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Abstract 

Improving the performance and efficiency of transport systems requires sound decision-

making supported by data and models. However, conducting travel surveys to facilitate 

travel behaviour model estimation is an expensive venture. Hence, such surveys are 

typically infrequent in nature, and cover limited sample sizes. Furthermore, the quality of 

such data is often affected by reporting errors and changes in the respondents’ behaviour 

due to awareness of being observed. On the other hand, large and diverse quantities of time-

stamped location data are nowadays passively generated as a by-product of technological 

growth. These passive data sources include Global Positioning System (GPS) traces, mobile 

phone network records, smart card data and social media data, to name but a few. Among 

these, mobile phone network records (i.e. call detail records (CDRs) and Global Systems for 

Mobile Communication (GSM) data) offer the biggest promise due to the increasing mobile 

phone penetration rates in both the developed and the developing worlds. Previous studies 

using mobile phone data have primarily focused on extracting travel patterns and trends 

rather than establishing mathematical relationships between the observed behaviour and the 

causal factors to predict the travel behaviour in alternative policy scenarios.  

This research aims to extend the application of mobile phone data to travel behaviour 

modelling and policy analysis by augmenting the data with information derived from other 

sources. This comes along with significant challenges stemming from the anonymous and 

noisy nature of the data. Consequently, novel data fusion and modelling frameworks have 

been developed and tested for different modelling scenarios to demonstrate the potential of 

this emerging low-cost data source.  

In the context of trip generation, a hybrid modelling framework has been developed to 

account for the anonymous nature of CDR data. This involves fusing the CDR and 

demographic data of a sub-sample of the users to estimate a demographic prediction sub-

model based on phone usage variables extracted from the data. The demographic group 

membership probabilities from this model are then used as class weights in a latent class 

model for trip generation based on trip rates extracted from the GSM data of the same users. 

Once estimated, the hybrid model can be applied to probabilistically infer the socio-

demographics, and subsequently, the trip generation of a large proportion of the population 

where only large-scale anonymous CDR data is available as an input. The estimation and 

validation results using data from Switzerland show that the hybrid model competes well 

against a typical trip generation model estimated using data with known socio-demographics 

of the users. The hybrid framework can be applied to other travel behaviour modelling 

contexts using CDR data (in mode or route choice for instance).  

The potential of CDR data to capture rational route choice behaviour for long-distance inter-

regional O-D pairs (joined by highly overlapping routes) is demonstrated through data 

fusion with information on the attributes of the alternatives extracted from multiple external 

sources. The effect of location discontinuities in CDR data (due to its event-driven nature), 

and how this impacts the ability to observe the users’ trajectories in a highly overlapping 

network is discussed prompting the development of a route identification algorithm that 

distinguishes between unique and broad sub-group route choices. The broad choice 

framework, which was developed in the context of vehicle type choice is then adapted to 

leverage this limitation where unique route choices cannot be observed for some users, and 

only the broad sub-groups of the possible overlapping routes are identifiable. The estimation 
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and validation results using data from Senegal show that CDR data can capture rational 

route choice behaviour, as well as reasonable value of travel time estimates.  

Still relying on data fusion, a novel method based on the mixed logit framework is developed 

to enable the analysis of departure time choice behaviour using passively collected data 

(GSM and GPS data) where the challenge is to deal with the lack of information on the 

desired times of travel. The proposed method relies on data fusion with travel time 

information extracted from Google Maps in the context of Switzerland. It is unique in the 

sense that it allows the modeller to understand the sensitivity attached to schedule delay, 

thus enabling its valuation, despite the passive nature of the data. The model results are in 

line with the expected travel behaviour, and the schedule delay valuation estimates are 

reasonable for the study area.  

Finally, a joint trip generation modelling framework fusing CDR, household travel survey, 

and census data is developed. The framework adjusts the scaling factors of a traditional trip 

generation model (based on household travel survey data only) to optimise model 

performance at both the disaggregate and aggregate levels. The framework is calibrated 

using data from Bangladesh and the adjusted models are found to have better spatial and 

temporal transferability.  

Thus, besides demonstrating the potential of mobile phone data, the thesis makes significant 

methodological and applied contributions. The use of different datasets provides rich 

insights that can inform policy measures related to the adoption of big data for transport 

studies. The research findings are particularly timely for transport agencies and practitioners 

working in contexts with severe data limitations (especially in developing countries), as well 

as academics generally interested in exploring the potential of emerging big data sources, 

both in transport and beyond.  
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Chapter 1 

Introduction 

1.1 Context 

Over the last few decades, technological advances have facilitated the storage, retrieval, and 

processing of extremely large amounts of timestamped location data. These datasets are 

increasingly becoming important sources of information for transportation studies (Clarke, 

2016). The interest in big data is largely driven by its ability to passively capture the 

behavioural patterns of wider proportions of the population at a low cost compared to 

traditional data collection methods (such as household surveys), which are usually 

expensive. The high costs of traditional surveys often lead to small sample sizes and an 

increased risk of sampling bias. This problem is usually exacerbated by the low response 

rates due to survey response burden (e.g. Rolstad et al., 2011, Groves, 2006), as well as 

potential changes in the respondents’ behaviour due to awareness of being observed.  

Although the challenges with traditional data collection methods can be found in both the 

developed and the developing worlds, they are more prevalent in the latter context due to 

stringent budget constraints and limited initiatives to systematically document the few 

available travel survey records from related studies (San Santoso and Tsunokawa, 2005). 

Therefore, the emergence of low-cost big data presents a timely opportunity to address some 

of the data limitations especially in those contexts. 

Large-scale travel patterns have previously been extracted from Global Positioning System 

(GPS) data (e.g. Li et al., 2018, Hess et al., 2015, Broach et al., 2012, Bierlaire et al., 2010, 

Papinski et al., 2009), mobile network records (e.g. Çolak et al., 2015, Iqbal et al., 2014, 

Jiang et al., 2013, Schlaich et al., 2010), wireless sensor data (e.g. Tubaishat et al., 2009), 

bluetooth sensor data (e.g. Crawford, 2017, Hainen et al., 2011), smart card transaction 

records (e.g. Ma et al., 2013, Munizaga and Palma, 2012, Pelletier et al., 2011, Liu et al., 

2009), and social media data (e.g. Hawelka et al., 2014, Hasan et al., 2013) among others. 

Apart from smart card and social media data, most of the other data types are occasionally 

referred to as mobile phone data.  

However, each data type has limitations. For example, the generation of mobile phone GPS 

data requires smartphones and regular access to the internet. Wireless and bluetooth data 

require the installation of sensor infrastructure across the study area to detect the mobile 

phone movements. While such datasets have been successfully used for transport studies in 

developed countries, they cover much smaller proportions in the developing world, where 

mobile internet penetration (e.g.  21% of the population in sub-Saharan Africa) and 

smartphone adoption (e.g. 34% of all mobile connections in sub-Saharan Africa) is still very 

low (GSMA, 2018), which would further increase the risk of sampling bias. 

To avoid such issues, this research proposes the use of mobile phone network records, which 

are independent of the phone type and internet accessibility, thereby being more widely 

available. These records may either be event-driven, such as Call Detail Records (CDRs) 

and cell phone handover data, which report the timestamped locations of communication 

events only, or network-driven, such as location-area update, signalling or Global System 

for Mobile communications (GSM) data, which report the IDs of all the cells traversed by 

an active mobile phone at regular time intervals (irrespective of the calling or texting 
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patterns of the users).  Tables 1-1 and 1-2 show typical excerpts of CDR and GSM data, 

respectively. 

Table 1-1 Excerpt of the CDR data 

Anonymous User ID Date Time Duration 
Tower 

Longitude 

Tower 

latitude 

ABH03JACKAAAgfBALA 20120624 11:41:49 25 23.9339 90.2931 

ABH03JAC8AAAbZfAHW 20120624 13:43:25 13 23.7931 90.2603 

ABH03JAC4AAAcvbABB 20120624 13:27:39 8 23.7761 90.4261 

ABH03JAC9AAAbWFAVV 20120624 15:27:27 51 23.7097 90.4036 

ABH03JABkAAHvEkAQX 20120624 18:32:38 50 23.7386 90.4494 

 

Table 1-2 Excerpt of the GSM data 

Anonymous User ID GSM Cell ID Unix timestamp Time zone 

8851 712 1251762486 -7200 

8851 712 1251762546 -7200 

8851 836 1251762606 -7200 

8851 836 1251762663 -7200 

 

Mobile phone network records have already been extensively applied in various fields of 

transport such as human mobility modelling (e.g. Deville et al., 2016, Jiang et al., 2013, 

Isaacman et al., 2012, Song et al., 2010, Gonzalez et al., 2008), traffic model calibration 

(e.g. Bolla et al., 2000), origin-destination matrix estimation (e.g. Çolak et al., 2015, Iqbal 

et al., 2014, Pan et al., 2006, White and Wells, 2002), and trip generation estimation (e.g. 

Çolak et al., 2015). However, the analysis has so far been limited to extracting travel patterns 

and trends rather than modelling behaviour.  

The main advantage with mobile phone network records is that they are already being 

collected on a large-scale by network operators for different purposes. For example, CDR 

data is collected for billing purposes, while GSM data is collected for location area updating 

to optimise network performance. However, the former is more widely available as it is 

stored for longer periods of time compared to the latter. The possibility of using these for 

transport studies as a by-product significantly reduces the data collection burden and cost. 

However, this presents significant challenges in terms of data sharing, storage, and analysis 

as the datasets are usually noisy, complex, large, and anonymous. In most cases, it is 

challenging to analyse such datasets using traditional data processing and modelling 

techniques as it is difficult to establish direct linkages between the observed travel patterns 

and the underlying causal factors, thus limiting the applicability of the data for travel 

behaviour and policy analysis. This motivates this research where we develop methods 

aimed at addressing the practical challenges associated with mobile phone network records 

to make them more usable for travel behaviour modelling.  An important point worth noting 

is that the data has great potential as it is more representative, large, and frequent, thereby 

capturing more variability over long periods of time, which opens up a lot of scope for 

validation beyond what is being offered by traditional travel survey data. 

The models used in this study belong to the family of discrete choice models - a well-

established method for estimating econometric models of travel behaviour since in most 

transport choices, the options are discrete and mutually exclusive (see Ben-Akiva and 

Lerman, 1985 for details). However, we also note that several related studies have used 

machine learning as the main tool of analysis (e.g. Ellis et al., 2014, Wang et al., 2010, 
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Farrahi and Gatica-Perez, 2008, Sohn et al., 2006). The reason we adopt the discrete choice 

framework over the machine learning framework is because the former is capable of 

explaining the relative importance of the different factors influencing human preferences 

while relying on a behavioural underpinning, which is important for testing future and 

alternative policy scenarios, while the latter simply aim at minimising the prediction error 

without due consideration to established behavioural principles and interpretability (Paredes 

et al., 2017). Though some of the machine learning algorithms generate regression 

parameters, the estimates are context dependent and hardly stable, thus, it would be risky 

analysing these the same way we interpret typical travel behaviour model estimation outputs 

(Mullainathan and Spiess, 2017). 

This research is timely as it presents new ways of integrating mobile phone data into 

traditional transport modelling approaches. As the data typically comprises of millions of 

records, a significant portion of this research focussed on data preparation for analysis using 

state-of-the-art programming languages. The research outcomes present initial efforts to 

provide a feasible low-cost alternative to transport planners and policy makers working in 

contexts with severe budget constraints on transport studies. The promising results we 

obtain encourage further research to improve the proposed methods, as well as extend the 

application of mobile phone data to other fields of travel behaviour modelling (such as mode 

choice). Besides, the practical challenges encountered prompted the development and/or 

application of novel modelling frameworks, thus the thesis makes significant 

methodological and applied contributions that could be useful to other fields of choice 

modelling. 

1.2 Current progress in the application of mobile phone data to 

transportation studies 

Prior to outlining the research objectives, it is important to review the state of the art in the 

application of mobile phone data to transportation studies. This review is aimed at 

highlighting the gaps in the literature forming the basis of the current research. The review 

covers seven key areas and focusses on studies using mobile phone network records (i.e. 

CDR and GSM data). 

1.2.1 Trip generation 

There have only been a few studies focusing on trip generation in the context of mobile 

phone data research (e.g. Çolak et al., 2015, Toole et al., 2015). These studies have only 

been able to produce anonymous trip rates, which cannot be used for policy assessment.  

Since trip generation is mainly influenced by the trip maker’s socio-demographics (see 

Bwambale et al., 2015 for details), such variables need to be incorporated into the models 

to allow for policy assessment, and previous studies have not addressed this challenge due 

to data anonymity.  

1.2.2 Human mobility and activity patterns 

This is the most widely investigated aspect of mobile phone data research. Understanding 

mobility and activity patterns is essential for network planning and management. However, 

patterns can change over time for various reasons, and most of the reviewed studies do not 

incorporate ways to analyse or predict the impact of such changes. The only exception is 
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the study by Csáji et al. (2013), who use a gravity model to explain the impact of commute 

distance in the extracted mobility patterns. Table 1-3 presents a summary of the reviewed 

studies. 

1.2.3 OD matrix estimation 

Related to mobility pattern generation is origin-destination (OD) matrix estimation. Mobile 

phone OD trips only represent a fraction of the actual OD trips due to several factors such 

as the mobile phone penetration rate, the market shares, and missed trips due to data noise. 

Usually, these trips need to be scaled to obtain an OD matrix representative of the entire 

population. 

The issue of scaling mobile phone OD trips has been at the forefront of this subject area for 

many years. Goulding (2017) reviewed the current practices for calculating the OD matrix 

scaling factors and recommended the approach in Iqbal et al. (2014) as one of the best 

practices. In that approach, the scaling factors are based on the observed traffic counts at 

strategic locations within the road network. 

However, beyond OD matrix scaling, it is important to understand the factors influencing 

the observed patterns. The calibration of appropriate gravity models represents effort in this 

direction, however, there is a need to specify more comprehensive deterrence functions, 

rather than those using distance only (e.g. Wang et al., 2014, Csáji et al., 2013).  Table 1-4 

presents an overview of the previous work in this field.  

1.2.4 Mode detection 

Mode choice is an important component in travel demand estimation. It influences the level 

of vehicular demand and therefore has a significant impact on traffic congestion.  Traffic 

congestion itself influences various travel decisions such as route and departure time choice.  

However, mode detection from anonymous mobile phone network records is very 

challenging due to the noisy nature of the data. This is demonstrated by the availability of 

few studies as summarised in Table 1-5. Since these studies have yielded promising results, 

there is a need for further dedicated research to improve the transferability of these 

approaches to real-world urban scenarios. 

1.2.5 Route identification 

Route choice corresponds to the final step in the four-stage model. The identification of 

routes from mobile phone data has been widely investigated. Table 1-6 presents an overview 

of the different studies in this field. It may be noted that most of the reviewed studies stop 

at route identification, and do not investigate the factors affecting route choice behaviour, 

except in Schlaich (2010), where GSM trajectories are fused with traffic state information 

to model the impact of variable message signs and other factors on route choice. However, 

GSM data is semi-continuous in nature, thus enabling the observation of full trajectories. 

This makes route identification relatively easy compared to when CDR data is used. This is 

because the latter is event-driven and more discontinuous. To date, there is no study using 

CDR data to analyse route choice behaviour. 
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1.2.6 Departure time choice 

The traditional four-stage model does have some limitations. For example, it does not 

account for the effect of traffic congestion on the changes in departure time to avoid delays. 

A review of the literature shows that there is no previous study using mobile phone network 

records to analyse departure time choices.  

The only related study is by Peer et al. (2013), who use smartphone GPS data to calculate 

the door-to-door travel times as part of a revealed preference departure time study, in which 

the desired times-of-travel are reported. Knowledge about the desired times-of-travel is 

critical for departure time choice modelling, however, these cannot be observed in 

anonymous mobile phone data. This probably explains the absence of studies in this field. 

1.2.7 Population synthesis 

The final transport-related application of mobile phone network records is population 

synthesis of mobility patterns. This technique is widely applied in activity-based modelling 

to generate artificial populations. The main motivation behind incorporating mobile phone 

data has been to generate artificial populations with realistic travel patterns. Table 1-7 

presents a summary of the studies in this field.  

However, in most of these studies, the disaggregate dependence structure between the user 

demographics and the mobile phone mobility patterns seems arbitrary. Furthermore, the 

assumed higher reliability of mobile phone data over travel survey data is contentious and 

needs to be approached impartially. 
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Table 1-3 Previous studies on human and activity mobility 

Paper Focus Data used Methods used Key findings 

Candia et al. (2008) 

Identifying unusual events using mobile 

phone data and characterising these based 

on methods from percolation theory. 

Data type not reported 
Standard percolation 

theory tools 

Analysing the formation and decay of 

spatial clusters from mobile phone 

data can be useful in the real-time 

recognition of emergencies. 

Farrahi and Gatica-

Perez (2008) 

Classifying students’ daily routines 

according to the day of the week (weekday 

or weekend) and the course taken 

(engineering or business) by combining 

call log and bluetooth data. 

CDR and bluetooth data 

Machine learning 

tools (support vector 

machine with a 

gaussian kernel) 

Combining proximity (bluetooth) and 

mobility (CDR) data can lead to 

significant improvements in 

classification when compared to using 

a single data source. 

Choujaa and Dulay 

(2008) 

Developing a system that relies on context 

sensing, time-based relationships, and 

anonymous landmarks for activity 

recognition as opposed to location data.  

The developed system is called TRAcME 

(Temporal Recognition of Activities for 

Mobile Environments). 

GSM and bluetooth 

data, as well as user-

reported activities for 

training purposes 

Hierarchical learning 

techniques for time 

use graphs 

The developed system can recognise 

multiple and consistent activities, 

unlike the existing techniques. 

Phithakkitnukoon et al. 

(2010) 

Investigating the correlations in the 

activity patterns of users based on the 

profiles of their work areas extracted from 

an activity-aware map.  

CDR and point of 

interest (POI) data 

A combination of k-

means clustering and 

Bayes probability 

theory 

Strong activity pattern correlations 

across users with the same work area 

profile 

These correlations are inversely 

proportional to the distance between 

the work areas. 
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Table 1-3 cont’d 

Paper Focus Data used Methods used Key findings 

Farrahi and Gatica-

Perez (2010) 

Integrating human proximity (from 

bluetooth data) and mobility (from CDR 

data) to identify human activities using 

probabilistic methods. 

CDR and bluetooth data 

Unsupervised learning 

techniques hinged on 

probabilistic topic 

models   

Better discovery and prediction of 

human activity routines can be 

achieved using the combined data. 

Yuan and Raubal 

(2012) 

Classifying urban areas based on hourly 

dynamic human mobility patterns 

extracted from CDR data. 

CDR data 
Dynamic time 

warping algorithms 

Dynamic mobility patterns can be 

useful in characterising different 

urban areas, which can help in 

formulating better transport and 

environmental policies. 

Phithakkitnukoon et al. 

(2012) 

Investigating the strength of social ties and 

their impact on human mobility. 
CDR data 

Data mining 

approaches and 

statistical analysis 

Majority of the places visited were 

close to the nearest social tie. 

Geographical proximity was 

positively correlated with population 

density and inversely proportional to 

social tie strength. 

Loibl and Peters-

Anders (2012) 

Investigating the mobility patterns, the 

population distribution, and the 

distribution dynamics (e.g. diurnal 

variations) using mobile phone data. 

GSM data                                      

(location area update 

data) 

Data mining 

approaches and 

statistical analysis 

Capturing the distribution dynamics 

can help in the better management of 

demand on transportation 

infrastructure. 
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Table 1-3 cont’d 

Paper Focus Data used Methods used Key findings 

Yuan et al. (2012) 

Investigating the relationship between 

mobile phone calling frequency and travel 

behaviour characterised by three metrics 

(i.e. the radius of gyration, eccentricity, 

and entropy). 

CDR data 

Data mining 

approaches and 

statistical analysis 

There is a statistically significant 

correlation between mobile phone 

usage and travel behaviour. 

Kang et al. (2013) 

Comparing the human movements based 

on mobile phone data and taxicab usage in 

Singapore. 

CDR data and GPS logs 

for all taxi-cabs 

Data mining 

approaches and 

statistical analysis 

The ratio of taxicab to mobile phone 

movements can help in the dynamic 

prediction of taxicab demand. 

Jiang et al. (2013) 

Generating daily mobility motifs and the 

purposes linked with the motif 

destinations using map matching 

techniques.  

The extracted motifs were compared 

against the trip chains obtained from travel 

survey data. 

CDR and travel survey 

data 

Data mining 

approaches, map-

matching techniques, 

and statistical analysis 

Similar trends in the shares of the 

daily mobility motifs extracted from 

both data sources, an indication that 

CDR data can serve as a low-cost 

alternative to survey data. 

Paraskevopoulos et al. 

(2013) 

Investigating and characterising usual and 

unusual human behaviour patterns based 

using call activity and mobility data. 

CDR and aggregate 

tower-to-tower 

communication data 

Data mining 

approaches, mapping 

tools, and statistical 

analysis 

The observed behavioural patterns 

could be logically connected to major 

national and religious events, an 

indication that mobile phone data can 

be useful for the early detection and 

monitoring emergency situations. 
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Table 1-3 cont’d 

Paper Focus Data used Methods used Key findings 

Csáji et al. (2013) 

Identifying home and work locations from 

mobile phone data and fitting a gravity 

model to explain the commute distances. 

CDR data 

Data mining 

approaches, mapping, 

statistical analysis and 

the gravity model 

Using the number of homes and work 

locations improves the performance 

of the gravity model compared to the 

model using the population at the 

respective locations. 

Calabrese et al. (2013) 

Comparing the human mobility measures 

derived from mobile phone data (e.g. trip 

length) against those sourced from vehicle 

safety inspection data. 

CDR and Odometer 

data 

Data mining 

approaches, statistical 

analysis, and linear 

regression 

Vehicle and mobile phone trip length 

have a linear positive relationship up 

to 65 km. Hence mobility measures 

from mobile phone data can be used 

as a proxy for estimating vehicle 

usage. 

Kung et al. (2014) 

Comparing the home-based work 

commute patterns across different 

countries (i.e. Ivory coast, Portugal, Saudi 

Arabia) and cities (i.e. Milan and Boston). 

CDR and GPS data 

Data mining 

approaches and 

statistical analysis 

Commuting behaviour is generally 

similar across different geographical 

areas with minor expected 

differences. 

Järv et al. (2014) 

Exploring the longitudinal variations in 

human activity-travel behaviour on a 

monthly basis for one year. 

CDR data 

Data mining 

approaches, mapping 

techniques, and 

statistical analysis 

The number of activity locations was 

quite stable, while the size of the 

activity spaces varied significantly, 

partly explained by seasonality and 

personal factors. 
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Table 1-3 cont’d 

Paper Focus Data used Methods used Key findings 

Trasarti et al. (2015) 

Unravelling the linkages between different 

regions of a city based on correlations in 

the temporal distributions of the 

corresponding population densities. 

CDR data 

Data mining 

approaches to extract 

the event correlation 

patterns for a set of 

regions 

The study developed a “c-pattern” 

algorithm to help explain the logic 

behind the inter-regional linkages 

within cities, which can help in 

understanding the causes and effects 

of events. 

Shi et al. (2015) 

Analysing the spatial structure and 

characteristics of community-level human 

mobility using kernel density maps. 

CDR data 

Data mining 

approaches, statistical 

analysis, and kernel 

density maps 

Although no spatial constraints were 

applied to the mobile social network, 

the social communities were 

geographically linked, an indication 

that individuals generally 

communicate with people who are 

near. 

Jiang et al. (2017) 

Generating the human mobility motifs for 

the entire population by combining CDR, 

survey, and census data using an activity-

based approach. 

CDR, household 

survey, and census data 

Data mining 

approaches, mapping 

techniques, and 

statistical analysis 

Mobile phone data can provide more 

realistic insights and multi-day 

observations of human mobility 

motifs compared to household survey 

data, which is prone to reporting 

errors. 
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Table 1-4 Previous studies on OD matrix estimation 

Paper Focus Data used Methods used Key findings 

White and Wells 

(2002) 

Extracting origin-destination (OD) 

matrices from CDR data in a pilot study 

conducted by the Transport Research 

Laboratory (TRL) in Kent. 

CDR data and an 

existing OD matrix for 

comparison 

Data mining and 

mapping techniques 

CDR data has the potential to capture 

realistic travel patterns with repeated 

observations.  

Caceres et al. (2007) 

A simulation-based approach to 

investigate the feasibility of updating an 

OD matrix using vehicle traffic data 

extracted from a GSM network. 

Simulated GSM 

(location area update) 

and vehicle traffic data 

Data mining 

approaches, 

simulation techniques, 

and statistical analysis 

The automatic and somewhat real-

time monitoring of mobile phone 

mobility provides a low-cost 

alternative for investigating traffic 

mobility. 

Calabrese et al. (2011) 

Developing OD matrices from mobile 

phone data and comparing the estimated 

trips with those based on census data at 

both the tract and county level. 

CDR and census data 

Data mining 

approaches, statistical 

analysis, regression, 

and the gravity model 

Mobile phone data is a rich source of 

information for transport planning as 

it can capture the detailed spatial-

temporal patterns of demand. 

Iqbal et al. (2014) 

Developing transient OD matrices from 

CDR data and scaling these using limited 

traffic count data to account for missed 

CDR trips. 

CDR and video traffic 

count 

Data mining 

approaches, micro-

simulation, and 

statistical analysis 

Promising results obtained, which 

shows that the proposed approach 

can serve as a low-cost option for 

estimating and validating travel 

patterns.   
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Table 1-4 cont’d 

Paper Focus Data used Methods used Key findings 

Wang et al. (2014) 

Optimisation of the national and regional 

road network using mobile phone data. 

Mobile phone data is used to calculate OD 

trips, which are then used to estimate a 

gravity model. The gravity model 

outcomes are then used for traffic 

assignment onto the road network, after 

which the impact of network changes (e.g. 

new road links) is tested. 

CDR data 

Data mining 

approaches, statistical 

analysis, mapping 

techniques, the gravity 

model, and all-or-

nothing traffic 

assignment 

Mobile phone data is able to reflect 

the expected behaviour in the gravity 

model, and can be used for network 

planning. 

Alexander and 

González (2015) 

Developing an OD matrix from CDR data 

and assigning it to the network to analyse 

the impact of various ride-sharing 

adoption rates on traffic congestion. 

CDR data and various 

spatial and survey data 

sources 

Data mining 

approaches, mapping 

techniques, 

incremental traffic 

assignment, and 

statistical analysis 

Mobile phone OD matrices can be 

applied to successfully analyse the 

network-wide impact of proposed 

policies. 

Alexander et al. 

(2015) 

Generating OD matrices by trip purpose 

(i.e. HBW, HBO, and NHB) and time-of-

day. The departure times are 

probabilistically determined using survey 

data from major US cities. 

CDR and survey data 

Data mining 

approaches, mapping 

techniques, all-or-

nothing traffic 

assignment, and 

statistical analysis 

CDR data can capture the travel 

patterns of different market 

segments, which is important for 

transport planning. 
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Table 1-4 cont’d 

Paper Focus Data used Methods used Key findings 

Dong et al. (2015) 

Estimating commuter OD trips from CDR 

data and using the estimates to divide the 

study area into traffic zones by applying 

the k-means clustering algorithm to 

selected semantic attributes (e.g. hourly 

inflow and outflow). 

CDR data 

Data mining 

approaches, k-means 

clustering, and 

statistical analysis 

Mobile phone data can be used to 

extract valuable information on 

traffic flow, which can enhance our 

understanding of complex travel 

patterns. 
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Table 1-5 Previous studies on mode detection 

Paper Focus Data used Methods used Key findings 

Wang et al. (2010) 

Inferring transport modes (i.e. driving, 

public transport, and walking) from CDR 

data by applying k-means clustering on 

the travel times for each OD pair 

CDR data 

Data mining 

approaches, statistical 

analysis, and k-means 

clustering 

A comparison of the travel times for 

each mode with those of extracted 

from Google maps shows that the 

method can reasonably detect 

transport modes 

Doyle et al. (2011) 

 

 

 

 

 

Using the virtual cell paths technique to 

extract user trajectories associated with 

inter-city road or rail travel from CDR 

data, and generating the kernel density 

paths for validation purposes.  

CDR data and 

information on mode 

shares for validation 

purposes 

Data mining 

approaches, map-

matching techniques, 

and kernel density 

estimation 

Kernel density maps can be used to 

successfully identify the routes 

followed and hence the travel modes 

used. 

Qu et al. (2015) 

Estimating transport mode split (car, 

public transport and walking) from CDR 

data by applying, speed-distance rules. 

Where the speed-distance rules do not 

yield a definite mode a pre-calibrated logit 

model is used. 

CDR data, the transport 

network GIS data, and 

census data for 

validation purposes 

Data mining 

approaches, logistic 

regression, and 

statistical analysis 

The model correctly predicts the 

aggregate mode shares for the entire 

study area and those of a large 

proportion of the census tracts. 
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Table 1-6 Previous studies on route identification 

Paper Focus Data used Methods used Key findings 

Schlaich et al. (2010) 

Schlaich (2010) 

Route identification by matching the 

location area sequences extracted from the 

mobile phone data against those associated 

with different routes in the transport 

network. 

GSM data 

Data mining 

approaches and a 

multi-path generation 

algorithm 

Mobile phone data can be used to 

continuously monitor the travel 

patterns for relatively long trips (i.e. 

trips traversing at least 3 GSM cells) 

due to its low spatial resolution 

Saravanan et al. 

(2011) 

Longitudinal spatial-temporal analysis of 

each user’s CDR events to establish their 

daily routines and routes. 

GSM data 

Data mining 

approaches, route 

clustering, and 

statistical analysis 

The method has great potential in the 

analysis of city-wide large-scale 

mobility patterns. 

Görnerup (2012) 

Using mobile phone data to 

probabilistically identify common routes 

using locality-sensitive hashing and graph 

clustering. 

GSM data and GPS 

traces 

Locality-sensitive 

hashing and graph 

clustering 

The method yields promising results 

in terms of accurately clustering the 

sequences and being scalable, 

however, it is yet to be tested on real-

life complex networks. 

Tettamanti et al. 

(2012) 

Route assignment by determining the path 

with the smallest sum of square distance 

deviations from the observed mobile 

phone location area sequence of a user 

travelling between an OD pair. 

GSM data 

Data mining 

approaches and 

statistical analysis 

The proposed method was tried on a 

single OD pair and needs to be tested 

on a more complex network. 
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Table 1-6 cont’d 

Paper Focus Data used Methods used Key findings 

Leontiadis et al. 

(2014) 

Route searching by calculating the weights 

for each road segment within the cell areas 

linked to a user’s communication events 

and determining the shortest weighted 

path for a given OD pair. 

Cell phone handover 

and  GPS data 

Data mining 

approaches and 

statistical analysis 

The accuracy of path determination 

increases with its distance potentially 

because individuals are more 

cautious of the shortest route for 

distant OD pairs. 

Hoteit et al. (2014) 

Identifying human mobility trajectories 

and the most crowded regions using 

various interpolation techniques (e.g. 

linear, cubic and nearest neighbour). 

CDR data 

Data mining 

approaches, mapping 

techniques, trajectory 

interpolation, and 

statistical analysis 

A comparison of the different 

methods shows that cubic and linear 

interpolation give the best 

performance for commuters and 

inactive travellers respectively. 

Nie et al. (2015) 

Route identification based on the degree 

of similarity to a subset of k-optimal cell 

handover sequences extracted from the 

full set of possible handover sequences. 

Cell phone handover 

data 

Data mining 

approaches 

The proposed approach yields 

promising results, however, it needs 

to be tested in a more complex 

network, where the number of 

optimal sequences may be high. 
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Table 1-7 Previous studies on population synthesis 

Paper Focus Data used Methods used Key findings 

Ros and Albertos 

(2016) 

Updating MATSim (an agent-based multi-

simulation software) by merging census 

and CDR data to generate synthetic 

populations with realistic mobility 

patterns. 

CDR data, user 

demographic details 

(age and gender), and 

census data 

Data mining 

approaches and 

population synthesis 

(Iterative Proportional 

Fitting) 

The availability of user demographics 

in the CDR data ensured reliable 

linkages in the final synthetic 

population, however, such data is 

rarely available. 

Kressner (2017) 

Generating synthetic travel diaries by 

combining anonymous mobile phone data 

with traditional data sources. 

CDR data, consumer 

data (individual-level 

socio-economic 

details), and census data 

Data mining 

approaches and 

population synthesis 

The aggregate validation results show 

that the method has great potential, 

however, the underlying dependency 

structure is unreliable. 

Janzen et al. (2017) 

Using population synthesis techniques to 

correct the underreporting of long-distance 

trips in travel survey data by combining 

the data with CDR and register data 

(national statistics). 

CDR and register data 

(national statistics) 

Data mining 

approaches and 

population synthesis 

(Iterative Proportional 

Fitting) 

The method maintains the underlying 

dependency structure during 

population synthesis, however, the 

assumed uniform under-reporting in 

survey data and the high reliability of 

CDR data are unrealistic. 
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1.2.8 Summary of the research gaps 

The previous sections have highlighted the state of the art in applying mobile phone network 

records to transportation studies. As described, most of these applications focus on obtaining 

outputs that represent the existing mobility dynamics of the study area, however, they do 

not incorporate mechanisms to quantify the relative importance of the different factors 

influencing the observed mobility trends. Without information on the underlying factors, it 

is difficult to conduct sensitivity analysis to predict the impact of alternative transport 

policies. Furthermore, the absence of policy-sensitive variables affects the ability of the 

models to capture the effect of disruptive changes in the study area. An example is when 

some links in the network are closed, which affects the overall travel time and cost between 

a given OD pair. The effect of such changes can only be captured if the transport models for 

the study area already contain such variables. Moreover, this would also improve the spatial 

and temporal transferability of the models as it would be easier to directly incorporate new 

information from the application context. As a result of the limited research effort in this 

direction, several other gaps have been identified in the literature.  

First, although it is easy to fuse anonymous mobile phone trajectories with the attributes of 

the alternatives (for example distance, in the context of route choice modelling), it is more 

challenging to combine these trajectories with person-level attributes (for example 

demographic information), and previous studies have not developed data fusion frameworks 

to specifically address this challenge.  

Secondly, there is no study showing how traditional modelling approaches (i.e. components 

of the 4-stage model and its extensions) can benefit from combining mobile phone data with 

traditional data sources (such as household surveys), except in the fields of OD matrix 

estimation and route choice modelling. Even under route choice modelling, there is no 

previous study using CDR data, which is typically easier to access, and yet presents more 

challenges compared to GSM data.  

Thirdly, there have been limited studies systematically analysing the strengths and 

weaknesses of different types of mobile phone data and developing or applying appropriate 

frameworks to address these limitations with regard to specific modelling scenarios. 

