] (t)





︸ ︷︷ ︸
r(t)

=





z'(t)[
VG z'] (t)[
VG•G z'] (t)

...[
VG•···•G z'] (t)





︸ ︷︷ ︸
Z(t)

θ∗, (3.10)

where the kernel G(·, ·) can be chosen arbitrarily. The excitation condition
posed for the sampling method, (3.9), must be assumed also in this case to
guarantee the existence of a unique solution θ̂(t) to the estimation problem
(3.8). Any input-output signal pair (u(·), y(·)) such that Z'(t)Z(t) > 0,
will be addressed to as sufficiently informative at time time t in the sequel1.
In nominal conditions, if the measured signals are sufficiently informative at
time t, then the estimate is exact, independently from the initial conditions
of the hidden states of the system (i.e., non-asymptotically).

Remark 3.1.1 (Combined Sampling and Integration) It is interest-
ing to point out that time sampling and successive integration can be also
used in a combined way, as proposed in other approaches to CT model
identification, see, e.g., [87, 88].

Covariance Filtering

This method consists in forming the instantaneous covariance equation by
left-multiplying (3.6) by z(t):

R(t)θ∗ = S(t), ∀t ∈ R≥0, (3.11)

where R(·) ∈ [L2
loc(R≥0)](n+m)×(n+m) and S(·) ∈ [L2

loc(R≥0)]n+m are the
so-called auto-covariance and cross-covariance matrices defined as

R(t) " z(t)z'(t)

S(t) " z(t)ry,n+p(t)
, ∀t ∈ R≥0.

The instantaneous auto-covariance matrix R(t) is rank-one and therefore it
can never be inverted when n+m ≥ 2. In order to get an invertible system

1We remark that the estimated vector θ̂(t) can be time-varying, because the signals
processed by the operators may become sufficiently informative only after a period of
time T ∈ R>0 . That is, θ̂(t) = θ∗, ∀t ≥ T , while for t < T the estimate remains
undetermined.
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for some suitable input-output signal pair, we apply a further Volterra
operator VG, with an arbitrary non-negative kernel G(·, ·) ∈ HS : G(t, τ) ≥
0, ∀(t, τ) ∈ R2

≥0, on both sides of (3.11), obtaining the filtered covariance
equation:

[VG R](t)θ∗ = [VG S](t), ∀t ∈ R≥0, (3.12)

where the operator VG has to be applied element-wise on R(·) and S(·).
Letting

Z(t) = [VGR](t) , r(t) = [VGS](t)

an optimal estimation problem, analogous to (3.8), can be solved for the
estimated parameter vector θ̂(t). In this case, the invertibility of the fil-
tered auto-covariance matrix [VG R](t) characterizes a sufficiently informa-
tive input-output signal pair at time t.

Remark 3.1.2 (Final) Note that a scenario of sufficiently informative
signals at time t for one of the described augmentation methods may even-
tually lead to undetermination in the other two approaches. Moreover,
within the latter two frameworks, different choices of the kernels may lead
to different sets of sufficiently informative signals. Therefore, the problems
of identifying families of admissible kernels and of studying their proper-
ties (both in the deterministic and stochastic settings) will be dealt in the
following.

In order to emphasize the generality of the proposed methodology, we still
have not assigned explicit analytic expressions to the kernels K1, . . . , KN

and to RN,j, j ∈ p, . . . , n+ p, which are needed to compute the auxiliary
signals. The problem of identifying a class of non-asymptotic kernels yield-
ing stable finite-dimensional state-space realizations will be addressed in
the following sections.

3.2 Univariate Non-Asymptotic Kernels

In this section, we first consider a class of simplified univariate kernels
W (τ), τ ∈ R≥0. The Volterra operators induced by this kind of kernels are
given by

[VWy](t) =

∫ t

0

W (τ)y(τ)dτ, ∀t ∈ R≥0 ,

and are typically known as weighted integral operators. In our setting, we
consider weighting patterns W (·) ∈ L2

loc(R≥0) satisfying the
non-asymptoticity conditions up to the i-th order and we call them Uni-
variate Non-asymptotic Kernels (U-NKs).
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Remark 3.2.1 (U-NKs Vs. Modulating Functions) Within the
class of IM identification methods, the MF approach uses time-dependent
univariate kernels to minimize the effect of unknown initial conditions on
the estimates. Univariate kernels, in our setting, need to fulfill weaker
assumptions than those that the usual modulating functions need to subsume
in the identification context (see [14]): while in the usual MF approach the
width of the integration window is a critical parameter for noise sensitivity
and the estimates are available only at the end of the integration interval,
in our setting, a point-wise estimate (independent from initial conditions)
is available at any time instant t > 0, and the integration process may
proceed indefinitely without re-initialization. This is a distinctive feature of
the proposed methodology.

In order to exploit the U-NKs for parameter estimation, let us specialize
the kernel construction procedure outlined in Theorem 2.1.3 to produce
the needed causal auxiliary signals. To this end, consider n+p modulating
functions

W1(τ),W2(τ), . . . ,Wn+p(τ)

and assume that W1 is at least (n + p − 1)-th order non-asymptotic (see
Theorem 2.1.3). Now, analogously to (3.3), by applying the composed
operator VPN , with PN = Wn+p • . . . • Wp, we obtain the transformed
dynamic constraint:

[VPNy
(n+p)](t)=

n−1∑

i=0

ai[VPNy
(i+p)](t) +

m−1∑

k=0

bk[VPNu
(k+p)](t).

Thanks to Theorem 2.1.3, the surrogate signal derivatives in (3.5), in the
U-NK setting, admit the following simple expressions:

ry,i(t) = [VPNy
(i)](·), i ∈ {p, . . . , n+ p} ,

ru,i(t) = [VPNu
(i)](·), i ∈ {p, . . . , p+m− 1} .

These signals can be used in place of the unmeasurable input-output deriva-
tives to estimate the parameters.

Remark 3.2.2 Admissible instances of U-NKs of the i-th order are,
among many other possible functions:

1. the i-th order τ -monomial W (τ) = τ i;

2. the damped unitary-step function W (τ) = (1− e−ωτ )i;

3. the exp. damped i-th order τ -monomialW (τ) = τ ie−ωτ ;
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where ω ∈ R>0 is an arbitrary constant. According to (2.3), the first two
kernels are locally square-integrable but not BIBO-stable, while the third
one is BIBO-stable.

Now, it is worth noting that any BIBO stable univariate kernel W (·) has
to satisfy the asymptotic condition lim

τ→∞
W (τ) = 0 , in order to meet the

requirement (2.3). Indeed, particularizing (2.3) to univariate kernels, we
obtain

sup
t∈R>0

∫ t

0

|W (τ)|dτ =
∫ ∞

0

|W (τ)|dτ < ∞ .

In practice, it follows that the rate of update of the estimates generated
by any BIBO-stable U-NK estimator decays as time proceeds far from the
initial instant t = 0 because the weighting patterns fade toward zero. In
other terms, the input-output injection undergoes an asymptotic suppres-
sion. This drawback will be addressed in the next section by using bivariate
causal non-asymptotic kernels (still guaranteeing the internal stability of
the estimator).

3.3 Bivariate Causal Non-Asymptotic Kernels

In this section, the main result is presented. To this end, let us introduce
the following definition:

Definition 3.3.1 (i-thOrder BC-NK) If a kernel K(·, ·) ∈ HS, in ad-
dition to the assumptions posed in the statement of Lemma 2.1.1, for a
given i ≥ 1, verifies the conditions

K(j)(t, 0) = 0
K(j)(t, t) = 0

}
∀t ∈ R≥0,
∀j ∈ {0, . . . , i− 1}, (3.13)

then, it is called an i-th Order Bivariate (strict) Causal Non-Asymptotic
kernel. !

It is of customary importance to emphasize that only by using bivariate
kernels all the conditions (3.13) can be fulfilled simultaneously. While The-
orem 2.1.3 enabled us to construct auxiliary signals yielding the unavailable
derivatives by taking advantage of non-asymptotic kernels, the following re-
sult can be used to exploit the causality property of BC-NKs to achieve
the same task in an easier way. Indeed, by the conditions (3.13), thanks to
Lemma 2.1.1, the image of a signal derivative can be expressed as

[
VPNx

(i)
]
(t) = (−1)i

[
V
P (i)
N
x
]
(t).
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The following bivariate function is a possible instance of BC-NK, and it will
be used in the sequel to carry out the design of the stable non-asymptotic
estimator:

Cω,N(t, τ) " e−ω(t−τ)
(
1−e−ωτ

)N (
1−e−ω(t−τ)

)N
, (3.14)

where ω ∈ R>0 is an arbitrary scalar parameter. The non-asymptoticity,
causality and BIBO-stability properties of the devised kernel are illustrated
by the following lemma.

Lemma 3.3.1 (Kernel Characterization: Cω,N(t, τ)) The bivariate
kernel Cω,N(t, τ) is BIBO-stable and N-th order BC-NK. Moreover,
all the kernel derivatives C(i)

ω,N(t, τ), with i ∈ {0, . . . , N − 1}, are
BIBO-stable. !

Proof 3 First, we prove that the kernel Cω,N(t, τ) is a N-th order BC-NK.
Indeed, all the non-anticipativity conditions up to the N-th order are met
by the factor (1−e−ωτ )N . The causality conditions up to the N-th order
are met by the third factor (1−e−ω(t−τ))N . The BIBO-stability of C(i)

ω,N(t, τ)

is implied by the fact that each (e−ω(t−τ))(i), with i ∈ {0, . . . , N − 1}, is
BIBO-stable and the following terms are bounded:|(1− e−ω(t−τ))N | < 1,
∀τ : 0 ≤ τ ≤ t and |(1−e−ω(t−τ))N | < 1, ∀τ : 0 ≤ τ ≤ t and their derivatives
up to the (N − 1)-th order are bounded too.

Now, we describe how the image of the derivative x(i)(·) through the oper-
ator VCω,N , i.e.,

[
VCω,Nx

(i)
]
= (−1)i[V

C
(i)
ω,N

x] can be obtained as the output
of a BIBO-stable finite-dimensional time-varying linear system.

First, the i-th derivative of the BC-NK (3.14) with respect to the second
argument can be expressed as:

C(i)
ω,N(t, τ) =

N+1∑

j=1

e−ωj tfω,N |i,j(τ) (3.15)

where fω,N |i,j(·) are univariate functions of τ .
Let

Cω,N |i,j(t, τ) " (−1)ie−ωj tfω,N |i,j(τ)

Then, by the linearity of the Volterra operator, it follows that

[VCω,Nx
(i)](t) = (−1)i[V

C(i)
ω,N

x](t) =
N+1∑

j=1

[
VCω,N|i,jx

]
(t). (3.16)
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Moreover, letting ξi,j(t) "
[
VCω,N|i,jx

]
(t), with i ∈ {p, . . . , n + p}, j ∈

{1, . . . , N + 1}, and considering that, ∀t ∈ R≥0:

Cω,N |i,j(t, 0) = 0
∂

∂t
Cω,N |i,j(t, τ) = −ωj e−ωj t fω,N |i,j(τ),

(3.17)

then
[
VCω,Nx

(i)
]

admits the following (N + 1)-th dimensional state-space
realization:






ξ(1)i,j (t) = Cω,N |i,j(t, t)x(t)− ωj ξi,j(t), ∀j ∈ {1, · · · , N + 1}
[
VCω,Nx

(i)
]
(t) =

N+1∑

j=1

ξi,j(t), ∀t ∈ R≥0

ξi,1(0) = 0, . . . , ξi,N+1(0) = 0.

(3.18)

Being |e−ωj t fω,N |i,j(t)| < ∞, ∀j ∈ {1, . . . , N+1}, (i.e., all the time-varying
terms affine to the x(t)-injection are bounded), and since the system is
diagonal with ω > 0, then (3.18) is a BIBO-stable time-varying linear
system.

Moreover, there exist finite scalars βi,j ∈ R>0 such that

(e−ωj t fω,N |i,j(t)) −→t→∞ βi,j

This implies that the time-varying system (3.18), for t → ∞, tends a to
stable linear time-invariant system in which the x(t)-injection is never sup-
pressed. Thanks to (3.18), the extended auxiliary signal vector ze(t), which
embeds both the signals z(t) and ry,p+n needed to form the constraint (3.6):

ze(t) = [ry,p(t), . . . , ry,p+n(t), ru,p(t), . . . , ru,p+m−1(t)],

with
ry,i =

[
VCω,Ny

(i)
]
, i ∈ {p, . . . , n+ p},

ru,i =
[
VCω,Nu

(i)
]
, i ∈ {p, . . . , m− 1 + p},

can be obtained as the output of an overall nξ = (n + m + 1)(N + 1)-
dimensional linear time-varying dynamical system:

Gu,y→ze :

{
ξ(1)(t)= Gξξ(t)+Ey(t)y(t)+Eu(t)u(t),

ze(t) = Hξξ(t), t∈R≥0

ξ(0) = 0,

(3.19)
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where ξ ∈ Rnξ is the overall state-vector,

G =





Gp

. . . 0
Gp+n

Gp

0
. . .

Gp+m−1





∈ Rnξ×nξ ,

Gi =





−ω 0
. . .

0 −ω(N + 1)



 ∈ R(N+1)×(N+1),

with i ∈ {p, . . . , p+ n}. Moreover, we have

E(t)=





Ep(t)
...

Ep+n(t)

0
...
0





∈Rnξ , F(t)=





0
...
0

Fp(t)
...

Fp+m−1(t)





∈Rnξ ,

Ei(t) =




Cω,N |i,1(t, t)

...
Cω,N |i,N+1(t, t)



 ∈ RN+1, (3.20)

H =





1T

. . . 0
1T

1T

0
. . .

1T





∈ Rnξ×nξ ,

where 1' denotes a row vector of ones with (N + 1) elements.

