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Abstract

To improve the thermoelectric energy conversion efficiency of silicon germanium (SiGe),
two methods were used to decrease the thermal conductivity by increasing phonon

boundary scattering at interfaces. In the first method, SiGe alloys were annealed at a

temperature higher than the melting point to increase the number of grain boundaries. In

the second method, SiGe composites were made with nanosize silicon particles. For

annealed SiGe alloys thermal conductivity decreased by a factor of two while power factor

remained the same value. For SiGe nanocomposite thermal conductivity decreased by a

factor of four to that of bulk alloy, but electrical conductivity deteriorated. Future work

will focus on increasing electrical conductivity while reducing the thermal conductivity.

Thesis Supervisor: Gang Chen

Title : Professor of Mechanical Engineering
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Chapter 1.

Introduction

Thermoelectricity is the direct energy conversion of energy between electricity and

heat within a material." 2  Thermoelectric devices are appealing because they are reliable

without moving parts and environment-friendly. However, their efficiency needs to be

improved if they are to be competitive with current energy conversion technology.

Nanotechnology presents the possibility of enhancing thermoelectric efficiency. In this

chapter, after a brief introduction to thermoelectrics, the main objectives of this thesis will

be discussed.

1.1. Thermoelectrics

When a material is subjected to a temperature difference, an electrical potential

difference is produced across the material. Conversely, when electrical current flows

through a material, heat is also moved. These phenomena are called thermoelectric effects.

Figure 1.1.1 shows the thermoelectric effects in a single material. More specifically, the

former is called the Seebeck effect and the latter is called the Peltier effect, named after the

11



2
scientists who first observed these phenomena.

Heat Q Heat Q

Fig. 1.1.1. Thermoelectric effects in a material. A temperature difference induces a

voltage through the material, and current flow induces heat flow through the material.

The fundamental physical reason for thermoelectric phenomena is that charge carriers

such as electrons and holes, are also heat carriers. When a material is subjected to a

temperature gradient, charge carriers will diffuse from the hot side to the cold side. This

diffusion brings about a higher electrical carrier concentration in the cold side and thus

creates an electrostatic field and chemical potential gradient. The combined

electrochemical potential creates an opposing current that balances the thermal diffusion.

The Seebeck coefficient S is defined as the ratio of gradient of the Seebeck voltage to the

temperature gradient.

dV(IS=- (1-1-1)
dT

The negative sign is understandable because the Seebeck voltage is induced in the direction

that resists thermal diffusion of electrical carriers by temperature gradient.

While the Seebeck effect is electrical potential difference caused by temperature

gradient, Peltier effect is the transport of heat by electrical carrier flow. An electrical

current is accompanied by a heat current because movement of electrical carriers involves

12



movement of entropy. The amount of heat flow Q is proportional to the electrical current

I, and the proportionality constant is defined as Peltier coefficient H.

F I = - (1.1.2)

When an electrical current flows around a loop with two dissimilar materials, the amount of

energy flow abruptly changes at the junction due to the difference in Peltier coefficients.

To satisfy energy conservation, the excess energy is liberated at one junction (heating) and

the deficient energy is absorbed at another junction (cooling). The Peltier effect is

reversible and depends on the direction of the current.

When the majority of electrical carriers are electrons, i.e, an n-type semiconductor, the

Seebeck coefficient and the Peltier coefficient have negative values because direction of

electron movement is opposite to that of current. On the other hand, when the majority of

electrical carriers are holes, i.e., a p-type semiconductor, the Seebeck coefficient and the

Peltier coefficient have positive values. Thermoelectric devices can be made with pairs of

p-type and n-type materials. Typical schematics of thermoelectric devices are shown in

Fig. 1.1.2.

13
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Fig. 1.1.2. Schematic of thermoelectric devices: power generator (left) and thermoelectric

cooler (right)

Power generators and solid state refrigerators are good examples of thermoelectric

devices that use the Seebeck effect and the Peltier effect respectively. The most typical

applications of these devices are for deep-space exploration and mobile refrigerators.

When a spacecraft travels far away from the sun, solar radiation is too weak to be used as

an energy source. In this case, thermoelectric generators powered by nuclear energy units

are often used to generate electricity. Small mobile refrigerators can be easily found in

luxury cars. Since thermoelectric refrigerators do not require any moving parts nor

coolants, they can be made small enough to be installed in cars.

Thermoelectric devices are reliable, as they do not require any moving parts that cause

mechanical failure problem. They are also scalable, as their efficiency is not dependent on

size of a system. Their application can vary from small integrated circuits to large power

generators. Also, they are promising from the environmental point of view, as they are

clean and quiet. No exhausts or wastes are produced for energy conversion. However,

the efficiency of thermoelectric devices is too low to warrant their economic use in large

scale power generators and refrigerators.

14



Thermoelectric efficiency is described by the dimensionless figure of merit, ZT, which

is defined as

S2oT
ZT = (1.1.3)

k

where, S is the Seebeck coefficient, a is electrical conductivity, k is thermal conductivity,

2and T is the operation temperature; the expression Su is called the power factor. ZT

being proportional to the square of the Seebeck coefficient is consistent with equation

(1.1.1) because the efficiency is proportional to the amount of power generated and

subsequently the power is proportional to the square of the voltage created by the Seebeck

effect. It is also reasonable that ZT is proportional to electrical conductivity because high

electrical conductivity reduces energy leakage by Joule heating within the material. On

the other hand, a high thermal conductivity will decrease energy conversion efficiency,

because a high thermal conductivity enhances heat transfer through the sample, and thus the

temperature difference cannot be sustained. Finally, the equation is multiplied by the

operation temperature to give it a nondimensionalized form. Since the Seebeck coefficient,

electrical conductivity, and thermal conductivity depend on temperature, it is important to

indicate at which temperature those properties are measured.

Therefore, good thermoelectric materials require a high Seebeck coefficient, a high

electrical conductivity, and a low thermal conductivity. However, those three

thermoelectric properties are not independent, so it is hard to change only one property

without changing the others. For example, increasing the number of electrical carriers not

only increases electrical conductivity but also increases thermal conductivity. Besides, the
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Seebeck coefficient is inversely proportional to carrier concentration. Figure 1.1.3 shows

each of three properties as a function of carrier concentration. As the figure shows, metals

have high electrical conductivities, but also high thermal conductivities and low Seebeck

coefficients. Insulators have high Seebeck coefficients and low thermal conductivities,

but these properties are countered by low electrical conductivities. The best materials for

thermoelectric applications are found in semiconductors. Moreover, in semiconductors

electrical conductivities and carrier type can be easily changed without affecting other

properties, simply by changing the doping type and doping concentration. With dopants,

electrical conductivity of semiconductors can reach up to 105 S/m. Because the

contribution of electrons to thermal conductivity is not large for semiconductors, a change

in doping concentration has little effect on thermal conductivity.

