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ABSTRACT

In light of the COVID-19 world-wide pandemic, the need for secure and readily
available remote patient monitoring has never been more important. Rural and
low income communities in particular have been severely impacted by the lack of
accessibility to in-person healthcare. This has created the need for access to
remote patient monitoring and virtual health visits in order for greater
accessibility to premier care. In this paper, we propose hardware security
primitives as a viable solution to meet the security challenges of the telehealth
market. We have created a novel solution, called the High-Low (HiLo) method,
that generates physical unclonable function (PUF) signatures based on process
variation within flash memory in order to uniquely identify and authenticate
remote sensors. The HiLo method consumes 20x less power than conventional
authentication schemes, has an average latency of only 39ms for signature
generation, and can be readily implemented through firmware on ONFI 2.2
compliant off-the-shelf NAND flash memory chips. The HiLo method generates
512 bit signatures with an average error rate of 5.9 * 10-4, while also adapting for
flash chip aging. Due to its low latency, low error rate, and high power efficiency,
we believe that the HiLo method could help progress the field of remote patient
monitoring by accurately and efficiently authenticating remote health sensors.

Keywords: Process Variation, Hardware Security, PUF, Sensor Authentication
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CHAPTER 1 - INTRODUCTION

Section 1.1 - What is Telehealth?

Telecommunication in healthcare, or telehealth, provides a means by which

patients can interact with medical professionals and health-related services

virtually. It serves as a resource for patients to help them manage their health and

receive the healthcare that they need. One service of telehealth is remote patient

monitoring, which allows a healthcare provider to track patient data such as body

temperature, heart rate, and blood glucose levels. This technology helps patients

stay informed about the status of their health with the added convenience of being

remote, and gives physicians a pow

.erful tool to help them diagnose, treat, and manage their patients' conditions.

The demand for telehealth has grown substantially in light of the COVID-19

pandemic, which has disrupted the delivery of healthcare on a global scale. In

2020 alone, the telehealth market experienced a year-over-year increase of 64.3

percent, and is estimated to grow seven-fold by 2025 [11]. However, the

convenience of connecting medical providers with patients remotely also

introduces significant security and privacy risks. One such risk of using unsecured

medical devices is the potential for a major privacy breach, as they store sensitive

information such as vital signals, diagnosed conditions, therapies, and a variety of

other personal data [3].

Developing a reliable process for authenticating health sensors will ensure that

private health information is only sent when authorized devices request it.

Security vulnerabilities could expose private and sensitive information of patients

to attackers, and it could be used to access critical backend systems of a supplier

or a healthcare provider. This protection of user data allows for the proper

expanse of telehealth systems without compromising patient data and

guaranteeing device security.
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Section 1.2 - Project Goals

At the start of this project, we set out to create a faster, more secure, and more

efficient form of telehealth authentication. In order to accomplish this hefty

project, there were many intermediary goals that needed to be addressed

throughout the year. The main objectives of this project include:

● Developing MLC Flash NAND Chip memory controller software for

ONFI 2.2 compatible chipsets.

● Develop a PUF extraction method that can be used to generate secure keys

using process variations found on flash memory chips.

● Verify the extracted PUF’s integrity through statistical analysis and

reliability testing.

● Propose a novel secure handshaking protocol for health sensors that

implements the proposed PUF extraction method.

Refer to Appendix A for more information regarding the project’s schedule and

deadlines pertaining to each of these project objectives.

Section 1.3 - Contributions

At the completion of our project, we have completed all proposed project goals

listed in section 1.2. In summary, we have contributed the following:

● We have built a novel PUF extraction technique, called the HiLo method,

which supports edge deployment on low cost microcontrollers. This will

lower the cost of entry, and encourage secure data transmission for remote

devices.

● The  proposed  HiLo  method  offers  a  PUF  solution for accurate

authentication, and has lower latency and lower power consumption  than

other  PUF  generation  techniques.

● The HiLo method is compatible with off-the-shelf ONFI 2.2 compliant

flash chips, which could lead to backwards compatibility implementation

2



on existing health sensors.

The following section will explore the preliminary information required in order

to fully understand our design implementation.
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CHAPTER 2 - PRELIMINARY INFORMATION

Section 2.1 - Wireless Authentication Methods

There are a variety of wireless authentication methods that are used by IoT and

Telehealth devices. One of the most common ways to authenticate these resource

constrained devices is by utilizing pre-shared keys. Pre-shared keys are

authentication keys or tokens that are shared with a device prior to its deployment.

These keys are then exchanged with a gateway in order to authenticate an IoT

device. There are several important vulnerabilities within this model that our

solution addresses. First, the keys can be extracted out of firmware by a

sophisticated hacker who has access to the physical device. This has happened in

the industry with Link Plugs and other smaller IoT devices [27]. Secondly, these

keys can be cloned through replay attacks and deauthentication attacks [7]. This

was shown to be effective on all WEP Wifi routers which extracted wifi keys due

to the lack of 'freshness' in the messages sent between endpoints and Wifi routers.