By choosing the covariance filtering method as augmentation strategy (see
Section 3.1), and by assuming that the VG operator used for augmentation
admits a one-dimensional stable state-space realization (take, for instance a
kernel G(t, τ) = e−ω(t−τ)) the overall BC-NK estimator can be implemented
as an internally stable (n +m+ 1)(N + 1) + (n +m+ 1)(n+m− 1)-th
order linear time-varying dynamical system.
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Indeed, the augmentation system can be viewed, in turn, as a CT dy-
namical system Aze→vec[Z,r], where vec[Z, r] represents the outcome of the
augmentation, obtained by stacking the columns of Z(t) in a single vector
to which r(t) is finally appended.

The dynamic part of the BC-NK estimator consists of the cascade of the
auxiliary-signals-generation system Gu,y→ze and of the augmentation system
Aze→vec[Z,r]. The internal stability of the BC-NK estimator refers to the
stability of both these subsystems, but does not guarantee the boundedness
of the estimates at time t. Indeed, according to Section 3.1, to obtain the
parameter estimates we need a further processing step. The estimation
process is completed by the algebraic inversion map (see Figure 3.1):

E(·) : vec[Z(t), r(t)] &→ θ̂(t)

where the estimated parameter vector θ̂(t) is obtained as

θ̂(t) = E
(
vec[Z(t), r(t)]

)
" (Z(t))† r(t).

The estimation map E(·) is not guaranteed to be bounded for all values of its
argument, but only when the excitation condition outlined in Section 2.1.3
is met (the fulfillment of this condition depends on the informative content
of the input-output signals restrictions u(0,t)(·) and y(0,t)(·)). A supervision
scheme can be introduced to check the invertibility of Z(t) in order to avoid
singularities.

u(t) Su→y y(t)

Gu,y→ze

Aze→col[Z,r]

E

ze(t)

col[Z(t), r(t)]

θ̂(t)

Fig. 3.1: Implementation block diagram. The dynamic part of the estima-
tor consists in the cascade of the auxiliary signal generation system Gu,y→ze

followed by the augmentation system Aze→vec[Z,r]. The estimated parameter
vector θ̂ is finally obtained by a static inversion map E .
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3.4 Concluding remarks

In this Chapter the Bivariate Causal Non-Asymptotic Kernels have been
introduced, providing a solid theoretical results in order to obtain a fast
and stable estimator. It has been derived the whole parametric estimation
architecture and the convergence of the estimator has been proved. In the
following Chapter, some simulation results will be presented in order to
show the effectiveness of the proposed architecture.
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Chapter 4

Simulation results

The identification methods for linear systems that were described in previ-
ous chapter are now applied to several examples to show the effectiveness
of the proposed estimator and to compare the perforamces with estimators
available in literature.

4.1 Mass-Spring-Damper example

Let us considerthe 1-DOF mass-spring-damper system model depicted in
Figure 4.1; such a system consists of an inertial mass M = 1 kg, a spring
with elastic constant k = 3Nm−1 and a linear damping element with c =
2Nsm−1.

M

k c

x(t)
v(t)

Fig. 4.1: Scheme of the 1-DOF mass-spring-damper system simulated in
the example.

Using Newton’s law of motion, we can derive the second-order differential
equation for displacement x as a function of time:






Mx(2)(t) + cx(1)(t) + kx(t) = v(t),
y(t) = x(t) + o+ ηy(t),
u(t) = v(t),

t∈R≥0,

x(0) = x0, x(1)(0) = x(1)
0 .

(4.1)

where v(·) represents a measurable external force-input for the system, y(·)
is the measured position signal, affected by a constant measurement bias
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o = 1m and by an unstructured perturbation term ηy(·) ( addressed to as
output measurement noise), while u(·) is the measured forcing input sig-
nal. Neglecting the effect of unstructured perturbations ηy(·), the following
input-output dynamic constraint can be obtained by rearranging (4.1):

y(2)(t) = a1y
(1)(t) + a0(y(t)− o) + b0u(t), (4.2)

where a0=−kM−1=−3, a1=−cM−1=−2, b0=M−1=1. Now, to esti-
mate the parameters in the presence of bias on the measurements, let us
set p = 1 and, being n = 2 for the considered system, let us choose N = 3.
The following U-NKs will yield the estimator described in [89]:

W1(τ) = τ 3; W2(τ) = H(τ);

W3(τ) = H(τ); W4(τ) = H(τ).

In view of Theorem 2.1.3 we can compute the auxiliary signals ry,i(·) and
ru,i(·) as

rx1(t) = R3,1(t, t)x(t)− R3,1(t, 0)x(0)− [V
R(1)

3,1
x](t),

rx2(t) = R3,2(t, t)x(t)− R3,2(t, 0)x(0)− [V
R(1)

3,2
x](t),

rx3(t) = R3,3(t, t)x(t)− R3,3(t, 0)x(0)− [V
R

(1)
3,3
x](t),

with x ← {u, y} and where the R-kernels are obtained from the U-NKs
W1,W2 and W3 by the iterative procedure outlined in the statement of
Theorem 2.1.3. For the chosen U-NKs it holds that

R3,1(t, t) = 0, R3,1(t, 0) = 0,

R3,2(t, t) = 0, R3,2(t, 0) = 0,

R3,3(t, t) = −t3, R3,3(t, 0) = 0,

and

R(1)
3,1(t, τ) = −3t2τ 2

2
+ 4tτ 3 − 5τ 4

2
,

R(1)
3,2(t, τ) = 3t2τ − 12tτ 2 + 10τ 3,

R(1)
3,3(t, τ) = −3t2 + 24tτ − 30τ 2,

yielding the integral forms

rx1(t) =
3

2
t2
∫ t

0

τ 2x(τ)dτ − 4t

∫ t

0

τ 3x(τ)dτ +
5

2

∫ t

0

τ 4x(τ)dτ ,

rx2(t) =−3t2
∫ t

0

τx(τ)dτ+12t

∫ t

0

τ 2x(τ)dτ−10

∫ t

0

τ 3x(τ)dτ ,

rx3(t) = −t3x(t)− 3t2
∫ t

0

x(t)dτ − 24t

∫ t

0

τx(τ)dτ + 30

∫ t

0

τ 2x(τ)dτ .

(4.3)
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Note that, while in [89] the auxiliary signals are expressed in terms of
nested integrals, here we have reported the equivalent single-integral ex-
pressions, returning the same signals. The interested reader can obtain the
expressions in (4.3) directly from from the nested integrals forms presented
in [89] by considering the following Volterra kernel composition result (see
equations (8.4) and (8.5) in the Appendix):

H(τ) • . . . •H(τ)︸ ︷︷ ︸
i−1 times

•τ j = τ j(t− τ)i−1

i!
, ∀j ∈ Z,

which implies that
∫ t

0

∫ σ1

0

τ jx(τ)dτdσ1 = [VH•τ j x] (t),

=

∫ t

0

τ j(t− τ)x(τ)dτ,
∫ t

0

∫ σ2

0

∫ σ1

0

τ jx(τ)dτdσ1dσ2 = [VH•H•τ j x] (t),

=

∫ t

0

τ j(t− τ)2

2
x(τ)dτ.

Successive integration has ben used in this case as augmentation method.
By chosing G = H(τ) as kernel of the augmentation operator VG, then
U-NK estimator will exactly reproduce the estimator in [89].

To carry out a comparable simulation in the BC-NK framework, the same
N = 3 value has been used in the implementation of the BC-NK kernel
(3.14). The kernel parameter ω has been set to ω = 1 (this is an arbitrary
choice; some considerations in order to design the value of the kernel pa-
rameter will be presented in Chapter 6). The procedure for constructing
the auxiliary signals generation system by BC-NK kernels (whose repre-
sentations are depicted in Figure 4.2) consists in taking the derivatives
C(i)
ω,N(t, τ), i ∈ {1, 2, 3} of the BC-NK (3.14), then in identifying the terms

Cω,N |i,j, with j ∈ {1, 2, 3, 4} (see (3.15) and (3.16)), and finally in comput-
ing Cω,N |i,j(t, t) to form the Ei(t) matrices (see (3.20) ) needed for the im-
plementation of the auxiliary signal generation system Gu,y→ze (see (3.19)).
Neglecting the intermediate algebraic manipulations, we get:
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(a) Cω,N (t, τ) (b) C(1)
ω,N (t, τ)

(c) C(2)
ω,N (t, τ) (d) C(3)

ω,N (t, τ)

Fig. 4.2: Graphical rappresentation of the Bivariate Causal Non-
Asymptotic Kernel (3.14) and its derivatives (see (3.15)), with ω = 0.1.
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E1 =





−(2e−t + 1)(e−t − 1)2

3(e−t − 1)2(e−t + 2)
−9(e−t − 1)2

−(e−t − 1)2(e−t − 4)



 ,

E2 =





−4e−3t + 3e−2t + 1
3e−3t + 9e−t − 12
9(e−t − 1)(e−t − 3)
(e−t − 1)(e−2t − 11e−t + 16)



 ,

E3 =





−8e−3t + 3e−2t − 1
3e−3t − 9e−t + 24
−9e−2t + 72e−t − 81
−e−3t + 24e−2t − 81e−t + 64



 ,

while

Gi =





−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4



 , i ∈ {1, 2, 3}.

Covariance filtering has been used in this case as augmentation method.
The kernel G of the filtering operator VG has been chosen as G(t, τ) =
e−0.1(t−τ), which yields as a single-dimensional stable linear system. The
construction of the augmentation system with the chosen kernel is trivial,
so its state-space realization is omitted for brevity.

4.1.1 Non-Asymptotic Parameter Estimation in the
Noise-free Scenario

The first simulation deals with a noise-free scenario, i.e., ηu(t) = 0, , ∀t ∈
R≥0.

The initial conditions for the mass-spring-damper system have been set to
x(0) = 1m and x(1)(0) = 10ms−1, while the forcing input has been chosen
as a sum of sinusoids:

v(t) = 10 sin(t) + sin(10 t).

Figure 4.3 depicts the measured input and output signals u(t) = v(t) and
y(t) = x(t) + o in the noise-free case. Although the theoretical instanta-
neity of the method gets lost in the time-discretization of the estimator’s
dynamics, in the digital representation of the signals and in the numer-
ical computation of the pseudo-inverse, the parameters are correctly esi-
mated with negligible duration of the transient by both methods, as shown
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in Figure 4.4. Remarkably, the proposed BC-NK estimator combines the
practical instantaneity with the internal stability, so that re-initialization
is not required. In Figures 4.5 and 4.6, the time-behaviors of the singular
values Σ(Z(t)) of the Z(t) matrices yielded by the augmentation systems of
the two estimators are shown. As can be observed, the BC-NK technique
shows a bounded behavior of the singular values Σ(Z(t)), whereas the other
estimation technique, though showing a fast convergence behavior toward
accurate estimates of the parameters, requires periodic reset in order to
cope with the integrator windup issue.

0 2 4 6 8 10
15

10

5

0

5

10

15

Time [s]

u(
t)

,y
(t

)

Fig. 4.3: Trends of the measured signals u(t) (gray) and y(t) (black) used
for the estimation in noise-free conditions.

0 0.05 0.1
4
3
2
1
0
1
2

 

θ̂(
t)

2 4 6 8 10
Time [s]

Fig. 4.4: The parameters estimated by the U-NK method (gray) and by
the BC-NK estimator (black) in noise-free conditions converge to the true
values a0 = −3, a1 = −2 and b0 = 1. The initial part of the simulation
has been magnified to show the fast convergence of both methods. The
theoretical instantaneity cannot be achieved because of time-discretization
and numerical precision issues.

It is worth noting that no high-gain output injection has been performed
by the two methods. In this respect, a further simulation has been carried
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1

1.5

2

2.5
x 104

Time [s]

Σ
(Z

(t
))

Fig. 4.5: Singular values of the Z(t) matrix produced by the U-NK estima-
tor with successive integration. The unstable integrators used to generate
the auxiliary signals lead the singular values of Z(t) to diverge. Periodic
reset of the estimator is needed to avoid numerical windup.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Time [s]

Σ
(Z

(t
))

Fig. 4.6: Singular values Σ(Z(t))of the Z(t) matrix produced by the BC-NK
estimator with covariance filtering. The internal stability of the estimator
guarantees that the singular values of Z(t) will remain bounded for any
bounded input-output signal pair.
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out in noisy conditions.

4.1.2 Estimation with Unstructured Measurement
Perturbations

Let’s consider a different scenario, where the additive output measurement
noise ηy(·) has been simulated as uniformly distributed random signals
taking values respectively in the intervals [−0.8, 0.8]. The perturbed signal
used for parameter estimation are depicted in Figure 4.7.

As can be seen from Figure 4.8 the BC-NK estimator shows good noise
immunity and the estimated parameters converge to a neighborhood of
the true values. Conversely, the U-NK estimator, implemented without
further provision for removing the noise effect, does not provide satisfactory
results; in this respect, as suggested in [89], it possible to further process
the estimates by a low-pass filter in order to mitigate the influence of noise.

Remarkably, although the BC-NK method has shown to be inherently ro-
bust in front of measurement perturbations, further improvements can be
obtained by tuning the ω parameter of the non-asymptotic causal kernel
(3.14) and by accurately choosing the filtering operator VG used for augmen-
tation. The point now is characterize, in both deterministic and stochastic
settings, the behavior of the BC-NK estimator in the presence of mea-
surement noise, in order to determine tuning rules for the aforementioned
parameters (this argument will be dealt in Chapter 6).