Carrier Concentration

Fig. 1.1.3. Thermoelectric properties as a function of carrier concentration
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During the 1950s, rapid progress was made on the development of alloy-based

semiconductors. Because alloy decreases the thermal conductivity while maintaining the

power factor, high thermoelectric figure of merit can be achieved. Among those materials,

BiO.5 Sbl.5Te3 was the most efficient p type thermoelectric material, with a ZT of 1 at room

temperature.' However, the equivalent ZT for typical mechanical power generators or

refrigerators is more than 3. In order for thermoelectric materials to be competitive with

current energy conversion technology, more research was needed to enhance ZT. Between

1960 and 1990, there was not much progress in ZT. But in the last 10 years, significant

enhancement in ZT has been made with the help of nanotechnology. 3

In 1993, Hicks and Dresselhaus presented a possible enhancement in ZT through the

use of quantum well superlattices and quantum wires.4'5  Figure 1. 1.4 shows pictures of

these nanostructures. Reduced dimensionality, as occurs in quantum well superlattices

(2D) or in quantum wires (ID), enhances the density of states by quantum confinement,

leading to an increase in the Seebeck coefficient without decrease in electrical conductivity.

17
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Fig. 1.1.4. Quantum well superlattice (left) and quantum wire (right). Each layer

thickness in superlattice is 2 nm. Quantum well superlattice was made by Professor

Wang's group at UCLA and quantum wire was made by Professor Ren's group at Boston

College. Quantum confinement and boundary scattering are expected to result in the high

Seebeck coefficient and low thermal conductivity without a decrease in electrical

conductivity.

While the power factor increases in nanostructures, the thermal conductivity decreases.

There are two differing explanations for the thermal conductivity reduction in low

dimensionality. The first explanation treats phonon as a coherent wave just as in an

electron wave.6-10 Periodicity of nanostructures causes modification of phonon modes,

and in turn reduces the phonon group velocity. Reduced phonon group velocity is

proposed as an explanation for the thermal conductivity reduction in cross-plane direction

of superlattices.10 However, experimental results showed larger decrease in thermal

conductivity than in the simulation results. 1 1 4 (Fig. 1.1.5) This fact suggests that

modification in phonon modes alone cannot explain the thermal conductivity reduction in

nanostructures. The alternate explanation treats phonon as incoherent particles and

considers interface scattering as the classical size effeCt.15-18 These approaches are based

on solving the Boltzmann transport equation. They assume the thermal conductivity

reduction comes from phonon scattering at boundaries. Phonons can easily scatter away

18



at every interface because the wavelength of phonons (1~2 nm at room temperature) is

comparable to the length scale of surface roughness (3 A at room temperature). On the

other hand, the electrical conductivity is not significantly affected by boundary scattering

because electrons have a longer wavelength (8 nm at room temperature) than phonons.

With partially diffuse and partially specular interface scattering, modeling studies match

well with experimental results. Thermal conductivity reduction by the classical size effect

happens when the mean free path of phonon (100-200 nm at room temperature) is

comparable to or larger than the characteristic length of structures.15 17  Hence, increased

amount of boundaries and not periodic structures in nanostructures is critical factor for

thermal conductivity reduction.
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Fig. 1.1.5. Experimental and calculated thermal conductivity of SiGe superlattices in both

in-pland and cross-plane, normalized to thermal conductivity of SiGe bulk alloy. Solid

lines were calculated by lattice dynamics simualtion.4 The experimental results are lower

than the calculated results." 1 3

Several subsequent experimental studies followed to prove the increase in ZT of

nanostructures. 19-22 The highest ZT value of 2.4 at room temperature was observed for

Bi 2Te3/Se 2Te3 superlattices. However, these superlattices are not practical for use in

thermoelectric products, because the time and cost of fabrication are not competitive

enough for mass production.

1.2. Objectives and Outline

As we discussed in the previous section, thermoelectric devices are promising but their

application is limited by its low efficiency. Recent research showed enhancement of
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thermoelectric figure of merit by the help of nanostructures such as superlattices.

However, such nanostructures are not profitable due to its high fabrication cost and time.

In this thesis, cost and time effective methods for reducing the thermal conductivity of

silicon germanium (SiGe) were tested, with the goal of improving the material's

thermoelectric efficiency. If phonon boundary scattering plays a key role for thermal

conductivity reduction, nanostructures like superlattices are not required. Based on the

idea that the thermal conductivity of nanostructures can be decreased by increasing the

amount of interfaces and hence the amount of phonon boundary scattering, methods to

increase the amount of interfaces are developed.

Two different types of SiGe samples were prepared to observe a decrease in thermal

conductivity while maintaining the power factor S2u. First, SiGe alloys like those that

have been used in space applications were annealed at a temperature greater than the

melting temperature of SiGe alloy. By this process, the samples melted slightly and

reformed new boundaries. Second, SiGe composites were made of nanosized silicon

particles. While alloy is a homogeneous mixture of atoms, nanocomposites are mixtures

of nanoparticles. Simple mixture of nanoparticles can increase the amount of boundaries

due to increased surface area. Both processes were expected to decrease thermal

conductivity by increasing the number of interfaces at which phonon scatters, while

maintaining electrical conductivity and increasing the Seebeck coefficient by the quantum

confinement effect. All the samples were prepared with collaboration of Professor Ren's

group at Boston College and Jet Propulsion Lab(JPL) at NASA.

SiGe was adopted in this research, because it has been the standard thermoelectric

21



material for power generation in spacecraft due to its high melting temperature. Although

SiGe has a lower ZT than any other typical thermoelectric materials at room temperature,

efficiency of an energy device increases with temperature. Figure 1.2.1 shows the

thermoelectric figure of merit of various thermoelectric materials as a function of

temperature.

Bi2Te3 SiGe

PbTe
0.8

BiSb

0 I

E.L

+.- Room Temperature

0 200 400 600 800 1000 1200

Temperature (K)

Fig. 1.2.1. Thermoelectric materials by temperature range.

Three thermoelectric properties, which are the thermal conductivity, the electrical

conductivity, and the Seebeck coefficient, were measured for both types of samples.

While these properties were measured, the measurement systems were also improved to

give quick and reliable results. Chapter 2 will discuss the detail methods for sample

preparation and for measurement technique. Then, measurement results and plans for the

future work follow in Chapter 3 and 4 respectively.
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Chapter 2.

Experimental Procedure

This chapter will discuss the experimental procedure, including sample preparation

and thermoelectric properties measurement. Although there is a method for measuring ZT

simultaneously, we have difficult in implementing it due to contact resistance.

Individual properties should be measured separately because the change in each property

can give us good direction for making good thermoelectric materials. However,

thermoelectric properties measurements are time consuming and are easily affected by

many factors. After defining the method for sample preparation, development in

measurement techniques will be discussed. Tasks in section 2.1. were done by the Boston

College group and the JPL group.

2.1. Sample Preparation

Two different fabrication methods for SiGe were explored to increase the amount of

boundaries, hence to decrease thermal conductivity. First, SiGe alloy was heat treated at

the temperature above the melting temperature, with expectation of new boundary creation.

23



Second, SiGe composites made of silicon nanoparticles were expected to have more grain

boundaries due to reduced grain size. Detail procedures of these two methods are

explained in the following sections.

2.1.1. Heat Treatment of SiGe Alloy

Usually, annealing process increases the size of grain boundaries, which in turn

improves transport properties such as electrical conductivity and thermal conductivity.2 5

In our case, a sample is heated up to the temperature below the solid line in the phase

diagram of a material. Figure 2.1.1 shows the phase diagram of SiGe alloy. When the

annealing temperature is over the solid line but below the liquid line, an alloy is expected to

melt partially, starting from the grain boundaries, and form new boundaries after cooled

down process. (Fig. 2.1.2) This idea was originally proposed by Professor Ren at Boston

College, who is co-investigator for the project. This process is expected to create more

boundaries than the original material, hence to have lower thermal conductivity.
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Fig. 2.1.1. Phase diagram of SiGe alloy with atomic percent and weight percent of silicon.