By using PUFs and TRNGs, many of these prior security vulnerabilities can be

drastically mitigated by providing random nonces and authentication signatures.

Firstly, the PUFs allow secrets to be embedded in process variations which are not

stored in any nonvolatile memory; this prevents hackers from simply dumping

onboard firmware and finding pre-shared keys. Secondly, the onboard TRNG

mitigates replay attacks by preventing attackers from arbitrarily replaying

authentication messages.

Section 2.2 - MLC NAND Flash Memory Architecture

Flash  NAND memory is a type of non-volatile memory that stores user data in

the physical form of charge on a float gate. Programming these cells requires
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electrons to move from the polysilicon channel on/off the float gate via electron

tunnelling, described  in Figure 2.1A.  It is important to note that this  electron

tunneling  can  damage  the  tunnel oxide, which means that flash cells become

less reliable after many program/erase  cycles  (PECs). Most  flash  memory  is

rated anywhere from 1,000 to 10,000 PECs. A flash’s lifetime can increase

drastically by using a memory management controller that   distributes   PECs

evenly across all cells called wear leveling.

Figure 2.1 A-B: Flash Memory Architecture

In  the  case  of Multi-Level  Cell  (MLC) flash chips, 2 bits of data are stored on

each cell, where the current float gate voltage is compared to multiple threshold

voltages in order to determine the cell’s digital value, as shown in Figure 2.1B.

Thanks to its high memory density, low cost, and ability to be programmed and

erased electronically without moving parts, flash NAND memory has exploded in

popularity for remote devices and IoT systems [6].

Section 2.3 - Physical Unclonable Functions (PUFs)

Integrated chips have random sub-micron process variations that are caused from

the natural manufacturing process. These variations include slight differences in
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transistor sizes, resistors, and other onboard components in an integrated chip.

These variations must be accounted for and mitigated in the design process;

however, researchers have proposed using these variations to produce bit strings

that can uniquely identify chips based on the uniqueness of their process

variations. This effectively creates a silicon “fingerprint” that depends on

submicron variations that are extremely difficult to model. The first silicon PUFs

were introduced from Pappu et al. [13,14] and Gassend et al. [1] in 2002. There

are two imperative characteristics necessary for a PUF to function. A PUF must

have both random and uncontrollable variations. This guarantees that a third party

cannot clone or predict a PUF’s functionality. Furthermore, PUF’s must have

satisfactory uniqueness, reliability, and randomness. Uniqueness guarantees that

each response from a PUF system is unique from another. Reliability emphasizes

that a PUF’s response must be consistent for a given challenge. Finally, the

randomness highlights the necessary randomness between response bits.

There are many different types of PUFs such as Arbiter PUFs (APUFs), Static

Random Memory PUFs (SRAM PUFs), XOR Arbiter PUFs (XAPUFs), Dynamic

Random Access Memory PUFs (DRAM PUFs), and Flash Memory PUFs

(FPUFs). Regardless of the type of PUF, PUFs can be utilized in a variety of

cryptographic applications, as evidenced by their use in authentication schemes

[22], software attestation [8], IC counterfeiting [15], and cryptographic key

generation [2]. PUFs provide a unique advantage of tying cryptographic security

primitives to the process variations that significantly reduces both performance

and hardware costs while also providing strong cryptographic security.

Section 2.4 - Process Variations and PUFs for Flash Memory

Like all other silicon based ICs, flash memory chips are subject to many different

forms of process variations. In general, most process variations are uncontrollable

imperfections caused by limitations in modern lithography processes. These

variations are commonly caused by various disturbs from Random Dopant

Fluctuations (RDP). RDP fluctuations can be temporarily induced through
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standard programming calls that comply with the ONFI NAND Flash interface

allowing them to be extractable on any ONFI compliant memory chip.  This gives

a significant advantage compared to other memory architectures where PUF cells

cannot be extracted through a standardized process using accessible programming

techniques.

Several different disturbs can be implemented through these standard

programming techniques such as Read disturb, program disturb, program/erase

latency, and Random Telegraph Noise (RTN). Read disturb causes subtle

increases on the threshold voltages of neighboring cells on the same flash page.

Over time, this slowly changes the logical bit values of the cells to induce errors

that depend on each cell’s relative oxide and gate thickness.

Figure 2.2: Flash Memory Read Disturb

A similar error is the program disturb. The program disturb occurs
due to the increase of the gating voltage required for a program operation [6].

Since the programming requires a higher voltage on the gate line, it introduces

parasitic capacitance that causes a shift in the threshold voltage of neighboring

cells. This is highlighted in Figure 2.3.
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Figure 2.3: Flash Memory Program Disturb

The next technique for extracting process variations is the program/erase interrupt

scheme. In this scheme A program or erase command is issued to a page or block.

