2,070 research outputs found

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Efficient use of deep learning and machine learning for load forecasting in South African power distribution networks

    Get PDF
    Abstract: Load forecasting, which is the act of anticipating future loads, has been shown to be important in power system network planning, operations and maintenance. Artificial Intelligence (AI) techniques have been shown to be good tools for load forecasting. Load forecasting can assist power distribution utilities maximise their revenue through optimising maintenance planning. With the dawn of the smart grid, first world countries have moved past the customer’s point of supply and use smart meters to forecast customer loads. These recent studies also utilise recent state of the art AI techniques such as deep learning techniques. Weather parameters are such as temperature, humidity and rainfall are usually used as parameters in these studies. South African load forecasting studies are outdated and recent studies are limited. Most of these studies are from 2010, and dating backwards to 1999. Hence they do not use recent state of the art AI techniques. The studies do not focus at distribution level load forecasting for optimal maintenance planning. The impact of adjusting power consumption data when there are spikes and dips in the data was not investigated in all these South African studies. These studies did not investigate the impact of weather parameters on different South African loads and hence load forecasting performance...D.Phil. (Electrical and Electronic Management

    State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems

    Get PDF
    The integration of wind energy into power systems has intensified as a result of the urgency for global energy transition. This requires more accurate forecasting techniques that can capture the variability of the wind resource to achieve better operative performance of power systems. This paper presents an exhaustive review of the state-of-the-art of wind-speed and -power forecasting models for wind turbines located in different segments of power systems, i.e., in large wind farms, distributed generation, microgrids, and micro-wind turbines installed in residences and buildings. This review covers forecasting models based on statistical and physical, artificial intelligence, and hybrid methods, with deterministic or probabilistic approaches. The literature review is carried out through a bibliometric analysis using VOSviewer and Pajek software. A discussion of the results is carried out, taking as the main approach the forecast time horizon of the models to identify their applications. The trends indicate a predominance of hybrid forecast models for the analysis of power systems, especially for those with high penetration of wind power. Finally, it is determined that most of the papers analyzed belong to the very short-term horizon, which indicates that the interest of researchers is in this time horizon

    Multiple decomposition-aided long short-term memory network for enhanced short-term wind power forecasting.

    Get PDF
    With the increasing penetration of grid-scale wind energy systems, accurate wind power forecasting is critical to optimizing their integration into the power system, ensuring operational reliability, and enabling efficient system asset utilization. Addressing this challenge, this study proposes a novel forecasting model that combines the long-short-term memory (LSTM) neural network with two signal decomposition techniques. The EMD technique effectively extracts stable, stationary, and regular patterns from the original wind power signal, while the VMD technique tackles the most challenging high-frequency component. A deep learning-based forecasting model, i.e. the LSTM neural network, is used to take advantage of its ability to learn from longer sequences of data and its robustness to noise and outliers. The developed model is evaluated against LSTM models employing various decomposition methods using real wind power data from three distinct offshore wind farms. It is shown that the two-stage decomposition significantly enhances forecasting accuracy, with the proposed model achieving R2 values up to 9.5% higher than those obtained using standard LSTM models

    Forecasting Models for Integration of Large-Scale Renewable Energy Generation to Electric Power Systems

