886 research outputs found

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    A 23 GHz Active Mixer with Integrated Diode Linearizer in SiGe BiCMOS Technology

    Get PDF
    Active mixers operating at 23 GHz are designed and fabricated in SiGe technology.An integrated diode linearizer is used to improve the linearity of the mixer.Measurement and simulation show excellent agreement.Typically,10 dB double-sideband noise figure, 10 dBm IIP3 and 2 dB conversion gain are measured, featuring low noise and high linearity in a same design

    Silicon-germanium BiCMOS device and circuit design for extreme environment applications

    Get PDF
    Silicon-germanium (SiGe) BiCMOS technology platforms have proven invaluable for implementing a wide variety of digital, RF, and mixed-signal applications in extreme environments such as space, where maintaining high levels of performance in the presence of low temperatures and background radiation is paramount. This work will focus on the investigation of the total-dose radiation tolerance of a third generation complementary SiGe:C BiCMOS technology platform. Tolerance will be quantified under proton and X-ray radiation sources for both the npn and pnp HBT, as well as for an operational amplifier built with these devices. Furthermore, a technique known as junction isolation radiation hardening will be proposed and tested with the goal of improving the SEE sensitivity of the npn in this platform by reducing the charge collected by the subcollector in the event of a direct ion strike. To the author's knowledge, this work presents the first design and measurement results for this form of RHBD.M.S.Committee Chair: Cressler, John; Committee Member: Papapolymerou, John; Committee Member: Ralph, Stephe

    Miniaturized Resonator and Bandpass Filter for Silicon-Based Monolithic Microwave and Millimeter-Wave Integrated Circuits

    Get PDF
    © 2018 IEEE. © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.This paper introduces a unique approach for the implementation of a miniaturized on-chip resonator and its application for the first-order bandpass filter (BPF) design. This approach utilizes a combination of a broadside-coupling technique and a split-ring structure. To fully understand the principle behind it, simplified LC equivalent-circuit models are provided. By analyzing these models, guidelines for implementation of an ultra-compact resonator and a BPF are given. To further demonstrate the feasibility of using this approach in practice, both the implemented resonator and the filter are fabricated in a standard 0.13-μm (Bi)-CMOS technology. The measured results show that the resonator can generate a resonance at 66.75 GHz, while the BPF has a center frequency at 40 GHz and an insertion loss of 1.7 dB. The chip size of both the resonator and the BPF, excluding the pads, is only 0.012mm 2 (0.08 × 0.144 mm 2).Peer reviewe

    Realization of a single-chip, SiGe:C-based power amplifier for multi-band WiMAX applications

    Get PDF
    A fully-integrated Multi-Band PA using 0.25 ÎĽm SiGe:C process with an output power of above 25 dBm is presented. The behaviour of the amplifier has been optimized for multi-band operation covering, 2.4 GHz, 3.6 GHz and 5.4 GHz (UWB-WiMAX) frequency bands for higher 1-dB compression point and efficiency. Multi-band operation is achieved using multi-stage topology. Parasitic components of active devices are also used as matching components, in turn decreasing the number of matching component. Measurement results of the PA provided the following performance parameters: 1-dB compression point of 20.5 dBm, gain value of 23 dB and efficiency value of %7 operation for the 2.4 GHz band; 1-dB compression point of 25.5 dBm, gain value of 31.5 dB and efficiency value of %17.5 for the 3.6 GHz band; 1-dB compression point of 22.4 dBm, gain value of 24.4 dB and efficiency value of %9.5 for the 5.4 GHz band. Measurement results show that using multi-stage topologies and implementing each parasitic as part of the matching network component has provided a wider-band operation with higher output power levels, above 25 dBm, with SiGe:C process

    UNH Students Win National Semiconductor Research Corporation Design Challenge

    Get PDF

    MAROC: Multi-Anode ReadOut Chip for MaPMTs

    No full text
    International audienceFor the ATLAS luminometer, made of Roman pots, a complete readout ASIC has been designed in 0.35 SiGe technology. It is used to readout 64 channels multi anode photomultipliers and supplies 64 trigger outputs and a multiplexed charge. Since its delivery in November 2005, the MAROC chip has been tested at LAL. Despite a substrate coupling effect which affects the performance when all channels are used in high gain, the chip has shown nice global behavior and it has been used during beam tests at CERN in October 2006

    A tunable X-band SiGe HBT single stage cascode LNA

    Get PDF
    This paper presents an X-band silicon-germanium (SiGe) single stage cascode tunable low-noise amplifier (LNA) for active phased array transmit/receive modules. LNA is implemented by using IHP SiGe heterojunction bipolar transistors (HBTs) 0.25-ÎĽm SGB25V technology. Cadence is used in collaboration with ADS during schematic and layout design and the results depict that designed LNA dissipates 15.36 mW from an 2.4 V DC power supply and the maximum gain around 18 dB in X-band while not exceeding the 2.4 dB noise figure (NF). Reverse gain of the LNA is very low (<-40 dB). Input terminal is matched so that S11 is below -10 dB in X-band

    Characterization of an embedded RF-MEMS switch

    Get PDF
    An RF-MEMS capacitive switch for mm-wave integrated circuits, embedded in the BEOL of 0.25ÎĽm BiCMOS process, has been characterized. First, a mechanical model based on Finite-Element-Method (FEM) was developed by taking the residual stress of the thin film membrane into account. The pull-in voltage and the capacitance values obtained with the mechanical model agree very well with the measured values. Moreover, S-parameters were extracted using Electromagnetic (EM) solver. The data observed in this way also agree well with the experimental ones measured up to 110GHz. The developed RF model was applied to a transmit/receive (T/R) antenna switch design. The results proved the feasibility of using the FEM model in circuit simulations for the development of RF-MEMS switch embedded, single-chip multi-band RF ICs
    • …
    corecore