Finally, there is, to the best of our knowledge, no previous study that has attempted to use 

mobile phone network records to estimate the valuation metrics used in transport policy 

appraisal, for example, the value of travel time. 

1.3 Problem statement 

The fundamental role of transport models is to quantify the relative importance of the 

underlying factors influencing the observed travel behaviour as highlighted in the previous 

section. Traditionally, such models have been estimated using travel survey data, which 

reports the available travel options, the chosen alternatives, as well as the attributes of the 

alternatives and the decision maker, thereby enabling direct linkage between the observed 

travel behaviour and the influencing factors. However, the high cost of collecting travel 

survey data, coupled with stringent budget constraints on transport studies has motivated 

research into emerging low-cost big data sources to develop approaches that could be 

practically useful for transport practitioners working in contexts with severe data limitations, 

especially in developing countries.  
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With mobile phone network records offering the highest promise (due to the increasing 

penetration rates worldwide), most previous studies have focussed on using the data to 

quantify the prevailing mobility dynamics of the corresponding study areas without 

explaining the underlying factors influencing the observed patterns (e.g. Alexander et al., 

2015, Çolak et al., 2015, Toole et al., 2015, Iqbal et al., 2014, Jiang et al., 2013, Jiang et al., 

2011, Candia et al., 2008). This is due to the technical challenges associated with the data. 

The arguably most significant challenge is data anonymity due to privacy reasons, which 

makes it difficult to perform data linkages needed to make the data usable for travel 

behaviour modelling. There has been limited effort to address this challenge with a few 

applications only seen in the field of route choice modelling (e.g. Schlaich, 2010). This 

thesis presents more data fusion approaches in a bid to further improve the behavioural and 

policy underpinnings of the resulting transport models. Moreover, in some contexts, data 

fusion alone may not solve the problem, especially where information on key latent indicator 

variables is missing (for example, the desired time of travel in the context of departure time 

choice modelling). In such cases, approaches to use statistical distributions to estimate these 

variables are proposed in this thesis.  

Besides data anonymity, the other key challenges are the poor location resolution and the 

noisy nature of the data due to various technical reasons. These have an impact on the 

detection and the interpretation of the extracted trajectories. Although previous studies have 

discussed ways of addressing these technical limitations (e.g. Çolak et al., 2015, Iqbal et al., 

2014, Jiang et al., 2013), they do not present methods to appropriately incorporate such 

noisy trajectories into econometric models of travel behaviour. This thesis discusses this 

issue and provides application examples in the different chapters. 

Finally, the other significant challenge is data access and control. Mobile network operators 

are only willing to release datasets that do not compromise the privacy of their customers. 

One extreme example is the Orange data for development (D4D) dataset, where the already 

anonymous user IDs were scrambled across the different months to prevent possible re-

identification (de Montjoye et al., 2014). Although it would have been interesting to observe 

the same anonymous user for the whole year, the researcher is limited to monthly 

observations.  

While the above challenges limit the realisation of the full potential of mobile phone 

network records, this research hypothesises that by further probing the data coupled with 

innovative data fusion and modelling techniques, practical benefits can be achieved in terms 

of making the data more usable for travel behaviour analysis. The research focusses on 

demonstrating the potential of the data in the fields of trip generation, route choice, and 

departure time choice modelling. While doing this, the practical challenges associated with 

the data limited the direct application of the existing modelling frameworks. Thus the thesis 

makes significant methodological and applied contributions to overcome the identified 

limitations. The modelling scenarios investigated depended on data availability and its 

fitness for the purpose.  

An important point worth noting is that CDR data is likely to be more useful in the near 

future with the increasing use of mobile internet data services (Gerpott and Thomas, 2014), 

which will reduce the location discontinuities in the data. 
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1.4 Research objectives 

The main research goal is to incorporate outputs derived from mobile phone network records 

into traditional transport modelling approaches. This is because traditional models have the 

capacity to explain the behavioural relationships between phenomena, an advantage we seek 

to maintain. Moreover, with traditional modelling approaches, it is possible to estimate 

important metrics such as the value of travel time and elasticities, which are useful in 

transport policy appraisal. The general objectives of the research are; 

 

G1 To develop innovative methods for combining mobile phone network records 

with traditional data sources to facilitate the analysis of travel behaviour; 

G2 To evaluate the shortcomings of traditional modelling approaches and 

propose mitigation measures using mobile phone network records to optimise 

the reliability and applicability of the models; 

G3 To analyse the limitations of mobile phone network records with regard to 

specific modelling scenarios and develop appropriate methods to deal with 

those limitations; and 

G4 To assess whether models based on mobile phone network records are able to 

capture the expected travel behaviour in terms of the parameter estimates 

and/or policy insights in terms of the derived valuation metrics. 

 

These general objectives overlap across the different chapters and are achieved by realising 

the following specific objectives, which largely depended on data availability and its fitness 

for the purpose as mentioned earlier. 

 

S1 To develop a hybrid modelling framework fusing the CDR, GSM and 

demographic data of a sub-sample of users to alleviate the need for travel 

diary data and facilitate the subsequent analysis of trip-making behaviour 

using anonymous CDR data from the application context; 

S2 To develop a method for modelling long-distance route choice behaviour 

using partial CDR trajectories combined with information from external 

sources; 

S3 To develop a method for modelling departure time choice decisions using 

passively collected data without information on the desired times of travel; 

and 

S4 To develop a method for optimising both the aggregate and the disaggregate 

performance of trip generation models using a combination of CDR data, 

household travel survey data and census data. 

 

The framework linking the general research objectives to the specific objectives and the 

chapters is presented in Table 1-8. 
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Table 1-8 Linkages between the overall research goals and the specific objectives 

 Specific objectives and the corresponding chapters 

General 

objectives 

S1 S2 S3 S4 

Chapter 2 Chapter 3 Chapter 4 Chapter 5 

Trip generation Route choice 
Departure time 

choice 
Trip generation 

G1     

G2     

G3     

G4     

 

1.5 Thesis outline and contributions 

The subsequent chapters in this thesis (with the exception of the conclusions) correspond to 

papers prepared during this research. This section briefly summarises the aims of each paper 

and states its original contributions. 

Chapter 2 presents a paper titled “Modelling trip generation using mobile phone data: a 

latent demographics approach”.  The chapter focuses on developing a novel hybrid 

framework that combines the CDR, GSM, and demographic data of a sub-sample of users 

to develop a trip generation model that mitigates the shortcomings associated with 

traditional models. For a sub-sample of the users, the proposed framework first estimates a 

demographic group prediction model based on the observed mobile phone usage behaviour 

(extracted from CDR data) and the reported demographics of the users. The demographic 

group membership probabilities from this model are then used as class weights in a latent 

class model for trip generation. The trip rates used for model estimation are extracted from 

the GSM mobility data, which is semi-continuous, and captures all the trips made by the 

users, thus mitigating the burden of having to fill travel diaries, which comes along with 

reporting errors. However, it may be noted that GSM data is typically discarded by mobile 

network operators as it consumes a lot of storage space. Hence the data can only be available 

for a sub-sample of the users during model estimation. The proposed framework overcomes 

this issue as it only needs anonymous CDR data during application. The data is used to 

extract phone usage variables, which are then used to predict the demographic group 

membership probabilities, and eventually the trips rates of the users. Since the CDR data for 

all users is stored by mobile network operators for billing purposes, it can be anonymously 

applied to mitigate the problems associated with the lack of detailed demographic 

information during model application, thus enabling more reliable prediction of aggregate 

travel demand. The proposed framework presents the first attempt in literature to incorporate 

demographic variables into models based on mobile phone data, and is an original 

contribution of this thesis. 

Chapter 3 presents a paper titled “Modelling long-distance route choice using mobile phone 

call detail record data: a case study of Senegal”. A review of the literature shows that most 

previous studies have focussed on using mobile phone data for route identification, and only 

a few studies based on semi-continuous GSM and GPS data have used the identified routes 

to analyse route choice behaviour. There is no previous study using CDR data (which is 
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more discontinuous and noisy) to analyse route choice behaviour. As a result of the 

discontinuous nature of CDR data, it is only possible to observe the partial trajectories of 

the users. The chapter proposes an approach for extracting and labelling the routes 

associated with these partial trajectories. These are then combined with travel cost, travel 

time, and geospatial information obtained from various sources. Due to the partial nature of 

the CDR trajectories, the Broad Choice Framework developed in the context of vehicle type 

choice (Wong, 2015) is employed to model route choice behaviour for the first time. The 

results show that CDR data is able to capture the behaviour towards overlapping routes, and 

the estimated values of travel time are reasonable. This demonstrates that CDR data can be 

used to inform transport policies in contexts where traditional data sources are unavailable. 

Chapter 4 presents a paper titled “Modelling departure time choice using mobile phone 

data”.  Over the last few years, several studies have focussed on departure time choice 

modelling using GPS data, which is expensive to collect and is affected by technical issues 

such as signal losses and battery depletion that create gaps in the data. There has not been 

any study investigating the potential of mobile phone network records, which are cheaper 

to obtain as they are already being collected by network operators for different purposes. 

This chapter rigorously compares the strengths and weakness of real-world GSM and GPS 

data to investigate their potential use for modelling departure time decisions. It may be noted 

that GSM data is more appropriate for modelling departure time decisions compared to CDR 

data, which is event-driven and more discontinuous. The chapter presents a practical 

approach to impute the missing travel time information for the different departure time 

intervals and proposes a novel modelling framework that accounts for the fact that the 

desired times of travel are unobserved. The proposed framework is unique in the sense that 

it allows the modeller to understand the sensitivities, as well as the valuations attached to 

schedule delay, despite the passive nature of the data. The findings show that GSM data has 

fewer time gaps, which leads to more reliable model results compared to GPS data, despite 

the higher location accuracy of the latter. This is also supported by comparison of the 

valuation metrics derived from both models, where those obtained from GSM data are closer 

to those based on traditional data. This result could inform policy measures related to big 

data adoption for transportation studies. 

Chapter 5 presents a paper titled “Getting the best of both worlds - a framework for 

combining disaggregate travel survey data and aggregate mobile phone data for trip 

generation modelling”. This chapter describes and tests a novel joint modelling framework 

combining household travel survey data, census data and CDR data to optimise both the 

aggregate and disaggregate reliability of trip generation models. Household survey data is 

the most reliable source of information on travel behaviour patterns, however, the data 

typically covers small proportions of the population and is prone to reporting errors, which 

could lead to misrepresentation of the aggregate travel demand across zones. On the other 

hand, CDR data covers much wider proportions of the population and is a more reliable 

source of information on the aggregate travel patterns across zones. However, CDR data too 

is not error-free due to missed trips and data noise, thus the need to optimise between the 

household survey and the CDR data outcomes. The proposed joint modelling framework 

focuses on adjusting the parameter scales to optimise model performance at both the 

aggregate and the disaggregate level without changing the behavioural dynamics reflected 

in the household survey data. The results show that the proposed joint modelling framework 

improves both the temporal and spatial transferability of the models, thus making them more 

reliable. The chapter presents the first attempt in literature to combine the benefits associated 
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with household travel survey data and low-cost CDR data to improve the reliability of 

transport models, and is an original contribution of this thesis. 

Chapter 6 summarises the advances made towards achieving the objectives presented in 

Section 1.4, linking together the different contributions, and outlining the potential 

directions of future research. 

For purposes of clarity, the key contributions of this thesis are highlighted below in bullet 

points.  

• Extending the application of mobile phone network records to travel behaviour 

modelling and policy analysis; 

 

• A hybrid modelling framework to handle the issue of unobserved user 

demographics in transport models based on mobile phone data; 

 

• A novel joint modelling framework for optimising the aggregate and disaggregate 

performance of models; 

 

• Applying the broad choice framework to the context of route choice modelling 

using noisy CDR data; and 

 

• A new method for modelling departure time choice without information on the 

desired times-of-travel. 

Detailed discussions about each of these can be found in the subsequent chapters (i.e. 

chapters 2 to 5) and in section 6.3, where all have been summarised. 
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 Chapter 2 

Modelling trip generation using mobile phone data:  

a latent demographics approach 

 

Andrew Bwambale*, Charisma F. Choudhury*, Stephane Hess* 

 

 

Abstract 

Traditional approaches to trip generation modelling rely on household travel surveys which 

are expensive and prone to reporting errors. On the other hand, mobile phone data, where 

spatial-temporal trajectories of millions of users are passively recorded has recently 

emerged as a promising input for transport analyses. However, such data has primarily been 

used for the development of human mobility models, extraction of statistics on human 

mobility behaviour, and origin-destination matrix estimation as opposed to the development 

of econometric models of travel demand. This is primarily due to the exclusion of user 

demographics from mobile phone data made available for research (owing to privacy 

reasons). In this study, we address this limitation by proposing a hybrid trip generation 

model framework where demographic groups are treated as latent or unobserved. The 

proposed model first predicts the demographic group membership probabilities of 

individuals based on their phone usage characteristics and then uses these probabilities as 

weights inside a latent class model for trip generation, with different classes representing 

different socio-demographic groups. The model is calibrated using the call log data of a sub-

sample of users with known demographics and trip rates extracted from their GSM mobility 

data. The performance of the hybrid model is compared with that of a traditional trip 

generation model which uses observed demographic variables to validate the proposed 

methodology. This comparative analysis shows that the model fit and the prediction results 

of the hybrid model are close to those of the traditional model. The research thus serves as 

a proof-of-concept that the mobile phone data can be successfully used to develop 

econometric models of transport planning by having additional information for a subset of 

the users. 
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2.1 Introduction 

Trip generation is the first step of the four-stage model (Ortúzar and Willumsen, 2011) and 

is critical to the accuracy of the subsequent stages. Generally, trip generation models 

establish mathematical relationships between trip making rates and the demographics of 

individuals or households (e.g. Bwambale et al., 2015 and the cited references). Traditional 

approaches to estimating trip generation models rely on household travel surveys which are 

expensive and prone to reporting errors. Furthermore, the application of traditional models 

is often hindered by the lack of detailed demographic information in the application context.  

Consequently, there has been growing interest in the use of ubiquitous data for mobility 

modelling. Examples include social media data (e.g. Hawelka et al., 2014, Hasan et al., 

2013, Wu et al., 2014), smart card data (e.g. Agard et al., 2006, Chakirov and Erath, 2012), 

and mobile phone data (e.g. Çolak et al., 2015, Song et al., 2010). However among these, 

mobile phone data has emerged as the most promising source due to the high penetration 

rate of mobile phones. Unique subscriber penetration in the developed world is currently 

very high, estimated at 79% in 2014, and projected to grow to 81% by the end of 2020, 

while that in the developing world was estimated at 44.6% in 2014, and is projected to grow 

to 56% by the end of the same period (GSMA Intelligence, 2015). 

Mobile phone records, which can consist of Call Detail Records1 (CDRs) or Global System 

for Mobile Communications 2  (GSM) data, have been widely used to develop human 

mobility models (e.g. Gonzalez et al., 2008, Jiang et al., 2013, Çolak et al., 2015, Song et 

al., 2010, Deville et al., 2016, Isaacman et al., 2012), calibrate traffic models (e.g. Bolla et 

al., 2000), develop origin-destination matrices (e.g. Iqbal et al., 2014, Pan et al., 2006, Çolak 

et al., 2015, White and Wells, 2002), and estimate trip rates (e.g. Çolak et al., 2015).  

However, they have not been used in econometric models of travel demand like trip 

generation, mode choice, and route choice due to missing demographic information.  

The inclusion of demographic attributes into travel demand models improves their 

behavioural underpinning, policy sensitivity, and forecasting potential and the lack of 

information on such attributes is thus a valid reason for the lack of applications of mobile 

phone passive data in travel demand models. However, while privacy regulations make it 

difficult to make a 1-1 link between the socio-demographic details of a user and his/her 

CDRs, previous studies have demonstrated that characteristics like age, gender, employment 

status can be predicted by analysing the phone usage behaviour derived from the CDRs of 

a sub-sample of known user (e.g. Blumenstock et al., 2010, Dong et al., 2014, Brdar et al., 

2012, Aarthi et al., 2011, Ying et al., 2012, Mo et al., 2012). Such techniques can be used 

to incorporate demographic information into human mobility models based on mobile phone 

data, however, there is a need to evaluate the feasibility of such an approach as this has not 

been tested before. 

In this study, we propose a novel hybrid trip generation modelling framework to make 

mobile phone data usable for developing econometric models of travel behaviour and 

demonstrate it in the context of trip generation models. The proposed hybrid trip generation 

                                                           
1 CDR data typically consists of the time stamped locations of the responding tower that handles a 

call/text/web access request from a user as well as the details of the request (type, 

sender/receiver, etc.). 
2 GSM data has more detailed location compared to CDRs and reports the IDs of all the GSM cells 

traversed by an active mobile phone at regular time intervals.  
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model first predicts the demographic group membership probabilities of individuals as a 

function of their observed mobile phone usage. These probabilities are then used as weights 

inside a latent class model for trip generation, with different classes representing different 

socio-demographic groups.  

The proposed model needs GSM locations, CDR, and the socio-demographics from a small 

sub-sample for estimation/calibration. However, once calibrated, it only needs anonymous 

CDR data to predict the trip rates. Given that CDR data is routinely saved by the mobile 

phone companies for billing purposes, the proposed model thus provides as a low-cost, yet 

reasonably accurate method for predicting trip rates – especially in the context of developing 

countries where traditional data is not available/reliable and acquiring large-scale GSM data 

is difficult (due to privacy concerns and requirement of very large storages).    

We use the Nokia Mobile Data Challenge (MDC) dataset (Laurila et al., 2012, Kiukkonen 

et al., 2010), which is described later in this paper,  to investigate the feasibility of the 

proposed hybrid trip generation model. We compare the goodness-of-fit of the hybrid model 

against that of a traditional model (which directly uses the observed demographics). We 

then conduct multiple runs of predictions to compare the accuracy of the trip rates predicted 

by the two models to validate our hypotheses that the proposed hybrid model, which only 

uses the predicted demographics from the CDR data, has the potential to substitute the 

traditional trip generation model with observed demographics. 

The rest of the paper is arranged as follows. We start with a review of relevant literature, 

followed by an overview of the framework and the detailed model structure. We then 

provide a description of the data used for this study and the model estimation and validation 

results. Finally, we present a summary of the findings and the conclusions. 

2.2 Literature review 

We start by reviewing the literature on demographic prediction followed by that on passive 

inferring of dwell regions and trip rate extraction from mobile phone data. We end with a 

brief review of mathematical models of trip generation. 

2.2.1 Demographic prediction from mobile phone data 

The earliest attempt to use CDRs for demographic prediction was made in Rwanda 

(Blumenstock et al., 2010). In this study, a logit model was estimated to predict the gender 

of users based on the net number of calls per day and the net call duration. The study used 

a sample of 901 users whose demographic information was obtained through phone 

interviews. The estimated logit model gave a prediction accuracy of 74%.  Since then, 

logistic regression has been applied in other demographic prediction studies (e.g. 

Blumenstock, 2015, Mo et al., 2012). However, most other studies have used supervised 

learning classification algorithms for demographic prediction. Typically, these studies 

involve the training of various supervised learning classifiers (e.g. Support Vector Machines 

and Random Forests) to make separate predictions of the demographic attributes of users 

based on phone usage variables (e.g. Aarthi et al., 2011, Frias-Martinez et al., 2010, Brdar 

et al., 2012, Ying et al., 2012, Mo et al., 2012).  

Following the observation that most of the studies above had focused on predicting 

demographic attributes in isolation, Dong et al. (2014) investigated the possibility of 

improving accuracy through simultaneous demographic attribute predictions. This was 
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motivated by the hypothesis that mobile phone usage is influenced by a combination of 

demographic attributes and that separate prediction of individual demographics would 

reduce the probability of success due to excluded attributes. They estimated a Double 

Dependent Variable Factor Graph Model capable of making joint age and gender predictions 

based on phone usage variables and found that this improved prediction accuracy by up to 

10%. 

2.2.2 Inferring dwell regions from mobile phone data 

In trip generation modelling, it is also important to know the home, work and other dwell 

regions of individuals in order to distinguish trips by purpose (e.g. Ortúzar and Willumsen, 

2011). Previous studies have developed spatial-temporal algorithms for passively detecting 

and labelling an individual’s dwell locations using CDRs (e.g. Çolak et al., 2015, Pan et al., 

2006, Jiang et al., 2013, Toole et al., 2015, Akin and Sisiopiku, 2002). The nature of such 

algorithms depends on the accuracy used to record the location of the communication events 

in the CDRs. Locations are usually recorded either as triangulated mobile phone 

coordinates, coordinates of the cell tower that transmitted the call or as the ID of the cell 

from which the call was made. 

Where the CDRs contain triangulated coordinates, dwell locations have been detected by 

applying an upper limit (usually 300m) on the distance between consecutive mobile phone 

coordinates and a lower limit (usually 10 minutes) on the time difference between the first 

and last points of a potential dwell location (e.g. Çolak et al., 2015, Jiang et al., 2013, Toole 

et al., 2015). For each user, the centroids of different dwell locations in close proximity to 

each other are then clustered into dwell regions using different clustering approaches (for 

example grid-based clustering (Zheng et al., 2010)) since these could be referring to the 

same actual point.  

Where the CDRs contain cell tower coordinates, dwell locations have been detected by 

linking a series of consecutive communication events transmitted by cell towers in close 

proximity to each other followed by linking a series of consecutive events transmitted by 

the same tower in order to distinguish between tower jumps and actual mobile phone 

movements (Çolak et al., 2015). This is because mobile operators sometimes carry out 

tower-to-tower balancing to optimize network performance. Dwell regions are then detected 

by applying a lower limit (usually 10 minutes) on the time difference between the first and 

last records in a series of consecutive events transmitted by the same tower. A similar 

approach is appropriate for CDRs containing cell IDs. 

Irrespective of the type of CDRs, the extracted dwell regions for each user are labelled as 

home, work, or other depending on the detected visitation frequency between particular 

times of the day, for example, home and work locations are usually defined as the most 

commonly visited dwell regions at night and during daytime respectively while the rest are 

defined as others (e.g. Çolak et al., 2015, Jiang et al., 2013). The success of the methods 

described above depends on the phone usage frequency of the individuals in the sample and 

requires long observation periods. Nevertheless, the methods can be applied to large 

anonymous CDR datasets to infer the dwell regions of users during trip generation model 

application. Methods for assigning the inferred dwell regions to Traffic Analysis Zones have 

been developed to ensure consistency with the existing transport models (e.g. Çolak et al., 

2015, Pan et al., 2006). 
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2.2.3 Extraction of trip rates from mobile phone data 

Previous studies have made attempts to directly estimate trip generation from CDRs (e.g. 

Çolak et al., 2015). CDRs have the advantage of being readily available in large quantities, 

however, they only report locations when the mobile phone is in use (e.g. when calls are 

made) making them unable to capture movements when the phone is not in use. Çolak et al. 

(2015) attempted to address this issue by making several assumptions e.g. by assuming an 

arbitrary home-based trip where the first or the last reported position of the day in the CDRs 

is at a non-home location. While these are reasonable assumptions, they do not properly 

address the issue of missed trips between communication events.  

Ultimately, the best way to extract trip rates from mobile phone data is when continuous 

locations are provided. However, network operators usually discard such information due 

to its large size. Nevertheless, we note that it is feasible to store continuous location data for 

a reasonable sub-sample of users as was done during the Lausanne Data Collection 

Campaign where continuous GSM cell references were stored (Laurila et al., 2012, 

Kiukkonen et al., 2010).  

2.2.4 Mathematical models of trip generation 

Discrete choice models have been the preferred approach for modelling trip generation since 

the ground-breaking work of McFadden (1974). This is because trip generation levels are 

discrete, mutually exclusive and finite. However, trip generation levels are ordered choices. 

An individual cannot choose to make the  𝑛𝑡ℎ trip if he/she has not previously made (𝑛 −

1) trips. The decision to make an additional trip depends on the number of trips already 

made which introduces inter-trip correlations. This has previously been taken into account 

using either Naturally Ordered Logit Choice Models (e.g. Vickerman and Barmby, 1985) or 

Ordered Response Choice Models (e.g. Bwambale et al., 2015), where the latter approach 

is more popular and is thus also used in this study. We also note that other trip generation 

modelling techniques e.g. linear regression and cross-classification (Ortúzar and 

Willumsen, 2011) are commonly used in practice, however, these are not considered for this 

study. 

2.3 Framework 

The hybrid trip generation model uses a demographic prediction model to replace the 

observed demographics with probabilistic latent classes of socio-demographic groups. The 

estimation and application frameworks are presented in Figures 2-1a and 2-1b respectively.  

As presented in Figure 2-1a, the data used for estimating the hybrid trip generation model 

includes the GSM locations, the CDRs and the socio-demographic characteristics of a small 

sub-sample. The GSM data reports the IDs of all the GSM cells traversed by an active 

mobile phone at regular time intervals and reliably captures all the trips made by the 

different users, except some short trips made within the boundaries of the same GSM cell. 

It may be noted GSM data is commonly discarded by mobile network operators due to 

storage space constraints and hence, though it can be stored for a small sub-sample, it is not 

typically available for the wider population.  
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a) Estimation framework (subsample of users) 

 

 

 

b) Application framework (for all users) 

Figure 2-1 Overall framework 

 

On the other hand, CDR data, which is readily available, has a timestamped record of the 

phone usage activities and can be used to derive phone usage behaviour. It also records the 

ID of the tower that handles the call, but the location data has not been used in this case 

because of the availability of the GSM data which is more reliable. These data sources are 

used to calibrate the hybrid choice model which has two components:  

1. Demographic prediction component  

2. Latent class based trip generation component 

In the demographic group prediction component, the demographic group membership 

probabilities of individuals are predicted as a function of their observed mobile phone usage 

(derived from CDR data). These probabilities are then used as weights inside a latent class 
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model for trip generation, with different classes representing different socio-demographic 

groups. The trip rates used for calibrating the proposed hybrid model are extracted from the 

GSM mobility data.  

In the application stage (Figure 2-1b), the pre-estimated hybrid model uses the anonymous 

CDR data as the input, predicts the latent socio-demographic classes of the users using the 

CDR data and predicts the trip rates by feeding these latent classes to the pre-estimated trip 

generation model. Therefore, the socio-demographic information and the GSM data are not 

required in the application stage.  

The detailed structure of the hybrid model is presented in Figure 2-2 and described in the 

following section.  

2.4 Model structure 

To implement the proposed hybrid framework in Figure 2-1, we propose an expanded 

approach that integrates two types of discrete choice mechanisms, that is, the unordered-

response choice mechanism (for demographic prediction) and the ordered-response choice 

mechanism (for trip generation) (Greene and Hensher, 2010, Ben-Akiva and Lerman, 1985, 

McKelvey and Zavoina, 1975).   

2.4.1  Demographic prediction 

The proposed demographic prediction model is based on the Random Utility Theory 

(Marschak, 1960). We use the phone usage data to explain which socio-demographic group 

a given individual falls into. To do this, we assume that individuals in a particular 

demographic group are more likely to be associated with specific mobile phone usage 

behaviour. We use random utility theory by assuming that the segment that a given 

respondent falls into has the highest utility as a function of the observed phone usage 

behaviour. 

Let 𝑈𝑛𝑠 be the utility of individual 𝑛 falling in demographic group 𝑠 as a function of mobile 

phone usage behaviour. This can be expressed as; 

𝑈𝑛𝑠 = 𝛽𝑠
′𝑥𝑛 + 𝜉𝑛𝑠  

 

= 𝛽𝑠
′𝑥𝑛 + (𝜂

′𝑧𝑛𝑔 + 𝜓
′ℎ𝑛𝑎 + 𝜆

′𝑚𝑛𝑤 + 𝜀𝑛𝑠)              (2-1) 

Where 𝑥 is a vector of observed phone usage variables; 𝛽𝑠 is a vector of group-specific 

parameters; and 𝜉𝑛𝑠 is the random component of utility.  

As shown, the random term comprises of the error term 𝜀𝑛𝑠 and three demographic attribute 

specific components, one along each dimension of the demographic groups.  𝜂′ is the gender 

specific constant while  𝑧𝑛𝑔 is a vector of dummy variables for the gender dimension. The 

additional terms 𝜓′ and ℎna; and 𝜆′ and mnw are defined in a similar way to 𝜂′  and 𝑧𝑛𝑔 but 

in the context of the age-group and the working status dimensions. The demographic 

attribute specific constants account for the unobserved phone usage dynamics that are shared 

across different demographic groups sharing one or more demographic attribute. 

The phone usage variables are respondent specific and thus constant across the 

‘alternatives’, which are the demographic groups. Each group has a different set of 
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parameters associated with it, reflecting the fact that the amount of usage has a differential 

impact on the likelihood of falling into a given group. 

We make an assumption that the error term is independently and identically distributed 

across the alternatives and use the Multinomial Logit (MNL) Model (McFadden, 1974) to 

estimate the demographic group membership probabilities as expressed below. 

𝑃𝑛𝑠 = 
exp(𝛽𝑠

′𝑥𝑛 + 𝜂
′𝑧𝑛𝑔 + 𝜓

′ℎ𝑛𝑎 + 𝜆
′𝑚𝑛𝑤)

∑ exp(𝛽𝑠∗
′ 𝑥𝑛 + 𝜂

′𝑧𝑔∗ + 𝜓
′ℎ𝑎∗ + 𝜆

′𝑚𝑤∗)𝑠∗
                         (2-2) 

 

The model parameters are then estimated by maximising the log-likelihood function below. 

𝐿𝐿(𝛽𝑠) =∑∑𝑍𝑛𝑠 ln(𝑃𝑛𝑠)

 

𝑠

 

𝑛

                         (2-3) 

 

Where 𝑍𝑛𝑠 = 1  if and only if individual 𝑛  belongs to demographic group 𝑠  otherwise, 

𝑍𝑛𝑠 = 0.  

As a result, each respondent has a non-zero probability of falling into each of the different 

socio-demographic groups, but the more the model is able to link the socio-demographic 

characteristics to phone usage, the more deterministic the allocation to these groups 

becomes in the model. 

2.4.2 Trip generation 

As mentioned, the ordered response choice mechanism is used in the trip generation model 

component considering the ordered nature of trip generation choices. This mechanism 

assumes that every individual has a latent continuous trip making propensity that is a 

function of his/her demographics, which is then converted to discrete trips using estimated 

cut-off points (Greene and Hensher, 2010, McKelvey and Zavoina, 1975). We first present 

the traditional framework (where demographics are observed) and then present our proposed 

extension that addresses the issue of unobserved demographics. 

2.4.2.1 The traditional trip generation model (with observed demographics) 

Let ℎ𝑛
∗  be the latent trip-making propensity for individual 𝑛  based on his observed 

demographic attributes. Using the ordered-response choice mechanism, this can be 

expressed as; 

ℎ𝑛
∗ = 𝛾′𝑤𝑛 + 𝜀𝑛  

                        (2-4) 

𝑡 =  

{
 
 

 
 
< 10,         𝑖𝑓 ℎ𝑛

∗  ≤  𝛿0 
10 − 15,   𝑖𝑓 𝛿0 < ℎ𝑛

∗  ≤  𝛿1
16 − 20,   𝑖𝑓 𝛿1 < ℎ𝑛

∗  ≤  𝛿2
21 − 25,   𝑖𝑓 𝛿2 < ℎ𝑛

∗  ≤  𝛿3
> 10,         𝑖𝑓 ℎ𝑛

∗  >  𝛿3

 

  

Where;  𝑤𝑛 is a vector of the observed demographic attributes for individual 𝑛 ; 𝜀𝑛 is the 

random error term; 𝛾′ is a vector of the model coefficients; 𝑡 is the number of trips per week; 

and 𝛿0 < 𝛿1 < 𝛿2 < 𝛿3   are the cut-off points. Note that different categorisations of the 

weekly trip rates were tested and these were found to provide the best model fit. We make 
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an assumption that the random error term follows a Gumbel Distribution and use the 

Ordered Response Logit (ORL) Model (Greene and Hensher, 2010, McKelvey and Zavoina, 

1975) to estimate the trip generation probabilities as expressed below; 

𝑃𝑛,   𝑡 < 10 =  Λ(𝛿0 − 𝛾
′𝑤𝑛 )  

𝑃𝑛,   10 ≤ 𝑡 ≤ 15 =  Λ(𝛿1 − 𝛾
′𝑤𝑛 ) −  Λ(𝛿0 − 𝛾

′𝑤𝑛 )  

𝑃𝑛,   16 ≤ 𝑡 ≤ 20 =  Λ(𝛿2 − 𝛾
′𝑤𝑛 ) −  Λ(𝛿1 − 𝛾

′𝑤𝑛 )  

𝑃𝑛,   21 ≤ 𝑡 ≤ 25 =  Λ(𝛿3 − 𝛾
′𝑤𝑛 ) −  Λ(𝛿2 − 𝛾

′𝑤𝑛 ) 

𝑃𝑛,   𝑡 > 25 =  1 −  Λ(𝛿3 − 𝛾
′𝑤𝑛 )  

                        (2-5) 

 

Where Λ(𝑞) = exp[− exp(−𝑞)] represents the standard cumulative Gumbel Distribution. 

The model parameters are then estimated by maximising the log-likelihood function below.  

𝐿𝐿(𝛾, 𝛿) =∑∑𝑍𝑛𝑡 ln(𝑃𝑛𝑡)

 

𝑡

 

𝑛

                         (2-6) 

 

2.4.2.2 The hybrid trip generation model (with predicted demographics) 

Let 𝑦𝑛|𝑠
∗  be the latent trip-making propensity for individual 𝑛  on condition that he/she 

belongs to latent demographic group 𝑠. This latent propensity can be expressed as a function 

of the typical demographic attributes associated with latent demographic group 𝑠 as shown 

below; 

𝑦𝑛|𝑠
∗ = 𝛼′𝑤𝑛|𝑠 + 𝜀𝑛|𝑠                          (2-7) 

𝑡 =  

{
 
 

 
 
< 10,         𝑖𝑓 𝑦𝑛|𝑠

∗  ≤  𝜇0 

10 − 15,   𝑖𝑓 𝜇0 < 𝑦𝑛|𝑠
∗  ≤  𝜇1

16 − 20,   𝑖𝑓 𝜇1 < 𝑦𝑛|𝑠
∗  ≤  𝜇2

21 − 25,   𝑖𝑓 𝜇2 < 𝑦𝑛|𝑠
∗  ≤  𝜇3

> 10,         𝑖𝑓 𝑦𝑛|𝑠
∗  >  𝜇3

 

 

 

Where;  𝑤𝑛|𝑠 is a vector of the typical demographic attributes for individual 𝑛 given that 

he/she is associated with latent demographic group 𝑠; 𝜀𝑛|𝑠 is the random error term; 𝑡 is the 

number of trips; 𝜇0 < 𝜇1 < 𝜇2 < 𝜇3 are the cut-off points; and 𝛼′ is a vector of the model 

coefficients.   

