499 research outputs found

    Higher Rate Secret Key Formation (HRKF) based on Physical Layer for Securing Vehicle-to-Vehicle Communication

    Get PDF
    One effort to secure vehicle-to-vehicle (V2V) communication is to use a symmetrical cryptographic scheme that requires the distribution of shared secret keys. To reduce attacks on key distribution, physical layer-based key formation schemes that utilize the characteristics of wireless channels have been implemented. However, existing schemes still produce a low bit formation rate (BFR) even though they can reach a low bit error rate (BER). Note that V2V communication requires a scheme with high BFR in order to fulfill its main goal of improving road safety. In this research, we propose a higher rate secret key formation (HRKF) scheme using received signal strength (RSS) as a source of random information. The focus of this research is to produce keys with high BFR without compromising BER. To reduce bit mismatch, we propose a polynomial regression method that can increase channel reciprocity. We also propose a fixed threshold quantization (FTQ) method to maintain the number of bits so that the BFR increases. The test results show that the HRKF scheme can increase BFR from 40% up to 100% compared to existing research schemes. To ensure the key cannot be guessed by the attacker, the HRKF scheme succeeds in producing a key that meets the randomness of the NIST test

    Improving a wireless localization system via machine learning techniques and security protocols

    Get PDF
    The recent advancements made in Internet of Things (IoT) devices have brought forth new opportunities for technologies and systems to be integrated into our everyday life. In this work, we investigate how edge nodes can effectively utilize 802.11 wireless beacon frames being broadcast from pre-existing access points in a building to achieve room-level localization. We explain the needed hardware and software for this system and demonstrate a proof of concept with experimental data analysis. Improvements to localization accuracy are shown via machine learning by implementing the random forest algorithm. Using this algorithm, historical data can train the model and make more informed decisions while tracking other nodes in the future. We also include multiple security protocols that can be taken to reduce the threat of both physical and digital attacks on the system. These threats include access point spoofing, side channel analysis, and packet sniffing, all of which are often overlooked in IoT devices that are rushed to market. Our research demonstrates the comprehensive combination of affordability, accuracy, and security possible in an IoT beacon frame-based localization system that has not been fully explored by the localization research community

    Systematic Literature Review of EM-SCA Attacks on Encryption

    Full text link
    Cryptography is vital for data security, but cryptographic algorithms can still be vulnerable to side-channel attacks (SCAs), physical assaults exploiting power consumption and EM radiation. SCAs pose a significant threat to cryptographic integrity, compromising device keys. While literature on SCAs focuses on real-world devices, the rise of sophisticated devices necessitates fresh approaches. Electromagnetic side-channel analysis (EM-SCA) gathers information by monitoring EM radiation, capable of retrieving encryption keys and detecting malicious activity. This study evaluates EM-SCA's impact on encryption across scenarios and explores its role in digital forensics and law enforcement. Addressing encryption susceptibility to EM-SCA can empower forensic investigators in overcoming encryption challenges, maintaining their crucial role in law enforcement. Additionally, the paper defines EM-SCA's current state in attacking encryption, highlighting vulnerable and resistant encryption algorithms and devices, and promising EM-SCA approaches. This study offers a comprehensive analysis of EM-SCA in law enforcement and digital forensics, suggesting avenues for further research

    Secure Real-time Data Transmission for Drone Delivery Services using Forward Prediction Scheduling SCTP

    Get PDF
    Drone technology is considered the most effective solution for the improvement of various industrial fields. As a delivery service, drones need a secure communication system that is also able to manage all of the information data in real-time.  However, because the data transmission process occurs in a wireless network, data will be sent over a channel that is more unstable and vulnerable to attack. Thus, this research, purposes a  Forward Prediction Scheduling-based Stream Control Transmission Protocol (FPS-SCTP) scheme that is implemented on drone data transmission system. This scheme supports piggybacking, multi-streaming, and Late Messages Filter (LMF) which will improve the real-time transmission process in IEEE 802.11 wireless network. Meanwhile, on the cybersecurity aspect, this scheme provides the embedded option feature to enable the encryption mechanism using AES and the digital signatures mechanism using ECDSA. The results show that the FPS-SCTP scheme has better network performance than the default SCTP, and provides full security services with low computation time. This research contributes to providing a communication protocol scheme that is suitable for use on the internet of drones’ environment, both in real-time and reliable security levels

