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Load forecasting, which is the act of anticipating future loads, has been shown to be important 

in power system network planning, operations and maintenance. Artificial Intelligence (AI) 

techniques have been shown to be good tools for load forecasting. Load forecasting can assist 

power distribution utilities maximise their revenue through optimising maintenance planning. 

With the dawn of the smart grid, first world countries have moved past the customer’s point 

of supply and use smart meters to forecast customer loads. These recent studies also utilise 

recent state of the art AI techniques such as deep learning techniques. Weather parameters 

are such as temperature, humidity and rainfall are usually used as parameters in these 

studies. South African load forecasting studies are outdated and recent studies are limited. 

Most of these studies are from 2010, and dating backwards to 1999. Hence they do not use 

recent state of the art AI techniques. The studies do not focus at distribution level load 

forecasting for optimal maintenance planning. The impact of adjusting power consumption 

data when there are spikes and dips in the data was not investigated in all these South African 

studies. These studies did not investigate the impact of weather parameters on different 

South African loads and hence load forecasting performance.  
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Data is one of the key components in the development of AI models. The integrity of the data 

is key to developing accurate models. Hence, knowing the integrity of the data one is using to 

train and test their AI models becomes important. The integrity of data can be compromised 

at different points before an end user accesses the data. The data can also have noise or 

patterns that may seem out of the norm. Determining South African power consumption data 

integrity at end-user level using AI techniques has not been investigated. The impact of 

performing data clean-up on South African load forecast has not been studied.  

In this thesis, three case studies (Substation A, Substation B and Substation C) are presented 

to overcome the shortfalls stated previously in this section and, contribute to body of 

knowledge in the field of load forecasting and AI. The first contribution is the introduction of 

a novel load forecasting system utilising state of the art deep learning and machine learning 

techniques for South African power distribution networks. The proposed system included a 

module that determines data integrity using Mamdani-Type fuzzy logic. The module evaluates 

data integrity by looking at three different fault types: data lost faults, spikes and out of 

bounds fault, and multiple entries of the same variable. The flags are raised for field or 

database repairs for low data integrity detections. The data with high integrity were used to 

forecast load using the load forecasting module. The machine learning/deep learning load 

forecasting module has machine learning/deep learning models deployed. These models are 

trained before deployment, with the best performing model per application being deployed. 

The best model is chosen from the four techniques used, namely, adaptive neuro-fuzzy 

inference system (ANFIS), optimally pruned extreme learning machine (OP-ELM), deep belief 

networks (DBN) and long short-term memory recurrent neural networks (LSTM-RNN). The 

best performing load forecasting model was determined using three performance measures, 

the symmetric mean absolute percentage error (sMAPE), mean absolute error (MAE) and root 

mean square error (RMSE). The load forecast are then used to inform the distribution planned 

power outages as part of maintenance planning or electrification. 

The second contribution is the introduction of deep learning techniques in South African load 

forecasting. In both case studies, it was found that deep learning techniques outperform 

machine learning techniques. DBN achieved the lowest load forecasting error in the first case 

study (Substation A) with an sMAPE of 0.0785323 (3.93 %), MAE of 0.0306600 (3.07 %) and 
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RMSE of 0.0429001 (4.29 %). LSTM-RNN achieved the lowest load forecasting error in the 

second case study with an sMAPE of 0.065859 (3.29 %), MAE of 0.04598 (4.6 %) and RMSE of 

0.055058 (5.51 %). In the third case study, an LSTM-RNN model achieved the lowest load 

forecasting error with an sMAPE of 0.2307 (11.54 %), MAE of 0.0896 (8.96 %) and RMSE of 

0.14065 (14.07 %) 