 

We again assume that the random error term follows a Gumbel Distribution and estimate 

the conditional trip generation probabilities as expressed below; 

𝑃𝑛,   (𝑡 < 10)|𝑠 =  Λ(𝜇0 − 𝛼
′𝑤𝑛|𝑠 )  

𝑃𝑛,   (10 ≤ 𝑡 ≤ 15)|𝑠 =  Λ(𝜇1 − 𝛼
′𝑤𝑛|𝑠) −  Λ(𝜇0 − 𝛼

′𝑤𝑛|𝑠 )  

𝑃𝑛,   (16 ≤ 𝑡 ≤ 20)|𝑠 =  Λ(𝜇2 − 𝛼
′𝑤𝑛|𝑠 ) −  Λ(𝜇1 − 𝛼

′𝑤𝑛|𝑠 )  

𝑃𝑛,   (21 ≤ 𝑡 ≤ 25)|𝑠 =  Λ(𝜇3 − 𝛼
′𝑤𝑛|𝑠 ) −  Λ(𝜇2 − 𝛼

′𝑤𝑛|𝑠 ) 

𝑃𝑛,   (𝑡 > 25)|𝑠 =  1 −  Λ(𝜇3 − 𝛼
′𝑤𝑛|𝑠 )  

                  (2-8) 

 

These calculations are conditional on knowing the socio-demographics of respondent 𝑛, 

reflected by that respondent falling into demographic group 𝑠. However in reality, we do 
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not know which class the respondent falls into.  Therefore, the unconditional trip generation 

probabilities are estimated as the weighted averages of the conditional probabilities as 

expressed in Equation 2-9.  The weights 𝑃𝑛𝑠   are the demographic group membership 

probabilities estimated from Equation 2-2 at the maximum likelihood estimates.  

𝑃𝑛,   𝑡 < 10 = ∑𝑃𝑛𝑠 ∗ Λ(𝜇0 − 𝛼
′𝑤𝑛|𝑠 )

 

𝑠

  

𝑃𝑛,   10 ≤ 𝑡 ≤ 15 = ∑𝑃𝑛𝑠 ∗ [Λ(𝜇1 − 𝛼
′𝑤𝑛|𝑠) −  Λ(𝜇0 − 𝛼

′𝑤𝑛|𝑠 ) ]

 

𝑠

 

𝑃𝑛,   16 ≤ 𝑡 ≤ 20 = ∑𝑃𝑛𝑠 ∗ [Λ(𝜇2 − 𝛼
′𝑤𝑛|𝑠 ) −  Λ(𝜇1 − 𝛼

′𝑤𝑛|𝑠 ) ]

 

𝑠

 

𝑃𝑛,   21 ≤ 𝑡 ≤ 25 = ∑𝑃𝑛𝑠 ∗ [Λ(𝜇3 − 𝛼
′𝑤𝑛|𝑠 ) −  Λ(𝜇2 − 𝛼

′𝑤𝑛|𝑠 )]

 

𝑠

 

𝑃𝑛,   𝑡 > 25 = ∑𝑃𝑛𝑠 ∗ [1 −  Λ(𝜇3 − 𝛼
′𝑤𝑛|𝑠 ) ]

 

𝑠

 

     (2-9) 

 

The advantage with ordered response models is their parsimonious structure as they are 

specified using monotonic parameters (see the 𝛾 and 𝛼 parameters in Equations 2-4 and 2-

7 respectively). This simplified model structure is based on the hypothesis that the data 

supports the proportional odds assumption, where the logarithms of the cumulative odds of 

the ordered alternatives increase proportionally (Greene and Hensher, 2010, McCullagh, 

1980). If the data does not support this assumption, the model could lead to biased parameter 

estimates.  

To test whether the proportional odds assumption holds, Borooah (2001) proposes a 

likelihood ratio test where the ordered response model (with monotonic parameters) is 

compared against an equivalent MNL model (with alternative-specific variable parameters), 

and the calculated likelihood ratio is assessed with respect to a chi-square statistic where the 

degrees of freedom correspond to the difference in the number of parameters. A statistically 

insignificant result suggests that there is no cause for concern. It may be noted that this was 

the case in this study where the p-values of the chi-square statistics were 0.8968 and 0.8153 

for the traditional and the hybrid models respectively. 

Figure 2-2 presents the full path diagram of the hybrid model structure where unobserved 

variables are shown in circles and observed variables in rectangles. It may be noted that two 

sequential estimators are used to estimate the hybrid framework. The first results in 

parameters that provide the best fit for the demographic prediction model and the second 

results in parameters that provide the best fit for the trip generation model. This is different 

from a simultaneous estimator which tries to jointly predict both the demographic groups 

and the trip generation levels. A simultaneous model could lead to gains in efficiency (i.e. 

smaller standard errors) but also opens up risk in terms of confounding between the two 

model components.  
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Figure 2-2 Full path diagram of the hybrid model structure 

 

Notation 

 

𝛼, 𝛽, 𝜇 Vectors of unknown parameters to be estimated 

𝑋 Phone usage variables 

𝑆 Demographic groups 

𝑡 Number of trips 

𝑈𝑛𝑠
∗ Utility of individual 𝑛 falling in demographic group 𝑠 

𝑃𝑛𝑠
∗ Membership probability to demographic group 𝑠 for individual 𝑛 

𝑤𝑛|𝑠 A vector of the typical demographic attributes for individual 𝑛 given 

that he is associated with latent demographic group 𝑠 

𝑦𝑛|𝑠
∗ Latent trip-making propensity for individual 𝑛 on condition that he 

belongs to latent demographic group is 𝑠 

𝑃𝑛𝑡|𝑠
∗ Conditional probability for making 𝑡 trips given that the latent 

demographic group for individual 𝑛 is 𝑠 

𝑃𝑛𝑡
∗ Unconditional probability for making 𝑡 trips for individual 𝑛 

𝑌 Number of trips made 
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2.4.3 Evaluation criteria for model performance 

For model evaluation, we compare the goodness-of-fit during estimation and validation. For 

the estimation, we use the adjusted-rho square and the likelihood ratio test (Ben-Akiva and 

Lerman, 1985) which are defined as follows, respectively; 

𝜌𝑎𝑑𝑗
2 = 1 −

𝐿𝐿(𝐹) − 𝑘

𝐿𝐿(0)
 and 𝐿𝑅 =  −2[𝐿𝐿(0) − 𝐿𝐿(𝐹)]           (2-10) 

Where; 𝑘 is the number of model parameters,  𝐿𝐿(𝐹) and 𝐿𝐿(0) are the values of the log-

likelihood function at convergence and at zero respectively.  

For model validation, a hold-out sample (not used for model estimation) is used to confirm 

that the estimation results are not simply due to overfitting. In this stage, we use both 

aggregate and disaggregate measures of fit. At the aggregate level, we compare the predicted 

and actual shares and compute the Root Mean Square Error (RMSE). At the disaggregate 

level, we use the predictive rho-square and the average probability of correct prediction. 

The predictive rho-square is obtained by calculating the log-likelihood for the validation 

sample at the pre-estimated maximum likelihood parameters and at zero and then applying 

Equation 2-10 without the 𝑘.  The average probability of correct prediction is obtained by 

computing the mean probability of success for the validation sample based on the pre-

estimated maximum likelihood parameters. 

2.5 Data 

We use data from the Nokia Mobile Data Challenge (MDC) for this study (Laurila et al., 

2012, Kiukkonen et al., 2010). The data was generated during the Lausanne Data Collection 

Campaign by 158 participants with known demographics. These participated in the 

campaign at different time periods between 2010 and 2012, each lasting several months. 

This makes the data rich in terms of temporal coverage. The full database contains several 

types of smartphone records (e.g. Bluetooth usage data), however, we only use the call logs 

and the GSM cells data (mobility data) to improve the transferability of our approach. The 

subsequent sections briefly describe the data used including the analysis undertaken. 

2.5.1 Extraction of demographic groups from the demographic data 

The demographic data file contains the demographics of 158 participants. Each record in 

this file is described by; a user ID, the gender, the age-group, and the working status of the 

participant, among others (e.g. marital status). Out of these, 4 participants were disregarded 

because they had missing demographic information, leaving 154 participants. Demographic 

groups were formed by generating various possible combinations of age-group, gender, and 

working status. In total, seven demographic groups were observed in the data as shown in 

Table 2-1, where some of the demographic groups have very small sub-samples. This 

problem could have been avoided by conducting demographically stratified random 

sampling of the participants in the data collection phase (which was beyond our control).  

2.5.2 Extraction of phone usage variables from the call log data 

The call log data file contains a register of all the communication events of the participants 

(calls and short messages). In total, there are over 0.42 million call log events. Each call log 
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event is described by; a user ID, the time of the call, the status of sent short messages, the 

direction of the call, the type of call, the other party’s anonymized phone number, and the 

call duration.  The information in this file is equivalent to what would be found in CDRs. 

The call log data was analysed to extract several phone usage variables based on guidance 

from previous literature (e.g. Aarthi et al., 2011, Blumenstock, 2015, Blumenstock et al., 

2010, Frias-Martinez et al., 2010) and intuition. Table 2-1 presents the summary statistics 

of the extracted phone usage variables. 

Table 2-1 Summary statistics 

Demographic group summary statistics  

Demographic group 
Assigned 

code 

Number of 

participants 

Percentage, 

% 

Female non-worker aged below 21 years F-NW-U21 7 4.9 

Female worker aged above 21 years F-WO-A21 29 20.3 

Female non-worker aged above 21 years F-NW-A21 19 13.3 

Male non-worker aged below 21 years M-NW-U21 4 2.8 

Male worker aged below 21 years M-WO-U21 3 2.1 

Male non-worker aged above 21 years M-NW-A21 22 15.4 

Male worker aged above 21 years M-WO-A21 59 41.3 

Total                        143 100 

Sample phone usage summary statistics (extracted from call log data) 

Variable  Statistic 

Average number of outgoing calls per user, per day  3.4 

Average number of incoming calls per user, per day  1.5 

Average number of outgoing short messages per user, per day  1.7 

Average number of incoming short messages per user, per day  2.5 

Average number of missed calls per user, per day  0.7 

Trip generation summary statistics (extracted from GSM data) 

Number of trips per week from home 
Number of 

participants 

Percentage, 

% 

< 10  4 2.8 

10 – 15 26 18.2 

16 – 20 43 30.1 

21 – 25 14 9.8 

> 25 56 39.2 

Total 143 100 

 

2.5.3 Extraction of trip rates from the GSM (mobility) data 

The GSM data file contains a register of all the GSM cells seen by the participants’ mobile 

phones at an interval of approximately 60 seconds. This data file contains over 50.8 million 

records generated by all the participants. Each GSM record is described by; a user ID, a 

unique internal ID for the GSM cell, and the record creation time and date. The GSM data 

was analysed to extract the number of trip origins from home using the following approach.  

First, all the GSM cell IDs seen at night (between 8 pm and 6 am) by the different user IDs 

were extracted and ordered according to the record creation time and date. For each date, 

the GSM cell ID seen for the longest continuous time at night was established and the most 
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common among these across the different dates determined as the home GSM cell for the 

user ID. The weekly trip rates from home were then estimated by analysing the GSM 

mobility data to determine the number of times per week the different user IDs were not 

seen in their respective home GSM cells for periods longer than 10 minutes. We considered 

10 minutes as the appropriate threshold for distinguishing between actual trips and tower 

jumps. We do not classify the trips by purpose because the geographical locations of the 

GSM cells have been anonymised thereby making it difficult to infer activities by map 

matching. We acknowledge that the resolution of the GSM mobility data only enables the 

capture of trips made outside the home GSM cell and misses short trips made within the 

boundaries of the home GSM cell. Our approach is therefore suitable for urban areas such 

as Lausanne where GSM cell sizes can be as small as 100m (De Groote, 2005). At this stage, 

we disregarded 11 participants who had incomplete weeks of data, leaving 143 participants. 

Table 2-1 presents the summary statistics of the extracted trip rates. 

2.6 Estimation results 

In this section, we present the estimation results for both the demographic group prediction 

model and the trip generation models based on the full sample.  

2.6.1 Demographic group prediction model 

Table 2-2 presents the estimation results of the demographic prediction model. We tested 

various combinations of phone usage variables in terms of the statistical performance of the 

associated parameters and the overall model performance and settled for a set of eleven 

shown in Table 2-2. We found that differentiation of phone usage by time segment (e.g. 

working hours and night) was statistically important for most of the variables while 

differentiation by weekdays versus weekends was not. We also found that interacting some 

of the variables (e.g. net = outgoing - incoming) was statistically important, however, we 

acknowledge that we have not exhausted all the possibilities.  

The parameters of the demographic prediction model represent the effect of the variables on 

the utility of each demographic group relative to that of the reference group M-WO-A21 

(male workers aged above 21 years). We do not have a priori expectations of the parameter 

signs since this is still a new area of research, moreover, mobile phone usage behaviour is 

likely to differ from place to place. Therefore, we analyse this particular case using our 

intuitive reasoning. To do this, we first analyse the demographic attribute specific constants. 

Among these, we find that the only statistically significant constant is that associated with 

individuals above 21 years. This indicates the existence of statistically strong unobserved 

phone usage dynamics common across different demographic groups sharing the same age-

group. The rest of the constants are statistically insignificant probably because the 

associated phone usage dynamics have been captured by the specified explanatory variables.  

We then analyse the parameters of the demographic groups having only one attribute not in 

the reference group M-WO-A21 so as to establish the unique effect of each attribute. These 

groups (and the complement attributes) are; F-WO-A21 (female), M-WO-U21 (age below 

21 years), and M-NW-A21 (non-worker). See Table 2-1 for the group definitions.   
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Table 2-2 Parameter estimates of the demographic prediction model  

(See Table 2-1 for the parameter definitions) 

Variable Parameter t-statistic 

Net number of calls (outgoing – incoming) in the morning  

(06:00 AM – 08:00 AM) 
  

F-NW-U21 -2.9394 -0.82 

F-WO-A21 -3.6428 -1.92 

F-NW-A21 -0.9796 -0.32 

M-NW-U21 -40.3761 -3.69 

M-NW-A21 -0.6865 -0.32 

M-WO-U21 -18.6114 -3.77 

   Number of outgoing calls at lunch time  

(01:00 PM – 02:00 PM) 

  

F-NW-U21 -7.0073 -1.94 

F-WO-A21 -9.6277 -2.91 

F-NW-A21 1.2208 0.60 

M-NW-U21 -6.0815 -1.47 

M-NW-A21 -0.2364 -0.10 

M-WO-U21 4.5906 1.90 

   Net number of calls (outgoing – incoming) during working 

hours (08:00 AM – 01:00 PM and 02:00 PM – 05:00 PM) 

  

F-NW-U21 1.9960 3.15 

F-WO-A21 2.4266 3.30 

F-NW-A21 -0.2648 -0.34 

M-NW-U21 1.9878 1.99 

M-NW-A21 -0.4622 -0.64 

M-WO-U21 2.0136 3.61 

   Number of outgoing calls in the evening  

(05:00 PM – 08:00 PM) 

  

F-NW-U21 -1.3946 -0.99 

F-WO-A21 0.5150 0.43 

F-NW-A21 1.4971 1.61 

M-NW-U21 0.8424 0.26 

M-NW-A21 2.4243 2.54 

M-WO-U21 0.3342 0.24 

   Net number of calls (outgoing – incoming) at night  

(08:00 PM – 06:00 AM) 

  

F-NW-U21 -0.2181 -0.11 

F-WO-A21 -4.8651 -1.99 

F-NW-A21 -2.3378 -1.01 

M-NW-U21 2.4107 0.56 

M-NW-A21 0.7189 0.31 

M-WO-U21 0.9151 0.31 

  Number of outgoing short messages during working hours 

(08:00 AM – 01:00 PM and 02:00 PM – 05:00 PM) 

  

F-NW-U21 1.6257 2.64 

F-WO-A21 0.7478 1.21 

F-NW-A21 0.0456 0.08 

M-NW-U21 1.9497 2.7 

M-NW-A21 1.2729 1.47 

M-WO-U21 -1.4161 -1.97 
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Table 2-2 cont’d 

Variable Parameter t-statistic 

Number of outgoing short messages at night  

(08:00 PM – 06:00 AM) 
  

F-NW-U21 -1.5717 -1.65 

F-WO-A21 -1.2529 -0.99 

F-NW-A21 0.5355 0.61 

M-NW-U21 -1.166 -1.04 

M-NW-A21 -3.3759 -1.70 

M-WO-U21 2.1387 2.30 

Average duration of outgoing calls in the evening  

(05:00 PM – 08:00 PM) 

  

F-NW-U21 0.0032 0.93 

F-WO-A21 0.0020 0.76 

F-NW-A21 0.0001 0.05 

M-NW-U21 0.0516 3.04 

M-NW-A21 0.0005 0.16 

M-WO-U21 -0.0028 -0.94 

   Average duration of incoming calls in the evening  

(05:00 PM – 08:00 PM) 

  

F-NW-U21 0.0017 1.08 

F-WO-A21 0.0008 0.57 

F-NW-A21 0.0013 1.01 

M-NW-U21 -0.0897 -2.94 

M-NW-A21 0.0002 0.15 

M-WO-U21 0.0018 0.86 

Outdegree of the social network   

F-NW-U21 -0.0360 -1.89 

F-WO-A21 -0.0063 -0.72 

F-NW-A21 0.0016 0.18 

M-NW-U21 0.1579 2.24 

M-NW-A21 -0.0076 -0.68 

M-WO-U21 0.0083 0.57 

Indegree of the social network   

F-NW-U21 0.0238 1.25 

F-WO-A21 0.0037 0.45 

F-NW-A21 -0.0163 -1.48 

M-NW-U21 -0.1633 -2.00 

M-NW-A21 -0.0088 -0.78 

M-WO-U21 -0.0357 -1.62 

Demographic attribute specific constants  

Males 0.0401 0.08 

Workers -0.0205 -0.03 

Individuals > 21 years 2.1583 1.86 

Measures of fit   

Number of observations 143 

Log-likelihood at zero -278.27 

Log-likelihood at convergence -169.83 

Number of parameters 69 

Adjusted-rho square 0.14 

Likelihood ratio 216.9 

Chi-square statistic (69, 0.05) 89.39 

 

From Table 2-2, it is observed that the net number of calls and outgoing short messages 

during working hours, the number of outgoing calls and the total call duration (outgoing and 
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incoming) in the evening, and the social network indegree (the unique number of incoming 

contacts) have positive parameter signs for the F-WO-A21 group. However among these, 

the only statistically significant parameter is that for the net number of calls during working 

hours. This suggests that females in comparison to males tend to use their phones more 

during working hours. On the other hand, the net number of calls in the morning and at night, 

the number of outgoing short messages at night, the number of outgoing calls during lunch 

time, and the social network outdegree (the unique number of outgoing contacts) have 

negative parameter signs for the same group. Most of these parameters are statistically 

significant except those for the outgoing short messages at night, and the social network 

outdegree. This suggests that males in comparison to females tend to make more phone calls 

during non-working hours since majority of them are workers. 

Similarly, it is observed that the number of outgoing calls and the total call duration 

(outgoing and incoming) in the evening, the net number of calls at night, and the number of 

outgoing short messages during working hours have positive parameter signs for the M-

NW-A21 group. However, the only statistically significant parameter that for the number of 

outgoing calls in the evening. This points to the idea that workers in comparison to non-

workers tend to call fewer people in the evenings probably because they prefer to utilize this 

time preparing for the next day.  

On the other hand, the net number of calls in the morning and during working hours, the 

number of outgoing calls at lunch, the number of outgoing short messages at night, and the 

social network indegree and outdegree have negative parameter signs for the M-NW-A21 

group. However, the only statistically significant parameter (at the 90% confidence level) is 

that for the number of outgoing short messages at night. This implies that workers in 

comparison to non-workers tend to send out more short messages at night probably because 

they do not have time to do so during the day due to work. 

In addition, it is observed that the number of outgoing calls during lunch time and in the 

evening, the net number of calls during working hours and at night, the number of outgoing 

short messages at night, the average duration of incoming calls in the evening, and the social 

network outdegree have positive parameter signs for the M-WO-U21 group. However, the 

only statistically significant parameters among these are those for the net number of calls 

during working hours, the number of outgoing calls during lunch time, and the number of 

outgoing short messages at night. This is a reflection of the possibility that individuals aged 

below 21 years tend to make more phone calls while at work and during lunch breaks and 

also send more short messages at night. On the other hand, the net number of calls in the 

morning, the number of outgoing short messages during working hours, the average duration 

of outgoing calls in the evening, and the social network indegree have negative parameter 

signs for the same group. However, the only parameters that are statistically significant 

among these are those for the net number of calls in the morning and the number of outgoing 

short messages during working hours. This indicates that individuals aged below 21 years 

in comparison to those above 21 years tend to make fewer calls in the morning and send 

fewer short messages during working hours (because they already make more calls during 

this time as earlier noted). 

The last rows of Table 2-2 provide the measures of fit in estimation. From these, it is noted 

that the model passes the likelihood ratio test at the 95% confidence level in comparison 
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with a model giving equal probabilities to the different groups for each individual (Ben-

Akiva and Lerman, 1985). 

2.6.2 Trip generation models 

The variables commonly used in trip generation models include; income, car ownership, 

working status, age, and gender (e.g. Bwambale et al., 2015). Among these, income and car 

ownership were not available in the MDC dataset and hence could not be considered in the 

demographic prediction model, therefore, we only considered gender, working status, and 

age. The estimation results of the hybrid model (which uses the predicted demographics) 

are presented in Table 2-3 alongside those of a model which uses the observed demographics 

(referred as the traditional model in the following sections).  

Table 2-3 Parameter estimates of the trip generation models 

Variable 

Traditional model 

(With observed 

demographics) 

Hybrid model 

(With predicted 

demographics) 

t-statistic of 

the 

difference 

in 

parameters Parameter t-statistic Parameter t-statistic 

Dummies specific to      

Males -0.3981 -2.33 -0.9125 -2.90 -1.43 

Workers -0.3962 -2.24 -0.7817 -1.65 -0.76 

Individuals > 21 years 0.6020 1.91 1.0127 1.80 0.64 

      

Cut-off points specific to      

Trips per week  <10 -1.2775 -4.19 -1.6997 -3.82 -0.78 

Trips per week 10 - 15 -0.4221 -1.35 -0.7087 -1.69 -0.55 

Trips per week 16 – 20 0.4647 1.44 0.3119 0.73 -0.29 

Trips per week 21 - 25 0.7726 2.34 0.6542 1.49 -0.22 

      

Measures of fit in the estimation sample 

No. of observations 143 143 

Zero log-likelihood -230.2 -230.2 

Sample shares log-likelihood -197.07 -197.07 

Final log-likelihood -191.8 -192.3 

Number of parameters 3 3 

Adjusted-rho square 0.14 0.13 

Likelihood ratio w.r.t sample shares 10.54 9.54 

Chi-square stat (3, 0.05) 7.81 7.81 

 
The parameters of these models indicate the effect of the variables on the trip making 

propensity of individuals. The signs of all the parameters are consistent with a priori 

expectations. When individuals are employed, they are always engaged at the workplace 

and tend to travel less frequently to and from home in comparison to non-workers, hence 

the negative parameter sign for workers. Similarly, females generally run more errands (e.g. 

shopping, taking children to school etc.) irrespective of who pays the costs. Therefore, 

females tend to travel more frequently to and from home in comparison to males, hence the 

negative parameter sign for males. On the other hand, individuals above 21 years are 

generally out of school and if not already employed, are usually in active search for 

employment opportunities which requires a lot of travel hence the positive parameter sign.  
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To further interpret the estimated parameters, it would have been necessary to compute the 

odd ratios with respect to unit (0,1) changes in each of the demographic variables while 

keeping the others fixed, however, this was difficult to achieve for the hybrid model, which 

relies on demographic group membership probabilities that represent the joint likelihood of 

more than one demographic variable (i.e. age, gender, and working status), and the 

probabilities cannot shift from 0 to 1 (see Equation 2-9). Nevertheless, the signs of all the 

parameters for both models are the same and the t-statistics for the differences between the 

parameters are insignificant.  This shows that both models capture the same trip generation 

behaviour and would lead to similar policy conclusions. 

The last rows of Table 2-3 provide the measures of fit in estimation. The adjusted-rho square 

values and the final log-likelihoods show that the traditional model performs slightly better 

than the hybrid model. This is to be expected given the error-free measures of the socio-

demographics used in the traditional model. On the other hand, it is also worth 

acknowledging that part of the performance of the hybrid model could be due to allowing 

for heterogeneity through the probabilistic component as individuals are not assigned 

deterministically to classes. 

2.7 Validation results 

In order to compare the predictive power of the traditional and the proposed hybrid model, 

we randomly split the data into five parts at the person level and generated five rolling 

subsets, each comprising of 80% of the data for model estimation purposes. For each of the 

five estimation subsets, we generated a complementary subset comprising of 20% of the 

data for validation purposes.  

We estimated models based on each of the five estimation subsets and the general 

interpretation of the model results remains the same. Table 2-4 presents the measures of fit 

of the models based on each of the subsets. As can be observed, the final log-likelihoods of 

the hybrid model remain close to those of the traditional model across the different subsets 

of the data. We tested the predictive power of each of these models using the corresponding 

complementary subsets. The subsequent sections present the validation results of both the 

demographic group prediction model and the trip generation models. 

Table 2-4 Final log-likelihoods of the models on the estimation subsets 

Model 
Log-

likelihood 

Subset 1 

N=115 

Subset 2 

N=114 

Subset 3 

N=114 

Subset 4 

N=114 

Subset 5 

N=115 

Demographic 

prediction model 

Initial -223.78 -221.83 -221.83 -221.83 -223.78 

Final -121.21 -130.74 -135.37 -120.48 -122.64 

       

Hybrid trip 

generation model 

(With predicted 
demographics) 

Initial -185.09 -183.48 -183.48 -183.48 -185.09 

Final -153.66 -151.90 -155.14 -155.32 -154.68 

       

Traditional trip 

generation model 

(With observed 

demographics) 

Initial -185.09 -183.48 -183.48 -183.48 -185.09 

Final -152.34 -151.23 -154.50 -154.14 -152.30 
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2.7.1 Demographic group prediction 

We start by assessing the predictive performance of the demographic prediction model using 

the five validation subsets. The actual and predicted demographic group shares in the 

validation subsets are presented in Figure 2-3.  

 
Figure 2-3 Demographic model predictive performance in the validation subsets  

(See Table 2-1 for the demographic group definitions) 
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As can be observed, both the actual and predicted shares tend to follow a similar trend albeit 

with observable differences across all the five subsets. This is probably due to weaknesses 

in variable specification, however, there is a possibility that more sophisticated models (e.g. 

the mixed logit model) could improve the performance. Nevertheless, the similarity in trends 

is a good starting point and motivates further research to improve our approach.  

2.7.2 Trip generation  

In this section, we assess the predictive performance of both the traditional and the hybrid 

trip generation models using the five validation subsets. The actual and predicted trip 

generation shares in the validation subsets are presented in Figure 2-4.  

 

 
Figure 2-4 Trip generation model predictive performance in the validation subsets 
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As can be observed, both the actual and the predicted shares tend to follow a similar trend 

for both models albeit with observable differences across all the five subsets. The difference 

between the actual and predicted shares for both models is probably due to the use of weak 

explanatory variables. As mentioned, previous trip generation studies have shown that 

income and car ownership are some of the most important explanatory variables (e.g. 

Bwambale et al., 2015) and yet these were not considered in this study. 

The predictive measures of fit for both models were computed and are presented in Table 2-

5. At the aggregate level, the hybrid model performs better than the traditional model in 

three out of the five subsets in terms of the root mean square error. At the disaggregate level, 

the hybrid model performs better than the traditional model in four out of the five subsets in 

terms of the average probability of correct prediction, and the predictive rho-square. As 

mentioned earlier, the relatively better performance of the hybrid model could be in part due 

to allowing for heterogeneity through the probabilistic component. Nevertheless, these 

results prove that the proposed hybrid model is a feasible alternative to the traditional model, 

particularly where other reliable data sources are absent, thereby supporting the use of 

predicted demographics. 

Table 2-5 Trip generation model measures of fit in the validation subsets 

Validation 

subset 

Root Mean Square Error 
Average probability  

of correct prediction 

Predictive 

rho-square 

Traditional 

model 

Hybrid 

model 

Traditional 

model 

Hybrid 

model 

Traditional 

model 

Hybrid 

model 

Subset 1 1.81 3.41 0.273 0.287 0.102 0.121 

Subset 2 3.69 3.65 0.287 0.301 0.122 0.132 

Subset 3 3.04 3.59 0.302 0.304 0.190 0.202 

Subset 4 3.16 2.97 0.303 0.279 0.171 0.129 

Subset 5 3.84 3.03 0.280 0.282 0.107 0.120 

 

2.8 Summary and conclusions 

The paper demonstrates the feasibility of the hybrid framework to mitigate the challenges 

associated with the estimation and the application of trip generation models using mobile 

phone data. An examination of the parameter signs and the t-statistics for the differences 

between the parameters of the hybrid trip generation model (with predicted demographics) 

and a traditional model (with observed demographics) shows that both models capture the 

same trip generation behaviour, an indication that both models would lead to similar policy 

conclusions.  

We also assess the performance of the traditional and the hybrid trip generation models using 

several measures of fit in five estimation and validation samples. For the estimation samples, 

we compare the final log-likelihoods while for the validation samples, we compare the root 

mean square error values (the predicted and actual shares), the predictive rho-square values, 

and the average probabilities of correct prediction. We find that the traditional model 

performs slightly better than the hybrid model during estimation and attribute this to the 

error-free measures of the socio-demographic variables in the traditional model with 

observed demographics. However, we find that the hybrid model generally performs better 

than the traditional model during validation in terms of the root mean square error values, 
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the predictive rho-square values, and the average probabilities of correct prediction. We 

attribute this improved performance to the possibility that the hybrid model allows for 

heterogeneity through the probabilistic component.  

For demographic prediction, we find that the performance of the model is satisfactory. 

However, this being a secondary data set, there are limitations in the sample size and 

distribution that are beyond our control. For example, we note that some demographic 

groups have very small sub-sample sizes which could have affected the overall model 

performance. We therefore recommend further research into different ways of improving 

the demographic prediction component of the hybrid model by dedicated data collection 

efforts. 

In practice, the proposed hybrid framework could be used where one has the demographic 

information, call detail records, and GSM mobility data for just a small representative 

section of willing users for the purposes of model calibration and anonymous CDR data for 

the full population. We note that GSM mobility data is generally discarded by mobile phone 

operators due to storage space constraints, however, it is possible to store such data for a 

small sub-sample of willing users. Once calibrated, the model only needs the phone usage 

characteristics of the individuals to be implemented and these can be derived from the 

anonymous CDRs of the entire population. The model can thus be applied for planning 

purposes, particularly where other reliable data sources are absent. 

We conclude that the validation results serve as a proof-of-concept that having the 

demographics of a sub-sample of willing mobile phone users can make mobile phone data 

feasible for econometric travel behaviour modelling and travel demand estimation. Further, 

the proposed hybrid framework has promise in improving the modelling of the other stages 

of the 4 step model (e.g. mode choice, route choice, etc.) using mobile phone data by 

enriching them with probabilistic latent socio-demographic classes in the absence of 

observed ones. 
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Chapter 3 

Modelling long-distance route choice using mobile phone call 

detail record data: a case study of Senegal 

 

Andrew Bwambale*, Charisma F. Choudhury*, Stephane Hess* 

 

Abstract 

Over the last two decades, Global Positioning System (GPS) data has been widely used for 

route choice modelling. However, such studies are often expensive, thereby leading to small 

sample sizes and increased risks of sampling bias. On the other hand, call detail records 

(CDRs) are more readily available for millions of users due to the growing mobile phone 

penetration rates worldwide and could serve as a low-cost alternative. This motivates this 

research where we investigate the potential of using CDR data for route choice modelling. 

We analyse the limitations of CDR data and propose techniques for inferring the chosen 

routes or subsets of the likely routes from partial CDR trajectories. Considering the 

anonymous nature of CDR data, we address issues of choice set determination and data 

fusion prior to model estimation. Due to the partial nature of CDR trajectories, route choice 

is observed at disaggregate and aggregate levels, which prompts us to adapt the broad choice 

framework to route choice modelling. Intuitive model results are obtained and used to 

estimate the value of travel time, which is found to be realistic for Senegal. The research 

findings are useful for developing countries where budgetary constraints on transport studies 

are common.  

 

 

 

Keywords: Route choice behaviour, Broad choice, Mobile phone data, Call detail 

records, Value of travel time 

 

 

 

 

 

 

                                                           
*
 Choice Modelling Centre, Institute for Transport Studies, University of Leeds (UK) 



 

58 
 

3.1 Introduction 

The modelling of route choice behaviour for long journeys, inter-city and inter-regional trips 

has been an important aspect of transport research for several decades, however, the number 

of studies in this field using revealed preference (RP) data is still low (e.g. Hess et al., 2015, 

Ben-Akiva et al., 1984). This is partly due to the demanding data collection requirements 

for such studies.  

Traditional RP data collection approaches in this context rely on interviews and paper or 

web-based questionnaire surveys where individuals are asked to describe the routes taken 

for particular trips (e.g. Vrtic et al., 2006, Ramming, 2002). These data collection techniques 

are generally expensive, which leads to limited sample sizes, thus increasing the risk of 

sampling biases. This problem is particularly prevalent in developing countries where 

stringent budget constraints on transport studies are common. Moreover, traditional data 

collection is often affected by low response rates and reporting errors which can lead to 

biased model estimates (e.g. Groves, 2006). 

The last few decades have seen the emergence of various technologies that enable the 

passive collection of mobility trajectories, mitigating the burden of route choice data 

collection. This has led to numerous route choice studies based on Global Positioning 

System (GPS) data, primarily from navigational devices (Li et al., 2018, Hess et al., 2015, 

Broach et al., 2012, Bierlaire and Frejinger, 2008), and more recently from smartphones 

(Bierlaire et al., 2010, Papinski et al., 2009). Although the incorporation of Assisted-GPS 

(A-GPS)3 features in most smartphones has significantly improved the accuracy of GPS 

locations, data generation strongly relies on smartphone ownership, internet connectivity, 

and data storage capacity, which leads to small sample sizes as seen in most related studies 

(e.g. Nitsche et al., 2014, Bierlaire et al., 2013, Nitsche et al., 2012, Bierlaire et al., 2010) 

thereby increasing the risk of sampling bias. 