Numbers indicate the temperatures of solid line and liquid line for Sio.9Geo.j.

Heat up

Initial Boundaries

Cool down

Partially melted Form new boundaries

Fig. 2.1.2. Schematic of the annealing process at higher temperature than the solid line.

Sio.9Geo. 1, close to the composition of typical SiGe alloy for space application, was

received from JPL, NASA and was heat treated for 10 minutes at the temperature between

solid lines (1350 0C) and liquid lines (1395 0C). Heat treatment below the solid line was

also made in order to observe the effect of annealing temperature. The processing

information, such as annealing temperature, and time of the annealing, is summarized in

Table 2.1.1. Heat treatment was also made at different holding time to observe any effect

25
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of holding time.

Table 2.1.1. Heat treatment for Sio.Geo. 1 alloy.

Annealed Holding
Sample Name Aneld.odn Remarks

Temperature (C) time (mm)

As Received 1 No heat treatment

As Received 2 No heat treatment

1345-10 1345 10 Under the solid line

1355-10 1355 10

1360-5 1360 5

1360-10 1360 10

1360-20 1360 20

1365-10 1365 10

1365-20 1365 20 Slightly melted

1370-10 1370 10

1375-10 1375 10 Melted a lot

Multi-purpose 1500 C tube furnace from Lindberg Blue Company was utilized to

reach high temperature. Temperature was controlled by built in PID controller.

Temperature was set to be below 1375 *C because samples melted a lot over 1375 0C.

Each sample was first sandwiched between two pieces of Si substrate. It is then enclosed

inside a graphite sheet of thickness 0.13mm. The pressure range applied to the sample is

190~250 Torr, with a continuous flow of 400 sccm Ar gas to prevent the oxidation on the
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surface.

2.1.2. SiGe Nanocomposites

Another approach to increase the amount of boundaries is by decreasing size of grain.

By making composites from nanoparticles, we can expect small grain size. Commercially

available nanosized silicon particles with micro-sized germanium particles were utilized to

make nanocomposite. According to the current synthesizing technologies such as

mechanical grinding and direct chemical synthesis, silicon is easier to make into nanosized

particles than germanium. Hence, commercially available silicon particles can reach few

tens of nm, while germanium particles are still in the range of flm. In addition to

nanocomposite, composite with micron-sized silicon particles were also made to compare

the effect of nano particles. Germanium of 100 mesh, which corresponds to 149 Pm of

diameter, and silicon of 100 nm and 325 mesh, which corresponds to 44 1Lm of diameter,

were purchased from Alfa Aesar and Advanced Silicon Materials LLC.

Figure 2.1.3 shows the schematic of SiGe nanocomposites. The structures of

nanocomposites could be the simple mixture of two particles or the silicon particles in the

germanium host. The simple mixture structure (Fig. 2.1.3. left) seems more likely to

occur in nature. However, for the easiness of simulation, structure of silicon particles in

often adopted for modeling studies (Fig. 2.1.3. right).
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Fig. 2.1.3. Schematic of SiGe nanocomposite. It could be the simple mixture of silicon

and germanium, (Right) or the silicon particles embedded in germanium host. (Left)

To ensure uniform distribution of silicon and germanium particles, the mixer at JPL

was utilized to mix the particles. Figure 2.1.4 shows a mixer, which is similar to one we

used.

Fig. 2.1.4. A similar mixer that was used for mixing silicon and germanium particles.

Particles are put inside of a bottle, and are mixed by rotation motion of the mixer.

After mixing properly, the mixed particles were hot pressed to make a pellet. The hot

pressed process is important to attain a sample with high density. The appropriate

28



conditions, such as pressure and temperature, were determined by trial and error. Figure

2.1.5 shows the schematic of the hot press apparatus and Table 2.1.2 shows hot pressed

conditions for each samples. Hot pressed temperature cannot be higher than the solid line.

(Fig. 2.1.1) Two types of 1% Boron doped SiGe samples were prepared. One was

Sio.8Geo.2 and the other was Sio.2Geo.8 . They were prepared in order to check which

composition has stronger size effect.

Graphite
piston

Graphite Sample
cylinder powder A

Current for
heating

Force for
pressing

Fig. 2.1.5. Schematic of the hot press apparatus. A sample is placed on the middle of two

pistons. And current is applied to heat the sample.

As seen in Table 2.1.2, hot press conditions are critical to have dense sample. Dense

sample may be most desirable for thermoelectric application, because porous sample

generally decreases electrical conductivity significantly. Only samples with high density

were measured. Further experiments regarding optimized hot press condition could not be

done due to lack of the samples.
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Table 2.1.2. Table of hot pressed conditions for SiGe.

measured due to reduction in electrical conductivity by

Only shaded samples were

porosity. Unit of mesh is

number of sieve wires per inch. Equivalent particle diameters to 325 mesh and 100

mesh are 44/m and 149Pm respectively.

. Si particle Ge particle Temp. Pressure Hold Density
Composition diameter diameter (0C) (MPa) time (%)

Si8oGe 2o 325 mesh 100 mesh 1000 127 5 min 85

Si8oGe 20 325 mesh 100 mesh 1050 127 5 min 89

SigoGe 2o 325 mesh 100 mesh 1050 127 5 min 90

Si8oGe2o 325 mesh 100 mesh 1100 127 5 min 96

Si8oGe2o 100 nm 100 mesh 1100 127 5 min 90

Si 8oGe 2O 100 nm 100 mesh 1150 127 5 min 98

Si 2oGe8o 325 mesh 100 mesh 775 127 5 min 82

Si 2oGe8o 325 mesh 100 mesh 800 127 5 min 85

Si2oGe8 O 325 mesh 100 mesh 850 127 5 min 94

Si 2oGe8o 325 mesh 100 mesh 875 127 5 min 74

Si 2oGe8o 325 mesh 100 mesh 850 127 5 min 95

Si 2oGe8o 100 nm 100 mesh 850 127 5 min 83

Si 2oGe8o 100 nm 100 mesh 850 127 5 min 84
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2.2. Electrical Conductivity Measurement

2.2.1. System Setup

Electrical conductivity is usually measured indirectly by resistivity p. The resistivity p

can be found from the relation p=AR/L, where R is resistance, L is sample's length, and A is

sample's cross sectional area. The resistance is deduced from the slope of voltage drop to

current flow into the sample. (Fig. 2.2.1)

-f.

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

a=1 /p=79000 S/m

p=12.692 Qm

0.05
I (A)

0.1 0.15

Fig. 2.2.1. Slope method for electrical conductivity.

Although electrical conductivity measurement technique has been developed to yield

accurate results these days, there are still two problems for thermoelectric materials. One

is a voltage by the Petlier effect, and the other is the contact resistance between the metal

electrode and the semiconductor samples. Due to the Peltier effect, external current

induces a temperature gradient. This temperature gradient in turn generates electrical

potential difference, Seebeck voltage. The Seebeck voltage hinders the exact
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measurement of voltage induced by the resistance of the sample. To avoid this effect, an

AC current source was utilized to measure electrical resistance. Since AC current alters

direction periodically, there cannot be net temperature difference by the Peltier effect.