4.2 Benchmark Example

In this section, we compare by numerical simulations the BC-NK estimator
with the U-NK estimator, considering a benchmark proposed by Rao and
Garnier in [90] (see also [91] and [92]): it is a 4-th order, non minimum-
phase system whose dynamics are described by:





x(4)(t) = a1x(3)(t) + a2x(2)(t) + a3x(1)(t) + a4x(t) + b1u(1)(t) + b2u(t),
y(t) = x(t) + o+ ηy(t),
u(t) = v(t), t∈R≥0,

x(0) = x0, x(1)(0) = x(1)
0 , x(2)(0) = x(2)

0 , x(3)(0) = x(3)
0 ,

(4.4)
where b1 = −6400, b2 = 1600, a1 = 5, a2 = 408, a3 = 416 and a4 = 1600,
while y(·) is the output of the system affected by the output measurement
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Fig. 4.7: Trends of the noisy output measurement signal y(t) used for the
estimation.
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θ̂(
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Fig. 4.8: Parameters estimated by the U-NK method (gray) and by the BC-
NK estimator (black) with noisy measurements. The BC-NK estimator
with covariance filtering provides reliable estimates even in presence of
noise.
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noise ηy(·) and a bias o = 1, while u(·) is the measured forcing input sig-
nal. Neglecting the effect of unstructured perturbations ηu(·), the following
transfer function describes the input-output behavior of (4.4):

G(s) =
k1s+ k2

s4 + c1s3 + c2s2 + c3s+ c4
(4.5)

where c1 = −a1 = −5, c2 = −a2 = −408, c3 = −a3 = −416,
c4 = −a4 = −1600, k1 = b1 = −6400, k2 = b2 = 1600. Now, to estimate the
parameters in the presence of bias on the measurements, let us set p = 1
and, being n = 4 for the considered system, let us choose N = 5 and this
will yeld to the following U-NKs:

W1(τ) = τ 3; W2(τ) = H(τ);

W3(τ) = H(τ); W4(τ) = H(τ);

W5(τ) = H(τ).

Thanks of Theorem 2.1.3 we can compute the auxiliary signals ry,i(·) and
ru,i(·) as

rxi(t) = R5,i(t, t)x(t)− R5,i(t, 0)x(0)− [V
R(1)

5,i
x](t), ∀i ∈ {1, . . . , 5}

with x ← {u, y} and where the R-kernels are obtained from the U-NKs
W1,W2 and W3. For the chosen U-NKs it holds that

R5,i(t, t) = 0 R5,i(t, 0) = 0, ∀t ∈ R≥0, ∀i ∈ {1, . . . , 5}

and
R(1)

5,1(t, τ) = −(5t4τ 4)/24 + t3τ 5 − (7t2τ 6)/4 + (4tτ 7)/3− (3τ 8)/8,

R(1)
5,2(t, τ) = 5t4τ 3/6− 5t3τ 4 + 21t2τ 5/2− (28tτ 6)/3 + 3τ 7,

R(1)
5,3(t, τ) = −(5t4τ 2)/2 + 20t3τ 3 − (105t2τ 4)/2 + 56tτ 5 − 21τ 6,

R(1)
5,4(t, τ) = 5t4τ − 60t3τ 2 + 210t2τ 3 − 280tτ 4 + 126τ 5,

R(1)
5,5(t, τ) = −5t4 + 120t3τ − 630t2τ 2 + 1120tτ 3 − 630τ 4.

yielding the integral forms

rx1(t) =

∫ t

0

(
− 5

24
t4τ 4 + t3τ 5 − 7

2
t2τ 6 +

4

3
tτ 7 − 3

8
τ 8
)
x(τ)dτ ,

rx2(t) =

∫ t

0

(5
6
t4τ 3 − 5t3τ 4 +

21

2
t2τ 5 − 28

3
tτ 6 + 3τ 7

)
x(τ)dτ ,

rx3(t) =

∫ t

0

(
− 5

2
t4τ 2 + 20t3τ 3 − 105

2
t2τ 456tτ 5 − 21τ 6

)
x(τ)dτ ,

rx4(t) =

∫ t

0

(
5t4τ − 60t3τ 2 + 210t2τ 3 − 280tτ 4 + 126τ 5

)
x(τ)dτ ,

rx5(t) = −5t4x(t) +

∫ t

0

(
120t3τ − 630t2τ 2 + 1120tτ 3 − 630τ 4

)
x(τ)dτ .
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(a) Cω,N (t, τ) (b) C(1)
ω,N (t, τ)

(c) C(2)
ω,N (t, τ) (d) C(3)

ω,N (t, τ)

(e) C(4)
ω,N (t, τ) (f) C(5)

ω,N(t, τ)

Fig. 4.9: Graphical rappresentation of the Bivariate Causal Non-
Asymptotic Kernel (3.14) and its derivatives (see (3.15)), with ω = 0.1.
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As in the previous section, to carry out a comparable simulation in the
BC-NK framework, the same N = 5 value has been used in the implemen-
tation of the BC-NK kernels (whose representations are depicted in Figure
4.9). The kernel parameter ω has been set to ω = 1. The procedure for
constructing the auxiliary signals generation is the same shown in Section
4.1. Neglecting the intermediate algebraic manipulations, we get:

E1 =





−(4e−t + 1)(e−t − 1)4

5(3e−t + 2)(e−t − 1)4

−10(2e−t + 3)(e−t − 1)4

10(e−t − 1)4(e−t + 4)
−25(e−t − 1)4

−(e−t − 1)4(e−t − 6)




,

E2 =





−(e−t − 1)3(16e−t2 + 3e−t + 1)
5(e−t − 1)3(9e−t2 + 7e−t + 4)
−10(e−t − 1)3(4e−t2 + 7e−t + 9)
10(e−t − 1)3(e−t2 + 3e−t + 16)
25(e−t − 1)3(e−t − 5)
(e−t − 1)3(e−t2 − 17e−t + 36)





,

E3 =





−(e−t − 1)2(64e−t3 − 7e−t2 + 2e−t + 1)
5(e−t − 1)2(27e−t3 + 14e−t2 + 11e−t + 8)
−10(e−t − 1)2(8e−t3 + 11e−t2 + 14e−t + 27)
10(e−t − 1)2(e−t3 + 2e−t2 − 7e−t + 64)
−25(e−t − 1)2(e−t2 − 14e−t + 25)
−(e−t − 1)2(e−t3 − 38e−t2 + 193e−t − 216)





,

E4 =





−256e−t5 + 405e−t4 − 160e−t3 + 10e−t2 + 1
405e−t5 − 400e−t4 + 50e−t3 + 25e−t − 80
−160e−t5 + 50e−t4 + 100e−t2 − 800e−t + 810
10e−t5 + 100e−t3 − 1600e−t2 + 4050e−t − 2560
25(e−t − 1)(e−t3 − 31e−t2 + 131e−t − 125)
(e−t − 1)(e−t4 − 79e−t3 + 731e−t2 − 1829e−t + 1296)





,

E5 =





−1024e−t5 + 1215e−t4 − 320e−t3 + 10e−t2 − 1
1215e−t5 − 800e−t4 + 50e−t3 − 25e−t + 160
−320e−t5 + 50e−t4 − 100e−t2 + 1600e−t − 2430
10e−t5 − 100e−t3 + 3200e−t2 − 12150e−t + 10240
−25e−t4 + 1600e−t3 − 12150e−t2 + 25600e−t − 15625
−e−t5 + 160e−t4 − 2430e−t3 + 10240e−t2 − 15625e−t + 7776





,
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while:

G =





−1 0 0 0 0 0
0 −2 0 0 0 0
0 0 −3 0 0 0
0 0 0 −4 0 0
0 0 0 0 −5 0
0 0 0 0 0 −6




.

Covariance filtering has been used in this case as augmentation method.

The kernel G of the filtering operator VG has been chosen as G(t, τ) =
e−0.1(t−τ).

4.2.1 Non-Asymptotic Parameter Estimation in the
Noise-free Scenario

The first simulation deals with a noise-free scenario, i.e., ηy(t) = 0, ∀t ∈
R≥0. The initial conditions for system (4.5) have been set to x(0) = 1 ,
x(1)(0) = 10 and x(2)(0) = x(3)(0) = 0, while the forcing input has been cho-
sen as a sum of sinusoids

v(t) = 10 sin(5t) + 6 sin(20t) + 3 sin(8t) + sin(2t) + 7 sin(4t) + 9 sin(12t),

depicted in Figure 4.10.
Although the theoretical instantaneity of the method gets lost in the time-
discretization of the estimator’s dynamics, in the digital representation of
the signals and in the numerical computation of the pseudo-inverse, the pa-
rameters have been correctly esimated with negligible delay by both meth-
ods, as shown in Figure 4.11. It is worth noting that the proposed BC-NK
estimator, beyond fast convergence,is characterized by guaranteed internal
stability, hence re-initialization is not required. In Figures 4.12 and 4.13,
we show the time-behaviors of the singular values Σ(Z(t)) of the Z(t) ma-
trix produced by the two augmentation systems. As can be observed, the
BC-NK technique yelds a bounded behavior of the singular values Σ(Z(t)),
wheras the U-NK method requires periodic reset in order to cope with the
integrator windup issue.

4.2.2 Estimation with Unstructured Measurement Per-
turbations

In this example, the additive output measurement noise ηy(·) has been
simulated as a uniformly distributed random signal taking values in the
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Fig. 4.10: Trends of the measured signals u(t) used for the estimation in
noise-free conditions.

interval [−0.5, 0.5]. The perturbed signal used for parameter estimation is
depicted in Fig. 4.14.

As can be seen in Fig. 4.15, the BC-NK estimator shows good robustness
against the output noise. Clearly, in noisy-conditions, it is important to
have a knowledge of the bias in the computed noisy estimate, to this end
we led the bias computation presented in Chapter 6.

In the following there will be presented some results in order to compare the
parametric estimator proposed with two estimation techniques available in
literature.
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Fig. 4.11: The parameters estimated by the U-NK method (gray) and by
the BC-NK estimator (black) in noise-free conditions converge to the true
values b1 = −6400, b2 = 1600, a1 = −5, a2 = −408, a3 = −416 and
a4 = −1600.
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Fig. 4.12: Singular values of the Z(t) matrix produced by the U-NK esti-
mator. The non-BIBO kernels used to generate the auxiliary signals lead
the singular values of Z(t) to diverge. Periodic reset of the estimator is
needed to avoid numerical windup.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
x 105

Time [s]

Σ
(Z

(t
))

Fig. 4.13: Singular values Σ(Z(t))of the Z(t) matrix produced by the BC-
NK estimator with covariance filtering. The internal stability of the esti-
mator guarantees that the singular values of Z(t) will remain bounded for
any bounded input-output signal pair.
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Fig. 4.14: Trends of the measured signals y(t) used for the estimation in
noisy conditions.

4.3 Comparison of the BC-NK method

What follows are different simulations experiments, containing Monte-Carlo
simulations to compare BC-NK parameter estimation method discussed in
Chapter 3 with two methods falling into the two approaches discussed in
Section 1.2.1, i.e., State Variable Filtering (SVF) and Integral Methods
(IM). In both of these cases the aim is to low pass filter the data in order
to: i) get a stable estimate of the derivatives, and ii) avoid a strong gain
in the high frequencies where the signal is mostly composed of noise.
Therefore, it has been comparised the BC-NK method with an integral
method present in literature,i.e., Hartley Modulating Function (HMF, see
e.g., [93] and [28])) and with a SVF method, i.e., the Refined Instrumental
Variable Method (SRIVC, see e.g., [65] and [94]).
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Fig. 4.15: The parameters estimated by the BC-NK estimator in noise
conditions converge to the true values b1 = −6400, b2 = 1600, a1 = −5,
a2 = −408, a3 = −416 and a4 = −1600.
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4.3.1 Comparison with Hartley Modulating Function

The general formulation of the modulating function approaches was first
developed by Shinbrot [95] in order to estimate the parameters of linear
and non-linear systems. Further developments have been carried out and
spawned several versions based on different modulating functions; they in-
clude the Fourier based functions either under a trigonometric form or un-
der a complex exponential form: Spline-type functions, Hermite functions;
Hartley-based functions. A very important advantage of using Fourier and
Hartley-based modulating functions is that the system identification can be
equivalently posed entirely in the frequency domain which makes it possi-
ble to use efficient DFT/FFT techniques. Both methods are well suited for
digital implementation and have been included in the CONTSID toolbox
([30], [29] and [96]).

A function φµ,n(t) is a modulating function of order n relative to a fixed
time interval [0, T ], where µ is an index, if it is sufficiently smooth and
possesses the following property for l ∈ [0, n− 1]

[dlφµ,n(t)
dtl

]

t=0
=

[dlφµ,n(t)
dtl

]

t=T
= 0

The modulating function and its first (n−1) derivatives therefore vanishing
at both end points of the observation from interval.
The Hartley Modulating function relies on the cas(t) function defined by

cas(t) := cos(t) + sin(t)

Then is defined by:

ψµ,n =
n∑

k=0

(−1)k
(
n

k

)

It is worth noting that the HMF method is real-valued; this presented an
advantage since the input-output signals are real-valued [97].

A more detailed evaluation of the performances of the BC-NK algorithm
can be carried out by looking at Tables (4.1),(4.2), (4.3), (4.4), (4.5) and
(4.6) where the results obtained in a Monte Carlo study are presented
(averaging over 200 runs). More precisely, the estimated parameters of the
system under study (4.4) has been analysed (where c1 = −5, c2 = −408,
c3 = −416, c4 = −1600, k1 = −6400 and k2 = 1600) using HMF and
the proposed BC-NK technique, for increasing signal-to-noise ratio (SNR),
where the SNR is defined as:

SNR = 10 log10

(Py

Pν

)
(4.6)
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Pν represents the average power of the additive noise on the system out-
put (e.g.the variance), while Py denotes the average power of the noise-free
output fluctuations. Note that in the table, each row provides the estima-
tion of the unknown parameters for different levels of noise and sampling
intervals ∆t.
The table confirms in a more quantitative way the conclusions that were
already arrived from the analysis led in this work. As can be seen, the
developed approach provides accurate estimates of the parameters in every
condition presented, of noise and sampling interval, showing a better be-
havior with smaller values of sampling interval, this is in agreement with
the theoretical analysis that will be presented in Chapter 6. Comparised
with HMF technique, the BC-NK shows good robustness at increasing SNR
and good behaviors even when the sampling interval is greater (i.e., when
∆t = 1 · 10−3).