This problem can be overcome by taking advantage of the large-scale anonymous datasets 

that are already being passively collected by operators for different purposes, and applying 

these to transport studies. Such datasets have already yielded promising results in various 

mobility studies. Examples include; social media data (Hawelka et al., 2014, Hasan et al., 

2013), smart card data (Chakirov and Erath, 2012, Agard et al., 2006), and network-

generated mobile phone data such as Call Detail Records (CDRs)4 and Global System for 

Mobile communications (GSM)5 data  (Çolak et al., 2015, Jiang et al., 2013, Schlaich et al., 

2010). However among these, network-generated mobile phone data is particularly a 

promising source due to the high mobile phone penetration rate worldwide (GSM 

Association, 2017).  

A review of the literature shows that there have been a few route identification studies using 

network-generated mobile phone data (e.g. Nie et al., 2015, Leontiadis et al., 2014, Hoteit 

et al., 2014, Schlaich et al., 2010), however, most of these studies end on route identification 

                                                           
3 A-GPS data comprises of triangulated mobile phone positions obtained by enhancing standalone 

GPS data using neighbouring cell tower locations to obtain more accurate and precise positions 

in poor satellite signal conditions.  
4 CDR data reports the time stamped locations of communication events (i.e. voice calls, text 

messages, and data calls) as well as the details of the request (i.e. the duration and direction). 
5 GSM data reports the IDs of all the GSM cells traversed by an active mobile phone at regular time 

intervals (irrespective of the calling or texting patterns of the users). 
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and do not attempt to investigate the factors affecting route choice behaviour. At the 

moment, only Schlaich (2010) combines GSM trajectories with traffic state information to 

analyse the influence of variable message signs (VMS) and other factors on route choice. 

However, the success of Schlaich’s study could in part be attributed to the use of GSM data, 

which is semi-continuous in nature as opposed to CDR data which is discontinuous. 

Although the discontinuous nature of CDR locations presents serious trajectory 

identification challenges, the data is more readily available for millions of users at 

zero/minimal costs as it is stored by operators for billing purposes. Therefore, route choice 

models based on CDR data can be practically useful in both developed and developing 

countries. This motivates this research where we focus on using CDR data for modelling 

route choice behaviour. 

However, it is important to underscore the practical challenges that stem from the use of 

CDR data, and how this impacts our work. Given the discontinuous nature of CDR data, we 

are only able to observe the partial trajectory of a user depending on their phone usage rate 

during a particular trip. For very close O-D pairs, it is likely that a user may travel from 

origin to destination without using their phone, thus making it impossible to even capture 

the partial trajectories. However, for distant O-D pairs, there is an increased possibility that 

a user will use his/her phone at different points during the trip thus enabling the capture of 

his/her partial trajectory.  For this reason, our study focuses on long-distance inter-regional 

route choice. Another reason for considering long-distance route choice is that there are 

usually fewer and widely spaced alternative routes, which can easily be identified despite 

the low location accuracy of CDR data. 

Furthermore, the locations at which the phones are used also matters since some location 

areas can be associated with more than one possible route. In such cases, it is not possible 

to precisely infer the chosen routes from the partial trajectories, rather, route choice is 

observed at a broad sub-group level (e.g. northern, southern etc.), where each sub-group 

comprises of a small set of possible routes. This prompts us to adapt the broad choice 

modelling framework, developed in the context of vehicle type choice (Wong, 2015) to 

route choice modelling using noisy CDR data. We note that this may be problematic in 

dense inter-urban networks, where it would be difficult to identify a small enough subset of 

possible routes using a few CDR locations. However, with the increasing trend of mobile 

internet usage (Gerpott and Thomas, 2014), the frequency of CDR locations is likely to 

improve significantly in the near future, which adds further to the timeliness of the present 

paper. 

This paper addresses issues of route identification, choice set determination and data fusion 

(with conventional and non-conventional data sources) prior to route choice model 

development. Although CDR data is only able to capture the partial trajectories of frequent 

phone users, the samples are usually large, thus increasing the possibility that they are 

representative enough to capture rational route choice behaviour. The need to investigate 

this assertion forms the basis of our validation exercise. The developed models are used to 

estimate the value of travel time (VTT) for Senegal (the study area), yielding reasonable 

estimates. The study is timely in the sense that it extends the application of CDR data beyond 

travel pattern visualisation to econometric modelling of travel behaviour. This could 

motivate reliable and low-cost policy formulation in different contexts. While we use 

Senegal as a case study, this research is beneficial to other developing countries with 

budgetary constraints on transport studies. 
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The rest of the paper is arranged as follows; section 3.2 presents a review of relevant 

literature, section 3.3 presents the data description, section 3.4 presents the data processing 

conducted, section 3.5 presents the modelling framework, section 3.6 discusses the model 

results, while section 3.7 presents the summary and conclusions. 

3.2 Literature review 

This section briefly reviews the literature on the applications of mobile phone data in 

transport studies, as well as different models of route choice. 

3.2.1 Previous applications of mobile phone data to transportation studies 

The last few decades have seen significant research effort in the application of large-scale 

mobile phone data to transportation studies. Such data has been widely applied in the 

development of human mobility models (e.g. Deville et al., 2016, Isaacman et al., 2012, 

Song et al., 2010), estimation of trip rates (e.g. Çolak et al., 2015), development of origin-

destination matrices (e.g. Çolak et al., 2015, Iqbal et al., 2014, White and Wells, 2002), 

travel mode detection (e.g. Qu et al., 2015, Wang et al., 2010, Reddy et al., 2008), and traffic 

model calibration (e.g. Bolla et al., 2000).  

However, we place focus on studies related to route identification. A few of these studies 

have used GSM data, which reports the complete mobile phone location area sequences of 

each user, thus enabling the easy identification of routes through sequence matching (e.g. 

Tettamanti et al., 2012, Schlaich et al., 2010) and probabilistic methods such locality-

sensitive hashing and  graph clustering (e.g. Görnerup, 2012). Instead, most studies have 

focussed on analysing the potential of CDR data, which is more widely available and yet 

challenging in this context. For example, Doyle et al. (2011) use the virtual cell paths 

technique to extract user trajectories from CDR data, and generate the kernel density paths 

for different routes to validate their findings. Saravanan et al. (2011) analyse the spatial and 

temporal information of CDR events over a long period of time to establish the daily routines 

and routes of the users. Hoteit et al. (2014) join subsequent triangulated CDR locations using 

linear, cubic, and nearest - neighbour interpolation to model the potential trajectories. 

Leontiadis et al. (2014) calculate the weights for each road segment within the cell areas 

linked to a user’s communication events and determine the shortest weighted path for a 

given OD pair.  Nie et al. (2015) mark each route with a subset of k optimal cell handover 

sequences extracted from the full set of possible handover sequences and matches these with 

those observed in the cell phone hand over data (similar to CDR data) based on the degree 

of similarity.  

In this study, we follow an approach slightly similar to that in Nie et al. (2015), however, 

instead of using a similarity index, we pursue the idea of unique and shared location area 

sequences in the context of broad choice modelling as explained later. 

3.2.2 Existing route choice models 

The vast majority of route choice models belong to the family of discrete choice models 

(see Ben-Akiva and Lerman, 1985 for details), with the multinomial logit (MNL) model 

(McFadden, 1974) being the most widely used. However, the MNL model is affected by the 

irrelevance of independent alternatives (IIA) property, which can be problematic for highly 

overlapping routes (Ramming, 2002). This has motivated the development of more 
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advanced route choice models to address this challenge. Examples include the nested 

recursive logit model (Mai et al., 2015), the c-logit model (Cascetta et al., 1996), the path 

size logit model (Ben-Akiva and Ramming, 1998), the link nested (cross-nested) logit model 

(Vovsha and Bekhor, 1998), and the multinomial probit model with logit kernel (Daganzo 

et al., 1977). Details of how some of these models overcome the overlapping route problem 

are discussed in section 3.5.3 of this paper.  

An important point to note is that the complexities of route choice modelling go beyond the 

overlapping route problem. Choice set generation is a key challenge, especially in highly 

overlapping dense urban networks, where several alternative routes can be possible, and yet 

individuals do not consider all the alternatives while making choices (Prato, 2009). Several 

choice set generation methods have been proposed in the literature including, the k-shortest 

path algorithms (e.g. Shier, 1979, Bellman and Kalaba, 1960), the labelling approach (Ben-

Akiva et al., 1984), link elimination approaches (e.g. Azevedo et al., 1993, Bellman and 

Kalaba, 1960), link penalty approaches (e.g. Rouphail et al., 1995, De La Barra et al., 1993), 

simulation approaches (e.g. Sheffi and Powell, 1982), doubly stochastic generation 

functions (e.g. Nielsen, 2000), constrained enumeration methods (e.g. Prato and Bekhor, 

2006), and probabilistic methods (e.g. Cascetta and Papola, 2001, Manski, 1977).  

However, since the focus of this paper is long distance trips, where the alternatives are 

usually few in number, choice set determination is more straightforward as discussed later 

in section 3.4.2 of this paper.  

3.3 Data 

This study uses CDR data collected from Senegal as part of the Orange Data for 

Development (D4D) challenge (de Montjoye et al., 2014). 

3.3.1 Study area 

Senegal is located in West Africa with a population of approximately 13.5 million according 

to the 2013 population census (ANSD, 2016).  

Road transport accounts for over 99% of all passenger travel (World Bank, 2004). The only 

long-distance train service (the Dakar-Niger line) was discontinued in May 2010 (Imedia 

and Calao Production, 2013).  

The country has a sparse national road network (see Figure 3-1), and for some O-D pairs, 

there is only one feasible alternative, making them unsuitable for route choice modelling. 

This study ignores such O-D pairs and only considers those where alternative routes exist.  

In total, twelve distant O-D pairs are considered, and these are; Dakar-Bakel, Dakar-Matam, 

Thies-Bakel, Thies-Matam, Diourbel-Bakel, Diourbel-Matam, and the corresponding O-D 

pairs for the reverse directions as shown in Figure 3-1.  

The long travel times between these regions increase the possibility of capturing the users’ 

partial trajectories as explained earlier. 
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Figure 3-1 Study area (Google Maps, 2017b, Worldatlas, 2017, ArcGIS, 2013) 

 

3.3.2 CDR data 

The CDR data was collected between January and December 2013 and aggregated to the 

arrondissement (district) level by the data provider. The geographical location of the 

arrondissements is presented in Figure 3-1 where we also show the tower locations for 

illustration purposes.  

The original CDR data comprised of 9 million unique users (67% of the study area 

population). This was pre-processed to retain frequent phone users (i.e. those with 

interactions on 75% of the days in a year) and randomly split into smaller monthly rolling 

sub-samples made available for research (see de Montjoye et al., 2014 for details). The user 

IDs in each sub-sample are anonymised to prevent possible re-identification across the 

different months. 

The data for each month comprises of about 150,000 users. Taking the most commonly 

observed arrondissement for each user during the month as their home district, the monthly 

population sampling rate ranged from 2.4% in Dakar (the capital) to 0.4% in the rural 

regions. On average, these users together generated over 40 million records per month (see 

an excerpt of the CDR data in Table 3-1a). The data is reduced to remove duplicate records 

resulting in the processed arrondissement visitation data presented in Table 3-1b. 

The overall level of user mobility is illustrated in Figure 3-2. As shown, most users visited 

less than three unique arrondissements per month. The low levels of inter-arrondissement 

mobility led to the capture of few trajectories as reflected in the final sample size (see 

Section 3.4.2).  
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Table 3-1a Excerpt of the raw CDR data  

Anonymised  

User ID 
Timestamp Arrondissement ID6 

130599 13-01-02 20:10 25 

130599 13-01-13 13:10 7 

130599 13-01-19 23:50 19 

130599 13-01-19 23:50 19 

130599 13-01-22 01:30 2 

130599 13-01-22 01:30 2 

130599 13-01-28 20:20 4 

130599 13-01-28 20:20 4 

130599 13-01-29 19:40 4 

130599 13-01-29 19:50 4 

130599 13-01-29 20:00 4 

130599 13-01-29 20:40 4 

130599 13-01-29 21:20 4 

130599 13-01-29 21:50 4 

130599 13-01-29 21:50 4 

130599 13-01-29 21:50 4 

 

 

Table 3-1b Excerpt of the processed arrondissement visitation data  

Anonymised User ID 

with a monthly identifier 

(e.g. January) 
 Arrondissement ID 1st observation Last observation 

130599.01 25 13-01-02 20:10 13-01-02 20:10 

130599.01 7 13-01-13 13:10 13-01-13 13:10 

130599.01 19 13-01-19 23:50 13-01-19 23:50 

130599.01 2 13-01-22 01:30 13-01-22 01:30 

130599.01 4 13-01-28 20:20 13-01-29 21:50 

 

 

 
Figure 3-2 Average monthly arrondissement observation frequency distribution 

 

                                                           
6 The geographical locations of the arrondissement IDs are presented in Figure 3-1 
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Although it is difficult to detect false tower jump movements in aggregate CDR data (Çolak 

et al., 2015, Iqbal et al., 2014), this is not a big factor for distant O-D pairs where the origin 

and destination arrondissements have been grouped into regions. 

3.4 Data preparation for analysis 

This section describes the analysis carried out on the processed arrondissement visitation 

data in Table 3-1b to identify the routes followed, as well as the processes of estimating the 

route attributes. 

3.4.1 Route identification  

The route identification process is summarised in Figure 3-3. This is divided into two main 

stages as described in the subsequent sections. 

 

 
 

Figure 3-3 Summary of the route identification process 
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3.4.1.1 Generation of unique and shared CDR arrondissement sequences 

Route arrondissement sequences (which are extracted from maps) show the order of all the 

arrondissements traversed by a particular route between a given O-D pair. On the other hand, 

CDR arrondissement sequences (which are extracted from the CDR data) show the order of 

the arrondissements in which a user used his/her phone during the trip, and are subsets of 

the route arrondissement sequences.  

For any given trip along a particular route, several possible CDR arrondissement sequences 

can be observed depending on the number and the location of the CDR events. These can 

be obtained by generating permutations of different sizes based on the route arrondissement 

sequence (in which order matters and no repetitions are allowed). However, since most of 

the O-D pairs have overlapping routes, some of the CDR arrondissement sequences can be 

linked to more than one route if all the intermediate CDR events occurred along the shared 

sections. In this case, it would only be possible to observe the subset of routes that were 

potentially followed (see illustration in Figure 3-4 where the blue areas indicate the shared 

arrondissements, while the grey and green areas indicate the unique arrondissements for the 

Northern 1 and 2 routes respectively). 

 
Figure 3-4 Arrondissement paths (Dakar-Bakel O-D pair as an example) 

 

The generated CDR arrondissement sequences linked to each route were cross-referenced 

to identify the permutations linked to unique routes (i.e. unique CDR arrondissement 

sequences) and those shared across multiple routes (i.e. shared CDR arrondissement 

sequences). The outcome of this analysis was a list of all the possible CDR arrondissement 

sequences labelled with the associated routes or sub-groups of the possible routes (see 

example in Table 3-2). 
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3.4.1.2 Extraction the O-D pair trip trajectories from CDR data 

The processed arrondissement visitation data for each user (see excerpt in Table 3-1b) was 

analysed to extract sub-sequences linked with possible trips between the regions of interest 

following the criteria below; 

• The first and the last arrondissements in the sub-sequence must be located within 

different regions of interest, and the user must not be observed in an upstream or a 

downstream region of interest within the same day for origins and destinations 

respectively; 

• The dwell time in the origin and the destination regions of interest must be longer 

than that required to directly traverse each of them to increase the possibility that 

these are the trip start and end locations. A user needs to use his/her phone at least 

twice in each of these regions to calculate the dwell time; 

• The intermediate arrondissements in the sub-sequence must all be associated with 

one of the defined arrondissement/corridors paths (see Figure 3-4) to ensure only 

direct trips are retained; and 

• The timestamp difference between the origin and the destination must not exceed 

24 hours, which is used as an upper limit to distinguish between users with direct 

trips but delay to use their phones on arrival, and those with intermediate 

destinations, thereby arriving late. 

The extracted sub-sequences meeting all the above criteria were either assigned to unique 

routes or sub-groups of the possible routes by cross-referencing with the labelled lists 

generated in Section 3.4.1.1. Table 3-2 presents an excerpt of the route assignment data. 

Table 3-2 Excerpt of the route assignment data 

Anonymised User ID 

with a monthly 

identifier (e.g. January) 

CDR Trajectory Route/ Broad sub-group 

131891.01 Dakar-11-C1-Bakel Northern 1 

131891.01 Dakar-C1-Bakel Northern 1 

132801.01 Dakar-122-Bakel Northern (Northern 1/ Northern 2)* 

132801.01 Dakar-28-C2-123-Bakel Northern 2 

132801.01 Dakar-C1-123-Bakel Northern 1 

* CDR trajectory can belong to both the Northern 1 and Northern 2 routes 

 

In this data, 70% comprised of unique assignments, while 30% comprised of broad 

assignments. Since this is a scenario where for some users and/or trips, we know the chosen 

route at a more disaggregate level than for others, we use the Broad Choice Modelling 

Framework (Wong, 2015) to analyse route choice behaviour.   

3.4.2 Estimation of route attributes 

For model estimation, it is critical to determine the choice set and the attributes of the 

alternatives. We assumed that the choice set is comprised of the routes that have ever been 

chosen by the different users. Routes not chosen by any user for the whole year were 

excluded from the choice set. On average, each origin-destination pair had four alternatives. 

Given that the total dataset is comprised of 9,453 records from 6,497 users, this is not a very 

restrictive assumption. Given the choice sets, we reviewed previous studies to identify the 
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attributes typically used in route choice models and their availability status for Senegal as 

summarised in Table 3-3. Although data on six explanatory variables was available, the final 

model specification contains three explanatory variables only as the inclusion of the other 

variables led to correlation problems and/or illogical model results. A detailed explanation 

of the variable specification process is presented in Section 3.6.1. The subsequent sections 

summarise the processes of estimating some of these attributes. 

Table 3-3 Attributes typically used in route choice models 

Attribute Sample references 
Data 

availability 
Remarks  

Individual socio-

demographics 

(Ramming, 2002, Zhang 

and Levinson, 2008) 
 

Mobile phone data is 

usually anonymous 

Travel time 

(Hess et al., 2015, 

Ramming, 2002, Ben-Elia 

and Shiftan, 2010) 

 
Can be derived from 

traditional data or 

maps 

Travel cost (Hess et al., 2015)  
Can be estimated using 

the vehicle operating 

costs 

Distance 
(Hamerslag, 1981, Bitzios 

and Ferreira, 1993) 
 

Can be calculated from 

maps 

Scenic characteristics 

(Zhang and Levinson, 

2008, Ben-Akiva et al., 

1984) 

 
Can be derived from 

maps 

Safety (e.g. presence 

of black spots) 

(Ben-Elia and Shiftan, 

2010, Ben-Akiva et al., 

1984) 

 
Data could not be 

obtained 

Urban developments 

along the route 

(Zhang and Levinson, 

2008, Ben-Akiva et al., 

1984) 

 
Data can be obtained 

from maps 

Time or distance on 

uninterrupted flow 

facilities (e.g. 

freeways) 

(Bierlaire and Frejinger, 

2008, Ramming, 2002) 
 

No such facilities 

between the regions of 

interest at the time of 

data collection 

Traffic congestion (Bitzios and Ferreira, 1993)  
Data could not be 

obtained 

Road quality (e.g. 

road surface 

conditions) 

(Ben-Akiva et al., 1984)  
Data from the national 

roads agency is 

available 

Road signs (e.g. 

direction signs) 
(Wootton et al., 1981)  

Data could not be 

obtained 
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3.4.2.1 Link length and surface attributes 

Data on the link lengths and surface attributes (i.e. paved or unpaved) was derived from the 

Senegal roads GIS layer (ArcGIS, 2013). This was updated to reflect the situation in 2013 

relying on road condition reports sourced from government and other relevant websites 

(Ageroute Senegal, 2017, ANSD, 2017, Logistics Cluster, 2013). 

3.4.2.2 Travel time 

Travel time cannot be reliably estimated from the CDR data as users do not necessarily use 

their phones at the moment of departure or arrival. The typical travel times for most links in 

2013 were obtained from the website of Logistics Capacity Assessment (Logistics Cluster, 

2013). For links not covered by this website, we relied on Google Maps (Google Maps, 

2017a).  

It may be noted that we used the same average travel time for all the users along a particular 

route between a given O-D pair. A better approach would have been to estimate user-specific 

travel times based on the corresponding actual departure or arrival times.  

Although such information can be obtained from Google Maps using the directions tool 

(Google Maps, 2017a), it is difficult to observe the actual departure or arrival times from 

CDR data due to its discontinuous nature as mentioned earlier, moreover, Google Maps does 

not report the nation-wide travel time variability for Senegal at the moment. 

3.4.2.3 Travel cost 

Travel cost was estimated in terms of the vehicle operating costs (VOCs) per user (i.e. fuel 

and non-fuel costs).  

After a review of several VOC estimation techniques, we settled for the HDM-III model 

(Watanatada et al., 1987) due to its applicability to developing countries and input data 

availability. The HDM-III model is an earlier version of the more advanced HDM-4 (Kerali, 

2000), which we could not use due to input data constraints. 

The HDM-III model relies on vehicle calibration data (where we used default values) and 

other basic input data (see Table 3-4) to estimate the VOCs for each vehicle type. The model 

works by defining link-specific relationships between the International Roughness Index - 

IRI (Sayers et al., 1986) and speed, and using the IRI values at the respective average link 

speeds (derived from Sections 3.4.2.1 and 3.4.2.2) to estimate the link-specific VOCs, which 

are summed to estimate the route VOCs. 

The estimated route VOCs need to be converted to person costs. Given the anonymous 

nature of CDR data, we use information on the typical occupancy rates and mode shares 

(see Table 3-5) to estimate the weighted average VOCs per user for each route. 

As was the case with travel time, we used the same average travel cost for all the users along 

a particular route between a given O-D pair. An improved approach would have been to 

estimate user-specific travel costs based on the corresponding travel speeds, however, this 

was not possible due to difficulties in obtaining the user-specific travel times as discussed 

in the previous section. 
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Table 3-4 HDM-III basic input data 

Input Measure Unit Car 

Inter-

urban 

taxi 

Minib

us 
Bus Source 

Terrain 

type 

Rise &fall m/km 
Estimated directly for each link using 

Google Earth and Auto CAD Civil 

3D 

(Autodesk, 

2017, Google 

Earth 

7.1.8.3036, 

2016) 

Horizontal 

curvature 
deg/km 

Desired 

max speed 

Desired max 

speed 
km/hr 90 90 90 90 (WHO, 2016) 

Economic 

unit costs 

(Excluding 

taxes)* 

Vehicle cost 

price  
$ 19,452 27,098 49,474 67,465 (ADF, 2011) 

Fuel type NA Petrol Diesel Diesel Diesel (ADF, 2011) 

Fuel costs  $/litre 1.017 0.727 0.727 0.727 (ADF, 2011) 

Lubricants $/litre 4.688 6.466 6.466 6.466 (ADF, 2011) 

Tyres + 

tubes 
$ 83.36 83.36 83.36 187.53 (ADF, 2011) 

Maintenance 

costs 
$/hour 0.284 0.310 0.310 0.541 (ADF, 2011) 

Crew costs $/hour 0 0.511 0.511 0.511 (ADF, 2011) 

Interest rate % 5.4 5.4 5.4 5.4 
(World Bank, 

2017b) 

Utilisation 

Mileage per 

year 
km 25,000 50,000 50,000 60,000 (ADF, 2011) 

Hour driven 

per year 
hours 350 750 750 1250 (ADF, 2011) 

Service life Service life years 12 12 12 12 (ADF, 2011) 

Gross 

vehicle 

weight 

Gross 

vehicle 

weight 

tons 1.2 2.0 3.0 11 
(Watanatada et 

al., 1987) 

* Prices adjusted for 2010-2013 inflation and the 2013 USD exchange rate (World Bank, 2017c, 

World Bank, 2017a) 

 

 

Table 3-5 Typical occupancy rates and mode shares in Senegal (World Bank, 2004) 

Vehicle type 
Average number of 

passengers 
Passengers per km Mode share (%) 

Cars 3 1746.7 0.183 

Interurban Taxi 7 1830.4 0.191 

Minibus 14 2149.6 0.225 

Buses 25 3838.6 0.401 
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3.4.2.4 Other attributes 

The other attributes considered were the scenic characteristics and the urban developments 

along each route. Scenic variables were estimated in terms of route lengths traversed through 

nature reserves (Google Maps, 2017b), while urban developments were reflected as the 

number of towns along each route as shown in Figure 3-1 (Worldatlas, 2017). 

3.5 Modelling framework 

We use discrete choice models in this study since route choices are discrete and mutually 

exclusive. To develop these models, we apply the random utility theory (Marschak, 1960), 

a well-established approach for estimating discrete choice models.  

3.5.1 Basic model 

Suppose 𝑈𝑛𝑟 is the utility of choosing route 𝑟 by individual 𝑛. This can be expressed as; 

𝑈𝑛𝑟 = 𝑉𝑛𝑟 + 𝜀𝑛𝑟                                            (3-1) 

Where 𝑉𝑛𝑟  and 𝜀𝑛𝑟  are the systematic and the random parts utility respectively. The 

systematic utility is a function of the observed route attributes, and may be exprssed as  

𝑉𝑛𝑟 = 𝛽
′𝑋𝑛𝑟, where 𝑋𝑛𝑟 is a vector of the attributes of route 𝑟 for individual 𝑛 and 𝛽 is a 

vector the model parameters. We assume that the random term 𝜀𝑛𝑟 is independently and 

identically distributed across the alternatives following a type I extreme value distribution, 

and use the Multinomial Logit (MNL) model to estimate the route choice probabilities as 

follows (see McFadden, 1974 for details); 

𝑃𝑛(𝑟) =
exp(𝑉𝑛𝑟)

∑ exp(𝑉𝑛𝑟∗)𝑟∗𝜖𝐶𝑛

 
                                           (3-2) 

Where, 𝑃𝑛(𝑟) is the probability of individual 𝑛 choosing route 𝑟, and 𝐶𝑛 is the choice set. 

Given the route choice probabilities, the model parameters can be estimated by maximising 

the log-likelihood function below; 

𝐿𝐿 =∑∑[𝑍𝑛𝑟 ∗ ln(𝑃𝑛(𝑟))]

𝑟𝑛

                                            (3-3) 

Where 𝑍𝑛𝑟 is a dummy variable, which is equal to 1 if and only if user 𝑛 chooses route 𝑟. 

3.5.2 Accounting for broad choices 

The log-likelihood function in Equation 3-3 assumes that all the route choices are uniquely 

observed, and is inadequate for the current scenario, where we also have broad sub-group 

choices. Therefore, we use the broad choice modelling framework proposed by Wong 

(2015) to account for this situation.  

In the broad choice framework, the choice probabilities of the broad sub-groups are 

expressed as a sum of the choice probabilities of the member alternatives. For example, the 

choice probability of the ‘Northern’ broad sub-group is the sum of the ‘Northern 1’ and the 

‘Northern 2’ route choice probabilities (see Figure 3-4 and Table 3-2). The joint 
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probabilities of the broad sub-groups capture the aggregate shares at the unique route choice 

level using the relative probabilities of the constituent routes.  

The goal of model estimation is to maximise the probabilities of both the observed routes 

and the broad sub-groups for users with unique and broad choices respectively. The log-

likelihood function is specified as follows (Wong, 2015); 

𝐿𝐿 =∑∑[𝑍𝑛𝑏 ∗ ln(∑ 𝑃𝑛(𝑟)

𝑟𝜖𝑆𝑏

)]

𝑏𝑛

                                            (3-4) 

Where 𝑆𝑏 is a set comprising of the routes in broad category 𝑏. For uniquely assigned trips, 

set  𝑆𝑏 comprises of only one alternative. 𝑍𝑛𝑏 is a dummy variable, which is equal to 1 if 

and only if user 𝑛 is associated with category 𝑏. 

3.5.3 Accounting for overlap 

A major weakness of the MNL model (Equation 3-2) is the IIA property, which could lead 

to illogical route choice probabilities for highly overlapping routes as is the case in this 

study. This is illustrated using the overlapping route problem (Ramming, 2002, Cascetta et 

al., 1996) in Figure 3-5. 

 
Figure 3-5 Overlapping route problem (Cascetta et al., 1996, Ramming, 2002) 

 

Here, all three routes have the same total length 𝐿, however, routes 1 and 2 follow the same 

alignment for length 𝑙 followed by distinct sections, each of length 𝐿 − 𝑙.  The MNL model 

predicts equal shares for each of the routes irrespective of the overlap length. However, as 

the overlap increases (as 𝑙 tends to 𝐿), it becomes difficult to distinguish between routes 1 

and 2, and it is expected that route 3 will take a share of 50%, while routes 1 and 2 will each 

take a share of 25%.  

Various models accounting for overlap were presented in Section 3.2.2,, however,  this study 

only uses the c-logit (Ramming, 2002, Cascetta et al., 1996)  and the path size logit (Ben-

Akiva and Ramming, 1998) models for illustration purposes as the modelling scenario did 

not require complex formulations. In general, these models are modifications of the MNL 

model, where the systematic route utilities are adjusted using certain correction factors as 

follows; 
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𝑃𝑛(𝑟) =
exp(𝑉𝑛𝑟 + 𝜏𝑛𝑟)

∑ exp(𝑉𝑛𝑟∗ + 𝜏𝑛𝑟∗)𝑟∗𝜖𝐶𝑛

                                            (3-5) 

Where 𝜏𝑛𝑟  is the systematic utility correction factor for route 𝑟.  

3.5.3.1 C-logit model  

For the c-logit model, the correction factor 𝜏𝑛𝑟 is a commonality factor (Cascetta et al., 

1996). Different possible specifications have been proposed, however, this study uses the 

following common  specification (Ramming, 2002, Cascetta et al., 1996); 

𝜏𝑛𝑟 = 𝛽𝐶𝐹 ln [ ∑ (
𝐿𝑟𝑟∗

√𝐿𝑟𝐿𝑟∗
)

𝛾𝐶𝐹

𝑟∗𝜖𝐶𝑛

]                                            (3-6) 

Where 𝐿𝑟𝑟∗is the overlap length between routes 𝑟 and 𝑟∗, 𝐿𝑟 and 𝐿𝑟∗ are the total lengths of 

routes 𝑟  and 𝑟∗  respectively, 𝛽𝐶𝐹  and 𝛾𝐶𝐹  are the unknown parameters to be estimated. 

From Equation 3-6, the ratio in the brackets is proportional to the degree of overlap, while 

the corresponding logarithm has an inverse negative relationship. Thus 𝛽𝐶𝐹 and  𝛾𝐶𝐹 are 

expected to have negative and positive signs respectively to allow for the positive 

adjustment of route utility with decreasing overlap (Ramming, 2002).  

3.5.3.2 Path size logit model 

For the path size logit model, the correction factor 𝜏𝑛𝑟 is a path size term, which is computed 

as the weighted average of the constituent link sizes. The specification adopted for this study 

is as follows (Ben-Akiva and Ramming, 1998); 

𝜏𝑛𝑟 = 𝛽𝑝𝑠 ln [∑ (
𝑙𝑎
𝐿𝑟
∗
1

𝑁𝑎𝑟
)

𝑎𝜖Γ𝑟

]                                            (3-7) 

Where 1 𝑁𝑎𝑟⁄  is the inverse of the number of routes sharing the link 𝑎 (the link size), and 

𝑙𝑎 𝐿𝑟⁄  is a weight representing the proportion contributed by link 𝑎 to the overall route size. 

From Equation 3-7, it is observed that route size is inversely proportional to the degree of 

overlap, while the corresponding logarithm has a negative proportional relationship. Thus, 

the path size parameter is expected to be positive to allow for negative adjustment of route 

utility with increasing overlap. 

The models accounting for overlap are generally expected to have better fit than the MNL 

model. Model fit is evaluated using the adjusted-rho square and the likelihood ratio tests 

(see Ben-Akiva and Lerman, 1985 for details). 

3.6 Model results 

This section presents the modelling results. We start by discussing the variable specification, 

followed by the model estimation and validation results. 
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3.6.1 Variable specification 

The attributes available for possible inclusion in the model are summarised in Table 3-3. 

However, these could not all be specified together or in the same way for various reasons as 

explained below.  

For travel time and cost, after initial tests using the linear specification, we used the log-

transforms of the variables to allow for utility damping with respect to increasing time and 

cost (see Daly, 2010 for details). Various interactions of these variables with others (such 

as surface type) were tested, however, this led to correlation problems, and hence generic 

variables were specified. 

The urban developments along the alternative routes were incorporated in terms of the 

average distance between towns rather than the number of towns to avoid situations where 

longer routes also have more towns. Again, this was specified using the log-transform of 

the variable for similar reasons as the travel time and cost. This being a largely rural road 

network with no traffic signals, the average distance between towns is the only variable we 

could use to capture traffic flow interruptions.  

An attempt was made to incorporate scenic beauty into the model using either the length or 

the proportion of route length traversed through nature reserves, however, we could not 

achieve intuitive model results potentially due to our lack of detailed knowledge about the 

characteristics of these reserves, and the security levels of the corresponding routes. The 

final systematic utility specification is as follows;  

𝑉𝑛𝑟 = 𝛽𝑙−𝑐𝑜𝑠𝑡 ln(𝐶𝑛𝑟) + 𝛽𝑙−𝑡𝑖𝑚𝑒 ln(𝑇𝑛𝑟) + 𝛽𝑙−𝑑𝑡𝑜𝑤𝑛 ln(𝐷𝑡𝑛𝑟)  (3-8) 

Where 𝐶𝑛𝑟, 𝑇𝑛𝑟 , and 𝐷𝑡𝑛𝑟 give the travel cost, the travel time, and the average distance 

between towns respectively of route 𝑟 for individual 𝑛, and the 𝛽𝑠 are the corresponding 

model parameters to be estimated.  

3.6.2 Estimation results 

We present the of the MNL model, the c-logit model, and the path size logit based on the 

full sample in Table 3-6 for comparison purposes, where it is observed that most of the 

parameter estimates are statistically significant at the 95% level of confidence. 

3.6.2.1 Route variables 

The parameter signs for the travel cost variable are consistent with a priori expectations in 

each of the three models. In general, an increase in the cost of an alternative is expected to 

have a negative impact on its utility, hence the negative parameter sign. The same 

explanation holds for the travel time parameters as individuals generally prefer shorter travel 

times.  On the other hand, the average distance between towns has a positive parameter sign. 

As earlier mentioned, this variable gives an indication of the amount of uninterrupted flow. 