The third contribution is two-fold. The first part is investigating the effects of ‘cleaning’ 

loading data for dips and spikes. The second part is investigating how the temperature affects 

the performance of machine learning and deep learning models in forecasting South African 

distribution networks loads. It was found that both machine learning and deep learning 

models, in the two case studies, generally achieved their best performance without ‘cleaning’ 

the loading data. The impact of temperature as an input variable in the development of load 

forecasting models was also investigated. In the first case (Substation A) and third case 

(Substation C) it was found that the machine learning techniques achieved their lowest load 

forecasting errors without temperature in their model’s development. The deep learning 

techniques achieved their best performance with the inclusion of temperature in their 

model’s development. In the second case study all the models achieved the best performance 

without the inclusion of temperature, with the exception of OP-ELM.   
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1.1. Introduction 

South Africa is a developing country located at the southern tip of Africa. In the year, 1994 

South Africa became a democratic country. Upon becoming democratic, the country set out 

to make electricity available to all its citizens. This ambition has led to the electrification of 

over 12 000 schools and over 5.2 million homes [1]. The government’s plan is to achieve 

universal access by 2025/2026. South Africa has a vertically integrated electricity sector, with 

Eskom as the main player across the value chain. Eskom supplies 95 % of South Africa’s power 

[2]. A large portion of this power is produced using coal plants. Private entities produce the 

remaining percentage. The company is the only power transmitter in the country, with the 

role of power distribution shared between Eskom and municipalities. There have been recent 

talks of unbundling Eskom, which may potentially introduce more players across the value 

chain. 

1.2. Electrical Power Distribution Networks 

In South Africa, distribution networks are power systems networks at voltages up to 132 kV. 

These networks are constructed to deliver power to end users [3]. The power is produced in 

generation plants and is then transformed to a higher voltage and low current for 

transmission, typically over long distances. This transformation is to reduce the required 

infrastructure and the technical losses. The power then gets to a transmission substation, also 

termed main transmission substation (MTS), where it is transformed to a lower voltage. It is 

then transported to distribution substations, which distribute the power to customers, 

including power redistributors. Figure 1 gives a high-level example of a power system network 

from generation to distribution, up to the distribution substation higher voltage bus bar. 

There is a drive in SOUTH AFRICA to diversify its energy mix and become greener. At the end 

of October 2016, 2.8 GW of renewable independent power producers’ (IPPs) plants had 

already been connected to the South African grid at transmission and distribution levels [4]. 

The South African government plans to have 17 800 MW supplied by renewable sources by 

2030 [4]. This drive has led to the grid code requiring N-1 firmness. Due to this and partially 

also due to aging, Eskom has paid special attention to distribution and transmission 

maintenance [5]. Globally, utility distribution networks are also seeing a growth in renewable 
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generation sources penetration. The importance of a reliable distribution system is thus 

paramount.  

  

Figure 1: Illustration of a Power System Network from Generation to Distribution 

 

One of the key performance measures of a distribution network is its reliability. The reliability 

is measured by the System Average Interruption Frequency Index (SAIFI) and the System 

Average Interruption Duration Index (SAIDI) [6]. SAIFI simply put is a measure of how 

frequently customers’ power supply is disrupted over a set period of time, usually a year, and 

SAIDI measures how long customers’ power is disrupted. These two measures are given by 

(1) and (2) [6]:  

 ����� � ∑ ��	�	
  (1) 

 ����� � ∑ 	�	
  (2) 
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where ri is each incident’s restoration time, ni is the number of incidents and nk is the number 

of interrupted customers. Network power outages, whether planned or unplanned, 

contribute to an increased SAIDI. Lack of maintenance can lead to an increase in the number 

of failures. Power utilities, therefore, need to manage these key performance areas (KPIs), to 

not only keep their customers satisfied with their service, but also to maximise revenue. This 

is achieved by having most of the utility’s customers supplied for the maximum possible time, 

with a minimal number of interruptions.  