Previous experimental study suggests that 60 Hz of the frequency is enough to neglect the

Peltier effect. We used 1 kHz, because of the stability problem of an AC current source.

Another problem with electrical conductivity measurement is the contact resistance.

This contact resistance is due to the difference of the electron internal energy level between

the metal and the semiconductor, called Schottky Barrier.27 The contact resistance is also

due to the oxide layer on the surface. The contact resistance can be as much as one

hundred ohms. Resistance of samples is expected to be less than ten ohms. Reliable

electrical conductivity data can be obtained only after the contact resistance problems have

been solved. A four probe method 28 is typically used to eliminate the contributions of

contact resistance. Current is injected through one set of current leads, and voltage is

measured using another set of voltage leads. Because of high impedance of digital multi-

meter, only voltage drop induced by current can be measured. Figure 2.2.2 shows a basic

schematic of the electrical conductivity measurement system using the four probe method

with AC current source.
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HP 33120A Keithley 2000 H P 34401 A

AC Power Source Voltmeter Ammeter

Sample

Fig. 2.2.2. Schematic of electrical conductivity measurement

Although the effect of contact resistance can be eliminated by the four probe method,

inconsistent contact resistance leads to unstable result. Moreover, growth of the oxidation

layer in the air can increase the contact resistance up to few tens of kilo-ohms. Methods

for solving these problems were developed and will be discussed in the following sections.

2.2.2. Sample Holder

Intrinsic contact resistance, Schottky Barrier, is caused by the gap between the work

function of the metal and the electron affinity of the semiconductor. It exists even in the

zone where metal and semiconductor are in good physical contact. Resistance is high and

unstable when two materials are not in good physical contact. Therefore, it is important to

secure a stable contact between the metal probes and the semiconductor samples.

Resistance was found to be stable when probes touched the surface of a sample in

constant pressure. Two solutions were suggested to apply a constant pressure. The first

solution was to attach probes with silver paste from Epoxy Technology©. Although the

silver paste could hold probes firmly during experiment, there existed uncertainty in length

measurement between the two probes due to a large blob of the silver paste. Besides,
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silver paste has a long hardening time and is time inefficient.

The other solution was to make a sample holder, by which probes touched a sample

with constant pressure. Figure 2.2.3 shows the sample holder that was designed for the

electrical conductivity measurement. A sample is put on the bottom plate (Fig. 2.2.3a) that

consists of two copper electrodes for current flow. The bottom plate is then covered by the

top plate (Fig. 2.2.3b), which contains two copper wires for voltage measurement.

Constant pressure is achieved by having two screws that are used to hold both of the plates

together (Fig. 2.2.3c). Alumina, which has a melting temperature of 2323 1C, is utilized

as the body material both for insulation and for withstanding the high temperature.

Fig. 2.2.3. A sample holder for electrical conductivity measurement. : (a) the bottom plate

with a sample on it. (b) the cover plate which has two wires for electrical conductivity

measurement. (c) combine two plates together. (d) use screws to apply constant pressure

in order to acquire stable contact
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Although one dimensional current flow may not be guaranteed with electrodes at the

bottom (rather than at the ends), the bottom contact is advantageous to apply constant

forces on the sample and thus stable contact resistance is acquired. The sample holder is

also useful since it can reduce the measurement time and decrease the uncertainty in the

length measurement. The electrical conductivity was measured for several samples with

the help of this sample holder and results showed consistent values with a repeatability of

10% standard deviation.

2.2.3. Polishing System

Another contribution to contact resistance is the oxidation layer on the surface. The

silicon germanium composite can be easily oxidized in the air even at the room temperature.

Due to the dielectric nature of the oxide layer, oxidation layer of the silicon germanium

composite needs to be removed before making electrical conductivity measurement.

Silicon dioxide can be removed chemically by hydrofluoric acid, or mechanically by

polishing the surface of a sample. Mechanical method was adopted due to a safety issue

of the hydrofluoric acid. Polishing was also useful to have uniform dimensions of a

sample.

Figure 2.2.4 shows a schematic of the polishing system. A two inch brass rod and a

hub with a transition fit were designed. A sample is attached by wax on the top of the

brass rod, and the hub guides a vertical position of the rod. 35 gfm and 10 /1m silicon

Carbide powders and quartz plates from South Bay Technology, Inc. are utilized to polish

the surface.
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Fig. 2.2.4. Schematic of polishing system.

2.3. Seebeck Coefficient Measurement

The Seebeck coefficient measurement is known to be the easiest among the

thermoelectric properties, because it is independent of geometric parameters and it is not

sensitive to heat loss problem. The Seebeck coefficient S is defined as the ratio of the

electrical potential difference 4 V to the temperature difference JT, S=-A V/AT. The

temperature difference is determined by using K-type thermocouples, which are consisted

of Alumel and Chromel.

Although the Seebeck coefficient measurement is not sensitive to the heat loss

problem, unsteady heat loss is not desirable for good results. Because of an unwanted

heat flow with any attachment to the sample, a sample holder cannot-be used in this case to

hold the thermocouples on a sample. On the other hand, the silver paste is used to make a

contact between the thermocouples and the sample. Thermocouples with three milli-inch

diameter are utilized to minimize conductive heat loss through thermocouples wires, and

one branch of the thermocouples is used for voltage measurement. (Fig. 2.3.1)

36



Heater

Heater 
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Te

Fig. 2.3.1. Schematic of the Seebeck coefficient measurement system

Measurements are practiced under 10- torr vacuum in order to minimize temperature

fluctuation due to convection. Figure 2.3.2 shows the vacuum system which is used for

the Seebeck coefficient measurement and for the thermal conductivity measurement.

Temperature difference is induced by an electric heater at the top of a sample as shown in

Fig. 2.3.1. Six or seven data points were plotted in the AV-AT curve by changing the

power that went through the electric heater. The Seebeck coefficient was acquired by a

slope of the AV-AT curve, similar to electrical conductivity measurement case.
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Fig. 2.3.2. Vacuum system for the Seebeck coefficient and thermal conductivity

measurement system

One should note that the result should be compensated by the Seebeck coefficient of

the wires that are used for voltage measurement. Since there exists temperature difference

between the measurement points and ambient temperature, voltage drop by the wires

affected the value of voltage measurement, V = (T, - T,)S+, - T,)S, + (T" - T)S,

= (TI, - T,)(S, - S,.). Hence, we should add the Seebeck coefficient of wires to the value

we got from the slope. Both alumel and chromel wires were used for voltage

measurements and the results were not different from each other. And experimental

results show a repeatability of 4%.

2.4. Thermal Conductivity Measurement

Thermal conductivity k is defined as the ratio of heat flux q" to the temperature

gradient VT caused by the heat flux, k=q "/ 7T. The same schematic we used for the
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Seebeck coefficient can be applied for the thermal conductivity measurement. (Fig. 2.3.1)

However, the thermal conductivity measurement is more difficult than the Seebeck

coefficient or electrical conductivity because of heat loss problem. Unwanted heat flow

happens mainly by radiative or convective heat loss from the surface and by unstable

thermal contact between the heat source and the sample. The heat loss problems hinder

the exact calculation of the heat flux that goes through the sample, and thus the exact

thermal conductivity is unattainable. Therefore, minimizing unwanted heat flow is the

most important thing in the thermal conductivity measurement. In the following sections,

methods to decrease unwanted heat flow will be discussed.