SNR c1 c2 c3 c4 k1 k2
20 -4.685 -405.135 -413.231 -1568.656 -6250.399 1493.692
30 -4.919 -407.179 -414.543 -1597.616 -6384.814 1585.849
35 -4.957 -407.759 -415.413 -1599.539 -6394.814 1585.910

Table 4.1: Mean of the estimated parameters calculated using BC-NK ap-
proach with sampling interval ∆t = 1 · 10−3 and different signal-to-noise
ratio. The number of samples collected is Nsamples = 15011

SNR c1 c2 c3 c4 k1 k2
20 -5.079 -408.883 -450.807 -1666.169 -6389.525 848.298
30 -5.008 -408.113 -419.262 -1604.249 -6398.651 1519.295
35 -5.002 -408.036 -416.442 -1599.270 -6399.602 1582.447

Table 4.2: Mean of the estimated parameters calculated using HMF ap-
proach with sampling interval ∆t = 1 · 10−3 and different signal-to-noise
ratio. The number of samples collected is Nsamples = 15011

SNR c1 c2 c3 c4 k1 k2
20 -4.919 -406.793 -414.791 -1594.948 -6387.959 1579.771
30 -4.976 -407.453 -415.750 -1598.907 -6398.317 1594.118
35 -4.986 -407.871 -415.875 -1599.443 -6399.297 1596.752

Table 4.3: Mean of the estimated parameters calculated using BC-NK ap-
proach with sampling interval ∆t = 1 · 10−4 and different signal-to-noise
ratio. The number of samples collected is Nsamples = 100010
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SNR c1 c2 c3 c4 k1 k2
20 -5.005 -408.180 -418.937 -1617.120 -6401.134 1440.808
30 -4.995 -408.001 -413.943 -1598.309 -6401.138 1608.519
35 -4.993 -407.967 -412.914 -1594.777 -6401.000 1641.983

Table 4.4: Mean of the estimated parameters calculated using HMF ap-
proach with sampling interval ∆t = 1 · 10−4 and different signal-to-noise
ratio. The number of samples collected is Nsamples = 100010

SNR c1 c2 c3 c4 k1 k2
20 -5.009 -407.515 -415.742 -1598.016 -6395.546 1589.910
30 -5.003 -407.892 -415.966 -1599.553 -6399.711 1596.998
35 -5.002 -407.944 -415.986 -1599.769 -6399.721 1598.333

Table 4.5: Mean of the estimated parameters calculated using BC-NK ap-
proach with sampling interval ∆t = 5 · 10−5 and different signal-to-noise
ratio. The number of samples collected is Nsamples = 200009

SNR c1 c2 c3 c4 k1 k2
20 -5.007 -408.154 -415.087 -1599.959 -6399.602 1568.693
30 -4.996 -407.999 -412.984 -1593.468 -6402.867 1643.441
35 -4.993 -407.967 -412.404 -1592.121 -6401.965 1660.997

Table 4.6: Mean of the estimated parameters calculated using HMF ap-
proach with sampling interval ∆t = 5 · 10−5 and different signal-to-noise
ratio. The number of samples collected is Nsamples = 200009
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4.3.2 Comparison with Refined Instrumental Variable
Methodology

The Simplfied Refined Instrumental Variable method is a very powerful tool
for the identification and estimation of continuous-time (SRIVC) Transfer
Functions models. It was first suggested and implemented in 1980 (see
[64]), while the full RIVC has been implemented recently (see [66] and
[98]) and the reader should consult these publications for details.

Let’s consider the benchmark example presented in (4.4) and let’s deal a
simulation experiment to compare BC-NK method and SRIVC method.
We have considered two different scenarios: the first is obtained usign a
SNR = 35 and a sampling interval of ∆t = 1 ·10−3. The results of this nu-
merical example has been reported in Figures (4.16),(4.17), (4.18), (4.19),
(4.20) and (4.21), in which it have been highlighted the estimation of the
parameters on a horizion of t = 10 seconds and its transient part of both
methods. It is worth noting that the following resutls have been obtained
computing the ergodic mean values, over a number of N = 100 runs. The
second scenario, instead, is obtained with a SNR = 30 and a sampling in-
terval of ∆t = 1 · 10−4; a graphical representation of the results are shown
in Figures (4.22),(4.23), (4.24), (4.25), (4.26) and (4.27).
From the analyzis of these behaviors, it is possible to deduce that the pro-
posed technique shows, in the transient part of the estimates, very good
results compared with SRIVC, while SRIVC have better or equal perfor-
mances than BC-NK asymptotically. However, the transient behavior of
the BC-NK is a relevant result, mainly due to the guaranteed internal
stability conditions; besides, it is worth noting that unbounded transients
could lead to saturation problems, hence have bounded transient is, for the
proposed methodology, an important achievement.
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Fig. 4.16: Parameter a1 = −5 estimated by the SRIVC method (gray) and
by the BC-NK estimator (black). The Figure on the right highlight the
transient part of the simulation for both methods
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Fig. 4.17: Parameter a2 = −408 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.18: Parameter a3 = −416 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.19: Parameter a4 = −1600 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.20: Parameter b1 = −6400 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.21: Parameter b2 = 1600 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.22: Parameter a1 = −5 estimated by the SRIVC method (gray) and
by the BC-NK estimator (black). The Figure on the right highlight the
transient part of the simulation for both methods
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Fig. 4.23: Parameter a2 = −408 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.24: Parameter a3 = −416 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.25: Parameter a4 = −1600 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.26: Parameter b1 = −6400 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Fig. 4.27: Parameter b2 = 1600 estimated by the SRIVC method (gray)
and by the BC-NK estimator (black). The Figure on the right highlight
the transient part of the simulation for both methods
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Part II

Kernel-based State Estimation
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Chapter 5

Non-asymptotic kernels for
observers design

Let’s consider again the Single-Input Single Output (SISO) CT system in
input-output form (3.1), whence m ∈ Z>0, n ∈ Z>0, m ≤ n and p ∈ Z≥0.
The values of the constant parameters ai ∈ R, with i ∈ {0, . . . , n − 1}
and bk ∈ R, with k ∈ {0, . . . , m − 1} are assumed to be known. The
only meaurable signals are y(t) and u(t), while their time-derivatives are
not assumed to be available. Consider the following state-space realization
(observer-canonical form) of (3.1):

Su→z→y :






z(1)(t) = Az(t) + b u(t),
y(t) = c'z(t), t ∈ R≥0

z(0) = z0

(5.1)

where
z(t) " [z0(t) z1(t) . . . zr(t) . . . xn−1(t)]

' ∈ Rn

is the system’state vector, while b, c ∈ Rn and A ∈ Rn×n are given by

A=





−an−1 1 0 · · · 0

−an−2 0 1
. . . ...

... ... . . . . . . 0

−a1 0 · · · 0 1

−a0 0 · · · 0 0




,

b =
[
0 · · · 0 bm−1 bm−2 · · · b1 b0

]'
,

c =
[
1 0 · · · 0

]'
.

(5.2)

For the sake of further discussion, it is worth to point out that the state-
variables of the observer canonical realization can be expressed as a linear
combination of the input-output derivatives:

zr(t)=y(r)(t)−
r−1∑

j=0

an−r+j y
(j)(t)−

r−1+m−n∑

j=0

bn−r+j u
(j)(t) ,

r ∈ {0, . . . , n− 1};
(5.3)
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where we have used the convention
∑k

j=0{·} = 0, ∀k < 0. Our objective
consists in providing a non-symptotic (fast) estimate of the state z(t) of
system (5.1), by suitably processing the input and output signals u(t) and
y(t), in such a way that the unknown value of the initial conditions z0 does
not affect the transitory behavior of the estimator.

To this end, let K ∈ HS be a kernel satisfying the n-th order instantaneity
condition:

K(j)(t, 0) = 0, ∀t ∈ R≥0, ∀j ∈ {0, . . . , n− 1}. (5.4)

This assumption implies that

[
VK y(1)

]
(t) =

t∫

0

K(t, τ)y(1)(τ)dτ

= y(t)K(t, t)− y(0)K(t, 0)−
t∫

0

K(1)(t, τ)y(τ)dτ

= y(t)K(t, t)−
t∫

0

K(1)(t, τ)y(τ)dτ

and therefore

[VK(1) y] (t) = y(t)K(t, t)−
[
VK y(1)

]
(t) (5.5)

Note that (5.5) holds for any instantaneous kernel of order n-th and for any
function y admitting a first generalized derivative. Changing the integrand
y with y(i) and the kernel K with K(j), for some j ∈ {1, . . . , n− 1}, under
the assumption K(j)(t, 0) = 0, ∀t ∈ R≥0, we have that also the following
integral equation holds

[
V
K(j+1)

h
y(i)

]
(t) = y(i)(t)K(j)

h (t, t)−
[
V
K(j)

h
y(i+1)

]
(t) (5.6)

Thanks to (5.6), we can arrange the following system of n integral equa-
tions:





[VK(n)y] (t) = y(t)K(n−1)(t, t)−
[
VK(n−1)y(1)

]
(t)

[
VK(n−1)y(1)

]
(t) = y(1)(t)K(n−2)(t, t)−

[
VK(n−2)y(2)

]
(t)

...[
VK(n−i)y(i)

]
(t) = y(i)(t)K(n−i−1)(t, t)−

[
VK(n−i−1)y(i+1)

]
(t)

...[
VK(1)y(n−1)

]
(t) = y(n−1)(t)K(t, t)−

[
VK y(n)

]
(t)

(5.7)
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Introducing the dynamic constraint in the last equation we get the useful
relation
[
VK(1)y(n−1)

]
(t) = y(n−1)(t)K(t, t)−

[
VK y(n)

]
(t)

= y(n−1)(t)K(t, t)−
[
VK

(
n−1∑

i=0

aiy
(i)(t) +

m−1∑

k=0

bku
(k)(t)

)]
(t)

= y(n−1)(t)K(t, t)−
n−1∑

i=0

ai
[
VKy

(i)
]
(t)−

m−1∑

k=0

bk
[
VKu

(k)
]
(t)

(5.8)

The following result will be exploited in the sequel.

Lemma 5.0.1 (Technical) Let K ∈ HS verify the n-th order instantane-
ity condition K(j)(t, 0) = 0,∀t ∈ R≥0, ∀j ∈ {0, . . . , n−1}, and let y(·) ∈ L2

admit a n-th generalized derivative, then for i ∈ {1, . . . , n− 1}:

[
VK(n−i)y(i)

]
(t) =

i−1∑

j=0

(−1)i−1+jy(j)(t)K(n−j−1)(t, t) + (−1)i[VK(n)y](t), .

(5.9)
!

Proof 4 The system of equations (5.7) can be rearranged as:





[
VK(n−1)y(1)

]
(t) = y(t)K(n−1)(t, t)− [VK(n) y] (t)

[
VK(n−2)y(2)

]
(t) = y(1)(t)K(n−2)

h (t, t)−
[
VK(n−1)y(1)

]
(t)

...[
VK(n−i)y(i)

]
(t) = y(i−1)(t)K(n−i)(t, t)−

[
VK(n−i+1)y(i−1)

]
(t)

[
VK(n−i−1)y(i+1)

]
(t) = y(i)(t)K(n−i−1)(t, t)−

[
VK(n−i)y(i)

]
(t)

...[
VK y(n)

]
(t) = y(n−1)(t)K(t, t)−

[
VK(1)y(n−1)

]
(t)

(5.10)
By substituting the expression y(t)K(n−1)(t, t)− [VK y] (t) in place of
[V

K
(n−1)
h

y(1)](t) in the right side of the second equation and proceeding by for-
ward substitution into the successive equations, the statement of the lemma
can be trivially obtained.

Consider now (5.9) with i = n− 1:

[
VK(1)y(n−1)

]
(t) =

n−2∑

j=0

(−1)n−2+jy(j)(t)K(n−j−1)(t, t) + (−1)n−1[VK(n)y](t)

(5.11)
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Changing the kernel K(n−i) in (5.9) with K we also obtain

[
VK y(i)

]
(t) =

i−1∑

j=0

(−1)i−1+jy(j)(t)K(i−j−1)(t, t)+(−1)i[VK(i)y](t), i ∈ {1, . . . , n−1}

(5.12)
Changing the integrand y(i) in (5.12) with u(k):

[
VK u(k)

]
(t) =

k−1∑

j=0

(−1)k−1+ju(j)(t)K(k−j−1)(t, t)+(−1)k[VK(k)u](t), i ∈ {1, . . . , m−1}

(5.13)
Substituting (5.11),(5.12) and (5.13) in (5.8) we get an equation that relates
y(n−1) with lower-order derivatives y(1)(t), . . . , y(n−2)(t), u(1)(t), . . . , u(m−1)(t)
and with the non-anticipative signals y(t), u(t) and [VK y](t), [VK u](t):

(−1)n−1[VK(n)y](t) = y(n−1)(t)K(t, t)−
n−2∑

j=0

(−1)n−2+jy(j)(t)K(n−j−1)(t, t)

−
n−1∑

i=0

ai

(
i−1∑

j=0

(−1)i−1+jy(j)(t)K [i−j−1](t, t) + (−1)i[VK(i)y](t)

)

−
m−1∑

k=0

bk

(
k−1∑

j=0

(−1)k−1+ju(j)(t)K(k−j−1)(t, t) + (−1)k[VK(k)u](t)

)

(5.14)
which can be rearranged as

(−1)n−1[VK(n)y](t) +
n−1∑
i=0

ai(−1)i[VK(i)y](t) +
m−1∑
k=0

bk(−1)k[VK(k)u](t) =

= y(n−1)(t)K(t, t)−
n−2∑

j=0

(−1)n+jy(j)(t)K(n−j−1)(t, t)

+
n−1∑

i=0

ai

i−1∑

j=0

(−1)i+jy(j)(t)K(i−j−1)(t, t)

+
m−1∑

k=0

bk

k−1∑

j=0

(−1)k+ju(j)(t)K(k−j−1)(t, t)

(5.15)
By first introducing the substitution k = i on the right side of equation
(5.15) and by exploiting the technical result (8.3), reported in the Ap-
pendix, we can change the order of summation in the nested indexed sums,
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obtaining