Distribution networks can be constructed into a number of different configurations. Some of 

the common configurations are the single-end radially fed feeder, a doubly fed feeder with a 

normally open point and lastly a ring network configuration. The single-end radially fed feeder 

has a single feeder from the main substation. This main feeder can have branches or sub-

feeders which have customers connected to it. However, in this configuration power flow is 

in one direction from the supply substation to the end user with no other alternative supply 

options. A fault in this type of network means that customers beyond the fault will be without 

power. Should the fault cause the main breaker at the substation to open, the whole feeder 

can be without power. The doubly fed feeders can be regarded as two single-end radially fed 

feeders supplied from two different substations. The feeders, however, have a point that 

connects them. This point is called a normally open point and does not allow power to flow 

between the networks under normal operations. Closing this point connects the two 

networks and, therefore, allows power to flow from one of the sources through its feeder to 

supply the second feeder’s network. The ring network configuration comprises sub-networks 

that are interconnected and are supplied from the same main substation from two separate 

feeders or more. The network has interconnecting feeders that connect the different 

networks. These interconnecting feeders usually have breakers that allow the networks to be 

disconnected when required. A network with this configuration typically operates with the 

breakers closed, allows power to flow across the two sub-networks. These distribution 

networks can be made up either of underground cables or overhead lines. The underground 

cables are usually utilised in urban areas and the overhead lines in rural areas. 

1.3. Maintenance Overview 

A distribution network consists of multiple components/equipment such as transformers, 

cables, meters, bus bars, circuit breakers, poles and other support structures. These 
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components need to be maintained and/or periodically replaced to ensure that the power 

system network is operational and reliable. Maintenance can be classified as preventative or 

corrective maintenance. Preventative maintenance is maintenance conducted before a 

component fails, to prevent its failure and impact to the rest of the network. This type of 

maintenance can also be seen as planned maintenance, as it is planned for and conducted at 

a predetermined time. Corrective maintenance is maintenance that is conducted once a 

breakdown has occurred. This type of maintenance is conducted to repair or replace a failed 

component. This maintenance is also conducted to correct the impact a failed component has 

had on the power system network. Various topics in power grid maintenance have been 

studied by various researchers [7], [8]. Xie et al. proposed a power grid maintenance 

scheduling intelligence arrangement based on power flow forecasting [7]. Their system had a 

load forecasting module that was based on historical data to forecast the power bus load. 

Distribution maintenance time scheduling optimisation has been studied using genetic 

algorithms. The authors stated power flow constraint as one of the optimisation problem 

constraints [9]. A maintenance optimisation problem can be established where the target is 

to reduce SAIDI and SAIFI. In the studies mentioned in this section, one of the key aims was 

to reduce maintenance-related costs. In [10] the authors predict load peaks to determine load 

flows in restricted transmission networks for maintenance scheduling. Load forecasting can 

tell how much power will be flowing in different parts of the power system in a future period. 

This knowledge can assist in developing a plan to have minimal customer’s power supply 

interrupted when parts of the power network need to be switched off, to be maintained.  

1.4. Electrical Load Forecasting Overview 

Load forecasting is the act of anticipating the future load and has been an interesting topic 

for multiple researchers for over six decades [11], [12]. Load forecasting is divided into short-

term load forecasting, that looks at forecasts over an hourly to weekly period, medium-term 

load forecasting looks at two weeks to three months ahead load forecasting and long-term 

load forecasting looks at yearly forecast periods [1], [13]. Load forecasting has many useful 

applications, such as network planning and capacity planning. Load forecasting is also useful 

in maintenance and operations. In distribution utilities, maintenance should be scheduled to 

have a minimum number of customers disrupted at one time. Having access to accurate load 

forecasts can give utilities a view of when distribution substations or feeders will be lightly 
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loaded and when to schedule maintenance outages. The load can at times be transferred onto 

another feeder if there exists back-feeding capabilities with another feeder in the network. A 

similar approach can be followed where another transformer in a substation may need to 

carry the load from a transformer that has to undergo maintenance. Figure 2 gives an 