2.4.1. Steady State Method

The steady state method is the most frequently used technique to determine thermal

conductivity of bulk material.3 0  As showed in Fig. 2.3.1, an electric heater (a heat source)

is attached at the top of the sample that stands on a large copper plate. The copper plate

works as a heat sink to ensure a one dimensional heat flow through the sample. Heat flux

is calculated by the amount of power that goes through the electric heater divided by the

cross sectional area. To get uniform heat flux, the sample must have a uniform cross

sectional area. Uniform geometry can be acquired by using the polishing system

mentioned in the previous chapter of electrical conductivity measurement.

The temperature is measured by K-type thermocouples at two points along an axial

direction of a sample. Similar to the Seebeck coefficient measurement, 3 milli-inich

thermocouples from Omega Engineering© are utilized to minimize conductive heat loss

through the wires. By simple calculation, heat loss through the thermocouples wires are
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expected to be less than 0.1% of total heat amount that goes through a sample.

When one dimensional heat flow in x-direction and linear temperature distribution are

assumed along a sample, the relation VT = dT /dx = AT / Ax can be valid. Then the

thermal conductivity can be determined by slope of heat flux to temperature difference by

using the relation k=-q "Ax/AT. By changing the heat flux amount, several data points can

be acquired. However, one should note that the assumption of linear temperature

distribution is valid only when heat loss from the sample surface is negligible.

The heat loss from the sample surface is due to radiative and convective heat loss.

Convective heat loss can be minimized by using the same vacuum system as in the Seebeck

coefficient measurement. Radiative heat loss is simply calculated by average temperature

of a sample surface Tavg and ambient temperature Tamb q=ouA(Tavg4-Tamb 4), where a is

Boltzmann's constant and 6 is emissivity of a sample. When the radiative heat loss is less

than 1% of total heat that goes through a sample, it is appropriate to use the slope method.

This slope method is valid for a sample of which thermal conductivity is more than 10

W/mK. However, radiative heat loss increases with increasing temperature, and with

decreasing thermal conductivity and emissivity of a sample. Hence, the slope method

cannot be applied in such conditions. Figure. 2.4.1 shows that the assumption of linear

temperature distribution cannot be hold with decreasing thermal conductivity. The figure

is plotted by a fin model29 which would be discussed later.
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Fig. 2.4. 1. Temperature distribution along a sample caused by steady state heat source at

x=0 with the same temperature difference between x=0 and x=15cm. 500K ambient

temperature is chosen because of visual clearness. Temperature distribution does not

seem to be linear with decreasing thermal conductivity due to radiation loss from sample

surface.

Two trials are made to minimize the radiative heat loss effect in the steady state

method. The first trial is to make radiation shields outside of a sample. Although the

radiation shields decreases the radiative heat loss, they cause another unwanted heat flow

problem. Heat could be transferred from top to bottom by reflection from the shields.

This problem is not good for calculating exact amount of heat flux. Figure 2.4.2 shows

the sample with radiation shields, and its problem.
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Sample

Radiation Shields

Fig. 2.4.2. A sample mounted on the copper plate with radiation shields and unwanted heat

flow with radiation shields (Left). A sample mounted on the plate without a radiation

shield. (Right)

The second trial is to calculate the thermal conductivity with consideration of radiative

heat loss. In this case, it is better to let radiation go away without any radiation shield.

As in the right of Fig. 2.4.2, radiation does not reflect back to the sample, so that we can

assume a perfect absorbing ambient. With a perfect absorbing ambient, the fin model

can be applied. For one dimensional sample, from two temperatures heat can be

determined by following equations.

hP (T,, - T,)(e"L + eCL) - 2(T - T.)

S m e'" -e-L
hP e(2.4.1)

kA= ,h = 4 'UT 1
kA4,

where, q is heat that goes through a sample, A, is cross sectional area of a sample, P is

perimeter of cross section of a sample, L is a length between two thermocouples, T1, is

temperature of higher point, T, is temperature of lower point, T, is ambient temperature, a

is Boltzmann's constant, c is emissivity of a sample, and k is the thermal conductivity of a
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sample. As the value of q can be calculated by the electrical power of electric heater, m

can be solved from Eq. (2.4.1) using computer program. From the relation between m and

k in equation (2.4.1), thermal conductivity k is derived. The result with this method is

more accurate than the result with the slope method. However, because of thermal contact

resistance between the electric heater and a sample, not all the electrical power goes

through a sample. Power could be lost by radiation from the heater. And the amount of

heat loss is difficult to estimate, because the temperature of the heater depends on how well

the thermal contact was made. Besides, it is hard to estimate the sample emissivity.

Therefore, for low thermal conductivity materials, we need to explore other measurement

technique, which does not require a calculation of heat.

2.4.2. Transient Method

Throughout 19" and early of 201h century, non-steady-state methods to measure

thermal transport property were developed both experimentally and mathematically.3'

Most of them measure thermal diffusivity rather than conductivity, which indirectly

determines thermal conductivity with the value of specific heat and density.

k = pCa (2.4.2)

where p [kg/rn3] is density, C [J/kgK] is specific heat, and a [m 2/s] is diffusivity. The

density can be easily determined by Archimedes' principle. We can use the well

established result from a table32 and a calculation33 for the specific heat. And the

diffusivity is acquired by solving one dimensional diffusion equation.

IaT + i, T = , (2.4.3)
a at 8t 2
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where T is temperature difference to ambient temperature, and m is the coefficient of

surface heat loss which takes into account heat loss by radiation, conduction, and

convection. Depending on the boundary conditions, a wide range of solutions are possible.

In 1961, Angstrom developed the thermal diffusivity measurement method with

sinusoidal heat source for a semi-infinite sample.2' 34 And it has been modified and

improved by numerous investigators and has become a well-established method for thermal

diffusivity measurement. 35-37 Although Angstrom's method was established long time ago,

it has not been properly replaced by other recent techniques due to its mathematical

clearance and convenience of installation. Following is the mathematical derivation of

how the thermal diffusivity is determined.

With sinusoidal heat source with a frequency o mounted on the top of the sample

(x=O), the solution of equation (2.4.3) is assumed to be in the form of

T(x,t) = A(x) + B(x)e'." (2.4.4)

where, i is the unit imaginary. In this equation only the B(x) term, which is the amplitude

of sinusoidal wave, matters for the derivation of the thermal diffusivity. The sinusoidal

wave is realized by applying AC current to the electric heater in Fig. 2.3.1. When T of

equation (2.4.3) is substitute by the T in equation (2.4.4), the second order ordinary

differential equation for B(x) becomes

B., (x) - ( + m 2 )B(x) = 0 (2.4.5)
a

where Bx is the second derivative of B with respect to x. The general solution of equation

(2.4.5) is
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B(x) = Cef +C.e-

2  io(2.4.6)
p~=m +--

a

where C, and C2 are constants to be determined by the following two boundary conditions.