(−1)n−1[VK(n)y](t) +
n−1∑

i=0

ai(−1)i[VK(i)y](t) +
m−1∑

k=0

bk(−1)k[VK(k)u](t) =

= y(n−1)(t)K(t, t) +
n−2∑

j=0

y(j)(t)
(
(−1)n+j+1K(n−j−1)(t, t) +

n−1∑

i=j+1

ai(−1)i+jK(i−j−1)(t, t)
)

+
m−2∑

j=0

u(j)(t)
m−1∑

i=j+1

bi(−1)i+jK(i−j−1)(t, t) = y(n−1)(t)K(t, t)

+
n−2∑

j=0

y(j)(t)
(
(−1)n+j+1K(n−j−1)(t, t) + +

n∑

p=j+2

an−p+1+j(−1)n−p+1K(n−p)(t, t)
)
+

+
m−2∑

j=0

u(j)(t)
n∑

p=j+2+n−m

bn−p+1+j(−1)n−p+1K(n−p)(t, t)

(5.16)

where we have also posed p = j + n− i+ 1.
Now, in view of (8.4) and (8.5) (reported in the Appendix), we can rewrite
(5.16) as

(−1)n−1[VK(n)y](t) +
n−1∑

i=0

ai(−1)i[VK(i)y](t) +
m−1∑

k=0

bk(−1)k[VK(k)u](t) =

=
n∑

p=1

K(n−p)(t, t) (−1)n−py(p−1)(t) +
n∑

p=2

K(n−p)(t, t)
p−2∑

j=0

(−1)n+1−p an−p+j+1 y
(j)(t)+

+
n∑

p=2+n−m

K(n−p)(t, t)
p−2+m−n∑

j=0

(−1)n+1−p bn−p+j+1 u
(j)(t) =

=
n−1∑

r=0

K(n−r−1)(t, t) (−1)n−r−1y(r)(t)−
n−1∑

r=1

K(n−r−1)(t, t)(−1)n−r−1
r−1∑

j=0

an−r+j y
(j)(t)−

−
n−1∑

r=1+n−m

K(n−r−1)(t, t)(−1)n−r−1
r−1+m−n∑

j=0

bn−r+j u
(j)(t) =

= K(n−1)(t, t) (−1)n−1y(t) +
n−m∑

r=1

K(n−r−1)(t, t) (−1)n−r−1
(
y(r)(t)−

r−1∑

j=0

an−r+j y
(j)(t)

)
+

+
n−1∑

r=1+n−m

K(n−r−1)(t, t)(−1)n−r−1
(
y(r)(t)−

r−1∑

j=0

an−r+j y
(j)(t)−

r−1+m−n∑

j=0

bn−r+j u
(j)(t)

)

(5.17)

where we have finally posed r = p − 1. Considering that all the terms in
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the left side of (5.17) can be obtained by causal filtering the signals y and
u, it is convenient define the auxiliary signal

ν(t) " (−1)n−1[VK(n)y](t) +
n−1∑

i=0

ai(−1)i[VK(i)y](t) +
m−1∑

k=0

bk(−1)k[VK(k) u](t)

(5.18)
and then express (5.17) in compact form as

n−1∑

p=0

γr(t) zr(t) = ν(t) , (5.19)

where γ0(t), . . . , γr(t), . . . , γn−1(t) are known functions of time depending
on the particular kernel function chosen for the implementation of the es-
timator:

γr(t) = K(n−r−1)(t, t)(−1)n−r−1 , r ∈ {0, . . . , n− 1} (5.20)

while z0(t), . . . , zr(t), . . . , zn−1(t) are unknown signals (depending on un-
avaliable time-derivatives of u and y ) corresponding to the state variables
of a state-space realization of the system, and depending, in turn, on the
unkown derivatives of y and u:

zr(t)=






y(t), r = 0;

y(r)(t)−
r−1∑

j=0

an−r+j y
(j)(t) ,

1 ≤ r < min(1 + n−m,n− 1);

y(r)(t)−
r−1∑

j=0

an−r+j y
(j)(t)−

r−1+m−n∑

j=0

bn−r+j u
(j)(t) ,

1 + n−m ≤ r ≤ n− 1;

(5.21)

An algebraic system having a number of equations of the kind (5.19) equal
to the number of unknowns (i.e., the instantaneous values of the state
variables z0(t), . . . , zn−1(t)) can be arranged by using n different kernel
functions K1, K2, . . . , Kn to enforce new independent constraints. Clearly,
to ensure the invertibility of the system with respect to the unknown state
vector for any t > 0, we will introduce further constraints on the structure
of the kernel functions.
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5.1 Non-asymptotic state estimation with in-
stantaneous internally stable kernels

Now, the basic requirement Kh ∈ HS ensures that, for any bounded y(·),
the transformed signals [VK(i)y](·) have not finite-time escape. Now, for the
estimator to be implementable as an internally stable filter, we also need to
ensure the asymptotic boundedness of all the signals involved in the esti-
mation process. Modulating functions can be designed to achieve this task
(e.g., τne−ωτ , ...), but these result in integrals with time-varying weighting
patterns that asymptotically decay to 0. Thus the internal stability comes
at the price of a practical freezing of the filter as time proceeds from the
activation instant. We seek for a non-fading kernel keeping the estimator
alive undefinitely.

Now, we will propose a family of admissible HS kernels, realizable by means
of a finite-dimensional asymptotically stable state-space implementation
([4]), fulfilling the n-th order instantaneity condition, being n ∈ Z>0 the
order of the system Su→y under concern.

Let us consider the following parametrized kernel

Kω:&:µ(t, τ) = e−ω (t−τ)
(
1− e−&τ

)µ

with µ ∈ R>0 and ω,- ∈ R>0 arbitrary constant parameters. For any
particular choice of ω and -, an admissible kernel function, verifying the
n-th order instantaneity conditions , can be obtained by setting µ ≥ n.
Indeed the derivative kernel functions write:

K(i)
ω:&:µ(t, τ) =

∂
i

∂τ i
Kω:&:µ(t, τ)

=
∂i

∂τ i
(
e−ωteωτ (1− e−&τ )µ

)

= e−ωt di

dτ i

[
eωτ (1− e−&τ )µ

]
, i ∈ {0, . . . , n}.

(5.22)

for which it holds that

K(i)
ω:&:µ(t, t) = e−ωt di

dτ i

[
eωτ (1− e−&τ )µ

] ∣∣∣∣
τ=t

is nontrivial for all 0 ≤ i ≤ n. Moreover

K(i)
ω:&:µ(t, 0) = 0, ∀t ∈ R≥0, ∀ j ∈ {0 . . . n− 1}.
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Note that each derivative kernel K(i)
ω:&:µ(t, τ), although separable, is not of

convolution type, which implies that the opeerator V
K

(i)
ω:":µ

does not admit
a linear time-invariant dynamical system realization. Nonetheless, we will
show that, for any bounded signal x(t) the transformed signal [V

K
(i)
ω:":µ

x](t)

can be obtained as the output of a nonlinear stable scalar dynamical system,
for any i ∈ {0, . . . , n}.

In order to prove this statement, let us specialize (2.8) to the kernel K(i)
ω:&:µ(t, τ)

defined in (5.22)





ξ(1)(t)=






K(i)
ω:&:µ(t, t)x(t) +

t∫

0

(
∂

∂t
K(i)

ω:&:µ

)
x(τ)dτ , t∈R≥0;

0, t = 0;
ξ(0) = ξ0 = 0;

[
V
K(i)

ω:":µ
x
]
(t) = ξ(t), ∀t ∈ R≥0.

(5.23)

Considering that

∂

∂t
K(i)

ω:&:µ(t, τ) = −ωK(i)
ω:&:µ(t, τ),

observing that K(i)
ω:&:µ(0, 0) is bounded, and assuming that x(t) is bounded

too, then a state-space realization of the operator induced by the kernel
under concern is given by:

ξ(1)(t) = K(i)
ω:&:µ(t, t)x(t) +

t∫

0

(
∂

∂t
K(i)

ω:&:µ

)
x(τ)dτ

= K(i)
ω:&:µ(t, t)x(t)− ω

t∫

0

K(i)
ω:&:µ(t, τ)x(τ)dτ

= K(i)
ω:&:µ(t, t)x(t)− ω

[
V
K

(i)
ω:":µ

x
]
(t)

= K(i)
ω:&:µ(t, t)x(t)− ω ξ(t), ∀t∈R≥0.

(5.24)

Being K(i)
ω:&:µ(t, t) bounded , it holds that the scalar dynamical system

realization of the Volterra operators induced by the proposed kernels is
internally stable, and ISS (Input-to-state stable) w.r.t. x(t).

Now, let us exploit the proposed class of kernel functions to solve the
state estimation problem. For the sake of enhancing the clarity of the
presentation, given a given system of order n, let us reduce the kernel
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parametric structure by fixing - ∈ R>0 arbitrarily and by posing µ = n
(in this way we assign to µ the minimum value of exponent under which
the n-th order instantaneity condition is preserved):

Kω(t, τ) = e−ωt
[
eωτ

(
1− e−&τ

)n]
, (5.25)

where we have removed the parameters - and n, that will remain fixed
and shared by all the kernels considered in the sequel. Consider n kernels
of the kind (5.25) with different ω parameters, that is:
Kω0(t, τ), . . . , Kωn−1(t, τ) with

ω0, . . . ,ωn−1 ∈ Rn
>0 : ωi $= ωj , ∀i, j ∈ {0 . . . , n− 1}2, i $= j. (5.26)

Now, incolumnating n equations of the kind (5.19), built by the kernels
Kωh

, with h ∈ {0, . . . , n− 1}, we get the following time-verying system
linear equations (alebraic for any specific t ∈ R≥0)

Γ(t)z(t) = ν(t) (5.27)

where z(t) " [z0(t), . . . , zn−1(t)]T ∈ Rn is the unkwnown vector of states to
be estimated, ν(t) " [ν0(t), . . . , νn−1(t)]T ∈ Rn is a vector of known signals
(obtainable by non-anticipative operators) and K(t) ∈ Rn×n is a square
time-varying matrix defined as:

Γ(t) "

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0,0 · · · γ0,r · · · γ0,n−1

γ1,0 · · · γ1,r · · · γ1,n−1
... ... ...
γh,0 · · · γh,r · · · γh,n−1
...

...
...

γn−1,0 · · · γn−1,r · · · γn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)n−1K(n−1)
ω0 (t, t) · · · (−1)n−r−1K(n−r−1)

ω0 (t, t) · · · Kω0
(t, t)

(−1)n−1K(n−1)
ω1 (t, t) · · · (−1)n−r−1K(n−r−1)

ω1 (t, t) · · · Kω1
(t, t)

... ... ...
(−1)n−1K(n−1)

ωh (t, t) · · · (−1)n−r−1K(n−r−1)
ωh (t, t) · · · Kωh

(t, t)
... ... ...

(−1)n−1K(n−1)
ωn−1 (t, t) · · · (−1)n−r−1K(n−r−1)

ω1 (t, t) · · · Kωn−1
(t, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.28)

Remark 5.1.1 (Direct feedthroughand invertibility of (5.27)) It is
worth to point out that the algebraic system (5.27) can be solved with respect
to z(t) if the matrix Γ(t) is invertible. It holds that Γ(t) is invertible for any
t > 0, being the rows of Γ(t) mutually independent thanks to the devised
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kernel functions. This feature is implied by the particular class of kernels
chosen for the implementation of the estimator, i.e., the BF-NK type.

Compared with the Bivariate (strict) Causal Non-asymptotic Kernel (BC-
NK) (Section 3) to implement the non-instantaneous parameter-estimator,
for which C(t, t) = 0, ∀t ∈ R≥0, it holds instead that for the BF-NK (5.22)
F (i)(t, t) > 0, ∀t > 0. This property will imply that the state-space realiza-
tion of the operator VF induced by the kernel, applied to the derivative of
a signal, [VFu(1)](t), can be written in a form tha has a direct feedtrough
from u(t); i.e., [VFu(1)](t) = F (t, t)u(t) − [VF (1)u](t). All the elements of
Γ(t) will therefore be positive for any t > 0.

Moreover, Γ(t) is guaranteed to be full rank (invertible) for any t > 0
because of condition (5.26). !

Our focus is now directed to the computation ν(t). In view of (5.33), each
elements νh(t), h ∈ {0, . . . , n− 1} is given by a weighted sum of the signals
u, y and their transformations, obtainable by applying integral operators
to u and y.

In view of the result (5.24), concerning the state-space realization of the
integral operators induced by the proposed kernel functions, it is possible
to conclude that the non-asymptotic state estimator can be implemented
as an internally stable dynamic system.

Indeed, defining the internal state vector

ξ(t) = [ξω0(t), ξω1(t), . . . , ξωn−1(t)]
T ∈ R(n+1+m)n,

with

ξωi(t) =
[
[VKωi

y](t), [V
K

(1)
ωi
y](t), . . . , [V

K
(n−1)
ωi

y](t), [V
K

(n)
ωi
y](t)

[VKωi
u](t), [V

K(1)
ωi
u](t), . . . , [V

K(m−1)
ωi

u](t)
]T ∈ Rn+1+m,

where i ∈ {0, . . . , n− 1}; it is now possible to assign the followig structure
to ν(t):

ν(t) = Hξ(t), (5.29)

where, in view of (5.18), the matrices in (5.29) are given by

H =

∣∣∣∣∣∣∣∣∣

hT 0 · · · 0

0 hT . . . ...
... . . . . . . 0
0 · · · 0 hT

∣∣∣∣∣∣∣∣∣

∈ Rn×[(n+1+m)n],
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with

hT =
∣∣∣a0, −a1, · · · , ai(−1)i, · · · , an−1(−1)n−1, (−1)n−1,

b0, −b1, . . . , bk(−1)k, · · · , bm−1(−1)m−1
∣∣∣ ∈ R1×(n+1+m),

In view of (5.24), the time evolution of the state vetor ξ(t) is described by
the following system of ordinary differential equations

{
ξ(1)(t) = Gξ(t) + E(t)y(t) + F(t)u(t), t ∈ R≥0,
ξ(0) = 0,

(5.30)

Notably, the matrix G is diagonal, time-invariant and Hurwitz:

G =

∣∣∣∣∣∣∣∣∣∣∣

Gω0 0 · · · 0

0 Gω1

. . . ...
... . . . . . . 0

0 · · · 0 Gωn−1

∣∣∣∣∣∣∣∣∣∣∣

∈ R[(n+1+m)n]×[(n+1+m)n]

Gωi =

∣∣∣∣∣∣∣∣∣∣∣

−ωi 0 · · · 0

0 −ωi
. . . ...

