498 research outputs found

    Ontology engineering and routing in distributed knowledge management applications

    Get PDF

    Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge Base

    Get PDF
    Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, ‱ a new vocabulary for describing the play back domain, ‱ another one for representing information service categorisations and quality ratings, and ‱ one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.:1 Introduction and Background 11 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Personal Music Collection Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Music Information Management 17 2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.1 Knowledge Representation Models . . . . . . . . . . . . . . . . . 18 2.1.1.2 Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Knowledge Management Systems . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.1 Information Services . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.2 Ontology-based Distributed Knowledge Management Systems . . 20 2.1.2.3 Knowledge Management System Design Guideline . . . . . . . . 21 2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 The Evolution of the World Wide Web . . . . . . . . . . . . . . . . . . . . . 22 Personal Music Knowledge Base Contents 2.2.1.1 The Hypertext Web . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.2 The Normative Principles of Web Architecture . . . . . . . . . . . 23 2.2.1.3 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Common Semantic Web Knowledge Representation Languages . . . . . . 25 2.2.3 Resource Description Levels and their Relations . . . . . . . . . . . . . . . 26 2.2.4 Semantic Web Knowledge Representation Models . . . . . . . . . . . . . . 29 2.2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.3 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4.4 Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4.5 Providing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4.6 Consuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Music Content and Context Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Categories of Musical Characteristics . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Music Metadata Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Music Metadata Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.3.1 Audio Signal Carrier Indexing Services . . . . . . . . . . . . . . . . 41 2.3.3.2 Music Recommendation and Discovery Services . . . . . . . . . . 42 2.3.3.3 Music Content and Context Analysis Services . . . . . . . . . . . 43 2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Personalisation and Environmental Context . . . . . . . . . . . . . . . . . . . . . . 44 2.4.1 User Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.3 Stereotype Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 The Personal Music Knowledge Base 48 3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 User Account Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Individual Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Information Service Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Proactive Update Notification . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.5 Information Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.6 Personal Associations and Context . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 A Personal Music Knowledge Base 57 4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 The Info Service Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 The Play Back Ontology and related Ontologies . . . . . . . . . . . . . . . . 61 4.1.2.1 The Ordered List Ontology . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2.2 The Counter Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2.3 The Association Ontology . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2.4 The Play Back Ontology . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 The Recommendation Ontology . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.4 The Cognitive Characteristics Ontology and related Vocabularies . . . . . . 72 4.1.4.1 The Weighting Ontology . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.4.2 The Cognitive Characteristics Ontology . . . . . . . . . . . . . . . 73 4.1.4.3 The Property Reification Vocabulary . . . . . . . . . . . . . . . . . 78 4.1.5 The Media Types Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Knowledge Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Personal Music Knowledge Base in Practice 87 5.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.1 AudioScrobbler RDF Service . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.2 PMKB ID3 Tag Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Reutilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.3 Reviews and Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusion and Future Work 93 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Semantic web technology to support learning about the semantic web

    Get PDF
    This paper describes ASPL, an Advanced Semantic Platform for Learning, designed using the Magpie framework with an aim to support students learning about the Semantic Web research area. We describe the evolution of ASPL and illustrate how we used the results from a formal evaluation of the initial system to re-design the user functionalities. The second version of ASPL semantically interprets the results provided by a non-semantic web mining tool and uses them to support various forms of semantics-assisted exploration, based on pedagogical strategies such as performing later reasoning steps and problem space filtering

    From BPMN Models to Labelled Property Graphs

    Get PDF
    There\u27s a growing interest in leveraging the structured and formal nature of business process modeling languages in order to make them available not only for human analysis but also to machine-readable knowledge representation. Standard serializations of the past were predominantly XML based, with some of them seemingly discontinued, e.g., XPDL after the dissolution of the Workflow Management Coalition. Recent research has been investigating the interplay between knowledge representation and business process modeling, with the focus typically placed on standards such as RDF and OWL. In this paper we introduce a converter that translates the standards-compliant BPMN XML format to Neo4J labelled property graphs (LPG) thus providing an alternative to both traditional XML-based serialization and to more recent experimental RDF solutions, while ensuring conceptual alignment with the standard serialization of BPMN 2.0. A demonstrator was built to highlight the benefits of having such a parser and the completeness of coverage for BPMN models. The proposal facilitates graph-based processing of business process models in a knowledge intensive context, where procedural knowledge available as BPMN diagrams must be exposed to machines and LPG-driven applications

    Expression and Efficient Processing of Fuzzy Queries in a Graph Database Context

    Get PDF
    International audienceGraph databases have aroused a large interest in the last years thanks to their large scope of potential applications (e.g. social networks, biomedical networks, data stemming from the web). In a similar way as what has already been proposed in relational databases, defining a language allowing a flexible querying of graph databases may greatly improve usability of data. This paper focuses on the notion of fuzzy graph database and describes a fuzzy query language that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. This language, called FUDGE, can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. The FUDGE language is implemented in a system, called SUGAR, that we present in this article. We also discuss implementation issues of the FUDGE language in SUGAR

    Distributed XQuery-based integration and visualization of multimodality data: Application to brain mapping.

    Get PDF
    This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts
    • 

    corecore