This command is then abruptly interrupted leaving the cells in an unsteady and

ambiguous state. Therefore, minimal differences in the oxide thickness of

individual gates causes different read values in the cells. This technique is very

effective at generating PUF signatures; however, it can be susceptible to various

sources of noise.

Figure 2.4: Flash Memory Program Interrupt

Finally, one other technique can be used for process variation extraction in Flash

PUFs. The latency of program/erase operations can be digitized and also used for

PUFs. However, this technique is drastically limited in its throughput.

Ultimately each technique causes fluctuations that depend on each cell's relative

gate thickness and width. both of which are uncontrollable and extremely hard to

model. Finally, this allows for unique signatures that can be generated for each
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page of the flash memory. These PUFs can be used for secure key generation and

authentication mechanisms [26]. Each PUF has a challenge and response. The

challenge is the input to the unclonable function which then outputs a response.

This response has high security and differs from each subsequent response and

challenge pair.

Section 2.5 - Prior State of the Art Flash PUFs

When looking at the development of different Flash PUFs there are several

important trends to recognize. The first Flash PUFs were created from 2012-2017

[17, 22, 9, 18]. These seminal works were predominantly focused on showing

how Flash memory was a viable candidate for memory-based PUFs. These Flash

PUFs were important for showing the promise of flash memory, but they

struggled to account for several factors such as aging, temperature, and design

constraints. For example, Prabhu et al. [17] required hundreds of thousands of

programs in order for PUF signatures to develop which can take several hours.

Similarly, Kim et al. [10] required very fine grained flash programming which

required knowledge of sensing voltages that is typically proprietary on

commercial flash chips. Similarly, Wang et al. [22] created both a novel PUF and

TRNG but incurred very high processing overheads that led to high latency.

From 2018 to 2020, a second phase of Flash PUF development began marked by

the work of [7, 12, 15, 16, 19, 20, 24]. Many of these proposed designs

significantly enhanced PUF designs that took into account many different factors.

These Flash PUFs incorporate advanced parameters such as aging resistance,

temperature resistance, and unique architectures. For example, work from Clark

et. al [7] designed a Flash PUF that was voltage resistant. Secondly, Poudel et. al

[15,16] designed a Flash PUF that works on the onboard microcontroller NOR

Flash Memory. Similarly, Larimian et. al [20] verified the machine learning

resilience of their Flash based PUFs by performing extensive deep learning tests.

Finally, Mahmoodi et. al [12] created one of the most stable and resilient Flash

PUFs by modifying the cells to extract leakage current.
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However, this second phase of development also has several design difficulties. In

order to make PUFs commercially viable, they must be generated using cheap

commercial microcontrollers in order to keep their price point down. Furthermore,

it is helpful that these PUFs can be deployed on legacy systems by using

commercial off the shelf flash memory and these systems must avoid excessively

long latency that have been seen in works such as [20]. Many of the previous

work from the second phase does not use commercial off the shelf components.

This can reduce the adoption of Flash PUF technology. Secondly, many of these

Flash PUFs require slowly building charge differences on the floating gate

through hundreds or thousands of program/erase cycles. This is effective at

generating signatures; however, this drastically increases latency required to

generate these signatures. Finally, many of the systems that avoid the slow build

up of charge have to use expensive FPGAs with Gigahertz clocking speeds to

generate fine grained interrupts as shown in Clark [7]. This is not viable for edge

deployments particularly those such as telehealth based applications.

Our work, seeks to bridge this gap by developing a Flash based PUF that uses

only ONFI standard commands, works on a 15 dollar microcontroller, uses off the

shelf commodity flash chips, generates signatures with low latency using a novel

interrupt technique, and is able to compete with some of the most resilient PUF

structures that were highlighted from the second phase of development.

10



CHAPTER 3 - PROJECT PLAN AND METHODOLOGY

Section 3.1 - Project Plan

1. Fall Quarter
• Compiled research on PUFs and looked at potential Telehealth
Applications
• Developed a memory controller software to read and write to the MLC
Flash NAND Chip
• Created our telehealth application using a temperature sensor and a
Raspberry Pi

2. Winter Quarter
• Finalized a PUF extraction method that can be used to generate secure
keys
• Built a TCP/IP handshaking protocol to connect and send data between
two Raspberry Pis on different networks

2. Spring Quarter
• Verified the PUF’s reliability and randomness with statistical NIST
testing
• Implemented dynamic authentication protocol utilizing challenges and
responses from the PUF

Section 3.2 - Methodology

3.2.1 Tools Used

Many of the decisions regarding tools and methodology were direct consequences

of the remote nature of this year’s projects. With no guaranteed time to

collaborate in person or share experimental setups, it was vital to create an easily

accessible project that could be changed by all team members on the fly. The tools

used for the project include:

Google Suite - All written documentation and results were stored using Google

Suite Applications including docs and sheets. This allowed us to

11



actively collaborate without the need of in-person meetings.