... . . . . . . 0

0 · · · 0 −ωi

∣∣∣∣∣∣∣∣∣∣∣

∈ R(n+1+m)×(n+1+m)

while the time-varying input matrices can be expressed as

E(t) =

∣∣∣∣∣∣∣∣∣

Eω0(t)
Eω1(t)

...
Eωn−1(t)

∣∣∣∣∣∣∣∣∣

∈ R(n+1+m)n, F(t) =

∣∣∣∣∣∣∣∣∣

Fω0(t)
Fω1(t)

...
Fωn−1(t)

∣∣∣∣∣∣∣∣∣

∈ R(n+1+m)n

where

Eωi(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kωi
(t, t)

K(1)
ωi (t, t)

...
K(n−1)

ωi (t, t)

K(n)
ωi (t, t)
0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Rn+1+m, Fωi(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

Kωi
(t, t)

K(1)
ωi (t, t)

...
K(m−1)

ωi (t, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Rn+1+m.
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Finally, by (5.27), (5.29) and (5.30), the state estimator takes the following
form:

{
ξ(1)(t) = Gξ(t) + E(t)y(t) + F(t)u(t), t ∈ R≥0,
ξ(0) = 0,

z(t) =
(
Γ(t)

)−1

Hξ(t), t ∈ R>0.
(5.31)

that is, a stable linear time-varying dynamical system.

By analyzing the time-trend of the elements of Γ(t) we can conclude that
the outcome of the estimator (that is, the estimated state vector z(t))
is defined almost everywhere. Indeed, for any t > 0, the matrix Γ(t)
is invertible, while, at the activation time instant t = 0, Γ(0) is singu-
lar. Conversely, for any t > 0, the outcome of the estimator is a vector
of continuous-in-time signals that, in nominal conditions, are exact non-
delayed estimates of the states of the observed system.

Remark 5.1.2 (Separation Principle) An important observation is
that the ξ dynamics, driven by the signals u(t), y(t), depends only on the
particular kernels chosen for the implementation. Indeed the constant Hur-
witz matrix G and the time-varying matrices E(t) and F(t) can be expressed
in terms of the sole kernel functions. The parameters of the system Su→y (
that is, a0, . . . , an−1 and b0, . . . , bm−1) only affect the output map H and the
time-varying output maps J(t) and L(t). In conlusion, the internal stability
properties of the estimator can be structurally enforced by the choice of the
kernel functions and can be made independent from the parameters of the
system under observation.

Note that, in the usual observer design methods (see [99], [73]), based on
the synthesis of a correction gain from the measured output, the design pro-
cedure requires the knowledge of the system’s parameters to compute the
correction gain, in order to assign the poles of the estimator (Luenberger)
or to optimize an optimality criterion (Kalman) guaranteing the stability
of the estimator’s dynamics. Thus, compared to usual filter design meth-
ods, in our setting the internal dynamics of the observer can be designed
neglecting at all the parameters of the system under concern. Most impor-
tant, the parameters of the system can be used only when available, while
the information on the past evolution of the system can be retained and
stored in the internal states of the filter.

In conclusion: we do not use high gain correction feedback neither differ-
entiators, instead we have obtained a non-anticipative state-space (finite-
dimensional) implementation with internal stability, with assigned observer
dynamics regardless of the dynamics of the observed system, and , most
important, instantaneous (non-asymtoptic) estimates for any t > 0.
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5.2 Reducing the complexity of the estimator

Now, with the aim of reducing the complexity of the estimator, we will
introduce some modification to the basic formulation given in Section 5.1.
Assuming that u e y are not affected by disturbances, being u and y directly
measurable, and therefore already available, it is possible to remove those
vaiables from the vector of estimates, and reduce the dimensions of the
problem.

To this end, let us collect all the measurable and computable quantities (i.e.,
the signals u(t),y(t) and their transformations produced by implementable
non-anticipative operators) on the left side of (5.16):

(−1)n−1[V (n)
K y](t) +

n−1∑

i=0

ai(−1)i[VK(i)y](t) +
m−1∑

k=0

bk(−1)i[VK(k)u](t)

+

(
K(n−1)(t, t) (−1)n +

n∑

p=2

K(n−p)(t, t)(−1)n−p an−p+1

)
y(t)

+
n∑

p=2+n−m

K(n−p)(t, t) (−1)n−p bn−p+1 u(t) =

= K(n−2)
h (t, t) (−1)n−2y(1)(t) +

2+m−n∑

p=3

K(n−p)
h (t, t) (−1)n−p

(

y(p−1)(t)−
p−2∑

j=1

an−p+j+1 y
(j)(t)

)

+
n∑

p=3+n−m

K(n−p)
h (t, t) (−1)n−p

(
y(p−1)(t)−

p−2+n−m∑

j=1

bn−p+j+1 u
(j)(t)−

p−2∑

j=1

an−p+j+1 y
(j)(t)

)

= K(n−2)
h (t, t) (−1)n−2y(1)(t) +

1+m−n∑

r=2

K(n−r−1)
h (t, t) (−1)n−r−1

(

y(r)(t)−
r−1∑

j=1

an−r+j y
(j)(t)

)

+
n−1∑

p=2+n−m

K(n−r−1)
h (t, t) (−1)n−r−1

(
y(r)(t)−

r−1+n−m∑

j=1

bn−r+j u
(j)(t)−

r−1∑

j=1

an−r+j y
(j)(t)

)

(5.32)
where we have posed r = p− 1. Considering that all the terms in the left
side of (5.32) can be obtained by non-anticipative filtering the signals y
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and u, we can define the auxiliary signal

νh(t) " (−1)n−1[V (n)
K y](t) +

n−1∑

i=0

ai(−1)i[VK(i)y](t) +
m−1∑

i=0

bi(−1)i[VK(i)u](t)

+

(
K(n−1)(t, t) (−1)n +

n−1∑

i=1

K(n−i−1)(t, t)(−1)n−i−1 an−i

)
y(t)

+
n−1∑

i=1+n−m

K(n−i−1)(t, t) (−1)n−i−1 bn−i u(t) ,

(5.33)
and then express (5.32) in compact form as

n−1∑

r=1

γr(t) zr(t) = ν(t) , (5.34)

where γr(t) are known functions defined in (5.20), while
z1(t), . . . , zr(t), . . . , zn−1(t) are unknown signals (depending on unavaliable
time-derivatives of u and y ) corresponding to the state variables of a state-
space realization of the system, and depending, in turn, on the unkown
derivatives of y and u:

zr(t)=






y(1)(t), r = 1;

y(r)(t)−
r−1∑
j=1

an−r+jy(j)(t) ,

2 ≤ r < min(1 + n−m,n− 1);

y(r)(t)−
r−1∑
j=1

an−r+jy(j)(t)−
r−1+m−n∑

j=1
bn−r+ju(j)(t) ,

2 + n−m ≤ r ≤ n− 1;

(5.35)

An algebraic system having a number of equations of the kind (5.34) equal
to the number of unknowns (i.e., the instantaneous values of the state
variables z1(t), . . . , zn−1(t)) can be arranged by using (n−1) different kernel
functions K1, K2, . . . , Kn−1 to enforce new independent constraints.

Now, let us exploit the proposed class of kernel functions to solve the state
estimation problem. Now, let us consider n − 1 kernels of the kind (5.25)
with different ω parameters, that is: Kω1(t, τ), . . . , Kωn−1(t, τ) with

ω1, . . . ,ωn−1 ∈ Rn−1
>0 : ωi $= ωj, ∀i, j ∈ {1, . . . , n− 1}2, i $= j.

Now, incolumnating n−1 equations of the kind (5.34), built by the kernels
Kωh

, with h ∈ {1, . . . , n− 1}, we get a system of linear equations analogous
to (5.27):

Γ(t)z(t) = ν(t)
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where the dimension of the vector of unknowns is reduced by one unit with
respect to (5.27):

z(t) " [z1(t), . . . , zn−1(t)]
T ∈ Rn−1

as long as
ν(t) " [ν1(t), . . . , νn−1(t)]

T ∈ Rn−1

, while Γ(t) ∈ Rn−1×n−1 can be written as:

Γ(t) "

∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1,1 · · · γ1,r · · · γ1,n−1

γ2,1 · · · γ2,r · · · γ2,n−1
... ... ...
γh,1 · · · γh,r · · · γh,n−1
...

...
...

γn−1,1 · · · γn−1,r · · · γn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−1)n−1K(n−2)
ω1 (t, t) · · · (−1)n−r−1K(n−r−1)

ω1 (t, t) · · · Kω1
(t, t)

(−1)n−1K(n−2)
ω2 (t, t) · · · (−1)n−r−1K(n−r−1)

ω1 (t, t) · · · Kω2
(t, t)

... ... ...
(−1)n−1K(n−2)

ωh (t, t) · · · (−1)n−r−1K(n−r−1)
ωh (t, t) · · · Kωh

(t, t)
...

...
...

(−1)n−1K(n−2)
ωn−1 (t, t) · · · (−1)n−r−1K(n−r−1)

ω1 (t, t) · · · Kωn−1
(t, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.36)

Following the same lines of Section 5.1 it is possible to show that the
non-asymptotic state estimator can be implemented as an internally stable
dynamic system. Indeed, defining the internal state vector

ξ(t) = [ξω1(t), ξω2(t), . . . , ξωn−1(t)]
T ∈ R(n+1+m)(n−1),

with

ξωi(t) =
[
[VKωi

y](t), [V
K(1)

ωi
y](t), . . . , [V

K(n−1)
ωi

y](t), [V
K(n)

ωi
y](t)

[VKωi
u](t), [V

K(1)
ωi
u](t), . . . , [V

K(m−1)
ωi

u](t)
]T ∈ Rn+1+m.

it is possible to assign the followig structure to ν(t):

ν(t) = Hξ(t) + L(t)u(t) + J(t)y(t), (5.37)

where, in view of (5.33), the matrices in (5.29) are given by

H =

∣∣∣∣∣∣∣∣∣

hT 0 · · · 0

0 hT . . . ...
... . . . . . . 0
0 · · · 0 hT

∣∣∣∣∣∣∣∣∣

∈ R(n−1)×[(n+1+m)(n−1)],
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with

hT =
∣∣∣a0, −a1, · · · , ai(−1)i, · · · , an−1(−1)n−1, (−1)n−1,

b0, −b1, . . . , bk(−1)k, · · · , bm−1(−1)m−1
∣∣∣ ∈ R1×(n+1+m),

and

J(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K(n−1)
ω1 (t, t)(−1)n +

n−1∑
j=1

K(n−j−1)
ω1 (t, t)(−1)n−j−1an−j

K(n−1)
ω2 (t, t)(−1)n +

n−1∑
j=1

K(n−j−1)
ω2 (t, t)(−1)n−j−1an−j

...

K(n−1)
ωn−1 (t, t)(−1)n +

n−1∑
j=1

K(n−j−1)
ωn−1 (t, t)(−1)n−j−1an−j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Rn−1,

L(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
j=1+n−m

K(n−j−1)
ω1 (t, t)(−1)n−j−1bn−j

n−1∑
j=1+n−m

K(n−j−1)
ω2 (t, t)(−1)n−j−1bn−j

...
n−1∑

j=1+n−m
K(n−j−1)

ωn−1 (t, t)(−1)n−j−1bn−j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Rn−1.

In view of (5.24), the time evolution of the state vetor ξ(t) is described by
the a system of ordinary differential equations having the form of (5.30).
In this case the, matrix G takes the form:

G =

∣∣∣∣∣∣∣∣∣∣∣

Gω1 0 · · · 0

0 Gω2

. . . ...
... . . . . . . 0

0 · · · 0 Gωn−1

∣∣∣∣∣∣∣∣∣∣∣

∈ R[(n+1+m)(n−1)]×[(n+1+m)(n−1)]

Gωi =

∣∣∣∣∣∣∣∣∣∣∣

−ωi 0 · · · 0

0 −ωi
. . . ...

... . . . . . . 0

0 · · · 0 −ωi

∣∣∣∣∣∣∣∣∣∣∣

∈ R(n+1+m)×(n+1+m)

while the time-varying input matrices can be expressed as

E(t) =

∣∣∣∣∣∣∣∣∣

Eω1(t)
Eω2(t)

...
Eωn−1(t)

∣∣∣∣∣∣∣∣∣

∈ R(n+1+m)(n−1), F(t) =

∣∣∣∣∣∣∣∣∣

Fω1(t)
Fω2(t)

...
Fωn−1(t)

∣∣∣∣∣∣∣∣∣

∈ R(n+1+m)(n−1)
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where

Eωi(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Kωi
(t, t)

K(1)
ωi (t, t)

...
K(n−1)

ωi (t, t)

K(n)
ωi (t, t)
0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Rn+1+m, Fωi(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
...
0
0

Kωi
(t, t)

K(1)
ωi (t, t)

...
K(m−1)

ωi (t, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ Rn+1+m.

Finally, by (5.27), (5.37) and (5.30), the state estimator takes the following
form:

{
ξ(1)(t) = Gξ(t) + E(t)y(t) + F(t)u(t), t ∈ R≥0,
ξ(0) = 0,

z(t) =
(
Γ(t)

)−1(
Hξ(t) + J(t)y(t) + L(t)u(t)

)
, t ∈ R>0.