Although no traffic congestion problems have been reported in these towns, traffic generally 

slows down due to speed control measures leading to delays. An increase in the average 

distance between towns therefore indicates more uninterrupted flow, hence the positive 

parameter sign.  
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Table 3-6 Estimation results 

Variable 
 MNL model  C-logit model  Path size logit model 

 Parameter  t-stat  Parameter  t-stat  Parameter  t-stat 

Route variables             

Natural log of  travel cost (US  Dollars)  -4.2221  -11.60  -4.1644  -11.50  -4.4117  -18.99 

Natural log of travel time (Hours)  -1.6668  -13.78  -1.5987  -12.62  -1.1018  -17.87 

Natural log of av. dist btn  towns (Km)  0.5081  2.54  0.1705  1.10  1.5264  2.00 

Commonality factor             

Beta      -0.0063  -1.48     

Gamma      0.6563  2.59     

Path size             

Path size parameter          1.6068  7.27 

             

Measures of fit in estimation             

No. of observations  9453  9453  9453 

No. of decision makers  6497  6497  6497 

LL(C)  -11,135.41  -11,135.41  -11,135.41 

LL(F)  -7,758.83  -7,752.91  -7,547.60 

Number of parameters  3  5  4 

ρadj
2  w.r.t LL(C)  0.3030  0.3033  0.3218 

LR w.r.t LL(C)  6,753.17  6,764.99  7,175.63 

p-value of LR  0.0000  0.0000  0.0000 
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3.6.2.2 Overlap correction parameters 

For the c-logit model, it is observed that the beta parameter of the commonality term is 

negative while the gamma parameter is positive. Similarly, the path size parameter in the 

path size logit model has a positive parameter sign. These results are in line with behavioural 

expectations as discussed earlier under Equations 3-6 and 3-7, an indication that CDR data 

is able to capture the behaviour towards overlapping routes. 

3.6.2.3 Model comparison 

A comparison of the adjusted rho-square values in Table 3-6 shows that the models 

accounting for overlap (i.e. the c-logit and the path size logit models) perform better than 

the MNL model. This is as expected given that the national road network of Senegal is 

highly overlapping (see Figure 3-1 and discussion under Figure 3-5). It is also worth noting 

that the path size logit model outperforms the c-logit model because the behavioural 

underpinning of the systematic utility adjustment process in the path size logit model is 

stronger than that in the c-logit model (Ramming, 2002).  

The statistical significance of the improvements associated with accounting for overlap are 

evaluated using the likelihood ratios of the c-logit and the path size logit models with respect 

to the MNL model (see Table 3-7). 

Table 3-7 Statistical comparison of the models 

MNL             

formulation  
C-logit formulation 

 
Path size logit formulation 

LL(F)  LL(F) LR w.r.t        

MNL model 
p-value  LL(F) LR w.r.t        

MNL model 
p-value 

-7758.83  -7752.91 11.83 0.0027  -7547.60 422.46 0.0000 

 

From Table 3-7, it is noted that the p-values for the c-logit and the path size logit models 

are all less than 0.01, an indication that accounting for overlap has a statistically significant 

effect (at the 99% confidence level) beyond the improvements contributed by the additional 

degrees of freedom resulting from the extra parameters (see Ben-Akiva and Lerman, 1985 

for details).  

3.6.2.4 Policy insights 

This section highlights the policy implications of the reported results in terms of the value 

of travel time (VTT). This metric quantifies the benefits derived from reduced travel time 

in monetary terms, and is useful in transportation cost-benefit analysis (Mackie et al., 2001). 

The value of travel time is calculated by taking the ratio of the partial derivatives of the 

systematic utility function (𝑉)  with respect to the travel time (𝑇𝑛𝑟)  and cost (𝐶𝑛𝑟)  as 

follows; 

𝑉𝑇𝑇 = 
𝜕𝑉𝑛𝑟 𝜕𝑇𝑛𝑟⁄

𝜕𝑉𝑛𝑟 𝜕𝐶𝑛𝑟⁄
=  
𝛽𝑙−𝑡𝑖𝑚𝑒
𝛽𝑙−𝑐𝑜𝑠𝑡

𝐶𝑛𝑟
𝑇𝑛𝑟

  (3-9) 
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We computed the average VTTs for each model using the estimation data, and compared 

the values with those derived from other studies as well as other relevant statistics as 

summarised in Table 3-8. 

Table 3-8 Comparison of the VTT estimates with other sources 

Model 

Values in USD/hr and 2013 prices 

VTT 

current 

study 

VTT 

Teye et al. 

(2017) meta-

analysis 

Dakar–

Diamniadio road 

toll (Gainer and 

Chan, 2016) 

Median 

hourly wage 

(Tijdens et 

al., 2012) 

MNL 1.0822 

4.3213 2.3411 0.6767 C-logit model 1.0524 

Path size logit model 0.6846 

 

In the Africa-wide meta-analysis by Teye et al. (2017), VTT was estimated as a function of 

the GDP per capita. However, the reported mean value (4.3213 USD/hr) seems high when 

compared to the toll being charged on the new Dakar–Diamniadio toll highway for a time 

saving of one hour (2.3411 USD/hr), a value that was highly criticised by the Senegalese 

media as being extremely high (Gainer and Chan, 2016). Although the median hourly wages 

do not necessarily translate into the value of travel time, they give a good indication of the 

range in which these values should fall, and as observed in Table 3-8, the average VTT 

estimate for the path size logit model is very close to the Senegalese median hourly wage. 

We consider this VTT estimate to be more reasonable for Senegal. 

3.6.3 Validation results 

The models based on the full sample provide intuitive results in terms of the parameter signs 

and the relative model performance. To assess the stability and predictive performance of 

the models, the dataset was randomly split into five parts at the individual level. Five rolling 

subsets, each comprising of 80% of the users were generated for model estimation purposes. 

For each of these, a complementary subset comprising of 20% of the users was generated 

for validation purposes. The models were re-estimated on each of the 80% subsets, and the 

parameter estimates applied to the corresponding 20% hold-out subsets to estimate the 

predictive measures of fit. Table 3-9 presents the summary outputs from this process. 

The general interpretation of the parameter signs and the relative model performance in each 

of the 80% estimation subsets remained the same as in the full sample, an indication that the 

data is representative. A comparison of the measures of fit in estimation and validation 

shows that there is no significant loss in model fit, an indication that the performance of the 

models during estimation is not due to overfitting, rather it is due to the strong explanatory 

power of the variables.  

A comparison of the predictive measures of fit shows that the relative model performance 

during estimation is mirrored on the holdout samples, with the path size logit model still 

giving the best model performance due to its behavioural superiority.  

It would have been interesting to further validate the above results with outputs of route 

choice models based on traditional data or GSM data, but this was not possible due to lack 

of data in Senegal. 
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Table 3-9 Validation results 

Subset  

MNL model  C-logit model  Path size logit model 

LL(F)  
Adjusted 

rho-square 
 LL(F)  

Adjusted 

rho-square 
 LL(F)  

Adjusted 

rho-square 

Estimation subsets (comprising of 80% of the users) 

Subset 1  -6201.66  0.3179  -6196.67  0.3182  -6045.15  0.3350 

Subset 2  -6112.08  0.2999  -6106.49  0.3003  -5952.67  0.3180 

Subset 3  -6306.93  0.2952  -6297.40  0.2961  -6138.29  0.3140 

Subset 4  -6272.84  0.2993  -6263.20  0.3001  -6125.94  0.3156 

Subset 5  -6184.90  0.2970  -6173.96  0.2980  -6018.68  0.3157 

Validation subsets (comprising of 20% of the users) 

Subset 1  -1573.97  0.2267  -1569.71  0.2278  -1531.79  0.2469 

Subset 2  -1661.15  0.3069  -1657.24  0.3077  -1621.68  0.3229 

Subset 3  -1466.52  0.3265  -1466.01  0.3259  -1436.50  0.3398 

Subset 4  -1502.27  0.3093  -1502.25  0.3084  -1450.65  0.3325 

Subset 5  -1592.25  0.3165  -1590.68  0.3163  -1558.17  0.3306 
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3.7 Summary and conclusions 

This paper has successfully demonstrated the potential of CDR data to capture rational route 

choice behaviour for long-distance inter-regional O-D pairs. The broad choice framework 

was used to leverage the limitations of CDR data where unique route choices could not be 

observed for some users, and only the broad sub-groups of the possible routes were 

identifiable. This study is unique in the sense that it adapts the broad choice framework to 

the context of route choice modelling using noisy CDR data.  

An examination of the parameter signs shows that CDR data is able to capture the expected 

sensitivities towards particular route attributes. A review of different models accounting for 

overlap was conducted, and among these, the c-logit and the path size logit models were 

considered. A comparison of these models against the multinomial logit model (which does 

not account for overlap) showed significant improvements in model fit, with the path size 

logit model giving the best performance. The validation runs based on the 20% holdout 

samples largely showed the same advantages in prediction, especially for the path size logit 

model. These results show that CDR is able to capture the expected behaviour towards 

overlapping routes.  

This study is timely as it extends the application of CDR data beyond travel pattern 

visualisation to econometric modelling of route choice. The proposed framework can help 

in the assessment of different policy implications at a low cost compared to traditional 

approaches, which involve expensive data collection. For example, the models developed 

in this study can be used to reliably estimate the value of travel time (VTT) as we have 

demonstrated. This study is thus beneficial to developing countries where budget constraints 

on transport studies are common and traditional data for transport studies is scarce. 

We conclude that the study findings serve as a proof-of-concept that CDR data can be 

successfully used to model route choice behaviour for long-distance inter-regional trips, 

where there is a strong possibility that a user will use his/her phone during the trip, thereby 

enabling the capture of their partial trajectories needed for route identification. It may be 

noted that with the increasing trend of mobile internet usage (Gerpott and Thomas, 2014), 

the temporal resolution of CDR locations is likely to improve significantly in the near future, 

and this could make CDR data suitable for evaluating route choice behaviour for short trips. 

A comparison of the study findings with those based on traditional data from Senegal would 

have been insightful, however, this was not possible due to data unavailability. Investigating 

the performance of the proposed approach in urban or intra-city scenarios would be an 

interesting direction for future research.  
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Chapter 4 

Modelling departure time choice using mobile phone data 
 

Andrew Bwambale*, Charisma F. Choudhury*, Stephane Hess* 

 

 

Abstract 

The rapid growth in passive mobility tracking technologies has led to departure time choice 

studies based on GPS data in recent years. GPS data is however still expensive to collect 

and affected by technical issues like signal losses and battery depletion which create gaps 

in the data. On the other hand, the rapid growth in mobile phone penetration rates has led to 

the emergence of alternative passive mobility datasets such as Global System for Mobile 

communication (GSM) data. GSM data covers much wider proportions of the population 

and can be used to infer departure time information. This motivates this research where we 

rigorously compare the strengths and weaknesses of real-world GSM and GPS data to 

investigate their potential use for modelling departure time choice. We describe practical 

approaches to extract relevant information from the passive datasets and propose a 

modelling framework that accounts for the fact that the desired departure times are 

unobserved. We assume that the preferred departure times vary randomly across the users 

and apply the mixed logit framework to jointly estimate the distribution parameters of the 

preferred departure times and the sensitivities to schedule delay. We find that fewer time 

gaps in the GSM data lead to more reliable model results when compared against those 

based on GPS data, despite the higher location accuracy of the latter. This is also supported 

by the comparison of the valuation metrics derived from both models, where those obtained 

from GSM data are found to be closer to those based on traditional data sources. 
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4.1 Introduction 

The modelling of time-of-travel choices has over the years emerged as an important and 

challenging issue worth consideration under travel demand management through policy 

measures such as congestion pricing and flexible working hours (Hess et al., 2007b). Time-

of-travel choices are principally a trade-off between enduring longer travel times during 

peak demand periods to ensure punctual arrivals at the target destinations versus avoiding 

the peak periods and opting for earlier or later arrivals to reduce the travel times (Small, 

1982), although in a toll road setting there may be additional differences in toll in the peak.  

In most practical applications, time-of-travel choice problems have been expressed as 

scenarios where an individual is faced with a finite number of discrete departure time periods 

and chooses the alternative with the highest utility (Cosslett, 1977, Small, 1982). Departure 

time choice models, which are basic functions of the factors affecting departure time 

decisions are thus important tools for predicting travel demand and evaluating alternative 

measures for managing this demand. 

Departure time choice models have largely been developed using traditional stated 

preference datasets (e.g. Hess et al., 2007b, Hess et al., 2005, De Jong et al., 2003, Daly et 

al., 1990, Bates et al., 1990) and revealed preference datasets (e.g. Bhat, 1998a, Bhat, 1998b, 

Small, 1987, Small, 1982, Abkowitz, 1981). The former are prone to hypothetical bias and 

behavioural incongruence while the latter are generally expensive to obtain, prone to 

reporting errors, and typically involve small samples. This problem is particularly common 

in developing countries, where stringent budget constraints for transport studies act as a 

barrier for large-scale data collection. Another reason for the use of stated preference data 

has been that the correlations inherent in revealed preference data make it difficult to capture 

the trade-offs between changes in departure time and other variables. 

The last few decades have been characterised by rapid growth in technologies that enable 

the passive collection of individual mobility trajectories. This has led to a few departure 

time choice studies based on GPS data from smartphones (e.g. Peer et al., 2013). Although 

the use of smartphone apps has reduced costs, such studies remain expensive and thus 

usually involve small samples. Besides, enabling GPS often drains smartphone batteries and 

as a result, this functionality is often disabled by participants. Furthermore, GPS data is 

affected by technical issues such as signal losses in urban canyons, buildings, tunnels, and 

public transport vehicles such as buses and trains (Gong et al., 2012, Chen et al., 2010). This 

reduces the spatial and temporal coverage of the data and can make it difficult to capture the 

full set of trips made by individual travellers. 

However, the rapid growth in mobile phone penetration rates worldwide (GSM Association, 

2017) has led to the emergence of network-generated passive mobility datasets such as Call 

Detail Records (CDRs)7 and Global System for Mobile communication (GSM)8 data. These 

datasets can anonymously cover much wider proportions of the population using their 

current mobile handsets, without additional expenses such as recruiting of respondents, 

procuring of smartphones, and additional battery drainage issues. Such mobile phone 

                                                           
7 CDR data typically consists of the time stamped locations of the responding tower that handles a 

call/text/web access request from a user as well as the details of the request (type, 

sender/receiver, etc.). 
8 GSM data reports the IDs of all the GSM cells traversed by an active mobile phone (i.e. a phone-

set with a valid sim that is switched on) at regular time intervals. 
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datasets have been successfully used in various transportation planning applications (Çolak 

et al., 2015, Iqbal et al., 2014, Jiang et al., 2013, Isaacman et al., 2012, Schlaich, 2010). 

However, a review of the literature shows that there is no study using such data to model 

departure time choice decisions. This motivates this research where we investigate the 

potential of GSM data for departure time choice modelling. It may be noted that GSM data 

is deemed to be more appropriate for capturing departure time choices due to its semi-

continuous nature as opposed to CDR location data, which is typically discontinuous. 

Since GSM data generation only requires the users’ mobile phones to be active, the regular 

location area updates by the network operator make it possible to capture most of the trips 

made. However, it is important to highlight the limitations of GSM data in the context of 

departure time analysis. The coarse location resolution of GSM data makes it impossible to 

capture intra-cell movements as well as the actual arrival or departure times from points 

within the cells. Instead, it is only possible to observe the cell boundary crossing times, 

especially where the GSM cells are recorded at short time intervals (e.g. 60 seconds in this 

study). It is worth noting that the differences between the actual departure and the (post-

departure) cell boundary crossing times as well as the differences between the actual arrival 

and the (pre-arrival) cell boundary crossing times reduce as the GSM cell sizes become 

smaller. This is the case for most metropolitan areas where GSM cellular networks are 

dense, with small cell sizes that can go as low as 100 metres (e.g. De Groote, 2005). This 

implies that the cell boundary crossing times would still be within minutes from the actual 

departure or arrival times.  

The above points motivate us to systematically compare the strengths and weaknesses of 

GPS versus GSM data in the context of departure time choice modelling as this could inform 

policy measures related to big data adoption for transport studies. We use the Nokia Mobile 

Data Challenge (MDC) dataset (Laurila et al., 2012, Kiukkonen et al., 2010) to critically 

compare the two data types and extract information for departure time analysis. Departure 

time choice models are then developed using advanced discrete choice modelling 

techniques. We focus on modelling departure time choices during peak periods as these are 

most critical in transport planning and operation. The study also proposes a theoretical 

approach for dealing with the absence of information on the desired times of travel in 

passively collected data. The proposed approach is unique in that it allows us to understand 

the sensitivities as well as the valuations attached to schedule delay despite the passive 

nature of the data. Furthermore, we propose a practical approach for imputing missing travel 

time data for some of the time intervals in the analysis period. 

The remainder of the paper is arranged as follows; section 4.2 presents a brief review of 

relevant literature, section 4.3 describes the data used for this study and the associated 

challenges, section 4.4 presents the modelling framework, section 4.5 presents the model 

results, while section 4.6 presents the summary and conclusions of the study. 

4.2 Literature review 

Departure time choice decisions generally involve a trade-off between the travel time and 

the schedule delay associated with a given time period. However, estimating the schedule 

delay requires knowledge of the desired times of travel. Most stated preference datasets for 

departure time choice modelling collect information on the desired times of travel which 

makes it easy to estimate the schedule delay terms. However, this is not usually the case for 

revealed preference data, especially passively collected data such as mobile phone data. Peer 
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et al. (2013) is an exception where users were asked to report their desired times of travel. 

Previous studies have tried to address this issue in different contexts as summarised below. 

Hess et al. (2007a) propose the use of time period specific constants to capture the aggregate 

scheduling preferences (among other effects) in the absence of the desired times of travel. 

However, Ben-Akiva and Abou-Zeid (2013) argue that the time period specific constants 

only capture the schedule delays if they are specified differently for each socio-economic 

group based on the assumption that individuals in the same socio-economic group have the 

same desired times of travel. This however results in the explosion of constants in the model 

specification, an issue that can be addressed with functional forms to approximate the 

alternative specific constants (Hess et al., 2005). However, another important point to 

highlight is that relying solely on constants to capture scheduling makes it difficult to 

understand the continuous sensitivity to delay. 

On a different note, Koppelman et al. (2008) propose an approach where the schedule delay 

for a particular departure time period is estimated as the weighted mean of all the possible 

schedule delays with respect to the different time periods, where the weights are estimated 

from a time-of-day distribution of the observed departure times represented by a 

trigonometric function. However, a potential issue with this approach is that it assumes a 

strong correlation between the schedule delays and the observed time-of-day distributions, 

which may not be the case. A slightly related approach is proposed by Kristoffersson and 

Engelson (2018) who apply reverse engineering  techniques that rely on a previously 

estimated departure time choice model to derive conditional departure time probabilities 

(given the preferred departure time), which are then combined with the observed departure 

time distributions for groups of O-D pairs to derive the weights for each preferred departure 

time period using ordinary least squares. However, a potential drawback with this approach 

is that previous models may be non-existent, and where they exist, there may be serious 

consequences with regard to model transferability. 

Finally, Brey and Walker (2011) propose a hybrid choice framework in which the preferred 

times of travel are assumed to be latent and varying across individuals, and parameterise the 

probability density function as a mixture of normal distributions. However, in their 

framework, the latent preferred times of travel are explained using the trip and the travellers’ 

characteristics, and are measured against the stated preferred times of travel obtained from 

a survey, which is not possible in this case study.  

In this study, we propose a simple alternative approach which is described in Section 4.4 of 

this paper under the modelling framework. 

4.3 Data 

This study uses the Nokia Mobile Data Challenge (MDC) dataset collected as part of the 

Lausanne Data Collection Campaign (LDCC) between 2009 and 2011 (Laurila et al., 2012, 

Kiukkonen et al., 2010). The subsequent sections describe the study area, the mobile phone 

data, and the processes undertaken to extract relevant information for departure time 

analysis. 
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4.3.1 Study area 

The main study area is Lausanne, located in southwestern Switzerland, however, the spatial 

coverage of the data covers the entire country. 

Lausanne has a dense GSM cellular network with small cell sizes  (see Schulz et al., 2012 

for details). The small cell sizes make the area generally suitable for the current study as the 

actual departure or arrival times, which are unobservable for GSM data would still be within 

minutes of the observed cell boundary crossing times. 

Another key aspect of Lausanne is that over 68% of the residents are working commuters, 

and over 90% of these use motorised transport modes, which are usually affected by peak 

period delays e.g. due to traffic congestion (ThemaKart, 2017). The travel times in Lausanne 

typically increase by 44% and 63% during the morning and the evening peak periods, 

respectively (TomTom, 2016).  

4.3.2 Data description 

The MDC dataset contains several types of records such as demographic data, GSM data, 

GPS data, call logs, and bluetooth data etc. However, this study only uses the demographics, 

the GSM, and the GPS data, which are described in the subsequent sections.  

4.3.2.1 Demographic data 

The MDC data is one of the few available mobile phone datasets with user demographic 

details, however, the sample size is small given that participation was voluntary. The 

available data comprises of 83 full-time workers. The other available demographics for each 

of these include the gender and the age-group as summarised in Table 4-1.  

Table 4-1 Demographic data summary statistics 

Characteristic  Description Number Proportion (%) 

Gender 
Female 23 27.71 

Male 60 72.29 
       

Age-group 
Under 28 years 24 28.92 

28 years and above 59 71.08 

 
It is important to note that although demographic data is available in this case, such data is 

usually unavailable in most mobile phone datasets due to privacy reasons. Previous studies 

have focused on the subject of demographic prediction and how this can be incorporated 

into transport modelling frameworks (see Bwambale et al., 2017 for details). However, since 

this is not the main focus of this paper, we directly incorporate the reported demographics 

into the models. 

4.3.2.2 GSM and GPS data 

The GSM data reports all the GSM cells traversed by each user’s mobile phone at an interval 

of approximately 60 seconds. The data contains approximately 24.8 million records 

generated by the full-time workers. Each record is described by a user ID, a unique internal 

ID of the GSM cell, the unix timestamp and time zone. Table 4-2 presents an excerpt of the 

GSM data.  
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Table 4-2 Excerpt of the GSM data 

User ID GSM Cell ID Unix timestamp Time zone 

5451 686 1251762486 -7200 

5451 686 1251762546 -7200 

5451 1785 1251762606 -7200 

5451 1785 1251762663 -7200 

The GPS data (timestamped latitudes/longitudes) was collected concurrently with the GSM 

data using the users’ smartphone GPS receivers, which allows for cross-comparison of the 

two datasets. Despite the higher time resolution of the GPS data versus the GSM data (i.e. 

10 seconds versus 60 seconds), the GPS data contains only 5.2 million records. 

GSM data was collected as long as the user’s mobile phone was switched on albeit that 

signal losses were possible, while for GPS data, the facility needed to be enabled. The 

average data collection period per user was 278 days and 205 days for the GSM and the 

GPS data respectively. We use the concept of active time to refer to the time when a user’s 

phone (or GPS service) is switched on, where this is assumed to be the case as long as the 

time interval between successive records does not exceed 10 minutes. For GSM data, the 

proportion of active time was on average 73.44% across users, compared to 5.00% for the 

GPS data. The corresponding median values and lower quartiles were 77.11% and 66.56% 

respectively for the GSM data compared to 4.37% and 3.16% respectively for the GPS data. 

Time gaps in the GPS data may be caused by GPS disabling (e.g. due to battery issues) or 

signal loses in urban environments, buildings and tunnels (NCO, 2018, Gong et al., 2012, 

Chen et al., 2010). The methodology to extract meaningful information from both datasets 

is explained in the next section. 

4.3.3 Data processing 

The data processing methodology is presented in Figure 4-1. In this section, we briefly 

describe the key aspects of each major step. 

4.3.3.1 Data preparation 

a. GSM data 

GSM data is noisy in nature as it sometimes contains cell jumps that do not represent actual 

movement. The noise is mainly caused by cell tower call balancing operations aimed at 

optimising the quality of calls, which makes mobile operators assign mobile phones to 

neighbouring cells even when these phones are not physically located within those cells 

(Çolak et al., 2015). To mitigate cell jumps, the ordered GSM cell sequence of each user 

was analysed to calculate the time periods between intermittent observations of the same 

cell, and those with time periods less than 10 minutes were treated as cell jumps, thus 

relabelling the cell observations between them accordingly (Iqbal et al., 2014).  The cleaned 

GSM cell sequences were then analysed to extract the users’ dwell locations as described in 

the next section. 

 

b. GPS data 

The technical issues associated with GPS data as highlighted in Section 4.3.2.2 may 

sometimes not lead to total signal loss, but rather, may lead to inaccurate GPS locations. 

Furthermore, GPS location accuracy is affected by factors such as the quality of the GPS 
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antenna in the smartphone, and the density of GPS satellites at the current location (NCO, 

2018). Due to these factors, it is likely that different GPS points in the vicinity of one another 

could be linked to the same dwell location and this requires the application of spatial 

clustering techniques to identify the GPS point clusters. We conducted complete-linkage 

hierarchical clustering (Everitt et al., 2011, Murtagh, 1985) with a threshold distance of 300 

meters as used in previous studies (Çolak et al., 2015, Jiang et al., 2013). This is detailed in 

Appendix A.  

 

 

Figure 4-1 Summary of the data processing methodology 
 

4.3.3.2 Identification of home and work locations 

A home location was defined as the GSM cell or GPS point cluster in which a user was 

observed for the longest time between midnight and 6 am on a particular day, while a work 

location was defined as any location other than the home location in which a user (all of 

whom are workers) spent the longest time between 8 am and 5 pm on a particular working 

day. All the other GSM cells or GPS point clusters in which a user was seen to spend more 

than 10 minutes were described as ‘other’ dwell locations (Çolak et al., 2015, Jiang et al., 

2013). We analysed each day separately to capture any possible changes in each user’s home 

and work locations across the observation period.  
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An important point to note is that the original GSM data did not have the coordinates of the 

tower positions due to privacy reasons. The data only reports the IDs of the GSM cells 

without showing their positions as described in Section 4.3.2.2. Although the data alone is 

able to show the cell sequences and dwell times, it does not show the relative positions of 

these cells. To address this problem, the GPS points from all the users observed within 30 

seconds of a GSM cell were extracted, and the mean latitudes and longitudes calculated for 

each cell. Although this was not possible for all the GSM cells, 62% of the inferred home 

cells, 70% of the inferred work cells, and 61% of the ‘other’ dwell locations were 

successfully matched. The data matching process was critical as it enabled the estimation of 

the distances and the travel speeds between the dwell cells, which we use to identify trips 

potentially made using motorised modes. It should be noted that under normal 

circumstances, GSM data should report the coordinates of the towers linked to the cells, in 

which case data matching would not be necessary. 

4.3.3.3 Extracting HBW trips between the dwell cells 

The focus of our analysis is home-based work (HBW) trips. Unlike direct trips, which have 

no en-route activity, trips with intermediate dwell locations (i.e. those labelled as ‘others’) 

could have en-route activities that last very long to the extent that such trips can no longer 

be categorised as clear HBW trips. In this study, we specified an upper limit of one hour9 

on the total duration across all the intermediate stops and included only the trips satisfying 

this criterion in our HBW model. 

During the extraction of HBW trips, we checked whether each user’s phone or GPS receiver 

was active both on departure and at arrival. For departure, we checked the time difference 

between the last observation in each departure dwell location and the first observation 

outside that location, while for arrival, we checked the time difference between the first 

observation in each arrival dwell location and the preceding observation outside that 

location. In this study, we specified a threshold of 2 minutes to ensure that we capture 

reasonably accurate trip start and end times without losing significant portions of the 

samples10. This, for example, helped us avoid situations where a user’s phone was switched 

off during the trip, and switched back on several hours after arrival. The trips meeting all 

the above conditions were then taken through the subsequent stages as described in the next 

sections. 

4.3.3.4 Cleaning the trip data to identify trips made using motorised modes 

From a policy perspective, the focus is usually placed on motorised traffic, which is the 

main source of traffic congestion. However, one of the general limitations of mobile phone 

data is its anonymous nature, and therefore, the modes of transport used by the users are not 

known. A few previous studies have explored the possibility of detecting travel modes from 

mobile phone data (e.g. Qu et al., 2015, Doyle et al., 2011), however, as this is not the main 

focus of this study, we apply simple heuristics from the literature to infer the trips potentially 

                                                           
9 The average commuting time in Lausanne is 36.5 minutes (ThemaKart, 2017) and specifying an 

upper limit of one hour ensures we do depart a lot from the mean value. 
10 2 minutes corresponds to the 99th percentile time difference between subsequent GPS and GSM 

records in the full datasets excluding time-gaps above 10 minutes. 
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made using motorised modes. Observing a median speed above 15 kilometres per hour11. 

for a trip length above 5 kilometres is considered a good indicator that a user generally uses 

motorised transport for that trip chain (Hydén et al., 1999). Details of the applied heuristics 

are presented in Appendix B. 

4.3.3.5 Augmenting the cleaned trip data with the attributes of the alternatives 

Although it may seem convenient to assume that a user’s choice set only comprised of the 

departure time intervals ever observed for the user across the different days in the sample, 

such an assumption is unrealistic since the failure to observe certain time intervals does not 

necessarily mean they were not considered. It seems more reasonable and safer to assume 

that all the departure time intervals were available and potentially considered. This implies 

a need to calculate the attributes for those time periods for which no actual trips were 

observed, a process described in this section. 

The morning and the evening peak periods were divided into 15-minute intervals. The 

average travel times associated with each of these intervals were estimated for each of the 

user’s trip chains using timestamps in their cleaned GSM and GPS data. The estimated travel 

times were then combined with time-period specific congestion factors to impute the travel 

times for the unobserved time intervals. The time-period specific congestion factors were 

estimated with the aid of the Google Maps direction tool, which predicts the average travel 

times between a given O-D pair at different departure or arrival times (Google Maps, 2018).  

To reduce this task to manageable proportions, we divided Lausanne into 10 representative 

zones bounded by the major roads, thereby generating 90 O-D pairs as shown in Figure 4-

2. For each O-D pair, we extracted the travel times associated with each 15-minute interval 

between 5 am and 11 am (for the home-to-work commute) and 3 pm to 9 pm (for the work-

to-home commute). The average travel times for each interval across all the O-D pairs were 

then determined. 

 
Figure 4-2 Sample zones for travel time analysis (Google Maps, 2018) 

                                                           
11 A median speed of 15 km/h is not a very restrictive threshold as the average peak period speeds 

in Lausanne are close to this value (Google Maps, 2018),  and less than 15% of the data was 

discarded by imposing this threshold. 
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For each analysis period, we computed the time-period specific congestion factors by first 

establishing the interval with the shortest average travel time, and calculating the ratios of 

the travel times for each interval versus the minimum travel time for the analysis period as 

illustrated in Figure 4-3. 

 
(a) 

 
(b) 

Figure 4-3 Travel time variation (a) Morning peak, (b) Evening peak 

Given the typical ratios for each time interval, we used the observed average travel times 

for each user (i.e. those based on the cleaned GSM and GPS data) to estimate the minimum 

travel times for each of their trip chains, and applied the appropriate time-period specific 

congestion factors to impute the travel times for each time interval. We used the imputed 

travel times for both the chosen and the unchosen alternatives as this mitigates possible 

endogeneity bias which could arise from interrelationships with other underlying factors 

(Calastri et al., 2017, Sanko et al., 2014). 

4.3.4 Comparison of the GPS and the GSM processed data 

Due to differences in the temporal coverage of the GSM versus the GPS data (see Section 

4.3.2.2), the inferred home and work locations were different for some users as illustrated 

in Figure 4-4.  

 

Figure 4-4 Differences between the GPS and GSM inferred home/ work locations 
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As observed, most of the inferred GPS and GSM home/work locations are within 5 

kilometres of each other, an indicator that most belong to the same cell. However, we also 

have scenarios where the inferred dwell locations for the same day are over 40 kilometres 

apart. In such cases, GSM data, which has a higher temporal coverage, is expected to be 

more reliable. However, since our focus is on parameter comparison in the model 

development stage, we retain the dwell locations for each data type as extracted. 

Furthermore, it is observed that the extracted departure time distributions are different across 

the two datasets, with the home-to-work commute having more pronounced differences (see 

Figure 4-5). This is because the time gaps in the night GPS traces are more than those in the 

daytime GPS traces, potentially because the users disable their GPS receivers more at night. 

This is probably the reason why the peak period for the home-to-work commute is not 

clearly defined. On the other hand, the peak periods for the GSM data are clearly observed 

for both the home-to-work, and the work-to-home commute. This is in line with the expected 

behaviour of full-time workers and is another indication of the reliability of GSM data. 

 
Figure 4-5 Commuter trip frequency distribution 

 

4.4 Modelling framework 

Our analysis is based on the random utility framework (Marschak, 1960), and theoretical 

insights from the scheduling model by Small (1982). Let 𝑈𝑛𝑡𝑘 be the utility for individual 

𝑛 derived from departing in time period 𝑡 in choice situation 𝑘. This can be expressed as; 

𝑈𝑛𝑡𝑘 = 𝑉𝑛𝑡𝑘 + 𝜀𝑛𝑡𝑘                                                                                        (4-1) 

Where 𝑉𝑛𝑡𝑘 and 𝜀𝑛𝑡𝑘 are the systematic and the random parts of utility, respectively. Based 

on scheduling theory, 𝑉𝑛𝑡𝑘  is usually expressed as a function of the travel time, the 

corresponding schedule delays, and any other key attributes as follows; 

𝑉𝑛𝑡𝑘 = 𝛽𝑡−𝑡𝑖𝑚𝑒𝑇𝑛𝑡𝑘 + 𝛽𝑙−𝑑𝑢𝑚𝑚𝑦𝐿𝑛𝑡𝑘 + 𝐸𝑛𝑡(𝛽𝑒−𝑡𝑖𝑚𝑒𝑆𝐷𝐸𝑛𝑡) +

                      𝐿𝑛𝑡(𝛽𝑙−𝑡𝑖𝑚𝑒𝑆𝐷𝐿𝑛𝑡) +⋯                                                             (4-2) 

Where 𝑇𝑛𝑡𝑘  is the travel time associated with time period 𝑡  in choice situation 𝑘  for 

individual 𝑛. 𝐸𝑛𝑡, 𝐿𝑛𝑡, 𝑆𝐷𝐸𝑛𝑡, and 𝑆𝐷𝐿𝑛𝑡 are the earliness dummy, the lateness dummy, the 
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amount of earliness, and the amount of lateness associated with time period 𝑡 for individual 

𝑛 in choice situation k. The 𝛽 terms are the corresponding model parameters to be estimated. 

It may be noted that the earliness terms (𝐸𝑛𝑡 and 𝑆𝐷𝐸𝑛𝑡) and the lateness terms (𝐿𝑛𝑡 and 

𝑆𝐷𝐿𝑛𝑡) are mutually exclusive.  