MBed - MBed was the main resource for all project firmware development. The

resource allowed us to build useful firmware that was updated in real time

through code pushes. It also allowed us to fork projects and experiment

with the setup individually without excessive version control. More

information regarding project firmware can be found in Appendix B.

Jupyter Notebook - The final resource required was a program to effectively

process and visualize the data being collected. We chose Python-based

analysis using Jupyter Notebook in order to analyze and process complex

and large data sets.

While many different tools and programs could yield similar results, we believe
that our tools and methodology were effective and useful for a remote work
environment.

12



CHAPTER 4 - HILO FLASH PUF EXTRACTION TECHNIQUE

Section 4.1 - Design Considerations

With the experimental setup described in the previous section, work started on the

PUF extraction method itself. When designing the PUF extraction method, there

were two major metrics that were focused on extensively. The first feature was

minimizing the number of program/erase cycles (PECs) required in order to

extract a reliable signature. As mentioned in Section 2.2, flash memory devices

have a limited lifetime measured in PECs. As charge is tunneled onto and off of

the float gate, the tunnel oxide that separates the silicon channel and the float gate

begins to deteriorate. As the deterioration continues, the data held within each cell

becomes unreliable due to the increase of charge leakage on the float gate. Wear

on the cells is an issue for data retention and general application use, but it also

poses an issue with unreliable signature extraction, because the programming and

erase times for each cell are altered as the cell reaches its end of life. In order to

combat this aging effect, HiLo was designed in order to require as few PECs as

possible.

The second major consideration was lowering the signature extraction latency.

Faster signature extractions allow for faster authentication and lower power

consumption. Telehealth sensors in the scope of this work can be treated as edge

devices that are resource constrained by both processor speed as well as limited

battery life. In order to prolong the sensor's battery lifetime as well as create a

reasonably fast authenticated connection, the method needs to be lightweight and

fast.

While additional results and metrics will be discussed in detail in Section 5.1,

these two design considerations helped guide many of the design decisions for the

HiLo method. In the next section the HiLo technique will be explained in detail,
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and additional design constraints and considerations will be discussed.

Section 4.2 - Experimental Setup

As mentioned in our summarization of contributions section, it was vital to keep

the experimental setup as minimal as possible in terms of both cost and

complexity. While previous works have mostly required high clock frequencies

and custom chips, our novel design uses a 100 MHz clock and a simple TSOP

Adapter in order to connect to the flash chip. Our simple bill of materials consists

of:

● STM32 based microcontroller with 100 MHz maximum clocking

frequency. This will serve as the memory controller and is used to

read/write/erase the flash memory.

● 32 GB MLC Flash NAND memory chip from Micron that does not have

an integrated memory controller. The memory chip can read/store

application data and is also used in the HiLo extraction method

● TSOP Adapter in order to interact with packaged flash NAND chip

The entire experimental setup was purchased for just shy of $20, and all items

were readily available for purchase to be included in commercial application. It is

worth noting that we used an unmanaged flash chip in order to give us full control

of the device. This extra control allowed us to write directly to specific memory

locations without worrying about wear-leveling control or error correcting code

(ECC), which are implemented in most managed flash components. This gave us

the highest control on interrupting the writing, erasing, and reading processes,

because we were directly controlling the chip's behavior without interference

from the memory controller. While a commercial application will require ECC

and wear leveling in its memory controller software, this setup shows that the

HiLo extraction method could be readily added to current memory controller

solutions through a minor software modification.

While unmanaged flash gives extra control over the memory's behavior, it also

requires a more detailed communication protocol. Most commercial managed

14



flash uses SPI or I2C protocols in order to access basic functionalities. On the

other hand, unmanaged flash requires a version of open NAND flash interface

protocol (ONFI). Specifically, HiLo was tested using ONFI version 2.2, which

requires 7 digital control signals and an 8 bit bus for reading and writing data. The

HiLo method only requires the most basic memory access and modification

functions including read page, write page, and erase block. The interrupt sequence

and reading of data is ubiquitous across all ONFI 2.2 memory chips. The flash

chip tested in this work stores pages consisting of 4096 bytes of data and 224

extra bytes for ECC. Blocks are organized in chunks of 256 pages, with each 32

Gb chip having access to 4096 unique blocks. In order to read and verify data,

flash memory values were sent from the microcontroller to a terminal window on

a laptop via UART communication using a USB connection.This was also the

method used for storing and analysing large sample sizes of data in .csv formats.