One of the boundary conditions is determined by the sinusoidal heat source,

T(x = 0,t) = a+be"' (2.4.7)

B(x =0)=b

Theoretically, the method we used for deriving the thermal diffusivity assumes semi-

infinite sample for which the solution becomes

B(x) = be-6 (2.4.8)

When f is split into real part P and imaginary part Q, we can get the following relation.

PQ = 0 (2.4.9)
2a

And we can rewrite the solution of the diffusion equation as,

T(x, t) = A(x) + be~' cos(wt - Qx) (2.4.10)

From the equation, we can observe that amplitude and phase of sinusoidal temperature

wave will be different from each measurement point. Measurements of only two

temperature waves at two points x=x,, x2 are enough to determine the coefficients P and Q

without knowing b. Hence, Angstrom method is useful in the sense that thermal

diffusivity can be measured regardless of heat loss or amount of heat that goes through.

Figure 2.4.3 shows a measurement result of the Angstrom's method.
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Fig. 2.4.3. Measurement result of Angstrom method. Temperature was measured at two

points along a sample. Red one is at the upper thermocouples x=xl and Blue one is at the

lower thermocouples x=x2. M and N are the amplitudes of each signal, and dt is phase

difference between signals.

From the measurement result, we can acquire amplitude M and N, and phase

difference dt between two sinusoidal temperature waves. From two amplitudes, P in

equation (2.4.10) can be determined.

M be-e" =
N be" (2.4.11)

1 M
P= - In

L N

where, / is the length between two measurement points. And from phase difference Q is

determined.
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cot - Qx, = co(t + dt) - Qx 2

Q(x, - x,)= co -dt (2.4.12)

co -dt
Q=

With P and Q in equations (2.4.11) and (2.4.12), we can derive the thermal diffusivity a

from equation (2.4.9)

wdt
PQ = lIn-M=---

12 N 2a

12 (2.4.13)

a=2dt~nM
N

By this relation, we can get thermal diffusivity without any knowledge of amount of power

goes into a sample, and without any consideration of heat loss from sample surface.

However, the sample cannot be semi-infinite, but rather is finite with a length of L.

Thus, the heat sink is attached at the bottom of the sample of length L (x=L). With the heat

sink, the temperature at x=L should be close to the ambient temperature. With this

boundary condition, the general form of B(x) in equation (2.4.6) can be specified as

B(x) = b L e (2.4.14)
1-e 2 L _ -2)L

If equation (2.4.14) is not much different from equation (2.4.8), then the simple semi-

finite method is still valid even for a sample with finite length. To meet this condition, the

first term of equation (2.4.14) should be negligible and the denominator of the second term

of equation (2.4.14) should be 1. That is, the real part of 2flL should be much greater than

1.
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I
Re(2L) >> Iz L >> (2.4.15)

Re(2/L) L 2 Re(/3)

With a 10 W/mK magnitude for the thermal conductivity, a sample of 2 mm diameter,

and a low heat source frequency such as 10 mHz, calculations show that L for the sample

should be much longer than 1mm in order for the semi-infinite method to be valid. The

lengths of the samples that were used for the measurement were around 12 mm, which can

be thought of long enough. Figure 2.4.4 shows the dimensionless form of B(x)/b with x

given by equations (2.4.8) and (2.4.14). There is hardly any recognizable difference

between the two lines.

0.01

0.00 9 \ .x- 0.0103
error - 0

0.006

0.8 0.004

01002

0.6
0
0.09 0.01 0.011 0.012 0.013 0.014 0.015

0.2

0
0 0.005 0.01 0.015

distance(m)

Fig. 2.4.4. Theoretical solutions of the amplitude of sinusoidal temperature for the case of

,p=500 m-1 with increasing distance from the heat source. Two different solutions with

different boundary conditions are plotted in the same viewgraph. The two solutions give

almost identical results. The difference between two graphs is growing larger than 1 %

from x=0.0103 m.
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However, with a closer look, from the point of 10.3 mm out of 15 mm sample, the

error between two lines grows larger than 1 %. The error even more decreases with low

wave frequency, low thermal conductivity, and low ambient temperature. Therefore,

Angstrom's method is still valid for a finite sample with low thermal conductivity, as far as

two thermocouples are attached above 5 mm from the bottom.

Pyrex Borosilicate glass was also utilized this time to calibrate the system. We used

frequencies of 5mHz and 10mHz for the calibration and for the actual measurement.

Although the pyrex glass was not a standard thermal conductivity reference material of the

National Institute of Standards and Technology (NIST), this material is known to have quite

a stable thermal conductivity value which is given in the literature to be around 1.14 W/mK.

The experiment using the Angstrom method led to a value of 1.07±0.07 W/mK. Hence

the reliability of the measurement system was around 7 % with repeatability of 6.5 %.

The main sources of error in the thermal diffusivity measurement are uncertainty in the

length measurement, the curve fitting, the value of the specific heat and density, and the

defects of the sinusoidal power source. Similar to the steady state method, uncertainty in

the length measurement between the two thermocouples exists for both methods.

However, this effect is now more pronounced with the new method since thermal

diffusivity is proportional to the square of 1. Although the Angstrom method has various

source of uncertainty, it showed better reliability and repeatability than the steady state

method.
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Chapter 3.

Results & Discussion

3.1. Heat Treated Samples

Heat treated samples showed reduction in thermal conductivity, and increase in the

Seebeck coefficient without significant decrease in electrical conductivity. The detail

measurement results are shown in Table 3.1.1 at the last part of this section. Some of the

samples were not in good condition to carry out enough amount of measurement for the

systematic data. The samples were in bad condition for measurement when they were

treated at high temperature and for long holding time. However, we could observe a trend

of change in thermoelectric properties with the heat treatment temperature. Change in

each property will be discussed separately.

As in Fig. 3.1.1, the thermal conductivity reduced more or less throughout the

annealing temperature region with 10 minutes holding time. The maximum reduction by

the factor of two was observed in the annealing temperature region between 1360 IC and

1365 1C. Although the temperature was not an actual annealed temperature but a value of
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the furnace panel, it was supposed that there would not be more difference than 10 C

between the actual annealed temperature and the value of the furnace panel. Therefore,

we can conclude that partial melting happened and another grain was formed at the

temperature region slightly higher than a solid line. This conclusion can be supported by

the result at the high temperature region. At high annealing temperature, samples melted a

lot such that additional boundaries could not be formed. Increased amount of grain

resulted in the reduction in the thermal conductivity due to boundary phonon scattering.

The result was quite encouraging as not any previous study had shown decrease in thermal

conductivity by a single heat treatment method.
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Fig. 3.1.1. Thermal conductivity

treatment at each temperature

(1350 -C)

(W/mK, y-axis) of the samples

("C, x-axis). Dashed line is

after 10 minutes of heat

solid line temperature.

Heat treatments with different holding time were carried out for the temperature region

where we observed the biggest reduction in the thermal conductivity. Samples were heat
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treated with the holding time of 5 and 20 minutes at 1360 IC and 1365 *C. However, we

could not observe further decrease in thermal conductivity. (Table 3.1.1) The sample heat

treated at 1360 "C for 20 minutes showed satisfactory decrease in thermal conductivity,

but the sample heat treated at 1365 IC for 20 minutes and the sample heat treated at

1360 "C for 5 minutes showed the same or increased value compared with the "as

received" samples. 5 minutes with 1365 IC were broken so that it could not be measured.