Estimating the amount of earliness or lateness associated with a particular departure time 

period requires information on the desired times of travel, which is not available in this case 

as we are relying on passively collected datasets. However from a theoretical perspective, 

we know that every individual makes efforts to depart at his/her desired time to minimise 

scheduled delay. By re-writing Equation 4-2, this may be expressed as follows;  

𝑉𝑛𝑡𝑘 = 𝛽𝑡−𝑡𝑖𝑚𝑒𝑇𝑛𝑡𝑘 + 𝛽𝑙−𝑑𝑢𝑚𝑚𝑦𝐿𝑛𝑡 + 𝐸𝑛𝑡(𝛽𝑒−𝑡𝑖𝑚𝑒[𝑃𝐷𝑇𝑛 −𝐷𝑡]) +

             𝐿𝑛𝑡(𝛽𝑙−𝑡𝑖𝑚𝑒[𝐷𝑡− 𝑃𝐷𝑇𝑛]) + ⋯                                                          (4-3) 

Where 𝑃𝐷𝑇𝑛  is the preferred departure time for individual 𝑛, and 𝐷𝑡  is the midpoint of 

departure time interval 𝑡  in terms of the hours since midnight (e.g. for departure time 

interval 8:00 am – 8:15 am, 𝐷𝑡 is 8.125 hours, which corresponds to 8:07:30 am). 

In the absence of the preferred departure times of the users, it is reasonable to assume that 

these vary randomly across the individuals following a certain statistical distribution. The 

objective we are trying to pursue is to estimate the mean and standard deviation of this 

statistical distribution. The use of statistical distributions helps us to avoid the assumption 

that the preferred departure times follow the same trend as the observed departure times as 

used in Koppelman et al. (2008).  

However, estimating the above specification presents serious identification and optimisation 

issues. This is because the earliness and lateness dummies depend on the preferred departure 

time, which is also being estimated at the same time. As the optimiser tries to find the 

preferred departure time, the dummies keep alternating between 0 and 1, thereby resulting 

in a function that is not continuously differentiable. This prompts us to deviate from Small’s 

model by investigating alternative schedule delay functions that are first of all behaviourally 

intuitive, and continuously differentiable. 

From a behavioural perspective, the schedule delay function needs to reflect reductions in 

the schedule disutility as the observed departure times approach the preferred departure 

times (from both the earliness and lateness sides), and must peak at points where the delay 

is zero. Furthermore, the function needs to have an indifference region around the preferred 

departure time to reflect the fact that the rate of increase in the schedule disutility is small 

around the preferred departure times, and increases as the observed departure times spread 

further away from the preferred departure time.  

After testing various functional forms (e.g. the logistic and the parabolic functions), we 

selected the parabolic function, which gave consistent and intuitive results. The systematic 

utility is now expressed as follows; 

𝑉𝑛𝑡𝑘 = 𝛽𝑡−𝑡𝑖𝑚𝑒𝑇𝑛𝑡𝑘 +  𝛼(𝑃𝐷𝑇𝑛 −𝐷𝑡)
2 +⋯                                               (4-4)                                        

Where 𝛼  is a parameter to be estimated, representing the sensitivity to delay. For the 

schedule function above to be behaviourally intuitive, the parameter 𝛼 is expected to have 
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a negative sign. A potential issue with this function is that it does not capture the damping 

effect of schedule delay on marginal disutility as argued in previous studies (e.g. Koppelman 

et al., 2008), which calls for further research to address this issue. 

Assuming the 𝛽s, the 𝛼s and 𝑃𝐷𝑇𝑛 (for individual 𝑛) are known, and the random part of 

utility 𝜀𝑛𝑡𝑘  is independently and identically distributed across the choice situations, the 

alternatives, and the individuals, the departure time choice probability for individual 𝑛 can 

be estimated using the multinomial logit (MNL) model (see McFadden, 1974 for details). 

However in this case, we have several choice situations for the same individual across 

different days, thus, we need to capture the panel effect while calculating the choice 

probabilities. 

Let 𝑃𝑛,𝑘(𝑡|𝛽, 𝛼, 𝑃𝐷𝑇𝑛) denote the logit probability that individual 𝑛 chooses departure time 

period 𝑡 in choice situation 𝑘, conditional on 𝛽, 𝛼 and 𝑃𝐷𝑇𝑛. Furthermore, let 𝑡̂𝑛,𝑘 be the 

departure time chosen by individual 𝑛 in choice situation 𝑘, such that 𝑃𝑛,𝑘(𝑡̂𝑛,𝑘|𝛽, 𝛼, 𝑃𝐷𝑇𝑛) 

gives the logit probability of the observed choice for individual 𝑛 in choice situation 𝑘, 

conditional on 𝛽, 𝛼 and 𝑃𝐷𝑇𝑛. The logit probability of individual 𝑛’s observed sequence of 

choices is; 

𝑃𝑛(𝛽, 𝛼, 𝑃𝐷𝑇𝑛) =  ∏𝑃𝑛,𝑘(𝑡̂𝑛,𝑘|𝛽, 𝛼, 𝑃𝐷𝑇𝑛) 

𝐾

𝑘=1

 

 

=∏
exp(𝑉𝑛𝑡̂𝑘|𝛽, 𝛼, 𝑃𝐷𝑇𝑛)

∑ exp(𝑉𝑛𝑡𝑘∗|𝛽, 𝛼, 𝑃𝐷𝑇𝑛)𝑡∗ ∈𝐶𝑛

𝐾

𝑘=1

 

                          (4-5) 

Where 𝐶𝑛 is the choice set. It is important to note that for users with more than one trip 

chain, we compare the attributes of the same trip chain across the different time periods 

while computing the choice probabilities. That is, each trip chain represents a different 

choice scenario.  

However as earlier mentioned, the preferred departure times 𝑃𝐷𝑇𝑛 are not observed, and are 

assumed to vary randomly across individuals. Suppose 𝑃𝐷𝑇𝑛  is independently and 

identically distributed over the individuals with density 𝑓(𝑃𝐷𝑇|Ω), where Ω is a vector of 

the parameters of this distribution, such as the mean and standard deviation, this would result 

in the mixed multinomial logit (MMNL) model (McFadden and Train, 2000), and the mixed 

logit probability would be given by; 

𝑃𝑛(𝛽, 𝛼, Ω) =  ∫ [∏𝑃𝑛,𝑘(𝑡̂𝑛,𝑘|𝛽, 𝛼, 𝑃𝐷𝑇𝑛) 

𝐾

𝑘=1

] 𝑓(𝑃𝐷𝑇|Ω) 𝑑𝑃𝐷𝑇

 

𝑃𝐷𝑇

         (4-6) 

The integration over the density of 𝑃𝐷𝑇 is done over all the individual’s choices combined, 

since the same 𝑃𝐷𝑇 applies to all the choice situations. The log-likelihood (𝐿𝐿) function for 

the observed choices is; 
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𝐿𝐿(𝛽, 𝛼, Ω) =  

∑ln( ∫ [∏𝑃𝑛,𝑘(𝑡̂𝑛,𝑘|𝛽, 𝛼, 𝑃𝐷𝑇𝑛) 

𝐾

𝑘=1

] 𝑓(𝑃𝐷𝑇|Ω) 𝑑𝑃𝐷𝑇

 

𝑃𝐷𝑇

)

𝑁

𝑛=1

 

(4-7) 

An important consideration is the choice of distribution to be used. Due to our limited 

knowledge of the individuals’ preferences, coupled with the fact that we have not conducted 

any surveys to determine the distribution of the preferred departure times, we assume a 

truncated normal distribution bounded between the limits of the analysis period (i.e. the 

morning or evening peak periods). Since the integral in Equation 4-7 has no closed form, it 

is estimated using simulation methods. The simulated log-likelihood (𝑆𝐿𝐿) is expressed as 

follows; 

𝑆𝐿𝐿(𝛽, 𝛼, Ω) =  ∑ ln(
1

𝑅
∑[∏𝑃𝑛,𝑘(𝑡̂𝑛,𝑘|𝛽, 𝛼, 𝑃𝐷𝑇𝑛) 

𝐾

𝑘=1

]

𝑅

𝑟=1

)

𝑁

𝑛=1

 (4-8) 

The 𝑃𝐷𝑇  distribution parameters (i.e. the mean and standard deviation) are estimated 

alongside the other model parameters by maximising the simulated log-likelihood using 300 

Halton draws per user (Bhat, 2001). During parameter estimation, there may be a possibility 

of confounding between random 𝑃𝐷𝑇 and random schedule delay sensitivity 𝛼, however, 

this is mitigated by applying the same parameter 𝛼 to 𝑃𝐷𝑇𝑛
2, 𝐷𝑡

2, and −2𝑃𝐷𝑇𝑛𝐷𝑡  (see 

Equation 4-4).  

4.5 Model results 

This section discusses the process of variable specification, the estimation results, as well 

as the policy insights derived from the estimation results. 

4.5.1 Variable specification 

The variables available for possible inclusion in the departure time utility equation are; 

travel time, latent schedule delay, trip chain characteristics, and user demographics. 

However, each of these variables was defined in a particular way for different reasons as 

explained in the subsequent paragraphs. 

For travel time, we tested the logarithmic specification to allow for damping effects (Daly, 

2010) and found no gains in model fit compared to the linear specification. This could be 

attributed to the small ranges of travel time across the alternatives of each user. Therefore, 

we adopted a linear specification.  

|The schedule delay function was entered into the model as specified in Equation 4-4. We 

investigated the possibility of different 𝑃𝐷𝑇  distribution parameters for different 

demographic groups and could not obtain significant gains in model fit for either dataset. 

The trip chain characteristics were incorporated into the model using the number of 

intermediate stops, and time-period specific parameters were specified to capture the 

differential impact on utility across the time periods. It may be noted that the duration at the 

intermediate stops is already incorporated into the travel time. 
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A number of interactions of the schedule delay and the travel time parameters with the user 

demographics were tested. For the GPS data, we could not obtain intuitive results for all the 

interactions tested due to the small sample size per demographic group in the final sample, 

so we specified generic parameters. On the other hand, for the GSM data, we successfully 

interacted the travel time and the schedule delay parameters with age-group alone and age-

group by gender, respectively. The final systematic utility specifications for the GSM and 

the GPS data are given by Equations (4-9) and (4-10), respectively; 

𝑉𝑛𝑡𝑘 = 𝛽𝑡𝑖𝑚𝑒−𝑎𝑔𝑒𝑇𝑛𝑡𝑘 + 𝛼𝑑𝑒𝑙_𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟𝑆𝐷𝑛𝑡
2 +  𝛽𝑠𝑡𝑜𝑝𝑠_𝑡𝑁𝑠𝑡𝑜𝑝𝑠  (4-9) 

𝑉𝑛𝑡𝑘 = 𝛽𝑡𝑖𝑚𝑒𝑇𝑛𝑡𝑘 + 𝛼𝑑𝑒𝑙𝑆𝐷𝑛𝑡
2 +  𝛽𝑠𝑡𝑜𝑝𝑠_𝑡𝑁𝑠𝑡𝑜𝑝𝑠  (4-10) 

 

Where 𝑆𝐷𝑛𝑡 =  (𝑃𝐷𝑇𝑛 −𝐷𝑡), and 𝑁𝑠𝑡𝑜𝑝𝑠  is the number of intermediate stops in the trip 

chain. The 𝛽 and 𝛼 parameters are to be estimated. 

4.5.2 Estimation results 

We present the estimation results for the home-to-work commute and the work-to-home 

commute models for both the GSM and the GPS data in Table 4-3 for comparison purposes. 

As observed, most of the parameter estimates are statistically significant at the 95% level of 

confidence. In the subsequent sections, we discuss each aspect of the results in details. 

4.5.2.1 Distribution parameters for the departure time distribution 

We specified a truncated normal distribution for the preferred departure time (for reasons 

explained in the paragraph after Equation 4-7). For this distribution, the estimated mean and 

standard deviation are those of the underlying normal distribution. To calculate the true 

means and standard deviations, the estimated parameters were adjusted as follows; 

𝜇 =  𝜇̂ + [ 
𝜙(Α)  −  𝜙(Β)

Φ(Β)  −  Φ(Α)
] 𝜎̂           (4-11) 

𝜎 =  𝜎̂ [1 + 
Α𝜙(Α) −  Β𝜙Β

Φ(Β)  −  Φ(Α)
 − ( 

𝜙(Α)  −  𝜙(Β)

Φ(Β)  −  Φ(Α)
)

2

]

1/2

           (4-12) 

Where, 𝜇̂  and 𝜎̂  are the estimated mean and standard deviation respectively of the 

underlying normal distribution, 𝜇  and 𝜎  are the true mean and standard deviation 

respectively of the truncated distribution. Α = (𝑎 − 𝜇̂) 𝜎̂⁄ , Β = (𝑏 − 𝜇̂) 𝜎̂⁄ , where 𝑎 and 𝑏 

are the lower and upper bounds respectively of the truncated distribution. For the home-to-

work commute, these are set to 5 and 11, respectively, while for the work to home commute, 

these are 15 and 21 respectively.  

From Table 4-3, it is observed that the mean preferred departure times for the home-to-work 

commute are 7.9742 and 8.0105 (approximately 8:00 am), while those for the work-to-home 

commute are 17.7240 (approximately 05:45 pm) and 17.2903 (approximately 05:15 pm) in 

the GSM and the GPS models, respectively. Although flexible working time is not unusual 

in Switzerland, normal business hours generally start between 08:00 am and 08:30 am and 

end between 05:00 pm and 06:30 pm (Switzerland Tourism, 2018), which is consistent with 

our findings. Furthermore, it is observed that the corresponding standard deviations are 
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slightly higher for the home-to-work commute when compared to the work-to-home 

commute. The lower amount of variation during the work-to-home commute is probably the 

reason behind the higher evening traffic congestion in Lausanne and other major Swiss cities 

(TomTom, 2016). 

4.5.2.2 Sensitivity to schedule delay 

Generally, individuals prefer to depart at particular times due to certain constraints at both 

the origin and the destination. Thus, any deviations from the desired times of travel are 

expected to cause disutility, hence the negative parameter signs for the schedule delay terms 

reported in Table 4-3.  

For GSM data where we have different schedule delay parameters for different demographic 

groups, where we note that female workers are more sensitive to shifting departure time 

compared to male workers in the same age-group. This is the case during both the home-to-

work and the work-to-home commute. The higher sensitivity of female workers is 

potentially attributed to the strictness in their schedule as a result of the need to balance 

family and professional life in the face of common views on traditional gender roles in 

Switzerland (Nguyen, 2018, The Economist, 2018).   

Furthermore, it is observed that younger workers are more sensitive to schedule delay than 

older workers of the same gender during the home-to-work commute. This is expected as 

younger workers are more junior and typically have less flexibility (i.e. expected to report 

on time). However, the situation is different for the work-to-home commute. Here, it is 

observed that older female workers are more sensitive than young female workers. This 

again could be attributed to the levels of responsibility at home as older female workers are 

more likely to have families already. However, the lower sensitivity of older male workers 

in comparison with younger male workers is an interesting observation that needs to be 

investigated further. 

For the GSM data, we also observe that the sensitivity to schedule delay is generally higher 

during the home-to-work commute when compared to the work-to-home commute. This is 

expected as late arrival on the home-to-work commute probably has more serious 

consequences than on the work-to-home commute. However, this was not captured in the 

GPS data due to differences in the sample composition resulted by the big time gaps in the 

GPS data. 

4.5.2.3 Sensitivity to travel time 

From Table 4-3, the parameter signs for the travel time variable are negative in both the 

home-to-work and the work-to-home commute models, which is consistent with a priori 

expectations. In general, time periods with higher travel times are less attractive, and prompt 

individuals to choose earlier or later time periods at the expense of increasing the schedule 

delays. Keeping all other things constant, it is observed that the sensitivity to travel time 

during the home-to-work commute is generally higher than that during the work-to-home 

commute in both the GSM and the GPS models. This implies that people are less willing to 

spend longer times in traffic during the home-to-work commute as opposed to the reverse 

direction, which could be attributed to the higher stakes attached to the home-to-work leg. 



 

 

103 

Table 4-3 Model estimation results 

 Variable 

Home-to-work commute  Work-to-home commute 

GSM data  GPS data  GSM data  GPS data 

Parameter t-stat  Parameter t-stat  Parameter t-stat  Parameter t-stat 

Travel time (hours)      
 

     

Workers < 28 years -2.9700 -2.37  
-0.9486 -1.05 

 -1.0674 -2.59  
-0.2340 -0.32 

Workers >= 28 years  -1.3266 -1.35   -1.0314 -2.15  

Schedule delay term (hours2)       
 

     

Female workers < 28 years -0.7682 -6.51  

-0.2560 -1.88 

 -0.4412 -5.70  

-0.3093 -6.13 
Female workers >= 28 years -0.6441 -5.34   -0.4785 -7.12  

Male workers < 28 years -0.6841 -3.49   -0.4148 -4.46  

Male workers >= 28 years  -0.5468 -6.20   -0.3749 -6.78  

Preferred departure time 

distribution parameters      

 

     

𝜇̂  7.9652 67.55  8.0105 18.76  17.7240 170.59  17.2903 112.59 

𝜇 7.9661   8.0081   17.7244   17.2903  

𝜎̂ 1.0029 7.85  1.5077 1.99  0.7465 11.98  0.4729 4.40 

𝜎 0.9783   1.7503   0.5562   0.2236  

Number of stops (Time period 

specific parameters)*      

 

     

 𝛽𝑠𝑡𝑜𝑝𝑠_1  -2.2939 -2.24  -1.1547 -0.43  1.8821 1.97  -2.4504 -2.17 

 𝛽𝑠𝑡𝑜𝑝𝑠_2 -0.8544 -1.80  -1.3607 -0.53  2.0265 2.18  -2.9766 -2.63 

 𝛽𝑠𝑡𝑜𝑝𝑠_3 -1.3742 -2.05  -1.5777 -0.66  1.8313 2.00  -3.4635 -3.05 

 𝛽𝑠𝑡𝑜𝑝𝑠_4 -0.3398 -0.81  16.7402 6.94  1.2878 1.39  11.7430 7.91 

 𝛽𝑠𝑡𝑜𝑝𝑠_5 -1.1779 -2.68  -1.9351 -0.91  1.7281 1.87  11.5697 8.53 

 𝛽𝑠𝑡𝑜𝑝𝑠_6  -1.1063 -2.76  -2.1946 -1.13  1.3622 1.44  12.1103 8.28 
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Table 4-3 cont’d 

 Variable 

Home-to-work commute  Work-to-home commute 

GSM data  GPS data  GSM data  GPS data 

Parameter t-stat  Parameter t-stat  Parameter t-stat  Parameter t-stat 

 𝛽𝑠𝑡𝑜𝑝𝑠_7  -1.2352 -3.28  -2.3215 -1.26  1.8133 1.95  -4.7535 -4.36 

 𝛽𝑠𝑡𝑜𝑝𝑠_8 -1.0663 -2.88  -2.3982 -1.43  1.5522 1.68  -4.8664 -4.55 

 𝛽𝑠𝑡𝑜𝑝𝑠_9 -1.0169 -3.17  15.1030 8.56  1.6290 1.77  11.1953 8.50 

 𝛽𝑠𝑡𝑜𝑝𝑠_10 -0.6124 -1.70  15.1026 11.49  1.4974 1.61  -4.7149 -4.67 

 𝛽𝑠𝑡𝑜𝑝𝑠_11 -1.2679 -3.30  -2.2488 -1.79  1.8324 1.99  -4.7034 -4.72 

 𝛽𝑠𝑡𝑜𝑝𝑠_12  -1.1857 -3.69  -2.1632 -1.87  1.3271 1.45  11.2286 8.07 

 𝛽𝑠𝑡𝑜𝑝𝑠_13  -0.9265 -2.95  -2.1864 -2.09  1.1121 1.19  -4.6527 -4.75 

 𝛽𝑠𝑡𝑜𝑝𝑠_14 -1.1458 -2.84  -2.3160 -2.67  0.8245 0.88  -4.4459 -4.61 

 𝛽𝑠𝑡𝑜𝑝𝑠_15 -1.1957 -2.61  -2.3777 -3.25  0.8900 0.94  -4.1544 -4.35 

 𝛽𝑠𝑡𝑜𝑝𝑠_16 -1.7638 -4.76  -2.4956 -4.26  0.3669 0.38  -3.7369 -4.05 

 𝛽𝑠𝑡𝑜𝑝𝑠_17 -1.1030 -2.80  -2.7512 -6.41  1.1553 1.26  -3.2570 -3.67 

 𝛽𝑠𝑡𝑜𝑝𝑠_18  -2.8825 -4.97  -2.7162 -8.04  1.2105 1.30  -2.7495 -3.25 

 𝛽𝑠𝑡𝑜𝑝𝑠_19  -1.0044 -3.49  -2.6429 -10.06  0.9961 1.03  -2.2151 -2.77 

 𝛽𝑠𝑡𝑜𝑝𝑠_20  -1.2905 -4.90  -2.5495 -13.12  0.9618 1.01  -1.7011 -2.28 

 𝛽𝑠𝑡𝑜𝑝𝑠_21   -1.2117 -4.28  -2.4537 -15.91  1.1151 1.21  -1.2485 -1.80 

 𝛽𝑠𝑡𝑜𝑝𝑠_22  -0.5033 -1.98  -2.3064 -17.13  0.7528 0.79  -0.8655 -1.35 

 𝛽𝑠𝑡𝑜𝑝𝑠_23  -0.6143 -2.71  -2.0963 -16.51  1.6520 1.89  -0.5606 -0.96 
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Table 4-3 cont’d 

 Variable 

Home-to-work commute  Work-to-home commute 

GSM data  GPS data  GSM data  GPS data 

Measures of fit in estimation 

Number of observations 2043  69  2668  112 

Number of decision makers 78  29  78  35 

LL(C) -6492.76  -219.29  -8479.05  -355.94 

LL(F) -5575.19  -203.50  -7644.19  -323.95 

Number of parameters 31  27  31  27 

ρadj
2  w.r.t LL(C) 0.1365  -0.0511  0.0948  0.0140 

LR w.r.t LL(C) 1835.15  31.58  1669.71  63.99 

p-value of LR 0.0000  0.2480  0.0000  0.0001 

* 1 refers to the first 15-minute interval in the period of analysis (i.e. 5:00 to 5:15 for morning home-to-work commute, and 15:00 to 15:15 for the evening work-to-home commute). The rest of the numbers 

refer to the subsequent 15-minute intervals in ascending order. 
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4.5.2.4 Time-period specific parameters related to the number of stops 

Another important issue worth highlighting concerns the time-period specific parameters 

related to the number of stops. For easy parameter identification, we normalised to zero the 

effect linked to the last departure time interval of each analysis period (i.e. 10:45 am to 

11:00 am for the morning home-to-work commute and 08:45 pm to 09:00 pm for the evening 

work-to-home commute). Thus, the reported parameters represent the differential impact on 

utility with respect to the reference time periods, and can either be positive or negative. 

These are reproduced in Figure 4-6 for easy visualisation. 

The interpretation of these parameters is however difficult given that they probably 

incorporate some other unobserved factors associated with the different time periods. 

Nevertheless, for GSM data (Figure 4-6a), the trend of the parameters in the work-to-home 

model shows that if someone is to make a trip with more stops, they will find the earlier 

departure time periods more suitable, which is reasonable. However, the trend is different 

in the home-to-work model, where it is observed that the later departure time periods would 

be more suitable. This could be attributed to the less traffic during the inter-peak period and 

the opening times at the various stop locations. Of course, it is not clear if someone is 

choosing a specific departure time given the stops they plan to make, or if trips at specific 

departure times imply different stop patterns. For GPS data (Figure 4-6b), there is no clear 

trend in the parameters for both commute directions, which is attributed to the gaps in the 

data.   

 
 

(a) GSM data 

 
 

(b) GPS data 

Figure 4-6 Time period specific parameters for the number of stops 

4.5.2.5 Overall model performance 

From Table 4-3, it is observed that the adjusted-rho square values of the GPS models are 

smaller compared to those of the GSM models. While acknowledging that the models cannot 

be directly compared due to differences in the sample compositions, the overall poor 

performance of the GPS models is largely attributed to the small GPS sample sizes.  

4.5.3 Policy insights 

Travel time is usually at its worst when the schedule delay for most individuals is at the 

minimum. Therefore, people are generally faced with a trade-off between travel time and 
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schedule delay when choosing the most appropriate departure time periods. Thus, to gain 

better insights, it is critical to analyse the sensitivities to schedule delay versus travel time 

to obtain the values attached to schedule delay.  

The time valuation of schedule delay (𝑇𝑉𝑆𝐷) represents the amount of delay an individual 

is willing to experience for a unit reduction in travel time by changing his/her departure 

schedule. This unitless metric is calculated as the ratio of the partial derivatives of the 

systematic utility with respect to schedule delay and travel time as follows; 

• For the GSM data  

𝑇𝑉𝑆𝐷𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟 =  
𝜕𝑉𝑛𝑡𝑘 𝜕𝑆𝐷𝑛𝑡⁄

𝜕𝑉𝑛𝑡𝑘 𝜕𝑇𝑛𝑡𝑘⁄
 =   

𝛼𝑑𝑒𝑙_𝑎𝑔𝑒_𝑔𝑒𝑛𝑑𝑒𝑟 ∗ 2𝑆𝐷𝑛𝑡

𝛽𝑡𝑖𝑚𝑒−𝑎𝑔𝑒
 (4-13) 

• For the GPS data  

𝑇𝑉𝑆𝐷 =  
𝜕𝑉𝑛𝑡𝑘 𝜕𝑆𝐷𝑛𝑡⁄

𝜕𝑉𝑛𝑡𝑘 𝜕𝑇𝑛𝑡𝑘⁄
 =   

𝛼𝑑𝑒𝑙 ∗ 2𝑆𝐷𝑛𝑡
𝛽𝑡𝑖𝑚𝑒

 (4-14) 

Since we used square-transformations, the time valuation of schedule delay depends on the 

amount of earliness/lateness of the individual as shown in Equations 4-13 and 4-14. We 

therefore used the estimation data (including the normal draws) to calculate the average 

values across individuals, which we report in Table 4-4. 

Table 4-4 Time valuations of schedule delay 

Commute 

direction 

GSM data 
 GPS 

data 

Female 

worker      

< 28 years 

Female 

worker 

>= 28 years 

Male 

worker 

< 28 years 

Male 

worker 

>= 28 years 

Weighted 

mean 

 

Generic 

Home to work 1.2196 2.5116 0.9995 2.2031 2.0167  2.3435 

Work to home 1.6729 1.8290 1.5570 1.6747 1.7025 
 

4.6266 

Weighted mean 1.4824 2.1352 1.2964 1.8893 1.8388  3.4850 

To assess how realistic our estimates are, we compared them with the typical averages for 

Europe reported in the meta study conducted by Wardman et al. (2012). The meta-study 

reports the number of studies considered, the average values, and the corresponding standard 

errors. Assuming the values used to calculate the reported means follow a normal 

distribution, then 68%, 95% and 99% of the respective values should be within one, two, 

and three standard errors (SEs), respectively (Doane and Seward, 2015, Grafarend, 2006). 

Table 4-5 summarises the estimated range of values for Europe. 

A comparison of the GSM and the GPS valuation estimates shows that those of the former 

are within the expected range of values for Europe, albeit on the upper side probably due to 

the relatively higher socio-economic status of Switzerland (World Bank, 2018). This is not 

only another indicator of the relatively high quality of the GSM versus the GPS data used 

in this study but also gives some reassurance that GSM data can be used for understanding 

departure time choice. Indeed, these results show that mobile phone data can be feasibly 

used to analyse time-of-travel choices despite the lack of information on the preferred 
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departure/arrival times. The availability of demographic data offers additional benefits in 

terms of explaining the differences in sensitivity across individuals. 

Table 4-5 Comparison with time valuations from other sources 

Values for Europe  

(Wardman et al., 2012) 
GSM data GPS data 

Description 
Schedule 

delay early 

Schedule 

delay late 

Mean – 3SE 0.39 1.22 

 

 

 

 

 

 

1.84 

(From Table 4-4) 

 

 

 

 

 

 

3.49 

(From Table 4-4) 

Mean - 2SE 0.53 1.38 

Mean - SE 0.67 1.54 

Mean 0.81 1.70 

Mean + SE 0.95 1.86 

Mean + 2SE 1.09 2.02 

Mean + 3SE 1.23 2.18 

SE – Standard Error = 0.14 (schedule delay early) and 0.16 (schedule delay late) 

 

4.6 Summary and conclusions 

This paper started by analysing the strengths and weaknesses of GPS and GSM data. An 

initial comparison of the GSM and the GPS datasets collected in parallel for the same users 

showed that the amount of time gaps in the GPS data were very substantial. This was 

potentially due to technical issues such as signal losses in urban environments and large 

public transport vehicles, as well as the users turning off their GPS apps due to battery 

issues. On the other hand, the amount of time gaps in the GSM data were not as pronounced. 

Due to these challenges, the GPS data could not capture most of the trips made, and the 

extracted sample size was very small compared to that extracted from the GSM data. 

Consequently, the models based on GPS data were not as reliable as those based on GSM 

data despite the superiority of GPS data. An important point to note is that advances in 

smartphone GPS technology have occurred since 2010, and it is likely that some of the 

technical issues encountered in this study have been resolved. Therefore, it is would be 

important to re-evaluate the feasibility of GPS data using more current datasets. 

Nevertheless, this paper has successfully demonstrated the potential of GSM data as an 

alternative source of information for departure time choice modelling.  

An important aspect we recognise is the fact that the preferred departure/arrival times of the 

users are not known due to the anonymous nature of mobile phone data and yet this is an 

important aspect of departure time choice models. We propose a modelling framework in 

which the unobserved preferred departure times are assumed to vary across the users 

following a particular distribution, and estimate the distribution parameters (i.e. the mean 

and standard deviation) using the mixed logit framework. This approach allows us to 

simultaneously estimate the distribution parameters alongside the sensitivities to schedule 

delay, which are found to be intuitive. Although we have applied the proposed approach in 

the context of anonymous mobile phone data, it can be applied to model departure time 

choice using traditional RP datasets where the desired times of travel are sometimes not 

known. 
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Furthermore, since mobile phone data only reports the revealed departure time preferences 

of the users, the modeller does not know the other alternatives that were considered while 

making these choices. We make a general assumption that all the possible departure time 

intervals in the analysis period (i.e. morning or evening peak period) were considered. 

However, the attributes for some of the departure time intervals may not be observed for 

some users if they rarely travel during those periods. Consequently, we propose a practical 

approach for imputing the travel times associated with different departure time intervals 

using time-period specific congestion factors derived from Google maps for a sample of O-

D pairs. This approach is particularly beneficial in the absence of Google Distance Matrix 

API services for duration in traffic.    

The model results reflect the generally expected behaviour. When these results were applied 

to estimate the time valuations of schedule delay, we obtained reasonable estimates from 

the models based on GSM data in comparison with those from the literature, which are 

largely based on stated choice data. We conclude that the results of this study serve as a 

proof-of-concept that mobile phone network records are a promising source of information 

for transport modelling and policy analysis, especially in contexts where traditional data 

sources are unavailable. This is the case in most developing countries with limited budgets 

for transport studies.  
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Chapter 5 

Getting the best of both worlds - a framework for combining 

disaggregate travel survey data and aggregate mobile phone 

data for trip generation modelling 

 

Andrew Bwambale*, Charisma F. Choudhury*, Stephane Hess*, Md. Shahadat Iqbal** 

 

 

Abstract 

Traditional approaches to travel behaviour modelling primarily rely on household travel 

survey data, which is expensive to collect, resulting in small sample sizes and infrequent 

updates. Furthermore, such data is prone to reporting errors which can lead to biased 

parameter estimates and subsequently incorrect predictions. On the other hand, mobile 

phone call detail records (CDRs), which report the timestamped locations of mobile 

communication events have been successfully used in the context of generating travel 

patterns. However, due to their anonymous nature, such records have not been widely used 

in developing mathematical models establishing the relationship between the observed 

travel behaviour and influencing factors such as the attributes of the alternatives and the 

decision makers. In this paper, we propose a joint modelling framework that utilises the 

advantages offered by both travel survey data and low-cost CDR data to optimise the 

prediction capacity of traditional trip generation models. In this regard, we develop a model 

that jointly explains the reported trips for each individual in the household survey data and 

ensures that the aggregated zonal trip productions are close to those derived from CDR data. 

This framework is tested using data from Dhaka. Bangladesh consisting of household survey 

data (65419 persons in 16750 households), mobile phone CDR data (over 600 million 

records generated by 6.9 million users), and aggregate census data. The model results show 

that the proposed framework improves the spatial and temporal transferability of the joint 

models over the base model which relies on household travel survey data alone. This serves 

as a proof-of-concept that augmenting travel survey data with mobile phone data holds 

significant promise for the travel behaviour modelling community, not only by saving the 

cost of data collection, but also improving the prediction capacity of the models.  
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5.1 Introduction 

Trip generation models form the first component of the traditional four-stage model and are 

essential for evaluating the relative importance of different factors that influence trip 

production (Ortúzar and Willumsen, 2011). Being the first step in the four-stage model, the 

accuracy of trip generation models is critical to that of the subsequent stages.  

Traditional approaches to developing trip generation models rely on household travel 

surveys to establish the mathematical relationship between trip making and the socio-

demographics of trip makers (see Bwambale et al., 2015 and the cited references). However, 

household surveys are often affected by low response rates, small sample sizes and trip 

reporting errors (e.g. Rolstad et al., 2011, Groves, 2006). Consequently, trip generation 

models designed to fit household travel survey data alone are likely to result in biased 

parameters capturing the noise in the data rather than the actual relationships in the 

population. Aggregating such models to estimate the zonal trip productions often leads to 

errors, with serious consequences for the subsequent steps of the four-stage model. 

Furthermore, the high cost of collecting travel survey data makes it difficult makes it 

difficult to conduct regular model updates.  

On the other hand, there has been growing interest in the use of mobile phone data for 

mobility modelling over the last few decades. Among the various transport related 

applications, such data has been widely used to estimate origin-destination matrices (e.g. 

Çolak et al., 2015, Iqbal et al., 2014, Pan et al., 2006, White and Wells, 2002) and trip 

generation (e.g. Çolak et al., 2015). Since mobile phone data generally covers significant 

proportions of the population (GSM Association, 2017), the data is able to reliably capture 

the aggregate travel patterns. 

However, due to its anonymous nature, mobile phone data is not traditionally used in 

developing mathematical models of travel behaviour that establish the relationship between 

the observed travel behaviour and causal factors such as the attributes of the alternatives and 

the decision makers. The existing mobility models based on mobile phone data alone cannot 

be used to reliably test alternative or future travel demand scenarios, and yet this is one of 

the cardinal roles of transport models. This motivates this research where we combine 

household travel survey data, aggregate census data, and mobile phone data to jointly 

optimise the aggregate and the disaggregate fit of trip generation models. In terms of the 

aggregate fit, we seek to minimise the error between the modelled and the zonal trip 

productions derived from call detail record (CDR) data, while in terms of the disaggregate 

fit, we seek to ensure that the model parameters represent the genuine sensitivities of 

individuals in the population.  