Section 4.3 - HiLo Extraction Method

4.3.1 - PUF Extraction Observations and Techniques

For our PUF to be viable, the PUF extraction must have low latency and can only

use standard edge deployable microcontrollers within the 100MHz frequency

range. This introduces several important design challenges in order to make Flash

PUFs achievable on low cost microcontrollers. First the low latency requirement

prevents the design from utilizing hundreds of repeated program and read cycles

that slowly increase the charge on the floating. Therefore, our scheme must use

fine grained interrupts in order to interrupt the operation of the cells to force the

flash into unsteady positions. However, a single interrupt scheme such as the one

seen in Clark et. al [7] does not have a high enough clock resolution to interrupt

the flash programming fast enough to generate a 50/50 split between ones and

zeros. In fact, signatures that are generated from a single programmed interrupt

are either about 80% 1's or 80% 0's. This is highlighted in Figure 4.3.1 where the

sysTick clock on the microcontroller is interrupted at different times. As shown in

the figure, the clock does not have the granularity to interrupt the programming

15



operation on the microcontroller to generate an even distribution of 1's and 0's.

Figure 4.3.1: Ratio of 1’s and 0’s vs. Clocking Granularity

Secondly, the lack of granularity has another limiting effect as well. The

signatures generated from a single interrupt are extremely noisy. This is due to the

interrupting method. This error rate can approach 10% within 80 total P/E cycles.

This is due to the lack of granularity in the clock itself. Due to the max 100 Mhz

clocking speed, an interrupt at a particular clocking delay can vary due to the

limited frequency. This causes unintended errors for cells that are sensitive to the

interrupt. This drastic increase in error is highlighted in Figure 4.3.2.
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Figure 4.3.2: Error Increase as Number of PECs Increases

Although the error increases rapidly and the clocking speed cannot generate

signatures with 50% ones and zeros, several more insights and solutions were

generated to remedy these design challenges.

Specifically, a well-defined enrollment scheme is designed to select only the

most stable cells which can be decoded as one or zero. These can then be used for

highly stable signatures.

4.3.2 - Enrollment Scheme

As other work has shown in Poudel et. al [15, 16] unstable cells can be identified

for TRNG bits by applying several reads. These reads apply a smaller voltage to

the floating gate of the flash cells which only slightly disturbs the cells. This can

quickly identify unstable cells that are flagged during enrollment. Furthermore,

approximately 95% of these unstable bits flip within five reads. Therefore, only

applying five reads is sufficient for identifying stable cells through successive

read operations. Figure 4.3.3 highlights this observation. This figure graphically

shows all 32,000 bits on a single page. All of the yellow lines indicate a flipped

bit. Many of these bits flip within the first five reads which is an effective filtering

process for identifying stable bits.
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Figure 4.3.3: Bit Stability and Read Disturbs

Secondly, flash cell failure is highly spatially dependent. This is evidenced by

plotting a histogram of the distance between each cell flip or failure. Failures tend

to cluster in groups. This can be modeled as an exponential distribution, as shown

in Figure 4.3.4. Therefore, instead of flagging individual bits that are stable, bytes

of groups are flagged as stable and only if a byte is completely stable is it passed

through the enrollment process.

Figure 4.3.4: Histogram of Distance Between Sequential Failures
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After this technique is applied about 1500 of the 4000 bytes are extracted per

page. Approximately 800 of these extracted bytes are over 95% accurate during

testing. However, approximately 700 bytes are misidentified as stable. This

reliability histogram is shown in Figure 4.3.5.

Figure 4.3.5: Byte Stability After Enrollment

However, a slight wrinkle to the first algorithm is able to generate highly stable

PUF responses. This leads to our new enrollment strategy -- the HiLo method.

The HiLo extraction method uses a novel technique to generate highly reliable

signatures. Rather than aborting the program early and using signatures with 80%

ones, two interrupted programs are performed. One generates a signature with

80% ones and the other with approximately 20% ones and five reads are

performed after each program to eliminate non-stable bytes. In order to refine the

byte selection process, bytes that are either highly resistant to programming or

highly susceptible to over-programming are chosen. This information is captured

by selecting bytes which fully resist programming in the under-programmed

section also known as the high side and which bytes that are easily programmed

in the over-programmed section also known as the low side. If a byte group is

fully programmed in the over-programmed section and is fully under-programmed

in the under-programmed section it is also removed during the enrollment

process. This eliminates bytes that can sneak through the enrollment process and
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reduces the error by several magnitudes of 10 to around .104

4.3.3 - Challenge and Response Pairs

After the HiLo enrollment process is complete a 'map' of the stable bytes are

stored on the gateway. Each byte in the map is either extremely susceptible to

over-programming or highly resistant to it. With this information, the gateway

will request particular byte locations from the sensor for authentication.

Approximately 256 low byte locations and 256 high byte locations will be sent

along with the specific page number that is used. This comprises approximately

600 bytes of space which can be sent in the payload of a single Ethernet frame to

the sensor. The microcontroller will then apply two programs and ten total reads

and identify which bytes are stable and which are not. If a byte location produces

a majority of ones it is subsequently decoded as one and is assumed to be one of

the high side bytes. Inversely, if a byte produces a majority of zeros then it is

assumed to be from the low side and is decoded as zero. This extraction technique

can resist a maximum of three errors before a byte is incorrectly decoded.

Therefore, the gateway will receive a bit string of ones and zeros to the sensor.