illustration of a distribution substation and feeders with different customer loads, to explain 

the above-mentioned points. The normally open point can be used to connect the reticulation 

network supplied by feeder 1 and feeder 2. This is achieved by closing the normally open 

switch. The breaker on the feeder that needs to be worked on can be opened at the supply 

voltage’s lower voltage side. A similar approach can be followed to isolate one of the 

transformers. Here breakers on both sides of the transformer that is to be maintained are 

opened, or isolators for the bus bar section to be maintained are opened. In both cases, the 

forecasted load of both feeders or transformers will help determine how much additional 

load the feeder or transformer that will remain in service needs to handle and if this 

equipment will be able to handle this additional load. Power systems simulation software can 

be used to determine the system behaviour under this reconfiguration.  

 

Figure 2: Distribution network and different distribution loads 
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1.5. Recent Load Forecasting Applications and Studies  

Recent load forecasting studies in developed countries have moved past the customer supply 

point and use recent state art artificial intelligence (AI) techniques [14], [15]. Appliance usage 

patterns were incorporated for load forecasting using a fuzzy logic approach [15]. The smart 

grid was one of the common drivers of movement past the customer supply point. Deep 

learning techniques are commonly deployed in most of these recent studies. In [14] long 

short-term memory (LSTM) was used to forecast residential loads using Canadian households 

and their 19 appliances data. Long short-term memory recurrent neural networks (LSTM-

RNN) were also used to forecast Australian residential loads using publicly available smart 

meter data [16]. Enhanced deep networks (cycle-based LSTM and time-dependency 

convolutional neural networks) have been used for medium-term load forecasting [13]. Deep 

learning techniques were used in this study due to the inability of swallow artificial neural 

networks (ANN) to accurately conduct the complicated and complex medium-term load 

forecasting. Deep belief network (DBN) and Copula-DBN were used in [17] to forecast hourly 

loads in the USA (Texas and Arkansas). In [18] LSTM, combined with characteristic load 

decomposition application in the data pre-processing, was found to outperform conventional 

load forecasting approaches. Other recent studies applied classical and ensemble techniques 

in forecasting loads. Seasonal ARIMA was used to conduct short-term load forecasting for 

optimal operations planning of electric distribution systems [19]. Autoregressive integrated 

moving average (ARIMA) was used as it requires fewer variables than other common load 

forecasting techniques. A holographic ensemble technique was used to forecast Guangzhou’s 

(China) and New England’s (USA) total and daily peak load [20].  

A number of load forecasting studies have been undertaken in South Africa [21], [22], [23], 

[24], [25], [26]. However, the study of the application of AI in South African load forecasting 

is still in its infancy and limited. Some of the studies are outdated. Ijumba and Hunsley’s study 

is from the late 1990s and does not consider the latest state of the art AI techniques [22]. The 

study focused on residential loads and had separate models to forecast weekday and 

weekend loads. The study of the application of deep learning techniques on South African 

load forecasting is almost non-existent. Marwala studied the South African total consumption 

load forecasting using AI. His work also looked at main drivers, related to the industrial and 

mining indices, as drivers for total load growth [27]. Load forecasting in South African 
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distribution networks has not been pursued at distribution substation and substation feeder 

level. The load forecasting performance of different state of the art machine learning and 

deep learning for different consumer types has not been studied. Yuill et al. studied South 

African load forecasting for optimal generation scheduling [23], [24]. The researchers focus 

on forecasting loads 30 minutes ahead over a day. The authors include temperature and 

humidity in their study. In one of the recent South African load forecasting studies, ANN was 

used to forecast the net energy consumption [28]. In another South African load forecasting 

study, Inglesi used a vector error correction model to forecast the aggregate South African 

electricity demand [29]. 