Systematic study should be carried out to decide the best condition for the heat treatment in

the near future.

Figures 3.1.2 and 3.1.3 show the measurement results of the Seebeck coefficient and

electrical conductivity respectively. While the Seebeck coefficient slightly increased or

maintained compared with the "as received" samples, electrical conductivity slightly

decreased after the heat treatment. However, as in Fig. 3.1.4, the power factor, which is

product of square of the Seebeck coefficient and electrical conductivity, remained almost

same for heat treated sample with holding time of 10 minutes. Hence, it is the thermal

conductivity that decides the thermoelectric figure of merit, ZT.
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Fig. 3.1.2. Seebeck coefficient (pV/K, y-axis) of the samples after heat treatment at each

temperature ( C, x-axis). Hold time was 10 minutes except for the samples indicated in

the figure. Slanted red dashed lines denote the Seebeck coefficient range of the "as

received" materials before heat treatment. Most of heat treated sample showed the

Seebeck coefficient not worse than "as received" samples.
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Fig. 3.1.3. Electrical conductivity (S/m, y-axis) of the samples after heat treatment at each

temperature (0C, x-axis). Hold time was 10 minutes except for the samples indicated in

the figure. Dashed line is solid line temperature. (1350"C) Electrical conductivity of

heat treated samples did not reduced significantly.
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Fig. 3.1.4. Power factor (W/mK 2, y-axis) of the samples after heat treatment at each

temperature (0C, x-axis). Hold time was 10 minutes except for the samples indicated in

the figure. Power factor remained almost same for the heat treated samples with holding

time of 10 minutes.

The best thermoelectric sample was 1365-10 with ZT of 0.096. (Table 3.1.1) ZT

increase 57 % to "as received" samples. Unfortunately, the sample with the minimum

thermal conductivity, "1360-10", was broken so that we could not observe the ZT for that

sample. Although there still need more systematic experiments, we could conclude that

heat treatment is a promising method in enhancing ZT.
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Table 3.1.1. Room temperature measurement result of heat treated Sio.<Geo. 1 alloy.

Thermal Seebeck Electrical

Sample Name Conductivity coefficient conductivity ZT

(W/mK) (yV/K) (S/m)

As Received 1 9.97±0.45 143 95400 0.059

As Received 2 9.73±0.35 140 105200 0.063

1345-10 7.67±0.37 155 76800 0.072

1355-10 7.58±0.37 148 80400 0.070

1360-5 9.98±0.21 155 56200 0.041

1360-10 4.98±0.05 Broken Broken NaN

1360-20 6.56±0.50 143 64600 0.060

1365-10 6.00±0.39 151 84500 0.096

1365-20 12.0 140 84300 0.041

1370-10 10.6 150 96300 0.061

1375-10 8.71 95.1 71700 0.022

3.2. SiGe Nanocomposites

Table 3.2.1 shows the thermoelectric properties measurement results of SiGe

nanocomposite. Although there are not enough data to conclude, thermal conductivity

was lower in the samples with nanosized silicon particles than with micro-sized silicon

particles. The comparison was made within the same composition and the same density
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range. Moreover, the lowest thermal conductivity of 1.66 W/mK shows that the

nanocomposite approach is quite promising, as this value is comparable with the lowest

value of 1.4 W/mK ever measured in SiGe superlattice.12

Table 3.2.1. Room temperature measurement result of SiGe nanocomposite

Thermal Seebeck Electric

Composition Si particle Density Cond. Coeff. Cond. ZT
diameter (%) (W/mK) (jAV/K) (S/m)

Si 8oGe 2o 325 mesh 90 4.27±0.34 233 4000 0.015

Si8 oGe2 o 325 mesh 96 5.94±0.48 110 74000 0.046

Si 8oGe 2o 100 Mnm 90 1.66±0.14 250 3200 0.036

Si8oGe2o 100 nm 98 4.27±0.29 104 89000 0.067

Si 2oGeso 325 mesh 95 30.7±3.46 572 140 0.0004

Si 2oGe8o 100 un 83 5.07±0.27 226 3800 0.012

Electrical conductivity

germanium rich composite.

was greatly reduced with decreasing density except for

Although there are not enough data to conclude something,

reduction in electrical conductivity was attributed to unactivated dopants as well as porosity

effect. Similarly, before attributing the thermal conductivity reduction to size effect, we

need to verify if there is any effect of porosity to thermal conductivity. The models for

thermal conductivity reduction caused by porous effect were developed by Eucken and

Russell in the early of 2 0th century.38 The ratio of the thermal conductivity of porous

media kporous, to the thermal conductivity of solid media ks01id, can be described as,
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(kp01.0,1 / ksolid )Eke = (I - 0/1+ 0/2) (3.2.1)

(kporo / ksolid )Russell = ( _2/3 )/(i _ 02/3 + 0) (3.2.2)

where, 4 is porosity, which is equivalent to one subtracted by density p. By the equations

(3.2.1) and (3.2.2), thermal conductivity reduction from the value of the SiGe bulk alloy

was calculated. The thermal conductivities of Sio.8Geo. 2 and Sio2 Geo.8 bulk alloys are 6.3

W/mK and 11.3 W/mK respectively.3 2  Table 3.2.2 shows the calculation results of

effective thermal conductivity by porous effect for the SiGe composite samples with

nanosized silicon particles. From Table 3.2.2, we can conclude that the thermal

conductivity has reduced more than by porous effect. However, recent study in our group

suggests that nanosized porous can cause more reduction in thermal conductivity than

macrosized porous. More study about nanosized porous effect must be explored in the

near future.

Table 3.2.2. Effective thermal conductivity of SiGe nanocomposite by porous effect.

Nanocomposites were made with 100nm silicon particles and 100mesh germanium

particles. Calculations were made with both Eucken and Russell models.

Composition Density Eucken model Russell model Measured

(%) (W/mK) (W/mK) value (W/mK)

Si8oGe 2o 90 5.4 5.6 1.66A0.14

Si8oGe 2o 98 6.1 6.2 4.27±0.29

Si 2oGeo 83 8.6 9.1 5.07±0.27

The results in Table 3.2.2 suggested another fact that more decrease in thermal
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conductivity happened for the low density sample than the high density sample. This is

related with the hot press parameter, such as hot press temperature and holding time. With

higher hot press temperature, high density sample could be acquired. But high

temperature can grow grain size, just as in the case of normal annealing, so that boundaries

were formed less than low temperature hot press. Hence, significant decrease in thermal

conductivity could not be observed at 98% silicon rich nanocomposite as in the 90% silicon

rich nanocomposite.

Germanium rich samples were prepared with the expectation of low thermal

conductivity and high electrical conductivity, as bulk germanium particles have lower

thermal conductivity and higher electrical conductivity than bulk silicon particles.32

However, the experimental results showed the opposite case. The Si 2oGe8o sample with

325 mesh of silicon particles showed the properties values that was even far higher than the

values of bulk alloy. There could be problems with sample preparation procedure such as

mixing or hot press. Besides Si 2oGe8o with micro-sized silicon particles, Si 2oGe8o with

nanosized silicon also showed higher thermal conductivity than the silicon rich samples.