    Get PDF
    Amid growing concerns about climate change and non-renewable energy sources deple¬tion, vari¬able renewable energy sources (VRESs) are considered as a feasible substitute for conventional environment-polluting fossil fuel-based power plants. Furthermore, the transition towards clean power systems requires additional transmission capacity. Dynamic thermal line rating (DTLR) is being considered as a potential solution to enhance the current transmission line capacity and omit/postpone transmission system expansion planning, while DTLR is highly dependent on weather variations. With increasing the accommodation of VRESs and application of DTLR, fluctuations and variations thereof impose severe and unprecedented challenges on power systems operation. Therefore, short-term forecasting of large-scale VERSs and DTLR play a crucial role in the electric power system op¬eration problems. To this end, this thesis devotes on developing forecasting models for two large-scale VRESs types (i.e., wind and tidal) and DTLR. Deterministic prediction can be employed for a variety of power system operation problems solved by deterministic optimization. Also, the outcomes of deterministic prediction can be employed for conditional probabilistic prediction, which can be used for modeling uncertainty, used in power system operation problems with robust optimization, chance-constrained optimization, etc. By virtue of the importance of deterministic prediction, deterministic prediction models are developed. Prevalently, time-frequency decomposition approaches are adapted to decompose the wind power time series (TS) into several less non-stationary and non-linear components, which can be predicted more precisely. However, in addition to non-stationarity and nonlinearity, wind power TS demonstrates chaotic characteristics, which reduces the predictability of the wind power TS. In this regard, a wind power generation prediction model based on considering the chaosity of the wind power generation TS is addressed. The model consists of a novel TS decomposition approach, named multi-scale singular spectrum analysis (MSSSA), and least squares support vector machines (LSSVMs). Furthermore, deterministic tidal TS prediction model is developed. In the proposed prediction model, a variant of empirical mode decomposition (EMD), which alleviates the issues associated with EMD. To further improve the prediction accuracy, the impact of different components of wind power TS with different frequencies (scales) in the spatiotemporal modeling of the wind farm is assessed. Consequently, a multiscale spatiotemporal wind power prediction is developed, using information theory-based feature selection, wavelet decomposition, and LSSVM. Power system operation problems with robust optimization and interval optimization require prediction intervals (PIs) to model the uncertainty of renewables. The advanced PI models are mainly based on non-differentiable and non-convex cost functions, which make the use of heuristic optimization for tuning a large number of unknown parameters of the prediction models inevitable. However, heuristic optimization suffers from several issues (e.g., being trapped in local optima, irreproducibility, etc.). To this end, a new wind power PI (WPPI) model, based on a bi-level optimization structure, is put forward. In the proposed WPPI, the main unknown parameters of the prediction model are globally tuned based on optimizing a convex and differentiable cost function. In line with solving the non-differentiability and non-convexity of PI formulation, an asymmetrically adaptive quantile regression (AAQR) which benefits from a linear formulation is proposed for tidal uncertainty modeling. In the prevalent QR-based PI models, for a specified reliability level, the probabilities of the quantiles are selected symmetrically with respect the median probability. However, it is found that asymmetrical and adaptive selection of quantiles with respect to median can provide more efficient PIs. To make the formulation of AAQR linear, extreme learning machine (ELM) is adapted as the prediction engine. Prevalently, the parameters of activation functions in ELM are selected randomly; while different sets of random values might result in dissimilar prediction accuracy. To this end, a heuristic optimization is devised to tune the parameters of the activation functions. Also, to enhance the accuracy of probabilistic DTLR, consideration of latent variables in DTLR prediction is assessed. It is observed that convective cooling rate can provide informative features for DTLR prediction. Also, to address the high dimensional feature space in DTLR, a DTR prediction based on deep learning and consideration of latent variables is put forward. Numerical results of this thesis are provided based on realistic data. The simulations confirm the superiority of the proposed models in comparison to traditional benchmark models, as well as the state-of-the-art models

    Electrical energy demand forecasting model development and evaluation with maximum overlap discrete wavelet transform-online sequential extreme learning machines algorithms

