28 research outputs found

    Developing Travel Behaviour Models Using Mobile Phone Data

    Get PDF
    Improving the performance and efficiency of transport systems requires sound decision-making supported by data and models. However, conducting travel surveys to facilitate travel behaviour model estimation is an expensive venture. Hence, such surveys are typically infrequent in nature, and cover limited sample sizes. Furthermore, the quality of such data is often affected by reporting errors and changes in the respondents’ behaviour due to awareness of being observed. On the other hand, large and diverse quantities of time-stamped location data are nowadays passively generated as a by-product of technological growth. These passive data sources include Global Positioning System (GPS) traces, mobile phone network records, smart card data and social media data, to name but a few. Among these, mobile phone network records (i.e. call detail records (CDRs) and Global Systems for Mobile Communication (GSM) data) offer the biggest promise due to the increasing mobile phone penetration rates in both the developed and the developing worlds. Previous studies using mobile phone data have primarily focused on extracting travel patterns and trends rather than establishing mathematical relationships between the observed behaviour and the causal factors to predict the travel behaviour in alternative policy scenarios. This research aims to extend the application of mobile phone data to travel behaviour modelling and policy analysis by augmenting the data with information derived from other sources. This comes along with significant challenges stemming from the anonymous and noisy nature of the data. Consequently, novel data fusion and modelling frameworks have been developed and tested for different modelling scenarios to demonstrate the potential of this emerging low-cost data source. In the context of trip generation, a hybrid modelling framework has been developed to account for the anonymous nature of CDR data. This involves fusing the CDR and demographic data of a sub-sample of the users to estimate a demographic prediction sub-model based on phone usage variables extracted from the data. The demographic group membership probabilities from this model are then used as class weights in a latent class model for trip generation based on trip rates extracted from the GSM data of the same users. Once estimated, the hybrid model can be applied to probabilistically infer the socio-demographics, and subsequently, the trip generation of a large proportion of the population where only large-scale anonymous CDR data is available as an input. The estimation and validation results using data from Switzerland show that the hybrid model competes well against a typical trip generation model estimated using data with known socio-demographics of the users. The hybrid framework can be applied to other travel behaviour modelling contexts using CDR data (in mode or route choice for instance). The potential of CDR data to capture rational route choice behaviour for long-distance inter-regional O-D pairs (joined by highly overlapping routes) is demonstrated through data fusion with information on the attributes of the alternatives extracted from multiple external sources. The effect of location discontinuities in CDR data (due to its event-driven nature), and how this impacts the ability to observe the users’ trajectories in a highly overlapping network is discussed prompting the development of a route identification algorithm that distinguishes between unique and broad sub-group route choices. The broad choice framework, which was developed in the context of vehicle type choice is then adapted to leverage this limitation where unique route choices cannot be observed for some users, and only the broad sub-groups of the possible overlapping routes are identifiable. The estimation and validation results using data from Senegal show that CDR data can capture rational route choice behaviour, as well as reasonable value of travel time estimates. Still relying on data fusion, a novel method based on the mixed logit framework is developed to enable the analysis of departure time choice behaviour using passively collected data (GSM and GPS data) where the challenge is to deal with the lack of information on the desired times of travel. The proposed method relies on data fusion with travel time information extracted from Google Maps in the context of Switzerland. It is unique in the sense that it allows the modeller to understand the sensitivity attached to schedule delay, thus enabling its valuation, despite the passive nature of the data. The model results are in line with the expected travel behaviour, and the schedule delay valuation estimates are reasonable for the study area. Finally, a joint trip generation modelling framework fusing CDR, household travel survey, and census data is developed. The framework adjusts the scaling factors of a traditional trip generation model (based on household travel survey data only) to optimise model performance at both the disaggregate and aggregate levels. The framework is calibrated using data from Bangladesh and the adjusted models are found to have better spatial and temporal transferability. Thus, besides demonstrating the potential of mobile phone data, the thesis makes significant methodological and applied contributions. The use of different datasets provides rich insights that can inform policy measures related to the adoption of big data for transport studies. The research findings are particularly timely for transport agencies and practitioners working in contexts with severe data limitations (especially in developing countries), as well as academics generally interested in exploring the potential of emerging big data sources, both in transport and beyond

    Doctor of Philosophy

    Get PDF
    dissertationA safe and secure transportation system is critical to providing protection to those who employ it. Safety is being increasingly demanded within the transportation system and transportation facilities and services will need to adapt to change to provide it. This dissertation provides innovate methodologies to identify current shortcomings and provide theoretic frameworks for enhancing the safety and security of the transportation network. This dissertation is designed to provide multilevel enhanced safety and security within the transportation network by providing methodologies to identify, monitor, and control major hazards associated within the transportation network. The risks specifically addressed are: (1) enhancing nuclear materials sensor networks to better deter and interdict smugglers, (2) use game theory as an interdiction model to design better sensor networks and forensically track smugglers, (3) incorporate safety into regional transportation planning to provide decision-makers a basis for choosing safety design alternatives, and (4) use a simplified car-following model that can incorporate errors to predict situational-dependent safety effects of distracted driving in an ITS infrastructure to deploy live-saving countermeasures

    Improving Demand Forecasting: The Challenge of Forecasting Studies Comparability and a Novel Approach to Hierarchical Time Series Forecasting