This design allows for two important features for the gateway. Firstly, the gateway

can control how long of an authentication response it needs. This can allow our

application to adapt to various levels of required security. For example, certain

cryptographic applications may only require 100 bit signatures. The gateway then

only has to send 100 bytes to the sensor. On the other hand sensitive security tasks

that may demand 512 bit signatures can also be accomplished. Secondly, many

other approaches use helper data such as Hamming Codes, Fire Codes, or more

recently Low Density Parity Codes, to recover any errors sent back from the

device. These codes leak polarity information about the response values which

allows for error correction. Our scheme leaves out any polarity data and simply

sends bytes to read. This makes our helper data significantly more robust to side

channel or modeling attacks since the helper data never reveals any polarity
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information from the bytes it is requesting. However, it is important to note that

this advantage is realized because the HiLo enrollment algorithm filters bytes

from pages very aggressively. On average, each page returns approximately 700

usable bytes. Therefore, about 83% bytes are not usable.
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CHAPTER 5 - EXPERIMENTAL RESULTS AND VALIDATION OF PUF

Section 5.1 - PUF Metrics

5.1.1 - Uniqueness, Randomness, and Reliability

There are three major metrics for any PUF. They are uniqueness, randomness, and

reliability. Uniqueness defines how different each PUF response is from each

other. This value is best captured through the Inter-Hamming Distance

(Inter-HD). The percentage Inter-HD describes what percentage of bits flip

between two different responses. An ideal value for this is approximately 50%.

Our system had an average of 47% which is shown in Figure 5.2.1.

Figure 5.1.1: Inter Hamming Distance Across Page Signatures

The second metric randomness describes how random each signature is. This can

be measured in Shannon entropy per bit. With 256 high bits and 256 low bits the

average Shannon entropy per bit is approximately 0.999 with an ideal value of 1.
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Next, the reliability is the final measurement. The reliability of this system is

extremely strong. The error does change as the flash cells age; however, the error

is approximately . The max error value is and the5. 9 * 10−4 7. 1 * 10−3

minimum value is . This reliability is strong enough to possibly5. 9 * 10−5

support cryptographic key generation and is able to last through the end of the

Flash's life.

5.1.2 - Aging Adaptation

In order to simulate aging, the Flash memory chips were programmed until their

maximum rating of 3,000 P/E cycles for MLC chips. The aging causes the oxide

to deteriorate from the program voltage stress. The low side bytes that are

susceptible to over programming are barely modified since these bytes just

program faster. However, the high side bytes that are resistant to programming

program more easily which modifies the amount of bit flips in each byte. In

general two approaches for this were considered. First was adapting the polling

interval and decreasing it since the flash cells program faster. However, this

approach can be difficult to model and control due to the lack of granularity in the

interrupt mechanism. Consequently, the second approach was taken. In this

approach the amount of bytes required for a decode was changed once the cells

reached a particular percentage of life used. This adapts the error rat and drops it

significantly. This is reflected in Figure 5.2.2.
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Figure 5.1.2: Error Rate Over Time With Adaptive Aging
Section 5.2 - Comparison to Current Solutions

In order to accurately evaluate the HiLo extraction method, we must also compare

our results to current solutions in industry. Currently, Tiny AES is one of the most

popular encryption schemes for resource constrained devices, and it sets a great

benchmark for comparison. Tiny AES encryption uses a pre-shared key scheme

that is similar to a PUF signature, which behaves like a physically stored key. The

Tiny AES encryption algorithm requires 22.3 mW of power, and takes 190 ms.

The HiLo extraction technique, on the other hand, takes less than a 1mW of

power and PUF signatures are generated in 34.8 ms. This shows a significant

performance advantage with a higher security guarantee since the PUF signatures

are never stored in memory. Furthermore, this low latency and power

consumption makes the HiLo PUF a strong candidate for the telehealth

application space.
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CHAPTER 6 - TELEHEALTH AUTHENTICATION

Section 6.1 - Possible Privacy Threats

Whenever a device sends data wirelessly, there is always the possibility of an

unauthorized third party attempting to steal that information. This is especially

true with healthcare data, which includes personal information, and can be used

by malicious attackers for billing fraud, identity theft, and to illegally obtain

prescription medicine. This is why according to a Trustwave report, a healthcare

data record could sell for as much as 50 times more than a stolen credit card

number on the black market [28].

The two threats we will target in our project are Man-in-the-Middle (MITM)

attacks and Replay attacks. Both sets of attacks listen in on the communication

between two hosts. With a Man in The Middle attack, the attacker intercepts the

packets being sent en route, and they can read or modify unsecured information

before it is sent off to the other host [21]. A replay attack has an attacker also read

the packets being sent between the two hosts, but the attacker uses the

authentication information to later attempt to pose as a legitimate host [21]. In an

unsecured and static authentication scheme, the attacker could simply pick up a

password being transmitted en route and use it later in a different transaction.