Household travel survey data is the most reliable source of information on individual travel 

behaviour sensitivities (i.e. the model parameter signs and/or the relative magnitudes), 

however, its limitations can lead to biased parameter scales as mentioned earlier. This 

prompts us to investigate various ways of adjusting the parameter scales during the joint 

optimisation process. We adopt a joint optimisation approach because CDR data too is 

inherently noisy, and thus not error-free. In essence, it would be unrealistic to benchmark 

one dataset over the other. 

The proposed joint modelling framework is both sequential and simultaneous. The approach 

is sequential in the sense that a base trip generation model is first estimated using household 
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travel survey data alone to obtain the parameter priors (i.e. the sensitivities). The approach 

is simultaneous in the sense that when the parameter scales are being adjusted (without 

changing the prior parameter signs), the model jointly explains the reported trips for each 

individual in the household survey data and ensures that the aggregated zonal trip 

productions are close to those derived from CDR data. This ensures that the joint model 

does not lose the travel behaviour sensitivities reflected in the household survey data. 

The rest of the paper is organised as follows, section 5.2 presents a brief review of the 

literature, section 5.3 presents the data used in this study, section 5.4 presents the modelling 

framework, section 5.5 presents the model results, and section 5.6 presents the summary 

and conclusions of the study. 

5.2 Literature review 

This section presents a brief review of the literature on related work in applying mobile 

phone data to mobility studies, as well as an overview of different population synthesis 

techniques. 

5.2.1 Related studies on mobile phone data and population synthesis 

The availability of large-scale mobile phone data over the last few decades has motivated a 

lot of research in quantifying human mobility and activity patterns using synthetic data 

generation methods (e.g. Chen et al., 2014).  

From an epidemiology perspective, Vogel et al. (2015) combined CDR data with synthetic 

populations to model the spread of Ebola in West African countries and obtained promising 

results with respect to the Ebola predictions of the Centre for Disease Control and 

Prevention (CDC). Still in West Africa, Cárcamo et al. (2017) developed an intelligent 

epidemiology simulation software based on synthetic populations comprised of agents with 

realistic travel behaviour derived from CDR data. In France, Panigutti et al. (2017) 

compared the spread of a simulated epidemic using CDR and census survey travel patterns, 

finding greater similarity in areas with high population and connectivity, potentially due to 

the higher calling rates. 

In the field of transport, Zilske and Nagel (2014) generated artificial CDR data from 

synthetic passengers in a simulated traffic scenario and re-used the data to approximate the 

amount of missed traffic at different calling rates to quantify the error introduced by CDR 

location discontinuities. The study found that the errors were inversely proportional to the 

calling rates and proposed scaling procedures based on observed data such as traffic counts. 

This led to a subsequent study where simulated CDR data and a synthetic population were 

combined with link traffic counts to generate all-day trip chains (Zilske and Nagel, 2015). 

An interesting outcome of this study was that even highly biased CDR data could reasonably 

reproduce the traffic state across different time periods. The approach of using observed 

traffic counts to scale CDR data has also been tested in Dhaka in the context of transient 

origin-destination (OD) matrix estimation (Iqbal et al., 2014). 

Still in the field of transport, population synthesis has been applied on real-world mobile 

phone datasets. Ros and Albertos (2016) developed an improved version of MATSim (an 

agent-based multi-simulation software) by fusing census and CDR data from Spain to 

generate synthetic populations with mobility patterns observed in the CDR data. It may be 

noted that in this particular case, the mobile operator also provided the age and the gender 
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of the users, which ensured a reliable dependence structure between the travel patterns and 

socio-demographics in the final synthetic population. However, mobile phone data is 

usually anonymous, which makes direct socio-demographic linkage impossible. In our 

earlier work (Bwambale et al., 2017), we developed a demographic group prediction model 

based on mobile phone usage behaviour extracted from CDR data (as part of a latent class 

model for trip generation), and can potentially be used for generating synthetic populations, 

however, this also requires a sub-sample of CDR data with known demographics, which is 

rarely available. 

Kressner (2017) combined consumer and anonymous mobile phone data (wireless 

signalling and GPS data) from the United States to generate synthetic individual-level trip 

diaries. The socio-demographics in the disaggregate consumer data were benchmarked 

against the marginal census totals, while the synthetic travel was benchmarked against the 

mobility patterns extracted from the aggregate mobile phone data of several operators. A 

related study was conducted by Zhanga et al. (2017) in the context of social networks in 

urban simulations. Although these approaches perform quite well in terms of aggregate-

level validation, the disaggregate dependency structure in the data seems arbitrary.  

To maintain the underlying dependence structure, Janzen et al. (2017) combined household 

travel survey data, register data (national statistics) and CDR data from France to correct 

the under-reporting of long-distance trips in travel surveys using population synthesis 

techniques. The socio-demographics in the travel survey data were matched against those 

in the register data, while the reported long-distance trips in the travel survey data were 

matched against those derived from the CDR data. However, a potential issue with this 

approach is that it assumes uniform under-reporting for all the respondents in the travel 

survey data, and yet this might vary, at least across different demographic groups, with some 

cases of over-reporting. Furthermore, the assumed higher reliability of CDR data versus 

travel survey data is contentious and needs to be approached impartially. This is why we 

propose an optimisation approach between the two datasets. 

5.2.2 Existing methods of population synthesis 

Population synthesis is widely applied in activity-based models, and various techniques 

have been proposed to do this. This section presents a brief review of these methods. 

The most widely applied technique is iterative proportional fitting (IPF), which works by 

fitting a contingency table based on disaggregate survey data to the marginal totals in 

aggregate census data, constrained by a set of control variables (Beckman et al., 1996). Since 

its development, various improvements based on the original concept have been proposed 

to enhance its applicability to new challenges. These improvements have mainly focussed 

on addressing the zero-cell problem (Guo and Bhat, 2007), simultaneous control of 

household and individual-level attribute distributions (Casati et al., 2015, Zhu and Ferreira 

Jr, 2014, Ye et al., 2009, Guo and Bhat, 2007), improving the computational speeds 

(Pritchard and Miller, 2012), and non-integer conversion to integers (Choupani and 

Mamdoohi, 2015) etc. 

Another popular technique is combinatorial optimisation, which focusses on selecting a 

subset of households in the disaggregate sample data that closely fit the marginal 

distributions in the census data for the same area (Voas and Williamson, 2000). This is done 

by randomly selecting an initial subset of households from the sample data, and iteratively 
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replacing these with those remaining in the sample data, if and only when this leads to 

improvements in the fit of the subset. Although this approach has been reported to be 

superior (Ryan et al., 2009), the IPF method remains the most popular due to its low data 

requirements, reliability, and faster optimisation (Choupani and Mamdoohi, 2015, Sun and 

Erath, 2015). 

Besides the two methods above, other techniques have been proposed including, the sample-

free method (Barthelemy and Toint, 2013), Markov chain Monte Carlo simulation (Farooq 

et al., 2013), and the Bayesian network framework (Sun and Erath, 2015), among others. 

5.3 Data 

This section describes the study area, the data used, and the data processing conducted prior 

to model estimation. The study combines different data types (i.e. household travel survey 

data, census data, and CDR data) collected at different times between 2009 and 2012. 

Despite this limitation, these periods are considered close enough to facilitate cross-

comparison. 

5.3.1 Data description 

5.3.1.1 Study area 

The study location is Dhaka Metropolitan Area (DMA) in Bangladesh. The area covers 

approximately 303 square kilometres and is one of the world’s most crowded places with a 

population density of 30551 persons per square kilometre (BBS, 2013). Due to the high 

population density, the cell tower density is also very high. The area is served by 1361 

towers, with most these located in the central business district. The average tower-to-tower 

distance is approximately 1 kilometre (Iqbal et al., 2014). The total daily trip production 

from DMA residents was approximately 20.8 million in 2010, with 85.46% of these being 

home-based  (JICA, 2010).  

5.3.1.2 CDR data 

The CDR data used in this study was provided by Grameenphone Ltd and covers the 

working days (i.e. Mondays to Thursdays) between 24 June 2012 and 07 July 2012 (2 

weeks). The dataset comprises of 6.9 million anonymous users, who together generated over 

600 million records during this period (see an excerpt of the CDR data in Table 5-1).  

Table 5-1 Excerpt of the CDR data 

Unique ID Date Time Duration 
Tower 

Longitude 

Tower 

latitude 

AAH03JACKAAAgfBALW 20120624 13:41:49 15 23.9339 90.2931 

AAH03JAC8AAAbZfAHB 20120624 13:41:25 73 23.7931 90.2603 

AAH03JAC4AAAcvbABC 20120624 13:27:39 8 23.7761 90.4261 

AAH03JAC9AAAbWFAVM 20120624 13:27:27 41 23.7097 90.4036 

AAH03JABkAAHvEkAQE 20120624 13:32:38 530 23.7386 90.4494 
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5.3.1.3 Household travel survey data 

The household travel survey data used was collected between March 2009 and March 2010 

as part of the Dhaka Urban Transport Network Development Study (JICA, 2010). The 

sampling of households in each zone was based on the population shares at a rate of 

approximately 1%. The total sample comprises of 65419 individuals and 16750 households, 

representing an average household size of approximately four persons. The collected 

information includes each individual’s socio-demographic details (e.g. gender, age, working 

status, income, household size and housing type) and a single day trip diary. Table 5-2 

presents the summary statistics of the data. 

Table 5-2 Summary statistics of the household survey data 

Gender Age Working status Trip rate shares 

Male 53% 0-9 years 15% Employed 35% 0 trips 43% 

Female 47% 10-14 years 9% Unemployed 38% 1-2 trips 41% 

  15-19 years 8% Student 27% 3-4 trips 14% 

  20-29 years 22%   5+ trips 2% 

  30-49 years 32%     

  50-59 years 8%     

  60+  years 5%     

 

5.3.1.4 Census data 

The 2011 Bangladesh Population and Housing Census data was used  (BBS, 2012). The 

Census was conducted from 15 to 19 March 2011. The available data reports the aggregate 

totals of selected person and household level attributes at different geographical scales (e.g. 

village, ward, and zone (Thana)). Since we could not access the detailed census data due to 

privacy reasons, we used population synthesis techniques (Ye et al., 2009) to generate 

realistic artificial populations for the different study area zones by combining the aggregate 

census data with the household survey data as explained later in Section 5.3.2.2. It may be 

noted that the fusion of household survey data and census data could only be done at the 

zone (Thana) level due to differences in the study area delimitations at smaller geographical 

scales. In total, we successfully matched 31 zones. The variables available in both datasets 

are summarised in Table 5-3. 

Table 5-3 Variables in both the census and the household survey data 

Data Household survey data Census data 

Individual 

attributes 

Gender Population by gender 

Age-group Population by age-group 

Working status  

(employed, unemployed, 

student) 

Population by working status 

Occupation  

(agriculture, industry, services) 
Population by occupation 

Household 

attributes 

Household size 
Number of households by household 

size 

Household type (permanent, 

semi-permanent, thatched etc.) 

Number of households by household 

type 



 

 121   

 

5.3.2 Data processing and combination 

5.3.2.1 General concept 

The overarching idea is to minimise the difference between the zonal trip productions 

derived from CDR data and those obtained by aggregating the disaggregate trip generation 

model, without compromising the behavioural sensitivities reflected in the household survey 

data. Model aggregation is based on a synthetic population generated using the Iterative 

Proportional Updating technique (Ye et al., 2009). Figure 5-1 presents a summary of the 

data processing framework. The subsequent sections discuss the key aspects of this 

framework. 

 

Figure 5-1 Data processing framework 

5.3.2.2 Population synthesis 

Among the various software applications for population synthesis, we used PopGen (Ye et 

al., 2009), which is capable of conducting Iterative Proportional Updating (IPU). This 

algorithm simultaneously controls for both the person and the household-level attribute 

distributions during the fitting procedure, and has been proven to perform better than the 

simpler methods.  

The algorithm relies on person and the household-level sample data for each zone (derived 

from the household survey data) to generate zone-specific synthetic populations, which are 

validated against the corresponding person and the household-level aggregate census totals. 

Tables 5-4 and 5-5 present lists of the control variables used in PopGen. It may be noted 

that we did not use the individual’s occupation as we could not reliably match the categories 

in the household survey and the census data.  
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Table 5-4 Household-level control variables used in PopGen 

HSETYP Housing type HHLDSIZE Household size 

HSETYP1 Pucka (Permanent house) HHLDSIZE1 1 

HSETYP2 Semi-pucka (Semi-permanent house) HHLDSIZE2 2 

HSETYP3 Kutcha (Thatched house) HHLDSIZE3 3 

HSETYP4 Jhupri (Slum house) HHLDSIZE4 4 

  HHLDSIZE5 5 

  HHLDSIZE6 6 

  HHLDSIZE7 7 

  HHLDSIZE8 8+ 

 

Table 5-5 Individual-level control variables used in PopGen 

GEND Gender AGEP Age-group 

GEND1 Male AGEP1 0-9 years 

GEND2 Female AGEP2 10-14 years 

  AGEP3 15-19 years 

WRKST Working status AGEP4 20-29 years 

WRKST1 Employed AGEP5 30-49 years 

WRKST2 Unemployed AGEP6 50-59 years 

WRKST3 Student AGEP7 60+ years 

 
Figure 5-2 presents the distribution of the Average Absolute Relative Differences (AARD) 

across the zones. This metric gives the mean deviation of the person weighted sums with 

respect to the household and person aggregate census totals. As observed, the AARD values 

for most zones are concentrated in the lower ranges of the axis, an indication that the 

population synthesis was successful. 

 

Figure 5-2 Distribution of the AARD values 

Furthermore, comparisons of the synthetic versus the actual estimates for each attribute at 

the person and the household levels are presented in Figures 5-3 and 5-4 respectively, where 

the distributions are observed to closely match.  
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Figure 5-3 Distribution of the individual-level estimates 

 
Figure 5-4 Distribution of the household-level estimates 

5.3.2.3 Extraction of zonal trip productions from CDR data 

The CDR data for the entire observation period was first analysed to identify each user’s 

home location, which was defined as the most frequently observed cell tower at night (i.e. 

between 8 pm and 6 am). The labelled cell towers (i.e. home/others) for each user were then 

arranged according to the date and observation timestamp.  

Home-based trips were extracted by considering any two consecutive CDR events from 

different cell towers, with one of those being the home cell tower. After conducting several 

trials, a lower distance threshold of 0.5 kilometres between subsequent towers was 

considered as the optimum for minimising the number of false trips due to tower jumps. 

An upper threshold of 24 hours or midnight (whichever came first) was specified based on 

the assumption that a user typically travels from and back to home within the same effective 

day. Consequently, if the first and the last CDR events for the day were not at the home cell 

tower, corresponding raw trips were added (Çolak et al., 2015). 
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The number of users and home-based trips associated with each cell tower were recorded. 

The cell towers within the boundaries of each zone were then grouped with the aid of GIS 

software (QGIS Development Team, 2018). The total trips for each zone were then 

corrected using the ratio of the zonal population to the number of users classified as residents 

of the zone (Çolak et al., 2015). 

5.4 Modelling framework 

We propose an approach that combines two modelling strategies, that is, discrete choice 

modelling at the individual level and ordinary least squares at the aggregate level. 

5.4.1 Individual-level trip generation model (Base model) 

Discrete choice models have been the most preferred approach for modelling trip generation 

over the last few decades (e.g. Bwambale et al., 2015, Pettersson and Schmöcker, 2010, 

Agyemang-Duah and Hall, 1997). Although the ordered response choice mechanism has 

been the most preferred approach for modelling trip generation, previous findings in the 

context of car ownership choices (which are also ordered) have shown that the unordered 

response choice mechanism outperforms the former (Bhat and Pulugurta, 1998). To 

implement the unordered response choice mechanism, we rely on the random utility theory 

(Marschak, 1960). Let 𝑈𝑛𝑡  be the utility of individual 𝑛  making 𝑡  trips. This can be 

expressed as; 

𝑈𝑛𝑡 = 𝛽𝑡
′𝑋𝑛 + 𝜀𝑛𝑡                                                  (5-1) 

 

Where 𝑋𝑛 is a vector of the socio-demographic attributes of individual 𝑛, 𝛽𝑡 is a vector of 

the model parameters to be estimated, and 𝜀𝑛𝑡 is the random component of utility. Since the 

individual socio-demographics are constant across the alternatives, we specify a different 

set of parameters for each trip generation level to reflect the fact that each attribute has a 

differential impact on the utility for each trip generation level. 

Under the assumption that the error terms (𝜀𝑛𝑡)  are distributed independently and 

identically across alternatives and individuals using a type I extreme value distribution, the 

trip generation choice probabilities can be calculated using the multinomial logit (MNL) 

model (McFadden, 1974) as expressed below; 

𝑃𝑛𝑡 =
exp(𝛽𝑡

′𝑋𝑛)

∑ exp(𝛽𝑡∗
′ 𝑋𝑛)𝑡∗

                                               (5-2) 

 

Where 𝑃𝑛𝑡 is the probability of individual 𝑛 making 𝑡 trips.  

If we were to rely on the household travel survey data alone, the model parameters would 

be estimated by maximising the log-likelihood function below. 

𝐿𝐿(𝛽𝑡) =∑∑𝐾𝑛𝑡ln(𝑃𝑛𝑡)

𝑡𝑛

                                               (5-3) 

 

Where dummy variable 𝐾𝑛𝑡 = 1 if and only if individual 𝑛 makes 𝑡 trips, otherwise 𝐾𝑛𝑡 =

0.  
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However as mentioned earlier, fitting the model to match the trips reported in the household 

travel survey data alone can lead to biased parameter estimates due to reporting errors, 

thereby resulting in misrepresentation of the aggregate travel demand as reflected in Figure 

5-5, where the predicted aggregate zonal trips from the base model are different from those 

derived from the CDR data, especially towards the right hand side of the figure. The 

proposed joint modelling framework (in the next section) seeks to optimise such differences. 

 

Figure 5-5 Distribution of the CDR trip productions 

5.4.2 Joint trip generation model 

The framework of the joint trip generation model is both sequential and simultaneous. It is 

sequential as it relies on the pre-estimated base model to obtain the priors of the parameter 

signs and relative magnitudes. However, when the parameter scales are being adjusted 

(without changing the prior parameter signs), the joint model simultaneously optimises 

performance at both the aggregate and disaggregate levels with respect to the CDR and the 

household travel survey data, respectively.  

As mentioned earlier, this combined approach ensures that the resulting model does not lose 

the travel behaviour sensitivities reflected in the household travel survey data, by 

maintaining the sensitivities from the base model. Adjusting the parameter scales has an 

impact on the choice probabilities for each trip generation outcome, which influences the 

expected trip rates of the individuals. The framework of the joint trip generation model is 

described below. Let 𝑈̂𝑛𝑡   be the updated utility of individual 𝑛 making 𝑡 trips. This can be 

expressed as; 

𝑈̂𝑛𝑡 = 𝛼𝛽𝑡
′𝑋𝑛 + 𝜀𝑛𝑡                                                  (5-4) 

 

Where 𝛼 is a vector of the scaling factors to be estimated. The 𝛽 parameters are priors 

derived from the base model, and are not re-estimated in the joint framework. The 

specification of the scaling factors is discussed later on. 

The updated trip generation choice probability can be expressed as follows; 
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𝑃̂𝑛𝑡 =
exp(𝛼𝛽𝑡

′𝑋𝑛)

∑ exp(𝛼𝛽𝑡∗
′ 𝑋𝑛)𝑡∗

                                               (5-5) 

 

Where 𝑃̂𝑛𝑡  is the updated probability of making 𝑡 trips by individual 𝑛. 

However, to estimate the scaling factors, we need to fulfil two objectives. The first objective 

is to explain the reported trips for each individual in the household survey data. The second 

objective is to ensure that the aggregated zonal trip productions are close to those derived 

from CDR data. Both outcomes have a probability attached to them and the simultaneous 

estimation maximises the joint probability of the two outcomes. 

To estimate the aggregate zonal trip productions, we rely on the synthetic population 

generated in section 5.3.2.2. As mentioned earlier, the synthetic population was designed to 

match both the person and the household-level attribute distributions during the fitting 

procedure, thus making it more reliable. We have a synthetic population of 𝑀 simulated 

individuals identified as 𝑚 with 𝑚 = 1,… . ,𝑀, and a study area comprising of 𝑍  zones 

identified as 𝑧 with 𝑧 = 1,… . . , 𝑍. Let 𝑃̂𝑚𝑡 denote the updated probability of making 𝑡 trips 

by simulated individual 𝑚 . It may be noted that 𝑃̂𝑚𝑡  is equivalent to 𝑃̂𝑛𝑡  if both the 

simulated individual and the actual respondent in the household survey data have the same 

demographics (i.e. the values of 𝑃̂𝑚𝑡 depend on the calculations of 𝑃̂𝑛𝑡). Now, let 𝑇̂𝑧 denote 

the aggregate zonal trip production for zone 𝑧. This can be calculated by taking the weighted 

average trips for each simulated individual, in which the updated MNL probabilities are the 

weights, and summing across the zonal synthetic population as follows;  

𝑇̂𝑧 = ∑ [𝑌𝑚𝑧 (∑(𝑡 ∗ 𝑃̂𝑚𝑡)

𝑇

𝑡=1

)]

𝑀

𝑚=1

                                               (5-6) 

 

Where dummy variable 𝑌𝑚𝑧 = 1 if and only if simulated individual 𝑚 belongs to zone 𝑧, 

otherwise, 𝑌𝑚𝑧 = 0. The objective is to ensure that 𝑇̂𝑧 is as close as possible to the corrected 

CDR trip productions for zone 𝑧. If 𝜑𝑧 denotes the corrected CDR trip productions for zone 

𝑧, the relationship between 𝜑𝑧 and 𝑇̂𝑧 can be expressed as follows;   

𝜑𝑧 = 𝑇̂𝑧 + 𝜔𝑧                                             (5-7) 

 

Where  𝜔𝑧 is an error term which we assume follows a normal distribution with a mean of 

zero, 𝜔𝑧 ∼ 𝑁(0, 𝜎
2). 𝑃(𝜑𝑧) is then the likelihood of observing the CDR trip productions 

for zone 𝑧, and, from Equation 5-7, this can be expressed as follows; 

𝑃(𝜑𝑧) =
1

√2𝜋𝜎2
exp (

−(𝜑𝑧 − 𝑇̂𝑧)
2

2𝜎2
)                                          (5-8) 

𝑃(𝜑𝑧) clearly depends on 𝑃̂𝑛𝑡  given that 𝑇̂𝑧  is a function of 𝑃̂𝑚𝑡 , which depends on the 

calculations of 𝑃̂𝑛𝑡 as explained earlier. For each survey respondent in zone 𝑧, we need to 

maximise the probability of the chosen alternative and ensure that the probabilities of all the 

alternatives maximise 𝑃(𝜑𝑧). Let 𝑡𝑛
𝑜 denote the number of trips observed for individual 𝑛 

in the household survey data, such that 𝑃̂𝑛𝑡𝑜 gives the logit probability of the observed 
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choice for individual 𝑛. The overall joint likelihood (𝐿) of the observed choices and the 

aggregate CDR trip productions across individuals is calculated as follows;   

𝐿 =∏[∑𝐻𝑛𝑧(𝑃̂𝑛𝑡𝑜 ∗ 𝑃(𝜑𝑧))

𝑍

𝑧=1

]

𝑁

𝑛=1

 
                                      

(5-9) 

      = (
1

√2𝜋𝜎2
)
𝑁

∏[∑𝐻𝑛𝑧 (
exp(𝛼𝛽𝑡𝑜

′ 𝑋𝑛)

∑ exp(𝛼𝛽𝑡∗
′ 𝑋𝑛)𝑡∗

∗ exp (
−(𝜑𝑧 − 𝑇̂𝑧)

2

2𝜎2
))

𝑍

𝑧=1

]

𝑁

𝑛=1

  

 

Where dummy variable 𝐻𝑛𝑧 = 1 if and only if survey respondent 𝑛 belongs to zone 𝑧.  

Since products are difficult to differentiate, we obtain the log-likelihood (𝐿𝐿) by applying 

logarithms to Equation 5-9 resulting in Equation 5-10. 

𝐿𝐿 =  −
𝑁

2
𝑙𝑜𝑔(2𝜋) − 𝑁𝑙𝑜𝑔(𝜎) +  

                                              

(5-10) 

∑∑𝐻𝑛𝑧 (ln [
exp(𝛼𝛽𝑡𝑜

′ 𝑋𝑛)

∑ exp(𝛼𝛽𝑡∗
′ 𝑋𝑛)𝑡∗

] − 
1

2𝜎2
(𝜑𝑧 − 𝑇̂𝑧)

2)

𝑍

𝑧=1

𝑁

𝑛=1

  

 

Three parameter scaling scenarios are tested, and these are; 

• Model 1 

This specification applies the same 𝛼 scaling factor to the utility models 

of the different trip generation levels (see Equation 5-4), i.e. 𝛼𝑡 = 𝛼, ∀𝑡. 

The updated utility models have the same relative variable sensitivities as 

in the base model, albeit with different parameter scales.    

• Model 2 

This specification applies a different 𝛼𝑡 scaling factor to the utility model 

of each trip generation level. The updated utility models maintain the base 

model relative variable sensitivities for each particular trip generation 

level, however, the variable sensitivities across the different trip 

generation levels are adjusted with different parameter scales, and hence 

the relative values across levels change from the base model. 

• Model 3 

This specification applies a different 𝛼𝑥 scaling factor to each explanatory 

variable 𝑋  (e.g. gender, age-group, and working status), however, 𝛼𝑥 does 

not change across the different trip generation levels. The updated utility 

models maintain the base model attribute-level relative sensitivities for a 

particular variable across the different trip generation levels, however, the 

inter-variable relative sensitivities are adjusted with different parameter 

scales. 
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5.4.3 Model evaluation framework 

The performance of the joint models is evaluated in terms of both the temporal and the 

spatial transferability as illustrated in Figures 5-6 and 5-7, respectively. 

 

 

Figure 5-6 Temporal transferability framework 

 

 

Figure 5-7 Spatial transferability framework 



 

 129   

 

In terms of temporal transferability, the joint models associated with each parameter scaling 

scenario are estimated using the zonal aggregate CDR trip productions for week 1. The 

prediction capacities of the estimated joint models, as well as the base model are then 

compared in terms of the root mean square errors with respect to the zonal aggregate CDR 

trip productions for week 2 (see Figure 5-6). 

In terms of spatial transferability, the study area zones are randomly divided into two groups. 

The base and the joint models are then estimated using the data for one group of zones and 

applied to the other group of zones (not used for estimation). The prediction capacities of 

the models are then compared in terms of the predictive joint log-likelihoods, and the root 

mean square errors with respect to the aggregate CDR trip productions of the application 

zones (see Figure 5-7). 

5.5 Modelling results 

This section presents the final model specification, as well as the model estimation and 

validation results. 

5.5.1 Variable specification 

The dependent variable is the number of individual home-based trips (irrespective of the 

trip purpose). This is because we could not reliably infer the purposes of the CDR trips. 

Based on distributions in the data, the trip generation levels were grouped into 0, 1-2, 3-4, 

and 5+ trips per day.  

The explanatory variables considered for possible inclusion in the model are those that were 

used for population synthesis. The household-level variables (i.e. household size and type) 

were however not included in the final model as they led to unreasonable parameter signs, 

potentially due to their weak influence on individual trip-making decisions. The final model 

specification thus contains the gender, the age-group, and the working status of the 

individuals, coded as dummy variables.  

For model identification purposes, the parameters associated with the zero trip generation 

level were treated as the base (for all explanatory variables). Furthermore, male non-workers 

in the 30-49 age-group were treated as the base demographic group, and their preferences 

are entirely explained by the alternative specific constants. Thus, the model parameter 

estimates represent the differential impact on utility with respect to the zero trip generation 

level and the base demographic group. 

5.5.2 Estimation results 

5.5.2.1 Base model 

We first estimated the base model to assess whether the parameter estimates are in line with 

the expected travel behaviour. The model results are presented in Table 5-6.  

The alternative specific constants capture the underlying differential impact on utility with 

respect to the zero trip generation level. All the estimates are negative, and their magnitude 

increases with respect to the trip generation level. Keeping all other factors constant, this 

reflects a general tendency to make fewer trips, especially by the base category (i.e. male, 

non-workers, aged 30-49 years). 
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Table 5-6 Base model results 

Variable Parameter t-statistic 

   

Alternative specific constants (ASCs)   

1-2 trips -0.2069 -7.46 

3-4 trips -1.0408 -24.56 

5+ trips -3.0859 -31.19 

   

Dummies specific to gender  

(base category is males) 
  

Females   

1-2 trips 0.0870 3.94 

3-4 trips -0.2841 -7.95 

5+ trips -0.2654 -3.15 

   

Dummies specific to working-status  

(base category is non-workers) 
  

Workers   

1-2 trips 0.4630 17.23 

3-4 trips 0.9252 23.05 

5+ trips 1.1482 12.38 

   

Students   

1-2 trips 1.4079 46.47 

3-4 trips 0.9381 17.13 

5+ trips -0.5333 -2.65 

   

Dummies specific to age-group  

(base category is the 30-49 years age-group) 
  

Age 1-9 years   

1-2 trips -1.6354 -50.69 

3-4 trips -3.1065 -36.73 

5+ trips -3.5549 -9.46 

   

Age 10-14 years   

1-2 trips -0.8143 -19.49 

3-4 trips -1.7635 -22.52 

5+ trips -1.9201 -6.00 

   

Age 15-19 years   

1-2 trips -0.6539 -16.22 

3-4 trips -0.9669 -15.71 

5+ trips -1.0077 -5.71 

   

Age 20-29 years   

1-2 trips -0.1457 -5.67 

3-4 trips -0.3249 -9.58 

5+ trips -0.3009 -4.02 

   

Age 50-59 years   

1-2 trips -0.1423 -4.12 

3-4 trips -0.2552 -5.92 

5+ trips -0.3721 -3.81 
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Table 5-6 cont’d 

Variable Parameter t-statistic 

   

Age 60+  years   

1-2 trips -0.2494 -5.63 

3-4 trips -0.3531 -6.14 

5+ trips -0.4853 -3.47 

   

Measures of fit 

Number of observations 65419 

Log-likelihood at zero -90689.99 

Log-likelihood at convergence -64859.90 

Number of parameters 30 

Adjusted rho-square 0.2845 

Likelihood ratio 51660.10 

P value of the likelihood ratio 0.0000 

 

The parameter estimates for females represent the differential impact on utility with respect 

to males. For 1-2 trips, we obtain a positive parameter estimate, while for the higher trip 

generation levels, we obtain negative parameter estimates. The proportion of women 

working in the garments industry, one of the leading sectors in Dhaka, is 64-90% (ADB and 

ILO, 2016). This probably explains the positive parameter sign for 1-2 trips. Otherwise, 

males are more likely to make a higher number of trips compared to females, probably due 

to the average higher income levels of the former (BBS, 2012) and socio-cultural factors. 

The parameter estimates for the working status variables (i.e. workers and students) 

represent the differential impact on utility with respect to non-workers. As observed, the 

parameters for workers are positive, and their magnitudes increase with respect to the trip 

generation level, an indication that workers generally make more trips compared to non-

workers. On the other hand, the parameter estimates for students are positive for 1-2 and 3-

4 trips, and negative for 5+ trips. This shows that students make more trips compared to 

non-workers only up to a reasonable level expected for school going individuals. 

Similarly, the parameter estimates for the age-group variables represent the differential 

impact on utility with respect to the 30-49 years age-group. As observed, the parameter 

estimates for all the other age-groups are negative, an indication that they generally make 

fewer trips compared to the base age-group (30-49 years). The active working age of white-

collar workers in Bangladesh typically ranges between 29 and 60 years (i.e. the latest age 

for completing tertiary education and the retirement age respectively (BBS, 2012)). It is 

therefore reasonable that persons in the 30-49 years age-group are more active travellers due 

to their economic vibrancy.   

Finally, it is observed that the overall model (in terms of the likelihood ratio), as well as all 

the parameter estimates (in terms of the t-statistics) are statistically significant at the 99% 

level of confidence (see Ben-Akiva and Lerman, 1985 for details). 

5.5.2.2 Joint models 

As mentioned earlier, the parameters of the base model were fixed in the joint modelling 

framework, and only the scaling factors were estimated. Table 5-7 presents the estimated 

scaling factors and the measures of fit for all the three models for comparison purposes. 
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Positive scaling factors were obtained for all the three models, an indication that the 

resulting coefficients in the scaled joint models have the same signs as those in the base 

model.  

Table 5-7 Joint model scaling factors 

Description of 

scaling factor 

Model 1 Model 2 Model 3 

Estimate t-stat Estimate t-stat Estimate t-stat 

       

Model 1       

Uniform factor 

(applied to all the base 

model parameters) 

1.3650 2280.16     

       

Model 2  
(Factors specific to trip 

generation level) 

      

1-2 trips   1.2716 131.39   

3-4 trips   1.4873 247.83   

5+ trips   1.1699 158.63   

       

Model 3 
(Factors specific to 

particular variables) 

      

Gender     1.5228 33.81 

Working status     1.8148 105.16 

Age-group     1.3262 120.70 

ASCs     1.6023 171.51 

       

Measures of fit       

Convergence LL at 

the disaggregate level 
-66002.75 -65914.01 -67747.10 

Convergence LL at 

the aggregate level 
-718560.40 -718377.10 -715805.30 

Joint convergence LL -784563.20 -784291.20 -783552.40 

Base model 

convergence LL 
-64859.90 -64859.90 -64859.90 

Base model LL at the 

aggregate level 
-805093.10 -805093.10 -805093.10 

Base model joint 

convergence LL 
-869953.00 -869953.00 -869953.00 

Likelihood ratio  
(joint model w.r.t the base 

model) 

170780 171234 172801 

P value 0.0000 0.0000 0.0000 
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A comparison of the joint convergence log-likelihoods shows that Model 3 gives the best 

performance, followed by Model 2, and then Model 1. This is attributed to the flexibility of 

the parameter scaling framework. An important point to note is that all the three joint models 

perform better than the base model in terms of the joint log-likelihood. 

As mentioned earlier, during model optimisation, we are basically dealing with a trade-off 

between disaggregate and aggregate model performance. Thus, the disaggregate log-

likelihood of the joint models is a little worse than that of the base model. However, if the 

base model parameters are directly used to estimate the joint log-likelihood, it is observed 

that the model yields the worst performance.  

The p-values of the likelihood ratios of the joint models with respect to the base model are 

all less than 0.01, an indication that the improvements in performance are statistically 

significant at the 99% confidence level beyond the advantages offered by the additional 

parameters (see Ben-Akiva and Lerman, 1985 for details). 

5.5.3 Model evaluation in terms of transferability 

The models based on the full sample have been presented in the previous section. To 

evaluate the stability and the predictive performance of the joint models as well as the base 

model, we compared their temporal and spatial transferability following the evaluation 

framework described in Section 5.4.3. Tables 5-8 and 5-9 present the measures of fit in 

terms of the temporal and the spatial transferability, respectively. 