    Get PDF
    Bedarfsprognosen sind in der Wirtschaft unerlĂ€sslich. Anhand des erwarteten Kundenbe-darfs bestimmen Firmen beispielsweise welche Produkte sie entwickeln, wie viele Fabri-ken sie bauen, wie viel Personal eingestellt wird oder wie viel Rohmaterial geordert wer-den muss. FehleinschĂ€tzungen bei Bedarfsprognosen können schwerwiegende Auswir-kungen haben, zu Fehlentscheidungen fĂŒhren, und im schlimmsten Fall den Bankrott einer Firma herbeifĂŒhren. Doch in vielen FĂ€llen ist es komplex, den tatsĂ€chlichen Bedarf in der Zukunft zu antizipie-ren. Die Einflussfaktoren können vielfĂ€ltig sein, beispielsweise makroökonomische Ent-wicklung, das Verhalten von Wettbewerbern oder technologische Entwicklungen. Selbst wenn alle Einflussfaktoren bekannt sind, sind die ZusammenhĂ€nge und Wechselwirkun-gen hĂ€ufig nur schwer zu quantifizieren. Diese Dissertation trĂ€gt dazu bei, die Genauigkeit von Bedarfsprognosen zu verbessern. Im ersten Teil der Arbeit wird im Rahmen einer ĂŒberfassenden Übersicht ĂŒber das gesamte Spektrum der Anwendungsfelder von Bedarfsprognosen ein neuartiger Ansatz eingefĂŒhrt, wie Studien zu Bedarfsprognosen systematisch verglichen werden können und am Bei-spiel von 116 aktuellen Studien angewandt. Die Vergleichbarkeit von Studien zu verbes-sern ist ein wesentlicher Beitrag zur aktuellen Forschung. Denn anders als bspw. in der Medizinforschung, gibt es fĂŒr Bedarfsprognosen keine wesentlichen vergleichenden quan-titativen Meta-Studien. Der Grund dafĂŒr ist, dass empirische Studien fĂŒr Bedarfsprognosen keine vereinheitlichte Beschreibung nutzen, um ihre Daten, Verfahren und Ergebnisse zu beschreiben. Wenn Studien hingegen durch systematische Beschreibung direkt miteinan-der verglichen werden können, ermöglicht das anderen Forschern besser zu analysieren, wie sich Variationen in AnsĂ€tzen auf die PrognosegĂŒte auswirken – ohne die aufwĂ€ndige Notwendigkeit, empirische Experimente erneut durchzufĂŒhren, die bereits in Studien beschrieben wurden. Diese Arbeit fĂŒhrt erstmals eine solche Systematik zur Beschreibung ein. Der weitere Teil dieser Arbeit behandelt Prognoseverfahren fĂŒr intermittierende Zeitreihen, also Zeitreihen mit wesentlichem Anteil von Bedarfen gleich Null. Diese Art der Zeitreihen erfĂŒllen die Anforderungen an Stetigkeit der meisten Prognoseverfahren nicht, weshalb gĂ€ngige Verfahren hĂ€ufig ungenĂŒgende PrognosegĂŒte erreichen. Gleichwohl ist die Rele-vanz intermittierender Zeitreihen hoch – insbesondere Ersatzteile weisen dieses Bedarfs-muster typischerweise auf. ZunĂ€chst zeigt diese Arbeit in drei Studien auf, dass auch die getesteten Stand-der-Technik Machine Learning AnsĂ€tze bei einigen bekannten DatensĂ€t-zen keine generelle Verbesserung herbeifĂŒhren. Als wesentlichen Beitrag zur Forschung zeigt diese Arbeit im Weiteren ein neuartiges Verfahren auf: Der Similarity-based Time Series Forecasting (STSF) Ansatz nutzt ein Aggregation-Disaggregationsverfahren basie-rend auf einer selbst erzeugten Hierarchie statistischer Eigenschaften der Zeitreihen. In Zusammenhang mit dem STSF Ansatz können alle verfĂŒgbaren Prognosealgorithmen eingesetzt werden – durch die Aggregation wird die Stetigkeitsbedingung erfĂŒllt. In Expe-rimenten an insgesamt sieben öffentlich bekannten DatensĂ€tzen und einem proprietĂ€ren Datensatz zeigt die Arbeit auf, dass die PrognosegĂŒte (gemessen anhand des Root Mean Square Error RMSE) statistisch signifikant um 1-5% im Schnitt gegenĂŒber dem gleichen Verfahren ohne Einsatz von STSF verbessert werden kann. Somit fĂŒhrt das Verfahren eine wesentliche Verbesserung der PrognosegĂŒte herbei. Zusammengefasst trĂ€gt diese Dissertation zum aktuellen Stand der Forschung durch die zuvor genannten Verfahren wesentlich bei. Das vorgeschlagene Verfahren zur Standardi-sierung empirischer Studien beschleunigt den Fortschritt der Forschung, da sie verglei-chende Studien ermöglicht. Und mit dem STSF Verfahren steht ein Ansatz bereit, der zuverlĂ€ssig die PrognosegĂŒte verbessert, und dabei flexibel mit verschiedenen Arten von Prognosealgorithmen einsetzbar ist. Nach dem Erkenntnisstand der umfassenden Literatur-recherche sind keine vergleichbaren AnsĂ€tze bislang beschrieben worden

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Short-Term Urban Link Travel Time Prediction Using Dynamic Time Warping With Disaggregate Probe Data

    No full text

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the ïŹrst industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and ïŹ‚exible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Full Issue 19(4)

    Get PDF

    Feature Papers of Forecasting

    Get PDF
    Nowadays, forecast applications are receiving unprecedent attention thanks to their capability to improve the decision-making processes by providing useful indications. A large number of forecast approaches related to different forecast horizons and to the specific problem that have to be predicted have been proposed in recent scientific literature, from physical models to data-driven statistic and machine learning approaches. In this Special Issue, the most recent and high-quality researches about forecast are collected. A total of nine papers have been selected to represent a wide range of applications, from weather and environmental predictions to economic and management forecasts. Finally, some applications related to the forecasting of the different phases of COVID in Spain and the photovoltaic power production have been presented
    corecore