(5.38)

that is, a stable linear time-varying dynamical system with a reduced state
dimension with respect to the full-dimensional filter (5.31) presented in
Section 5.1.

5.3 Conluding remarks

In this Chapter the Bivariate Feedthrough Non-Asymptotic Kernels have
been introduced; the results obtained follow the ones derived in Chapter 3;
however, this Chapter provided a different design for the kernel function in
order to obtain an "instantaneous" estimation for the states of a dynamic
system. In Chapter 7, some simulation results will be presented in order
to show the effectiveness of the proposed state estimation architecture.
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Chapter 6

Asymptotic analysis of the
kernel-based continuous-time
model identification algorithm

In this part the problem of analysing the asymptotic properties of the
proposed identification algorithm is considered [5]. To this purpose, the
so-called hybrid framework of continuous-time model identification (see
[44]) is assumed, i.e., the system generating the data is assumed to be
a continuous-time, linear time-invariant system, while the noise model is
defined in discrete-time for the sake of simplicity.

6.1 Bias analysis

Consider the continuous-time linear time-invariant input-output system

x(n)(t) =
n−1∑

i=0

aix
(i)(t) +

m−1∑

i=0

biu
(i)(t), (6.1)

corresponding to (3.1) with p = 1, and introduce the following assumptions:

Assumption 1 the system (6.1) is asymptotically stable.

Assumption 2 The input u is a quasi stationary, piece-wise constant,
deterministic sequence.

Consider now a dataset consisting of K input-output measurements asso-
ciated with the sampling instants tk = t0 + kT , k = 0, . . . , K − 1 (uniform
sampling is assumed, for the sake of simplicity), defined as follows

y(k) = x(tk) + e(k)

u(k) = u(tk),
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where e(k) represents (output) measurement noise, are available. Then,
the following assumptions hold:

Assumption 3 the process e is a stationary zero mean white process noise
with second moments

E
[
e(k)eT (j)

]
= Reδij

where δij is the Kronecker delta.

Assumption 4 The input u is uncorrelated with the noise e.

Assumption 5 Instantaneous sampling, in the sense of [100], is assumed,
i.e., sampling is assumed to be fast with respect to the dynamics of interest.

Assumption 6 In view of an asymptotic analysis, G = H(τ) is chosen as
kernel of the augmentation operator VG.

To deal with deterministic and stochastic signals in a compact manner, the
following operator is defined

Ē [·] = lim
N→∞

1

K

K∑

t=1

E [·]

where E [·] is the expectation operator. For two signals a(t) and b(t), the
cross covariance matrix will be denoted as Rab = Ē

[
a(t)bT (t)

]
.

Then, the identification algorithm proposed in Section 3 aims at estimating
the parameter vector

θ =
[
a0 a1 . . . an−1 b0 b1 . . . bm−1

]T
=

[
θT
y θT

u

]

on the basis of the available data by solving the linear regression problem

ry,n+p = zTθ (6.2)

where

z =
[
ry,p . . . ry,p+n−1 ru,p . . . ru,p+m−1

]
=

[
zy zu

]
(6.3)

and ry,i,ru,i are given by the outputs of a suitably discretised version of the
filter bank in equation (3.18), to be defined in the following. Note that the
state space representation of the filter bank in (3.18) can be broken down
to a set of n+ 1 filters for the output y

ξ̇y,i(t) = Gξy,i(t) + Ei(t)y(t) (6.4)
ry,i(t) = Hξy,i(t), (6.5)
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i = p, . . . , p+ n and m filters for the input u

ξ̇u,i(t) = Gξu,i(t) + Ei(t)u(t) (6.6)
ru,i(t) = Hξu,i(t), (6.7)

i = p, . . . , p+m− 1, where

G = diag
[
−ω . . . −ω(N + 1)

]

and
H =

[
1 . . . 1

]
.

For the purpose of an asymptotic analysis, the time-varying matrices Ei(t)
have to be replaced with their asymptotic values, so in the following the
constant matrices

Ēi = lim
t→∞

Ei(t) (6.8)

will be considered in the definition of the filters in equations (6.5) and
(6.7). Note that in view of the definitions of the kernels giving rise to the
time-varying vectors Ei(t), the limits in (6.8) are well defined.

In the following we will denote with Fi(s) the transfer function associ-
ated with the state space quadruple

(
G, Ēi,H, 0

)
. For the purpose of the

following analysis it is interesting to point out and exploit the particular
structure of the filters Fi(s): indeed, as G is diagonal and the definition of
the output matrix H implies that the output of each filter is simply given
by the sum of its states, one can conclude that Fi(s) can be written as

Fi(s) =
N+1∑

j=1

Fij(s), (6.9)

with
Fij(s) =

Ēij

z −Gj
, j = 1, . . . , N + 1 (6.10)

where Gj = −jω, j = 1, . . . , N + 1 and where Ēij denotes the jth element
of vector Ēi.

Finally, as the hybrid framework of continuous-time identification has been
assumed, for the sake of implementation a discretised version of the above
defined continuous-time filters has to be derived. By using, e.g., the back-
ward Euler transformation, the discrete-time counterparts of the Fij(s)
filters can be derived as

Fij(z) = Fij(s)|s=(z−1)/Tz =
Ēd,ij

s−Gd,j
, j = 1, . . . , N + 1
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where
Ēd,ij =

ĒijT

1−GjT
, (6.11)

Gd,j =
1

1−GjT
, (6.12)

so that

Fi(z) =
N+1∑

j=1

Fij(z).

Therefore, in discrete-time, the variables appearing in the regression (6.2)
and in (6.3) can be defined as

ry,i(k) = Fi(z)y(k), i = p, . . . , n+ p

ru,i(k) = Fi(z)u(k), i = p, . . . , m− 1 + p.

Finally, in the definition of ry,i it is convenient to highlight the deterministic
part, resulting from the filtering of x(k) and the stochastic part, resulting
from the filtering of e(k), as follows:

ry,i(k) = ry,i(k) + ei(k), i = p, . . . , n+ p

where
rx,i(k) = Fi(z)x(k), i = p, . . . , n+ p

and
ei(k) = Fi(z)e(k), i = p, . . . , n+ p.

Similarly, zy in (6.3) can be expressed as zy = zx + ze, with obvious defini-
tions of zx and ze.

On the basis of the above definitions, the aim is to establish an expression
for the bias of the estimate of θ computed by solving the discrete-time
regression.

Now we want to lead the bias computation, to this end it is convenient to
express the linear regression (6.2) as

ry,n+p = zTθ =
[
zTx + zTe zTu

] [θy

θu

]
=

[
zTx zTu

] [θy

θu

]
+ zTe θy. (6.13)

Left-multiplying by z equation (6.13) and letting zx,u =
[
zx zu

]
, one gets

zx,ury,n+p = zx,uz
T
x,uθ −

[
ze
0

]
rx,n+p −

[
ze
0

]
en+p+

+

[
ze
0

] [
zTx zTu

]
+

[
zxzTe + zezTe 0

zuzTe 0

]
θ. (6.14)

89



Letting now
Rzxurx,n+p = Ē [zxurx,n+p] ,

Rzxu = Ē
[
zxuz

T
xu

]
,

and applying the Ē [·] operator to both sides of (6.14) one gets

Rzx,ury,n+p = Rzx,uθ −R

ze
0



en+p

+R

ze
0




θ,

which, regrouping terms, can be written as

(Rzx,ury,n+p −R

ze
0



en+p

) = (Rzx,u +R

ze
0




)θ. (6.15)

Therefore it is clear from (6.15) that in the absence of measurement noise
the regression reduces to

Rzx,ury,n+p = Rzx,uθ, (6.16)

which leads to an unbiased estimate. When noise is taken into account, the
resulting estimate is necessarily affected by bias if a least squares solution
of the linear regression problem in (6.15) is considered. While this is a
known fact in the continuous-time identification literature, which has led to
the development of sophisticated instrumental variable algorithms for bias
elimination (see, e.g., [44] and the references therein), it is interesting to
pursue the above analysis further, exploiting the above derived expressions
for the discrete-time counterparts of the filters (6.5) and (6.7).

More precisely, letting θo the true value of the unknown parameter vector
(corresponding to the solution of the noise-free regression (6.16)) and de-
noting with ∆θ = θ − θo the bias in the computed noisy estimate, it is
easy to see from (6.15) and (6.16) that

E [∆θ] = [Rzx,u +R

ze
0




]−1[−R

ze
0



en+p

−R

ze
0




θo]. (6.17)

The noise-dependent covariance functions R

ze
0




and R

ze
0



en+p

in (6.17)

can be further analysed by noting that

R

ze
0




=

[
E
[
zezTe

]
0

0 0

]
,
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where, in turn,

E
[
zez

T
e

]
= E




e2p epep+1 . . . epep+n−1
... ... ...

epep+n−1 ep+1ep+n−1 . . . e2p+n−1



 ,

and

R

ze
0



en+p

= E





epen+p

ep+1en+p
...

ep+n−1en+p

0
...
0





.

So, to evaluate the bias on the estimated parameters, one has to compute

Repeq = E [epeq] , q = 0, . . . , n.

To this purpose, note that by definition

E [epeq] = E [(Fp(z)e)(Fq(z)e)] ,

which, in view of (6.9), can be written as

E [(Fp(z)e)(Fq(z)e)] = E
[
(
N+1∑

j=1

Fp,j(z)e)(
N+1∑

l=1

Fq,l(z)e)

]
= E

[
(
N+1∑

j=1

ep,j)(
N+1∑

l=1

eq,l)

]
,

where (see (6.10))

ep,j(k) = Fp,j(z)e(k) =
Ēdp,j

1−Gdjz−1
e(k),

or, equivalently,

ep,j(k) = Gdjep,j(k − 1) + Ēdp,je(k − 1),

and similarly for eq,l.

It follows that the covariance

Rep,jeq,l = E [ep,j(k)eq,l(k)]

corresponds to the covariance between two first order AR processes forced
by the same white noise input, so that

Rep,jeq,l =
Ēdp,jĒdq,l

1−GdjGdl
Re, (6.18)
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and, in turn,

Repeq =
N+1∑

j=1

N+1∑

l=1

Ēdp,jĒdq,l

1−GdjGdl
Re,

which can be used in (6.17) to quantify the bias in the estimate of θo.

The above results on the asymptotic expression of the bias can be used
to quantify the performance of the proposed identification algorithm in
many respects. While a detailed investigation of the effect of the kernel
parameters on bias (as well as on the bias/variance tradeoff) is left for
future work (see the following for some numerical results in the case of
a simple example), in this part it is considered the role of the sampling
interval T on the quality of the computed estimates.

Indeed, in view of the expressions in (6.11)-(6.12) for the parameters of
the discrete-time filters Fij(z), the scalar covariances in (6.18) have the
following dependence on T :

Rep,jeq,l =
Ēdp,jĒdq,l

1−GdjGdl
Re -

T 2

(1− T )2
1

1− 1/(1− T )2
=

T

T − 2
, (6.19)

which clearly becomes smaller and smaller for decreasing T . Also, in view
of the structure of the bias expression in (6.17), one can conclude that
E [∆θ] decreases for decreasing T . Note that this conclusion is in agreement
with the simulation results presented in Section 4, from which this effect is
apparent.

6.2 Numerical example

Finally, as an example of application of the above analysis, the covariances
Rze and Rzeen+p, which appear in the numerator of the bias expression in
(6.17) are computed, for the case of n = p = 1 and N = 2. The kernel
(3.14) is used, considering increasing values of ω ranging from 0.1 to 10 and
three choices for the sampling period T , namely 10−3,10−4 and 10−5. The
results are summarised in Figure 6.1, in which the dependence of the two
covariances (normalised to the noise variance Re) on ω and T is depicted.
As can be clearly seen from the figure, the analysis confirms the numerical
results in Chapter 4 as far as the effect of T is concerned: both Rze and
Rzeen+p become negligible with respect to Re for decreasing T ; in particular,
for very small values of the sampling interval, the result becomes almost
insensitive to the value of ω. Furthermore, as far as the dependence on ω is
concerned, the results in the figure indicate that smaller values of ω appear
to be more suitable from the point of view if bias minimisation.
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Fig. 6.1: Rze and Rzeen+p (normalised with respect to Re) as functions of
the kernel parameter ω and of the sampling period T .
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6.3 Concuding remarks

This Chapter has provided some important results in terms of the bias
expression, which allows to quantify the performance of the proposed iden-
tification algorithm in many respects. It has been shown the dependence
between the kernel parameter and the sampling interval and this result is
very useful, since one of the main goals of this chapter was to give tuning
rules for the kernel functions, therefore it is possible to choose in a suitable
way the kernel parameter ω.
In the following Chapter it will be shown simulation results for the kernel-
based state estimator.
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Chapter 7

Simulation results

This section includes some numerical results that highlight and point out
the advantages and the strength of the state estimation method presented
in Chapter 5.