    Get PDF
    To support regional electricity markets, accurate and reliable energy demand (G) forecast models are vital stratagems for stakeholders in this sector. An online sequential extreme learning machine (OS-ELM) model integrated with a maximum overlap discrete wavelet transform (MODWT) algorithm was developed using daily G data obtained from three regional campuses (i.e., Toowoomba, Ipswich, and Springfield) at the University of Southern Queensland, Australia. In training the objective and benchmark models, the partial autocorrelation function (PACF) was first employed to select the most significant lagged input variables that captured historical fluctuations in the G time-series data. To address the challenges of non-stationarities associated with the model development datasets, a MODWT technique was adopted to decompose the potential model inputs into their wavelet and scaling coefficients before executing the OS-ELM model. The MODWT-PACF-OS-ELM (MPOE) performance was tested and compared with the non-wavelet equivalent based on the PACF-OS-ELM (POE) model using a range of statistical metrics, including, but not limited to, the mean absolute percentage error (MAPE%). For all of the three datasets, a significantly greater accuracy was achieved with the MPOE model relative to the POE model resulting in an MAPE = 4.31% vs. MAPE = 11.31%, respectively, for the case of the Toowoomba dataset, and a similarly high performance for the other two campuses. Therefore, considering the high efficacy of the proposed methodology, the study claims that the OS-ELM model performance can be improved quite significantly by integrating the model with the MODWT algorithm

    Non-Gaussian residual based short term load forecast adjustment for distribution feeders

    Get PDF
    The evolving role for electricity network operators means that load forecasting at the distribution level has become increasingly important, presenting the need for anticipation of the behavior of highly dynamic and diversely distributed loads. The commonly held assumption of Gaussian residuals in forecasting does not always hold for distribution network loads, increasing the uncertainty in balancing a system at this network level. To reduce the operational impact of forecast errors, this paper utilizes different multivariate joint probability distributions to capture the intra-day dependency structure of forecast residuals. Transforming these to the conditional form enables forecast corrections to be made at variable horizons even in the absence of the forecast model. Improvements in accuracy are demonstrated on benchmark load forecast models at distribution level low voltage substations. A practical distribution system application on scheduling embedded energy storage shows substantial reductions in grid imports and hence costs to distribution level customers from utilizing the proposed intraday correction approach

    Machine Learning for Load Profile Data Analytics and Short-term Load Forecasting

    Get PDF
    Short-term load forecasting (STLF) is a key issue for the operation and dispatch of day ahead energy market. It is a prerequisite for the economic operation of power systems and the basis of dispatching and making startup-shutdown plans, which plays a key role in the automatic control of power systems. Accurate power load forecasting not only help users choose a more appropriate electricity consumption scheme and reduces a lot of electric cost expenditure but also is conducive to optimizing the resources of power systems. This advantage helps while improving equipment utilization for reducing the production cost and improving the economic benefit, and improving power supply capability. Therefore, ultimately achieving the aim of efficient demand response program. This thesis outlines some machine learning based data driven models for STLF in smart grid. It also presents different policies and current statuses as well as future research direction for developing new STLF models. This thesis outlines three projects for load profile data analytics and machine learning based STLF models. First project is, load profile classification and determining load demand variability with the aim to estimate the load demand of a customer. In this project load profile data collected from smart meter are classified using recently developed extended nearest neighbor (ENN) algorithm. Here we have calculated generalized class wise statistics which will give the idea of load demand variability of a customer. Finally the load demand of a particular customer is estimated based on generalized class wise statistics, maximum load demand and minimum load demand. In the second project, a composite ENN model is proposed for STLF. The ENN model is proposed to improve the performance of k-nearest neighbor (kNN) algorithm based STLF models. In this project we have developed three individual models to process weather data i.e., temperature, social variables, and load demand data. The load demand is predicted separately for different input variables. Finally the load demand is forecasted from the weighted average of three models. The weights are determined based on the change in generalized class wise statistics. This projects provides a significant improvement in the performance of load forecasting accuracy compared to kNN based models. In the third project, an advanced data driven model is developed. Here, we have proposed a novel hybrid load forecasting model based on novel signal decomposition and correlation analysis. The hybrid model consists of improved empirical mode decomposition, T-Copula based correlation analysis. Finally we have employed deep belief network for making load demand forecasting. The results are compared with previous studies and it is evident that there is a significant improvement in mean absolute percentage error (MAPE) and root mean square error (RMSE)
    • …
    corecore