From Table 5-8, it is observed that the temporal transferability of the joint models is 

generally higher than that of the base model in terms of the joint log-likelihoods and the root 

mean square errors (RMSE) with respect to the zonal CDR trips. Among the three joint 

models, Model 3 offers the best transferability, however, Model 2 gives the best prediction 

at the disaggregate level in both the estimation and the application contexts.  

Table 5-8 Temporal transferability 

Measure Base model Model 1 Model 2 Model 3 

W
ee

k
 1

 

(E
st

im
a
ti

o
n

)      

LL (disaggregate level) -64859.90 -66024.40 -65940.80 -67850.40 

LL (aggregate level) -805642.50 -719566.80 -719396.20 -716695.30 

Joint LL -870502.40 -785591.20 -785337.00 -784545.70 

     

W
ee

k
 2

 

(A
p

p
li

ca
ti

o
n

) LL (disaggregate level) -64859.90 -66024.40 -65940.80 -67850.40 

LL(aggregate level) -804545.50 -717793.90 -717596.20 -715031.60 

Joint LL -869405.40 -783818.30 -783537.00 -782882.00 

RMSE w.r.t CDR trips 43342.84 13547.09 13527.84 13328.49 

 
For spatial transferability, we tested both directions of model transfer. It may be noted that 

the general interpretation of the base model parameters for each group of zones did not 

change. From Table 5-9, it is again observed that the joint models are generally more 

transferrable compared to the base model in terms of the joint log-likelihoods and the root 

mean square errors for both directions.  
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In this particular case, it is observed that Model 2 gave the best disaggregate prediction for 

the zone group 1 to 2 transfer direction, while Model 1 gave the best disaggregate prediction 

for the reverse transfer direction.  

An important point worth mentioning is that the superior performance of the base model at 

the disaggregate level is expected as it was designed to fit the travel survey data alone, but 

as mentioned earlier, this could be prone to reporting errors and hence less dependable. 

Table 5-9 Spatial transferability 

Measure Base model Model 1 Model 2 Model 3 

Z
o

n
e 

g
ro

u
p

 1
 

(E
st

im
a

ti
o

n
)      

LL (disaggregate level) -26102.10 -26712.45 -26652.76 -27724.63 

LL(aggregate level) -321381.60 -290869.40 -290725.20 -288898.10 

Joint LL -347483.70 -317581.85 -317377.96 -316622.73 

     

Z
o
n

e 
g

ro
u

p
 2

  

(A
p

p
li

ca
ti

o
n

) LL (disaggregate level) -38859.38 -39701.58 -39352.09 -41303.51 

LL(aggregate level) -491580.30 -429017.00 -428604.80 -426638.20 

Joint LL -530439.68 -468718.58 -467956.89 -467941.71 

RMSE w.r.t CDR trips 50626.73 13375.06 13274.68 13161.58 

Z
o
n

e 
g
ro

u
p

 2
 

(E
st

im
a
ti

o
n

)      

LL (disaggregate level) -38688.76 -39227.43 -39333.92 -40185.59 

LL(aggregate level) -482400.40 -428113.30 -427818.70 -426238.10 

Joint LL -521089.16 -467340.73 -467152.62 -466423.69 

     

Z
o
n

e 
g
ro

u
p

 1
  

(A
p

p
li

ca
ti

o
n

) LL (disaggregate level) -26219.53 -26689.06 -26786.11 -27445.95 

LL(aggregate level) -315772.10 -289862.10 -289890.20 -288799.10 

Joint LL -341991.63 -316551.16 -316676.31 -316245.05 

RMSE w.r.t CDR trips 38776.13 13702.57 13758.49 13602.58 

 

From the results, it is clear that Model 3 gives the best overall spatial and temporal 

transferability, however, the disaggregate performance of Models 1 and 2 as highlighted 

above shows that these parameter scaling approaches offer some benefits as well. These 

results present initial efforts to exploit the benefits of both household travel survey and 

mobile phone data to optimise the performance of travel behaviour models, and there is a 

need for further research using data from different contexts to investigate the different 

parameter scaling approaches in further detail. 

5.6 Summary and conclusions 

This paper started by highlighting the reporting errors and sampling bias associated with 

household travel survey data, and how these could lead to biased model parameters (e.g. 

Rolstad et al., 2011, Groves, 2006). The paper outlines the possible consequences of such 

issues in the context of trip generation, where the estimated models would misrepresent the 

distribution of the aggregate travel demand across zones. 
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The paper demonstrates the feasibility of a joint modelling framework to find the best fit at 

both the aggregate and disaggregate levels by combining household travel survey, census, 

and CDR data. The joint modelling framework operates by adjusting the parameter scale(s) 

of a pre-estimated base model to jointly optimise the prediction accuracy with respect to the 

reported trips in travel survey data and the zonal aggregate trip productions derived from 

CDR data.  

Three different approaches of parameter scaling were investigated (i.e. uniform, alternative 

specific, and variable specific scaling corresponding to joint models 1, 2, and 3 

respectively). All the three joint models were found to have higher temporal and spatial 

transferability compared to the base model which relies on household travel survey data 

alone, thus making them more reliable. Although variable specific scaling (Model 3) 

produced the best overall results, there is a need for further research using data from 

different contexts to investigate if this finding is universally applicable. 

Although the proposed framework has been tested in the context of trip generation, it has 

potential benefits in improving the modelling of other transport choices (such as mode 

choice, route choice, departure time choice etc.). We conclude that the results of this study 

serve as a proof-of-concept that mobile phone data can be fused with traditional data sources 

to improve the temporal and spatial transferability of models.  This approach is particularly 

important in the context of developing countries where reliable traditional data sources are 

scarce, and models making use of low-cost passive data to enhance their temporal and spatial 

transferability are invaluable.  
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 Chapter 6 

Discussion and conclusions 

6.1 Summary 

This thesis has advanced a number of methodological and applied contributions around the 

theme of improving the behavioural and policy underpinnings of transport models based on 

mobile phone network records. The aim was to extend the application of mobile phone data 

beyond the visualisation of anonymous mobility patterns by incorporating the data into 

traditional transport modelling approaches to quantify the relative importance of the 

underlying factors influencing the observed travel behaviour. The thesis offers remedies to 

some of the shortcomings that have thus far prevented such applications by fusing the data 

with information from external sources. The research findings show that the data has great 

potential as it is more representative, large, and frequent, thereby capturing more variability 

over long periods of time, which opens up a lot of scope for validation as demonstrated in 

some sections of this thesis.  

The introduction section highlighted the gaps in the literature and outlined the research 

objectives. This section discusses the progress made in achieving these objectives across the 

different chapters of the thesis, the contributions to knowledge and practice, the potential 

beneficiaries of the current research findings, and the future research directions. The section 

ends by providing some concluding remarks. 

6.2 Progress made in achieving the research objectives 

This section revisits each of the research objectives highlighted in the introduction section. 

The progress made is discussed by highlighting the linkages between the general and the 

specific objectives realised in each of the four chapters as presented earlier in Table 1-8, 

reproduced below as Table 6-1 for easy cross-referencing. 

Table 6-1 Linkages between the overall research goals and the specific objectives 

(Copy of Table 1-8) 

 Specific objectives and the corresponding chapters 

General 

objectives 

S1 S2 S3 S4 

Chapter 2 Chapter 3 Chapter 4 Chapter 5 

Trip generation Route choice 
Departure time 

choice 
Trip generation 

G1     

G2     

G3     

G4     
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G1 Developing innovative methods for combining mobile phone network 

records with traditional data sources to facilitate the analysis of travel 

behaviour 

 

Data fusion was a common aspect across the work done in this thesis. The models in chapters 

3 and 4 were estimated using the attributes of the alternatives (i.e. the routes in chapter 3, 

and the departure times in chapter 4), while those in chapters 2 and 5 were estimated using 

demographic variables. 

Although imputing the attributes of the alternatives is a challenging process, once they are 

determined, it is not difficult to assign them to the corresponding alternatives. Chapter 3 

focussed on modelling long-distance route choice, in which one of the key explanatory 

variables is travel cost. This was computed in terms of the vehicle operating costs (fuel and 

non-fuel costs) using the HDM-III model (Watanatada et al., 1987), an earlier version of the 

more advanced HDM-4 model (Kerali, 2000), which we could not use due to input data 

constraints. Given the anonymous nature of the data, the vehicle operating costs per user 

were computed as weighted averages using information on the typical vehicle occupancy 

rates and the mode shares of the study area. In chapter 4, where the main focus was departure 

time choice modelling, imputing the travel times for the unobserved time intervals was the 

main challenge, and these were estimated with the aid of the Google maps direction tool as 

outlined in the previous section. 

On the other hand, incorporating demographic variables is more challenging, and was done 

through a system of probabilistic relationships. Both chapters 2 and 5 focus on this issue, 

though following different approaches. The hybrid modelling framework developed in 

chapter 2 combines the demographic details, the CDR data, and the GSM data for a sub-

sample of users to develop a latent class trip generation model. In a different way, the joint 

trip generation modelling framework developed in chapter 5 combines household travel 

survey data, aggregate census data, and CDR data to re-adjust the parameter scales of a 

disaggregate trip generation model to optimise both its aggregate and disaggregate 

reliability. Here, the parameters in the disaggregate trip generation model are 

probabilistically linked to the zonal CDR trip productions through a synthetic population 

generated for the study area using iterative proportional updating (Ye et al., 2009).  

From all the four cases above, reasonable results were obtained, an indication that data 

fusion is a feasible way of understanding the travel behaviour characteristics of a study area 

despite the anonymous nature of the data. 

 

G2 Evaluating the shortcomings of traditional modelling approaches and 

proposing mitigation measures using mobile phone network records to 

optimise the reliability and applicability of the models 

 

This objective was met in chapters 2 and 5 of the thesis. The work in Chapter 2 outlines the 

estimation and application challenges associated with traditional modelling approaches in 

the context of trip generation. In terms of estimation, the chapter briefly highlights the 

limitations associated with traditional travel survey data with regard to reporting errors, 

while in terms of application, it underscores the constraints related to the lack of detailed 

demographic data in CDR data to feed into the models to predict aggregate travel demand. 
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In response to these challenges, a novel hybrid modelling framework was developed. The 

framework comprises of two sequential sub-models. The first sub-model is a demographic 

prediction model, which is estimated by calibrating the mobile phone usage behaviour of a 

sub-sample of the users against their reported demographics. Information on mobile phone 

usage is extracted from the user’s CDR data. The demographic group membership 

probabilities from the first sub-model are then used as class weights inside a latent class 

model for trip generation (the second sub-model). The trip generation model is calibrated 

using trip rates extracted from GSM data, which is more appropriate for trip generation 

compared to CDR data.  

The framework takes advantage of the fact that GSM data captures all the trips made by 

users with active mobile phones, except the short trips within the GSM cell boundaries. This 

implies that the data is more suitable for urban areas where the GSM cell sizes are small (for 

example less than 1 km), thereby leading to fewer missed trips. The use of GSM data 

mitigates the need for trip diaries. 

The framework recognises that demographic and GSM data are usually not available on a 

large scale (due to privacy concerns and very large storage requirements respectively), and 

avoids such limitations during model application as it only depends on anonymous CDR 

data. Since CDR data is usually stored by mobile network operators for billing purposes, 

the proposed framework provides a low-cost alternative to predict trip rates on a large scale. 

The work in chapter 5 focuses on optimising both the aggregate and disaggregate reliability 

of traditional trip generation models using a novel joint modelling framework. The chapter 

draws motivation from previous studies that have highlighted the challenges of travel survey 

data collection in terms of the sampling bias, survey response burden, and reporting errors 

(e.g. Rolstad et al., 2011, Groves, 2006). These limitations imply that disaggregate models 

based on travel survey data alone are likely to produce unreliable parameter estimates. As a 

result, such models may not satisfactorily represent the aggregate travel demand patterns of 

the study area. Thus, low-cost CDR data, which can give a fair representation of the 

aggregate travel demand patterns, is used to optimise the reliability of the models.  

However, summing the disaggregate model outcomes requires detailed demographic data 

of the study area population, which is never available due to privacy reasons. This prompts 

the use of population synthesis techniques to generate artificial populations matching the 

demographic distributions in both the household survey and the aggregate census totals for 

the different zones in the study area (Ma, 2011, Kirill and Axhausen, 2011, Ye et al., 2009, 

Pritchard, 2008). The disaggregate trip generation model is applied to the zonal synthetic 

populations to estimate the zonal trip productions, which are then compared against those 

extracted from the CDR data.  

The proposed joint modelling framework recognises that CDR data too is not error-free, and 

optimises model performance at both the aggregate and disaggregate levels by updating the 

parameter scales without changing the behavioural dynamics reflected in the household 

survey data. The framework has been tested on data for Dhaka, and results show that it 

improves both the temporal and spatial transferability of the models, thus making them more 

reliable.  
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G3 Analysing the limitations of mobile phone network records with regard 

to specific modelling scenarios and developing appropriate methods to 

deal with those limitations 

 

Discussions about the general limitations of mobile phone data and how to address them are 

a common theme across all the chapters of this thesis. However, this objective was 

specifically achieved in chapters 3 and 4. In chapter 3, CDR data was used to analyse long-

distance route choice behaviour. Being event-driven, the data reports discontinuous mobile 

phone locations, which makes it impossible to observe the full trajectories of the users. 

Instead, only the partial trajectories can be observed, and this depends on the mobile phone 

usage rate during a particular trip. For very close OD pairs, there is even an increased 

possibility of not capturing the partial trajectories as users may travel from the origin to the 

destination without using their phones. Thus, the chapter argues that CDR data is more 

suitable for long-distance trips, where there is an increased likelihood of phone usage during 

the journeys. The chapter further notes that with the increasing usage of mobile internet data 

services, which is also reflected in CDR data, the associated location discontinuities are 

likely to reduce in the near future, thus making the data suitable for short trips as well. 

The limitation of only observing the partial trajectories poses challenges for route choice 

behaviour analysis in a highly overlapping network. A route assignment algorithm that 

labels the extracted partial trajectories as either unique or shared across a group of routes 

was developed. The labelled trajectories were then used to analyse route choice behaviour 

by adapting the broad choice framework, which was developed in the context of vehicle 

type choice (Wong, 2015), to the current modelling scenario.  

In this particular case, the attributes of the alternatives, rather than those of the users, were 

used as explanatory variables due to the anonymous nature of the data. These were imputed 

from various sources as explained in the chapter. Different models to account for the 

overlapping nature of the network were tested (i.e. the c-logit and the path-size logit 

models). A comparison of these models against the base MNL model showed that CDR data 

is able to capture the expected behaviour towards overlapping routes, with the path-size 

logit model giving the best performance. The parameter estimates for the path-size logit 

model were reliable as they produced realistic estimates of the value of travel time for the 

study area. 

However, the route assignment algorithm may have limitations in dense inter-urban 

networks, where it would be difficult to observe a small enough subset of the possible routes 

using few CDR locations. Nevertheless, this limitation is likely to be overcome in the near 

future with the increasing trend of mobile internet usage (Gerpott and Thomas, 2014), which 

will increase the frequency of the CDR locations. 

Chapter 4 presents another related scenario. The chapter started by critically analysing the 

strengths and weaknesses of GPS versus GSM data, and how these impact the model 

outcomes (in the context of departure time choice modelling). An interesting finding was 

that the GSM data was more reliable than the GPS data despite the superior location 

accuracy of the latter. This was mainly caused by the big time gaps in the GPS data, 

potentially due to technical reasons such as signal losses in urban environments and large 

public transport vehicles, as well as the users turning off their GPS apps due to battery 

depletion (NCO, 2018, Gong et al., 2012, Chen et al., 2010). Notwithstanding the possible 
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influence of poor smartphone GPS technology in 2009/2010 (i.e. the data collection period), 

the chapter highlights the need to always conduct quality checks on different types of big 

data prior to adopting any of them.  

Besides analysing the strengths and weaknesses of the different datasets, both were used for 

modelling departure time decisions, which presented two challenges. Firstly, the desired 

times-of-travel of the users were unknown, secondly, the travel times could only be 

observed for the chosen departure time intervals. For the first challenge, an assumption was 

made that the desired times-of-travel vary randomly across the users, and a mixed logit 

framework (see Train, 2009 for details) was developed to estimate the mean and the standard 

deviation of the distribution. For the second challenge, a practical approach was developed 

to impute the unobserved travel times using time-period specific congestion factors 

estimated with the aid of the Google Maps direction tool, which predicts the average travel 

times between a given O-D pair at different departure or arrival times (Google Maps, 2018).  

From the model estimation, it was found that the time gaps in the data had an impact on the 

reliability of the results. This was reflected in the valuation metrics derived from both 

models, where those obtained from the GSM data were closer to those based on traditional 

data sources. The developed approaches can be used in different modelling scenarios, other 

than those discussed in this thesis.  

 

G4 Assessing the potential of models based on mobile phone network records 

to capture the expected travel behaviour in terms of the parameter 

estimates and/or policy insights in terms of the derived valuation metrics 

 

The discussion in this section is presented in two parts starting with the capacity to capture 

reasonable travel behaviour in terms of the parameter estimates followed by the potential to 

obtain realistic policy insights in terms of the derived valuation metrics. 

 

G4-1 Travel behaviour in terms of the parameter estimates 

 

The work in chapters 2, 3, 4, and 5 involves the estimation of travel behaviour models. In 

each of these chapters, the model parameters were discussed in terms of whether they are in 

agreement with the expected travel behaviour. 

Beginning with chapter 2, the parameters of the traditional trip generation model based on 

the observed demographics and trip rates extracted from GSM data produced intuitive 

parameter signs. The parameters in the traditional trip generation model were used as a 

reference for assessing those in the hybrid trip generation model, and it was found that the 

latter produced similar parameter signs as the former. Furthermore, the differences in the 

parameter magnitudes were not statistically significant. This shows that the hybrid 

framework is able to capture the same travel behaviour as it would be in a traditional model, 

thereby leading to similar policy conclusions. 

Likewise, the parameters of the long-distance route choice models in chapter 3 were 

assessed for compliance with expected travel behaviour, and it was found that they were all 

in agreement with a priori expectations. However, more interesting were the parameter signs 

of the systematic utility correction factors aimed at accounting for overlap (i.e. the 

commonality and the path size terms). In both cases, the expected parameter signs were 
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obtained, an indication that CDR data is able to capture the expected behaviour towards 

overlapping routes. 

In chapter 4, the departure time choice models based on both the GSM and the GPS data 

had the expected parameter signs. For the model based on GSM data, the differences in the 

travel time and the schedule delay sensitivities by gender and age-group were evaluated and 

found to be reasonable for the study area. 

Finally, in chapter 5, the main focus was to re-scale the parameters of a base model estimated 

using household travel survey data. In this case, the base model parameters were fixed, and 

only the scaling factors were estimated. In order to maintain the behavioural sensitivities 

reflected in the household survey data, the estimated scaling factors would need to be 

positive. The fact that all the estimates are positive shows that the distribution of the zonal 

trip productions obtained from the base model is not sufficiently different from that 

extracted from the CDR data to cause a change in the overall travel behaviour. 

In summary, the findings from all the four modelling scenarios show that mobile phone data 

is able to capture the expected travel behaviour sensitivities. These findings demonstrate the 

potential of mobile phone data as an alternative data source for developing transport models.  

 

G4-2 Policy insights in terms of the derived valuation metrics 

 

This objective was achieved in chapters 3 and 4, where the model results were used to 

estimate the value of travel time and the time valuation of schedule delay respectively. Both 

metrics are useful in transport policy appraisal. 

In chapter 3, the estimated values of travel time were found to be close to the median wage 

of the study area. Although the median wage is not necessarily equivalent to the value of 

travel time, it gives a good indication of the range in which these values should fall, thus the 

obtained results are promising. Similarly, in chapter 4, the estimated time valuations of 

schedule delay based on the GSM data (which was more reliable compared to GPS data) 

were found to be close to those sourced from similar studies based on traditional data. 

These findings serve as a proof-of-concept that mobile phone data can be used for policy 

analysis, especially in contexts where traditional data sources are not available. 

6.3 Contributions to knowledge and practice 

This research has extended the application of mobile phone data to travel behaviour 

modelling. The progress made in achieving the research objectives was discussed in section 

6.2. This section summarises the key contributions of the research to the field of transport. 

6.3.1 Extending the application of mobile phone network records to travel 

behaviour modelling and policy analysis 

In general, the use of mobile network records for developing econometric models of travel 

behaviour is still very low. At the moment, the only study found to do this is by Schlaich 

(2010). This thesis provides major advances along this research direction and is the first to 

use CDR and GSM data to estimate valuation metrics, which are important in transport 

policy appraisal. The findings in this thesis motivate further research into exploring the 

hidden potential of big data to solve real-world transport policy problems. 
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6.3.2 A hybrid modelling framework to address the issue of unobserved user 

demographics in transport models based on mobile phone data 

This framework was developed in chapter 2 in the context of trip generation modelling. The 

benefits of the framework in terms of addressing the estimation and application challenges 

associated with traditional modelling approaches on big data with missing socio-

demographic information have been outlined. The proposed framework can be applied to 

mitigate similar problems in different fields of transport modelling (such as route choice, 

departure time etc.), as well as beyond transport, for example in health and general consumer 

choice modelling using big data. 

6.3.3 A novel joint modelling framework for optimising the aggregate and 

disaggregate performance of models 

This framework was developed in chapter 5 in the context of trip generation modelling. The 

motivation was to mitigate the effects of sampling bias and reporting errors in travel survey 

data, which can lead to biased parameter estimates (e.g. Rolstad et al., 2011, Groves, 2006). 

The proposed framework demonstrates the potential of mobile phone data to solve this 

common problem, and can generally be applied to analogous multi-objective optimisation 

problems in different modelling scenarios. 

6.3.4 Applying the broad choice framework to the context of route choice 

modelling using noisy CDR data 

The long-distance route choice model developed in chapter 3 applies the broad choice 

modelling framework, which was developed in the context of vehicle type choice (Wong, 

2015). This is the first application of such a framework to a route choice modelling scenario. 

The framework was used to leverage the limitations of CDR data where unique route choices 

could not be observed for some users, and only the broad sub-groups of the possible routes 

were identifiable. This demonstrates the opportunities that are available to adapt established 

approaches from other fields to solve problems in analysing big data. Numerous other 

applications are possible, including for example, route choice in a public transport network 

where only the entry and exit points of users are observed, such as with many smartcard 

systems. 

6.3.5 A new method for modelling departure time choice without information 

on the desired times-of-travel 

Information on the desired times-of-travel is critical for modelling departure time choice 

decisions, however, such data is usually not available in anonymous records. The 

weaknesses of previously developed approaches to address this problem were highlighted 

in chapter 4, and a new approach was proposed to overcome such limitations. The proposed 

approach is unique in the sense that it allows the modeller to understand the sensitivities, as 

well as the valuations attached to schedule delay, despite the passive nature of the data. The 

approach can be applied to traditional revealed preference datasets, where the preferred 

departure times are sometimes also not reported. 
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6.4 Potential beneficiaries of the research findings 

The application of big data to transportation studies remains one of the defining research 

challenges in this era. Therefore, the obvious beneficiaries of this study are researchers 

interested in exploring the hidden potential of emerging big data sources. The developed 

methods are likely to inspire further innovation around the theme of travel behaviour 

modelling using big data sources. 

Furthermore, government transport agencies around the world are increasingly becoming 

aware of the emerging opportunities presented by big data to deliver efficient and smart 

transport solutions. For example, the UK government is currently supporting research 

related to big data adoption for transportation studies through its Universities and the 

recently established Transport Systems Catapult (Hill et al., 2017, Transport Systems 

Catapult, 2015, Hanley and Hobbs, 2014). The Ministry of Transport in Argentina is 

currently involved in research engagements with the World Bank to develop tools for 

collecting and analysing big data for better transport planning, and have so far developed a 

system that generates origin-destination matrices from smart card data (Quiros and Arias, 

2018). The Jakarta Provincial Government in partnership with the United Nations Global 

Pulse have recently completed a study on real-time data analytics using bus GPS data to 

improve the efficiency of public transport operations (UN Global Pulse, 2017). Similarly, 

Dalberg Data Insights in partnership with Kampala Capital City Authority have developed 

a transport mobility application for travel pattern analysis using mobile phone data (Dalberg 

Data Insights, 2018). With the growing interest in big data across both the developed and 

the developing worlds, the innovative data fusion and modelling frameworks developed in 

this research are likely to be of great importance to government agencies in terms of 

analysing travel behaviour and policy formulation. 

Although emerging big data sources have generated interest in both the developed and the 

developing worlds, the latter context is expected to experience relatively higher benefits as 

traditional data sources are commonly unavailable due to limited budgets for data collection. 

At the moment, most investment decisions are driven by approximations as opposed to 

models calibrated with real-world data. Transport authorities in such contexts are likely to 

look more towards these emerging data sources for better investment decisions. Thus the 

findings of this research are particularly timely for transport practitioners in developing 

countries, which are now being referred to as the global south. 

Finally, it is worth noting that this research is also likely to have impacts beyond transport. 

For example, the hybrid and the joint modelling frameworks presented in chapters 2 and 5 

respectively can be applied in the field of health to identify high-risk groups and model the 

spread of epidemics by fusing mobile phone data, census data, and demographic and health 

survey data. 

6.5 Future research directions 

This section briefly discusses insights into possible directions of future research. The first 

obvious step is to apply the methods developed in this thesis to different contexts using the 

latest available mobile phone datasets. In particular, investigating the performance of these 

methods in more densely populated urban areas with complex transport networks and travel 

patterns would be a good contribution. Furthermore, most applications tested in this thesis 
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did not have local models for comparison purposes. Therefore, campaigns to collect primary 

travel survey data alongside mobile phone data for validation purposes are necessary. 

The next logical step is to compare the predictions based on the developed models against 

those based on machine learning techniques. Machine learning techniques have already been 

applied in related transport studies (e.g. Ellis et al., 2014, Wang et al., 2010, Farrahi and 

Gatica-Perez, 2008, Sohn et al., 2006), however, as earlier mentioned, they are mainly suited 

to  prediction, and do not explain the underlying behavioural interrelationships. 

Furthermore, in the context of route choice modelling, it would be worth exploring the 

potential of map-matching techniques (Quddus et al., 2007). These algorithms typically rely 

on GPS data, whose location accuracy is higher than that of mobile phone network records. 

Some progress has already been registered in the use of CDR data to develop these 

algorithms (Han et al., 2018, Algizawy et al., 2017, Schulze et al., 2015). As the spatial and 

temporal resolution of mobile phone network records improves (for example due to 

technological advancement and increased mobile internet data usage), it would be of interest 

to evaluate how this impacts the performance of the different map-matching algorithms.  

Research into the development of dynamic econometric models of travel behaviour is 

another interesting direction for future work. Previous studies have already used mobile 

phone data to analyse the spatial and temporal distributions of human mobility (e.g. Yuan 

and Raubal, 2012, Loibl and Peters-Anders, 2012, Calabrese et al., 2011, Saravanan et al., 

2011). Incorporating policy-sensitive variables into such models to explain the observed 

spatial-temporal behaviour would help in the better prediction of network-wide impacts. 

Another key direction for future research is choice set determination, particularly in the field 

of route choice modelling, where several alternative routes can be possible, and yet 

individuals do not consider all while making choices (Prato, 2009). Observing a user’s 

mobile phone mobility patterns over a long period of time can provide insights into their 

usual set of possible routes. However, research needs to be done to formalise the process of 

determining the optimum observation period and the amount of variety seeking behaviour 

that should be considered. 

Finally, additional research into the field of mode detection would be of great interest to 

policymakers since mode choice is one of the key factors influencing traffic congestion in 

most cities. The few available studies have yielded promising results (Qu et al., 2015, Doyle 

et al., 2011, Wang et al., 2010, Reddy et al., 2008, Sohn et al., 2006), however, there is a 

need for further research to improve the transferability of these approaches to real-world 

urban scenarios, where they are needed most. 

6.6 Concluding remarks 

This thesis focussed on using mobile phone network records to develop econometric models 

of travel behaviour. Four different modelling scenarios were discussed and tested in detail, 

with all producing results that are in agreement with the expected travel behaviour.  

These findings come at a time when mobile phone penetration rates are growing in both the 

developed and the developing world (GSM Association, 2017). Hence there is a likelihood 

that future datasets will cover even much wider proportions of the population. Among the 

various datasets, CDR data is the most readily available, however, it presents the greatest 

challenge in terms of extracting relevant information for travel behaviour analysis. 
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Nevertheless, future CDR datasets are likely to be more favourable due to the increasing 

trend in mobile internet data usage (Gerpott and Thomas, 2014). This will increase the 

frequency of the captured CDR locations, thus making the data less discontinuous, including 

for shorter journeys. It is therefore expected that the scope of using mobile phone data as 

well as the robustness of the developed models will improve with time. Crucially, mobile 

phone data will allow for more regular updating of models given the continuous data 

collection, something that will become ever more crucial given the rapid changes to travel 

patterns. 

The thesis demonstrates the potential of mobile phone network records as a low-cost 

alternative source of information for transport modelling and policy analysis. The 

methodological and applied contributions made in the research however have the potential 

of being applied to different modelling scenarios in both the developed and the developing 

worlds, and beyond transport in general. 

Despite the progress made so far, there remains a need for continued research to improve 

the current approaches and test new ideas. Sustained research collaborations with mobile 

network operators and other key stakeholders will be crucial in obtaining the data required 

for further research. 
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Appendices 

 

Appendix A: Cluster identification for GPS data 

As cluster analysis on large datasets is a very challenging task because most spatial 

clustering algorithms require a full distance matrix, we conducted the clustering in stages. 

We first split the data of each user according to the date observed. Full distance matrices 

comprising of all the possible pairs of GPS points observed on a particular day were then 

generated (Nychka et al., 2018). Thereafter, we conducted complete-linkage hierarchical 

based on the matrices of each day to identify groups of points that were potentially linked 

to the same dwell location  (Everitt et al., 2011, Murtagh, 1985). Complete-linkage 

clustering ensures that we constrain the output cluster diameter to a specified size. This is 

particularly desirable when we know the accuracy range of the records. In this study, we 

specified a threshold distance of 300 meters as used in previous studies (Çolak et al., 2015, 

Jiang et al., 2013).  

However, it is worth noting that spatial clustering algorithms need at least two data points 

to identify clusters. As a result, some of the identified clusters might have few points, and 

would not pass as potential dwell locations. We therefore specified a minimum duration of 

at least 10 minutes per day calculated using consecutive GPS points. The centroids of the 

points within the identified clusters were then labelled as potential dwell points. The 

potential dwell points of each user from different days were combined and complete-linkage 

clustering conducted again with a threshold distance of 300 meters. This was aimed at 

clustering potential dwell points from different days in the vicinity of one another, thereby 

limiting the dwell region size to 300 meters. The centroids of the dwell regions of each user 

were then computed and labelled as candidate dwell points. At this stage, we did not impose 

a lower limit on the number of potential dwell points within dwell regions. Therefore, 

isolated potential dwell points that did not form clusters were simply re-labelled as candidate 

dwell points. 

After establishing the candidate dwell points of each user, we identified all the GPS points 

within a radius of 150 meters from these locations and ordered the data according to 

timestamp. This was followed by applying a minimum dwell time constraint of 10 minutes 

each time a user was continuously observed within the vicinity of a candidate dwell point. 

Whenever this condition was met, the candidate dwell point was relabelled as a confirmed 

dwell point. This is illustrated in Figure A1. 

 
(a) 

 
(b) 

Figure A1 GPS dwell point identification (a) identification of a candidate dwell point 

from the potential dwell points, (b) application of a dwell time constraint to confirm the 

candidate dwell point 
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Appendix B: Cleaning the trip data to identify travel modes 

B1. Setting the minimum travel time constraint 

To begin with, it is important to note that the observed travel times of the users relate to the 

inter-boundary components of the O-D links since the trip start and end times are only 

captured when the users cross the home/work location dwell boundaries. However, these 

inter-boundary travel times need to be sufficient to enable the observation of reasonable 

variations in travel time across different time periods. As earlier mentioned, the morning 

and evening peak travel time increment factors for Lausanne are 1.44 and 1.63 respectively. 

Since these factors are quite low, for very close O-D pairs, the variations in travel time 

would not be significant enough to influence changes in departure time choices. In this 

study, we specify a median travel time of 10 minutes as the lower threshold for direct trips 

between the users’ home-to-work O-D pairs and only consider those meeting this criterion. 

It may be noted that the exclusion of close O-D pairs also mitigates the observation of 

potential false trips due to signal jumps that were undetected during the data pre-processing 

phase (Iqbal et al., 2014). 

B2. Identification of trips with unreasonably long travel times 

We analyse each user’s travel time for a particular trip in relation to the minimum travel 

time observed for the user along the same trip chain to identify trips with unreasonably long 

travel times. Travel times generally increase due to traffic congestion, however, when the 

increase is very big, we suspect other factors such as uncaptured trip segments due to 

switching off of phones.  

To determine the most reasonable upper limits of travel time, we calculate the ratios of the 

observed travel times versus the minimum travel times for each of the user’s trips. These 

ratios give an indication of the levels of congestion (i.e. the higher the ratio, the higher the 

level of congestion). We then combine the computed ratios for all the users and estimate the 

upper limit as follows; 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝑄3 + 1.5 ∗ (𝑄3 − 𝑄1), where 𝑄1 and 𝑄3 are the 

first and third quartiles respectively (Tukey, 1977). We use the GSM data for this analysis 

as it captures most of the trips made.  

The estimated upper limits of the ratios were 2.21 and 2.12 for the home-to-work, and the 

work-to-home commutes respectively. It may be noted that these limits seem reasonable 

when compared to the congestion factors reported for Lausanne, that is, 1.44 and 1.63 for 

the morning and the evening peaks respectively (TomTom, 2016). We exclude trips whose 

travel times exceeded the estimated upper limits. 

B3. Identification of potential travel modes 

We first apply a minimum distance constraint of 5 kilometres as previous studies have 

shown that people are less likely to walk or cycle beyond this distance (Hydén et al., 1999). 

It may be noted that we do not use euclidean distances, rather, we calculate the minimum 

distances by road for each O-D pair using the Google Distance Matrix API (Google 

Developers, 2018). 

However, another important aspect is the speed of the users. We only consider trip chains 

where the users’ median speeds exceed 15 kilometres per hour, thereby excluding those 

where the users typically walk or cycle (Bernardi and Rupi, 2015). It may be noted that the 

calculated speeds are generally over-estimated since we use centre-to-centre O-D 

distances versus the inter-boundary travel times. Despite this limitation, observing median 

speeds above 15 kilometres per hour for trip lengths above 5 kilometres is considered a 

good indicator that the users generally use motorised transport for those trip chains.  
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