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments

    PRISEC: Comparison of Symmetric Key Algorithms for IoT Devices

    Get PDF
    With the growing number of heterogeneous resource-constrained devices connected to the Internet, it becomes increasingly challenging to secure the privacy and protection of data. Strong but efficient cryptography solutions must be employed to deal with this problem, along with methods to standardize secure communications between these devices. The PRISEC module of the UbiPri middleware has this goal. In this work, we present the performance of the AES (Advanced Encryption Standard), RC6 (Rivest Cipher 6), Twofish, SPECK128, LEA, and ChaCha20-Poly1305 algorithms in Internet of Things (IoT) devices, measuring their execution times, throughput, and power consumption, with the main goal of determining which symmetric key ciphers are best to be applied in PRISEC. We verify that ChaCha20-Poly1305 is a very good option for resource constrained devices, along with the lightweight block ciphers SPECK128 and LEA.info:eu-repo/semantics/publishedVersio

    Telehealth Sensor Authentication Through Memory Chip Variability

    Get PDF
    In light of the COVID-19 world-wide pandemic, the need for secure and readily available remote patient monitoring has never been more important. Rural and low income communities in particular have been severely impacted by the lack of accessibility to in-person healthcare. This has created the need for access to remote patient monitoring and virtual health visits in order for greater accessibility to premier care. In this paper, we propose hardware security primitives as a viable solution to meet the security challenges of the telehealth market. We have created a novel solution, called the High-Low (HiLo) method, that generates physical unclonable function (PUF) signatures based on process variation within flash memory in order to uniquely identify and authenticate remote sensors. The HiLo method consumes 20x less power than conventional authentication schemes, has an average latency of only 39ms for signature generation, and can be readily implemented through firmware on ONFI 2.2 compliant off-the-shelf NAND flash memory chips. The HiLo method generates 512 bit signatures with an average error rate of 5.9 * 10-4, while also adapting for flash chip aging. Due to its low latency, low error rate, and high power efficiency, we believe that the HiLo method could help progress the field of remote patient monitoring by accurately and efficiently authenticating remote health sensors

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Practical Encryption Gateways to Integrate Legacy Industrial Machinery

    Get PDF
    Future industrial networks will consist of a mixture of old and new components, due to the very long life-cycles of industrial machines on the one hand and the need to change in the face of trends like Industry 4.0 or the industrial Internet of things on the other. These networks will be very heterogeneous and will serve legacy as well as new use cases in parallel. This will result in an increased demand for network security and precisely within this domain, this thesis tries to answer one specific question: how to make it possible for legacy industrial machines to run securely in those future heterogeneous industrial networks. The need for such a solution arises from the fact, that legacy machines are very outdated and hence vulnerable systems, when assessing them from an IT security standpoint. For various reasons, they cannot be easily replaced or upgraded and with the opening up of industrial networks to the Internet, they become prime attack targets. The only way to provide security for them, is by protecting their network traffic. The concept of encryption gateways forms the basis of our solution. These are special network devices, that are put between the legacy machine and the network. The gateways encrypt data traffic from the machine before it is put on the network and decrypt traffic coming from the network accordingly. This results in a separation of the machine from the network by virtue of only decrypting and passing through traffic from other authenticated gateways. In effect, they protect communication data in transit and shield the legacy machines from potential attackers within the rest of the network, while at the same time retaining their functionality. Additionally, through the specific placement of gateways inside the network, fine-grained security policies become possible. This approach can reduce the attack surface of the industrial network as a whole considerably. As a concept, this idea is straight forward and not new. Yet, the devil is in the details and no solution specifically tailored to the needs of the industrial environment and its legacy components existed prior to this work. Therefore, we present in this thesis concrete building blocks in the direction of a generally applicable encryption gateway solution that allows to securely integrate legacy industrial machinery and respects industrial requirements. This not only entails works in the direction of network security, but also includes works in the direction of guaranteeing the availability of the communication links that are protected by the gateways, works to simplify the usability of the gateways as well as the management of industrial data flows by the gateways
    • …
    corecore