Section 6.2 - Proposed Secure Handshaking with HiLo Method

The first step in developing our authentication protocol was to build our telehealth

application, which involved using a DS18B20 temperature sensor to collect

temperature data and store it in a format which we can then use for edge
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deployment. Body temperature collection is just one of the many different ways

remote patient monitoring can be utilized. For our experiment, we used a

Raspberry Pi as a means to collect temperature data in intervals of 10 seconds and

saved the data in a .csv format. To do this, we wrote a Python script to automate

the process.

We then built a TCP/IP dynamic challenge-response authentication scheme using

the PUF. This process used two Raspberry Pis, which were setup using Sockets to

communicate with each other across different networks, and the PUF extraction

device (Microcontroller, TSOP connector, MLC Flash NAND). The Raspberry Pi

that collected temperature data served as the “client”, or the health sensor.

Through USB, we connected the microcontroller to the “client” Raspberry Pi, and

then successfully interfaced the two so that the Raspberry Pi could query the

stable byte values of the NAND Flash chip. The other Raspberry Pi served as the

“gateway”, which would serve as an edge server in a real world application.

This authentication process starts with the gateway sending a challenge to the

health sensor, denoted Challenge1. This request includes a challenge location and

stable byte locations of the NAND flash memory cell. The health sensor performs

the interrupted program and extracts the stable byte values. The health sensor then

randomly generates a nonce, denoted Nonce1, and the generated hash value is

XORed with Nonce1. The value generated is sent to the gateway as a response to

Challenge1. The gateway knows what Response should be, so it XORs the entire

response of the gateway with Response1 to determine Nonce1. The gateway then

randomly generates another nonce, denoted Nonce2. A second challenge, using a

different index of stable byte locations, is generated by the gateway. Challenge2 is

then concatenated with (Response1 XOR Nonce2), and this message is sent back

to the health sensor. The health sensor is able to separate Challenge2 from

(Response1 XOR Nonce2), and (Response1 XOR Nonce2) is XORed with

Response1 to determine Nonce2. Both the gateway and the health sensor now

know the values of Challenge1, Challenge2, Nonce1, and Nonce2. Using

Challenge2, the health sensor again performs the interrupted program and extracts

the stable byte values. If the health sensor and the gateway are legitimate sources,
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the challenges and responses can be properly decoded and the transaction is

authenticated. Our proposed handshaking protocol is shown in Figure 6.2.1.

Figure 6.2.1: Authentication Protocol

There are many advantages to using this authentication scheme. First, the use of

hashes masks the plaintext values of the data being sent, meaning that attackers

won’t be able to read the data in transit. Second, the use of randomly generated

nonces means that the values being transmitted will always change with every

transaction. Finally, and most importantly, the use of a PUF provides a unique

identifier that the gateway can reliably authenticate, and attackers won’t be able to

model the authentication responses of the PUF.
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Figure 6.2.2: Challenge and Response Pairs

In Figure 6.2.2, we see the challenge and response pairs that we discussed being

sent between the health sensor and the gateway. In the event of a

man-in-the-middle or replay attack, which involves an attacker intercepting

packets between the two parties, this is the information that they would receive.

However, with regard to MITM, any modification of the packets being sent would

result in a complete breakdown of the authentication process, ultimately making it

obvious that the connection was tampered with, and would result in the gateway

refusing the connection. With Replay attacks, the use of randomly generated

nonces means the values being sent change with every transaction. This means

that an attacker can’t replay a message with an old pair of nonces, as the values

would be entirely different to the current nonces.
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CHAPTER 7 - CONCLUSION

Section 7.1 - Summary

As medical care continues to improve in both effectiveness and accessibility on a

global scale, remote patient monitoring is a logical next step for healthcare

investment. We have witnessed a global pandemic that disrupted the delivery of

potentially life-saving medical care for over a year, which may have been partially

mitigated by the adoption of remote patient monitoring (RPM) technology. While

the technology proves useful for many medical monitoring applications, it is

important to carefully consider the security vulnerabilities and possible exploits of

large scale adoption of RPM. The HiLo extraction method is a lightweight, fast,

and easily implementable security measure that could help ensure the authenticity

of RPM sensor data. The HiLo method is designed in such a way that it could be

implemented on new RPM sensors with minor software updates, and no

additional components. The method is resource efficient, and offers financial

benefits when compared with many other commercial PUF solutions.

Section 7.2 - Future Work

When considering future work for this project, more extensive testing needs to be

done using additional flash chips from different manufacturers. Additionally,

testing must be done in high temperature environments in order to verify that the

reliability remains high regardless of external factors such as heat. Finally, the

HiLo extraction method could be tested on other flash memory densities

(SLC/TLC), or possibly even different flash architectures (3-D) in order to

broaden the possible application space.
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Section 7.3 - Project Challenges and Lessons Learned

As with any year long term project, there were many challenges along the way.