Hence, it is not a thermal conductivity of bulk material that decides the thermal

conductivity in nanostructures. This was also supported by a modeling study. Yang

suggested that silicon rich nanocomposite would have lower thermal conductivity than

germanium rich nanocomposite by modeling study for SiGe nanocomposites.

The fact that the thermal conductivity of the composite with I 00nm silicon was lower

than that of the comoposite with 325 mesh silicon was expectable by many recent modeling

studies on the thermal conductivity of superlattices and thin film.15-17 Most of them
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simulated the thermal conductivity reduction by diffuse phonon scattering at interfaces

using Boltzmann Transport Equation. One of the modeling studies showed that thermal

conductivity of in plane superlattices reduced with decreasing characteristic length of

nanostructures. And the reduction was even more conspicuous when the characteristic

length of nanostructures was comparable to or less than phonon mean free path. The bulk

phonon mean free path is between 100 and 200 nm at room temperature.40  Although these

modeling studies were for superlattices, we can have physical sense that thermal

conductivity reduced more in nanocomposite with 100 nm silicon particles than in

composite with 325 mesh silicon particles.
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Chapter 4.

Conclusions and Future Plans

4.1. Conclusions

In order to enhance thermoelectric efficiency, two approaches have been made to

increase the number of interfaces hence the amount of phonon boundary scattering. In

this thesis, SiGe was chosen for the purpose of power generation for space application.

The first approach was heat treatment on SiGe alloy at higher temperature than the solid

line of phase diagram. This procedure was expected to melt the alloy slightly and form

additional boundaries. Another approach to increase interfaces was SiGe nanocomposite.

The SiGe composite was made with nanosized silicon particles; the small grain size was

expected to provide more interfaces so that more phonon boundary scattering were

expected than composite made with micro-sized silicon particles.

Along with the sample preparation, measurement systems were also developed to

produce reliable and fast results. The four probe method was utilized to measure electrical

conductivity. And the sample holder was also designed for quick measurement. The
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Angstrom method, which determines the thermal conductivity indirectly, was found to be

the most reliable method to measure the thermal conductivity. The Borosilicate Pyrex

Glass was utilized to calibrate the thermal conductivity measurement, and we got 7%

reliability with 7% repeatability.

These measurement systems were used to measure thermoelectric properties of the

samples. Reduction in thermal conductivity was observed for both sample preparation

methods. For the heat treated SiGe, the thermal conductivity decreased by a factor of two

while maintaining the power factor, hence ZT doubled. For the SiGe nanocomposite, the

thermal conductivity reduced almost by a factor of four compared to its alloy counterpart.

The lowest thermal conductivity value of SiGe nanocomposite, 1.66 W/mK was even

comparable with the lowest value ever measured in SiGe superlattices, 1.4 W/mK.

Thermal conductivity reduced more in silicon rich nanocomposite than in germanium rich

nanocomposite. This trend in thermal conductivity was in good agreement with recent

modeling studies on SiGe nanocomposites.

4.2. Future Plans

Although reduction in thermal conductivity was observed by the heat treatment and

the nanocomposite approaches, enhancement of ZT was not achieved due to the

accompanying reduction in electrical conductivity. Besides, there are not enough

modeling studies which can well explain reduction in thermal conductivity of

nanocomposite. In this section, uncharted area in nanocomposite study, which remain to

be done in near future, are discussed.
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4.2.1. Method to Increase the Power Factor

The power factor is determined by the square of the Seebeck coefficient times the

electrical conductivity. It is hard to increase the power factor because these two

parameters are inversely dependent on each other. With nanostructures, increase in the

Seebeck coefficient can be observed without decrease in electrical conductivity by the

quantum confinement effect.4 ,5 , 0 However, in our study of SiGe nanocomposite, increase

in power factor by the quantum confinement effect did not appear. Therefore, proper

methods to increase the power factor, especially electrical conduictivity, in SiGe

nanocomposite should be explored.

The first approach to achieve high electrical conductivity is to make nanocomposite

with different size particles in order to observe the quantum confinement effect. This

approach is also useful for achieving low thermal conductivity. The systematic study of

hot press conditions to get a dense material should be developed first.

The second approach is to change the composition of SiGe. Silicon and germanium

have different energy band structures. Energy band gap and momentum decides energy

band structures. If an electron is to be in conduction band, both energy band gap and

momentum should be applied to the electron. Silicon and germanium have similar energy

band gap but different momentum. When these two materials meet along boundaries,

mismatch in momentum hinder electrons from flowing current. Hence, in order to have

good electrical conductivity, the energy band structure should be matched. Si-xGex alloys

are known to have "silicon-like" energy band structure when x is less than 0.85.32

Electrons will not be scattered if composite is made of silicon and SiGe alloys rather than
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silicon and germanium.

The third approach is to explore optimum doping concentration to achieve high power

factors. This approach also requires study on doping activation. Also, dopants should be

activated by normal annealing processes. The temperature to activate the dopants is well

known from several semiconductor processing technology.41

4.2.2. High Temperature Measurement System

Actual application of thermoelectric power generation requires high temperature.

Therefore, it is more important to characterize thermoelectric properties at high temperature

than at room temperature. However, high temperature measurement system has never

been setup for SiGe nanocomposites study in our laboratory.

High temperature measurement is more challenging than room temperature

measurement. The contact between wires and the samples cannot be secured due to low

melting temperature of the silver paste. However, Electrical conductivity can be easily

measured by the sample holder which was discussed in section 2.2.2. A sample in the

sample holder can be put inside of the furnace to reach high temperature ambient, and then

the electrical conductivity is measured in the same way as for room temperature

measurement. Figure 4.2.1 shows the schematic of high temperature system for the

electrical conductivity measurement. The vacuum pump is utilized to evacuate the air to

prevent oxidation on the sample. As in the heat treatment case, Argon gas will flow in to

push away the remaining of air and to be used as heating-medium. Wires are connected

inside and outside of the chamber by a stainless steel feed through at the cap.
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Fig. 4.2.1. A schematic for electrical conductivity measurement at high temperature.

But for the Seebeck coefficient or thermal conductivity, temperature measurement by

thermocouples is challenging due to contact problem. Optical detectors can be another

choice for temperature measurement. And laser can be used as a power source to produce

a temperature gradient. The Laser Flash Method is another well established transient

42 ebc ofiin
method for thermal conductivity using the laser technique. For the Seebeck coefficient

with laser heat source, temperature can be acquired also by optical detectors.

4.2.3. Modeling Study for the Nanocomposites

Since Hicks and Dresselhaus suggested the possible increase in ZT of nanostructure,4

papers regarding modeling of thermoelectric properties in nanostructure have also been

published. But most of the modeling studies deal with special kinds of periodic

nanostructures such as superlattices or nanowires, which are impratical for large scale

production. Although trend of properties with size effect is predictable, there has not been

the exact model that can well explain thermal conductivity of nanocomposites. However,
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it is quite encouraging that Yang showed a modeling study of thermal conductivity in two

dimensional SiGe nanocomposites.3 9  He simulated the thermal conductivity of silicon

nanowires embedded in germanium host and showed reduction in thermal conductivity

with decreasing size of silicon nanowires and with increasing atomic ratio of silicon.

There exists need to further develop models for three dimensional nanocomposites and

electron transport.
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