Consider the following third order system:





x(3)(t)=a2x(2)(t)+a1x(1)(t)+a0x(t)+b1u(1)(t)+b0u(t),

y(t) = x(t) + ηy(t),

u(t) = v(t), t ∈R≥0

(7.1)

System (7.1) can be written in state-space realization, using the observer-
canonical form (5.2), whereas z(0) = [z0(0) z1(0) z2(0)], while a2 = −0.21,
a1 = −9.012, a0 = −0.0901 and b0 = b1 = 1; the output of the system, y(·),
is affected by an unstructured perturbation term ηy(·) ( addressed to as
output measurement noise) and u(·) is the measured forcing input signal.
The following transfer function describes the input-output behavior of (7.1):

G(s) =
d1s+ d2

s3 + c1s2 + c2s+ c3
(7.2)

where c1 = −a2 = 0.21, c2 = −a1 = 9.012, c3 = −a0 = 0.0901,

d1 = d2 = b1 = b0 = 1. Now, to estimate the states in the BF-NK contest,
we set the kernel parameters to ω1 = 1, ω2 = 2, ω3 = 3, - = 2.5 and
η = n = 3. The procedure for constructing the auxiliary signals generation
system by BF-NK kernels consists in taking the derivatives of F (i)

ω,&,µ(t, τ),
i ∈ {1, 2, 3} of the BF-NK ((5.22)), to form the Ei(t) and Fi(t) matrices
needed for the implementation of the auxiliary signal generation system
Gu,y→ze. Neglecting the intermediate algebraic manipulations, we have:

Eω1 =





−1e−7.5t + 3e−5t − 3e−2.5t + 1
6.5e−7.5t − 12e−5t + 4.5e−2.5t + 1
−42.5e−7.5t + 48e−5t − 6.75e−2.5t + 1
274.625e−7.5t − 192e−5t + 10.125e−2.5t + 1
0
0




(7.3)
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Eω2 =





−1e−7.5t + 3e−5t − 3e−2.5t + 1
5.5e−7.5t − 9e−5t + 1.5e−2.5t + 2
−30.25e−7.5t + 27e−5t − 0.75e−2.5t + 4
166.375e−7.5t − 81e−5t + 0.375e−2.5t + 8
0
0




(7.4)

Eω3 =





−1e−7.5t + 3e−5t − 3e−2.5t + 1
4.5e−7.5t − 6e−5t − 1.5e−2.5t + 3
−20.25e−7.5t + 12e−5t − 0.75e−2.5t + 9
91.125e−7.5t − 24e−5t − 0.375e−2.5t + 27
0
0




(7.5)

Fω1 =





0
0
0
0
−1e−7.5t + 3e−5t − 3e−2.5t + 1
6.5e−7.5t − 12e−5t + 4.5e−2.5t + 1




(7.6)

Fω2 =





0
0
0
0
−1e−7.5t + 3e−5t − 3e−2.5t + 1
5.5e−7.5t − 9e−5t + 1.5e−2.5t + 2




(7.7)

Fω3 =





0
0
0
0
−1e−7.5t + 3e−5t − 3e−2.5t + 1
4.5e−7.5t − 6e−5t − 1.5e−2.5t + 3




(7.8)

while

Gωj
=





−ωj 0 0 0 0 0
0 −ωj 0 0 0 0
0 0 −ωj 0 0 0
0 0 0 −ωj 0 0
0 0 0 0 −ωj 0
0 0 0 0 0 −ωj




(7.9)

with j ∈ {1, 2, 3}.
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Finally the Γ(t) matrix (see 5.28) is reported in equation (7.10)

Γ(t)=





−42.5e−7.5t+48e−5t−6.75e−2.5t+1 −6.5e−7.5t+12e−5t−4.5e−2.5t−1 −1e−7.5t+3e−5t−3e−2.5t+1

5.5e−7.5t−9e−5t+1.5e−2.5t+2 30.25e−7.5t−27e−5t+0.75e−2.5t−4 −1e−7.5t+3e−5t−3e−2.5t+1

4.5e−7.5t−6e−5t− 1.5e−2.5t + 3 20.25e−7.5t−12e−5t+0.75e−2.5t−9 −1e−7.5t+3e−5t−3e−2.5t+1





(7.10)

7.1 Estimation in noise-free scenario

In this example we consider a noise-free scenario, where the vector of the
initial conditions for system (7.1) have been set to z(0) = [1 −10 1], while
the forcing input has been chosen as a sum of sinusoids u(t) = v(t) =
10 sin(10t) + sin(2t), depicted in 7.1.
In Figure 7.2 it is shown that the theoretical istantaneity of the method
has effectiveness also in numerical simulations, in fact the states are cor-
rectly estimate by the proposed method with remarkable precision and
with negligible delay (the estimator has been initialized to zero until time
t = 0.1 s). It is worth noting that the proposed BF-NK estimator, beyond
fast convergence, is characterized by guaranteed internal stability, hence
re-initialization is not required.
We point out that no high-gain output injection has been performed by

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
15

10

5

0

5

10

15

Time [s]

u
(t

)

Fig. 7.1: Trends of the measured signals u(t) used for the estimation in
noise-free conditions.

the two methods. In this respect, a further simulation has been carried out
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in noisy conditions.
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Fig. 7.2: The states of system (7.1) (gray) and estimated by the BF-NK
estimator (black) in noise-free conditions. The estimates of the observed
states are exact after an arbitrarily small finite-time, depending on the
inversion time-instant of the time-varying Γ(t) matrix (equation (5.28)).
To avoid singularities due to numerical precisions, we have choosen to invert
matrix Γ from time t = 0.1 s in the example.

7.2 Estimation with Unstructured Measure-
ment Perturbations

In this example, the additive output measurement noise ηy(·) has been
simulated as a uniformly distributed random signal taking values in the
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interval [−0.2, 0.2]. The perturbed signal used for parameter estimation is
depicted in Fig. 7.3.
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Time [s]

y
(t

)

Fig. 7.3: Trends of the measured signal y(t) used for the estimation in noise
conditions.

As can be seen in Fig. 7.4, the BF-NK estimator shows good robustness
against the output noise and the estimated parameters converge to a neigh-
borhood of the true values. The characterization, in both deterministic and
stochastic settings, of the behavior of the BF-NK estimator in the presence
of measurement noise (Chapter 6) allowed to determine tuning rules for
the ω parameters such that the noise effect is minimized.
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Fig. 7.4: The states of system 7.1 (gray) and estimated by the BF-NK
estimator (black) in noise conditions converge to the true values.
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Chapter 8

Conclusions

In this work, a comprehensive kernel-based system identification architec-
ture, suitable for identification of continuous-time linear systems, has been
designed. The motivations for this thesis work are the renewed interest
given to continuous-time systems, thanks to their easier mathematical im-
plementation and its practical advantages compared with the discrete-time
systems. Besides, the incresed complexity in modern systems implies the
need for novel tools, able to work in different contexts where the lack of
data is often the real scenario; therefore the unavailability of the time-
derivatives of dynamical system and the unknown of initial conditions is a
typical example of these cases; to address these situations, it is necessary
to have robust and adaptable tools. That’s why we design a comprehensive
identification technique, taking into account several aspects:

• design a novel class of kernels allowing to get rid of the influence of
the unknown initial conditions; this aspect is one of the main results
arising from this work;

• provide a technique that combines fast convergency properties with
a guarantee internal stability; this can be very useful, because it en-
closes the main advantages of two different techniques available in lit-
erature: indeed, SVF methods show nice features in their asymptotic
behavior, while the transient is usually overlooked, and IM methods
have good behaviors in the transient (i.e., whence there is a reduced
dataset), while asymptotically, due to windup issues and moving hori-
zon window, is of little use.

• obtain a robust methodology with respect to stochastic noises to pro-
vide the consistency of the estimation method.

All of these aspects have been addressed along this work, exploiting well-
knwon mathematical tools. It has been shown how, starting from Volterra
linear integral operators, it has been possible design kernel functions such
that the estimation system was solvable, linear and with guarantee inter-
nal stability properties. Besides, it has been shown that, designing these
kernel functions in such a way that several properties are satisfied, it is
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possible to affect on the convergence time of the estimation and obtain a
non-asymptotic estimation. Finally, it has been provided tuning rules for
the kernel parameters based on the bias analysis of the estimator provid-
ing theoretical arguments that confirm the effectiveness of the estimation
method presented.

8.1 Future developments

As a future work, it will be investigate the possibility to extend this method
to some classes of nonlinear dynamical systems. Nonlinear continuous-time
systems can be represented by a state-space description, or alternatively
by an input-output description.
A state-space description of a continuous-time nonlinear system has the
form:

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

where x(t), u(t) and y(t) are respectively the state, the input and the out-
put of the system and f and g are nonlinear vector functions.
State-space systems are more attractive for dealing with multivariable in-
puts and outputs; as argued by Rivals and Personnaz [101], state-space
systems are likely to require fewer parameters, especially for multivariable
systems. Because of these reason, state-space models are often preferred
to input-output models.
The particular choice of the functions f and g for the state-space model,
determines the structure of the nonlinear model. Of course many possi-
bilities exist. In general, two approaches can be distinguished. The first
approach is to choose a simple structure for the model, such that it has
certain nice properties, is easy to analyze, and leads to computationally
attractive identification methods. The main drawback is that simple struc-
tures often represent a limited class of nonlinear systems. Therefore, the
second approach aims at choosing the model structure such that the model
can approximate a large class of nonlinear systems. The disadvantage is
that this often leads to complicated identification. Examples of the first
approach are the Hammerstein model [102], while the second approach in-
clude hinging hyperplanes models [103].
Moreover, ongoning research aims at extend the methodology to Multiple-
Input-Multiple-Output (MIMO) systems. In general terms, this topic can
be viewed as the problem of finding mapping between the available input-
output data sequences and unknown parameters in a user defined class of
models.
Another open problem in kernel-based system identification is the deriva-
tion of norm bounds on the appoximation errors of the methods that were
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discussed: a solution to this kind of problem would allow a direct com-
parision of the approximation errors. However deriving this bound is not
trivial, becuase it involves products of matrices with varying dimensions.
Another problem is the derivation of conditions on the input system that
ensure that we are closely related to the persistency of excitation. Since
the data matrices contain products of time-lagged versions of the input,
output and parameters, it has necessary to provide that this higher-order
moment matrices have full row rank for its invertibility w.r.t. the input
function design.
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Appendix

Composition of Volterra operators

We will show that the composition of two integral Volterra operators yields,
in turn, a Volterra integral operator. This result descends from the com-
position property of Fredholm operators (see [83]). The derivation is non-
trivial due to the necessity of considering explicitely the integration over
finite domains.
Suppose that VKh

and VKg are two Volterra operators induced by the HS
kernels Kh and Kg respectively. The composition of the two operators
results in a double integral:

[
VKh

[
VKg

]]
(t) =

∫ t

0

Kh(t, σ)

(∫ σ

0

Kg(σ, τ)x(τ)dτ

)
dσ.

By introducing the Fredholm extension of the Volterra kernel: K̃g(σ, τ) "
Kg(σ, τ)H(τ)H(σ−τ), it is possible to extend the limit of the inner integral
from σ to t:

[
VKh

[
VKg

]]
(t)=

∫ t

0

Kh(t, σ)

(∫ t

0

K̃g(σ, τ)x(τ)dτ

)
dσ

=

∫ t

0

∫ t

0

Kh(t, σ)K̃g(σ, τ)x(τ)dτdσ

=

∫ t

0

(∫ t

0

Kh(t, σ)K̃g(σ, τ)dσ

)
x(τ)dτ

=

∫ t

0

(∫ t

τ

Kh(t, σ)Kg(σ, τ)dσ

)
x(τ)dτ

=

∫ t

0

(Kh •Kg)(t, τ)x(τ)dτ

(8.1)

where the kernel of the composed integral operator can be thus obtained
by the kernel composition integral (· • ·), defined as:

(Kh •Kg)(t, τ) "
∫ t

τ

Kh(t, σ)Kg(σ, τ)dσ. (8.2)

The causality of the Volterra operator has the following important impli-
cation:

(Kh •Kg)(t, t) = 0, ∀t ∈ R≥0.
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Moreover, if for some i ∈ N, K(i)
g (t, 0) = 0, ∀t ∈ R≥0, then it is trivial to

prove that
(Kh •Kg)

(i)(t, 0) = 0, ∀t ∈ R≥0.

Changing the order of summation in nested in-
dexed sums

In the following, we will report some technical results used in various parts
of the manuscript. We will exploit the Iverson’s Bracket notation (see
[104] and the reference therein) and the bracket multiplication property to
change the order of summation in nested indexed sums. Let gi,j ∈ R denote
the elements of a double indexed array, with i, j ∈ Z, and let m,n ∈ Z≥1

be finite integers, with m ≤ n. Then it holds that:

n−1∑

i=0

i−1∑

j=0

gi,j =
∑

i

∑

j

[0 ≤ i ≤ n− 1][0 ≤ j ≤ i− 1]gi,j

=
∑

i,j

[0 ≤ i ≤ n− 1][1 ≤ j + 1 ≤ i]gi,j

=
∑

i,j

[1 ≤ j + 1 ≤ i ≤ n− 1]gi,j

=
∑

j,i

[1 ≤ j + 1 ≤ n− 1][j + 1 ≤ i ≤ n− 1]gi,j

=
∑

j

∑

i

[0 ≤ j ≤ n− 2][j + 1 ≤ i ≤ n− 1]gi,j

=
n−2∑

j=0

n−1∑

i=j+1

gi,j

(8.3)
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n−2∑

j=0

n∑

i=j+2

gi,j =
∑

j

∑

i

[0 ≤ j ≤ n− 2][j + 2 ≤ i ≤ n]gi,j

=
∑

j,i

[2 ≤ j + 2 ≤ n][j + 2 ≤ i ≤ n]gi,j

=
∑

i,j

[2 ≤ j + 2 ≤ i ≤ n]gi,j

=
∑

i,j

[2 ≤ i ≤ n][2 ≤ j + 2 ≤ i]gi,j

=
∑

i

∑

j

[2 ≤ i ≤ n][0 ≤ j ≤ i− 2]gi,j

=
n∑

i=2

i−2∑

j=0

gi,j

(8.4)

m−2∑

j=0

n∑

i=j+2+n−m

gi,j =
∑

j

∑

i

[0 ≤ j ≤ m− 2][j + 2 + n−m ≤ i ≤ n]gi,j

=
∑

j,i

[2 + n−m ≤ j + 2 + n−m ≤ n][j + 2 + n−m ≤ i ≤ n]gi,j

=
∑

i,j

[2 + n−m ≤ j + 2 + n−m ≤ i ≤ n]gi,j

=
∑

i,j

[2 + n−m ≤ i ≤ n][2 + n−m ≤ j + 2 + n−m ≤ i]gi,j

=
∑

i

∑

j

[2 + n−m ≤ i ≤ n][0 ≤ j ≤ i− 2− n +m]gi,j

=
n∑

i=2+n−m

i−2−n+m∑

j=0

gi,j

(8.5)
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