The most obvious challenge was working remotely due to Covid-19. Without a

common experimental setup, getting consistent results and trustworthy data was

difficult. In order to create a uniform data collection process, all testing was done

with one experimental setup. This required one team member to perform all data

collection and testing which, depending on the data collection size, could run for a

few hours. This created a large bottleneck for data acquisition, and ultimately

slowed down every other aspect of the project.

Another challenge was trying to create highly reliable signatures. As mentioned

earlier, the enrollment process was the trickiest part of this project due to the low

granularity on our interrupt timer. To our knowledge, no other published research

has solved this granularity issue associated with a lower frequency clocked

memory controller. We were forced to experiment with many design iterations

and trials including gradient boosting, logistic regression models, forward error

correction encoding, and binning and distillation methods. No solution gave us

the 95% reliability metric that we were aiming for except for the HiLo method. It

forced us to think creatively about our project, and the lack of granularity, which

was originally thought of as a major roadblock, actually became our saving grace.

After reflecting on our team’s performance over the past year, there are many

examples of lessons learned and room for improvement. The main areas where

improvements could be made were in firmware development, data acquisition,

and team communication.

The most obvious improvement for firmware development would be moving

away from MBed and using STM32MXCube with IAR Embedded Workbench or

Keil Uvision. MBed was originally chosen for its easy version control

capabilities, but looking back we believe that GitHub could have easily been used

to accomplish the same thing. MBed abstracts quite a bit from the developer,

which is fine for a quick prototype, but for a long term project with small
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intricacies such as this one, more control would have decreased development

time. Ultimately, the firmware works as expected now, but we believe

development time could possibly have been cut by a factor of ~25% just by using

ST provided development firmware.

The second area of improvement was during the data acquisition phase. We only

had one functional experimental setup, so much of the work was forced onto one

member who could run the desired experiments. The program written to import

the collected data through a serial connection between a laptop and the

microcontroller was inefficient for the first half of the data acquisition phase.

Instead of taking the time to generalize the program used to import experimental

data, the same functions were modified in order to work for individual tests. This

meant that instead of running 5 experiments at once for 5 hours total, it required

re-running the same experiment 5 times for an hour each, which ultimately took

much longer. While initially the time investment did not seem practical or

worthwhile, looking back that could have expedited the data acquisition

dramatically.

Finally, the team communication could have improved. Instead of having each

member work on the same aspects of the project, everyone was assigned

individual tasks. While in theory this should increase productivity, there should

have been more time put into working on project parameters and system

interfaces. Instead of simply adding modules to the application, we had to rewrite

much of the interfacing code in order to work with work from other members.

The common theme across all three areas of improvement is planning. After

completing our project, we realize how vital it is to have a good plan. Many of

these issues could be mitigated with smarter planning and research. While some

of these issues could not have been predicted during the planning phase, there

could have been more research done, and more adjustments made along the way.

An open-ended project such as this one requires members to adapt quickly and

create steps and firmware that can be easily adapted for new tests. These skills are

universal in all engineering positions and long-term projects, and we will make
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sure to not repeat our same mistakes in the future.

Section 7.4 - Final Remarks

At the end of the day, our team looks back at this project as a positive, learning

experience. Just compiling this document reminds each of us of our own

individual challenges and contributions for this project. We will never forget the

moment where we discovered the HiLo extraction method and saw our first

high-reliability results. Nothing compares to working on such a large problem and

finally finding a solution that works. Although there were many long nights, hours

of research, hundreds of trials, and maybe a bit of crying here and there, we ended

up developing something we are all proud to call our own.
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APPENDIX A: PROJECT SCHEDULE

While many aspects of the project were difficult to estimate time-wise, we have
an updated schedule in Figure A1. The main setbacks came from ONFI 2.2
firmware development in the Fall quarter, which was originally scheduled to be
completed by November. Unfortunately, the firmware took longer to develop and
test than anticipated, and it leaked into ealy-mid December. Another place where
the schedule slipped was PUF extraction testing. The HiLo method took about 2.5
months to develop (originally scheduled for 1.5 months).

These two main setbacks ultimately forced us to narrow our project goals from
looking at full system implementation down to a PUF extraction technique paired
with a simple proof of concept handshaking protocol. While the full system would
have been interesting to build and test, we simply ran out of time. Although we
still met most of our initial project goals, we did have to sacrifice a few extra
features in order to complete all of our work in time.
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Figure A1: Project Timeline and Completion
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APPENDIX B: PROJECT FIRMWARE INFORMATION

As mentioned previously, the project firmware was written entirely on MBed.
There were no open source drivers for programming ONFI 2.2 chips, so all
drivers had to be written from scratch. This was no easy task, as the interface
specifications require small detail oriented messages. The basic functionalities of
programming pages, erasing blocks, and reading data were all completed for our
STM32 based microcontroller, and the firmware can be found at:

https://os.mbed.com/users/lypinator/code/FlashNANDController/

All connections using this firmware are shown in Figure A1.

Figure B1: Experimental Setup with Firmware Interface
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