1.6. Machine Learning and Deep Learning 

AI had its inception in the 1950s, emerging from computing, psychology, mathematics, 

engineering and cybernetics. AI's main objective is to develop a system that achieves human-

like competence and intelligence in completing complex tasks [30]. The term, AI was 

introduced in 1956 by McCarthy. The early stages of AI focused on developing theorem 

proving and game playing programs. Modern AI is focused on techniques for human-like 

reasoning, planning, learning, language and pattern recognition [31]. Alan Turing proposed 

the Turing test in 1950. The Turing test is a test of intelligence. A computer passed the test if 

a human interacting with it was not able to distinguish if a response was from a computer or 

a human being. AI researchers have however not devoted time to passing the Turing test, due 

to the belief that it is less important to duplicate an example as opposed to understanding 

the underlying principles [32]. To deduce that a program thinks like a human, some 

understanding of how a human thinks is required. This understanding can be established 

through three approaches: introspection, psychological experiments and brain imaging. 

Cognitive science links the AI computer models and psychological experiments to develop 

precise and testable human mind theories [32]. Machine learning is a subset of AI that is based 

on learning processes, which allow the evolution of machines without the change of 

algorithms [33].  

With the advancements in technology, computational power has increased. This has led to an 

uptake in the application of deep learning techniques. Deep learning techniques are special 

AI techniques that have multiple layers, that enable them to learn more features from the 

data. These techniques have been popular in language processing and computer vision [34]. 
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Their use has also spread to other areas and sub-areas, such as load forecasting, cancer 

detection, voice assistants such as Apple's Siri [34], [35], [36]. Facebook’s DeepFace, which 

uses deep learning for human facial recognition, has achieved 97.35 % accuracy in identifying 

human faces versus a human's accuracy of 97.5 % [37]. Self-driving cars are another 

technology where AI is playing a pivotal role. Google’s Waymo has successfully tested their 

self-driving cars on different USA public roads, in different cities [38]. Tesla sells its cars with 

the hardware required for autonomous driving. Their cars have been tested on public roads 

[39]. Deep learning enables these cars to identify objects, allowing the cars to: navigate 

without driving into objects, follow road signs, drive in lanes, etc. A number of companies 

have developed AI platforms to enable the development of AI models and to provide 

processing power. These platforms include Alibaba cloud, Amazon web services respectively 

by Alibaba and Amazon.  

These companies have also integrated AI in their business processes to improve how they 

serve their clients. Alibaba deploys deep learning for different tasks such as: to recommend 

products to its customers, to attend to client queries using chatbots and to deliver orders to 

their customers using drones [40]. General Electric Healthcare deploys machine learning to 

improve patient outcomes. One of the areas this company has applied deep learning in is the 

improvement of x-ray technologies [41].  

1.7. Data Integrity 

At the heart of AI are the data. Machine learning and deep learning techniques learn from 

data. These techniques are therefore as good as the data given to them to learn from. This is 

also true for human beings. Given that a child grows up being taught without visuals that a 

cat is an animal, with fur, two eyes, and two ears and does not grow to be bigger than 30 CM 

in height. If this child is shown a picture of a puppy, what would he or she classify the animal 

in the picture as? If the puppy in the picture is smaller than 30 cm, with fur and with both 

eyes and ears are in place, the child might call the puppy a cat. This decision will be based on 

the information given to the child about a cat. In this case, even though the data about the 

cat was correct, it was limited. In a similar manner shortage of training data or data lacking 

integrity can lead to AI models giving unexpected or incorrect results. Data integrity can be 

defined as information reliability, usability, relevance and quality. Lack of data integrity can 

be due to multiple sources such as non-functional measuring instrument or computer, 
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misunderstanding, technology limitations and faults during data transmission. These sources 

can lead to data that are [42]: 

• Incomplete 

• Noisy 

• Inconsistent  

1.8. Problem Statement  

South African distribution power utilities are experiencing a financial strain. Non-technical 

losses are on the rise, aging equipment requires maintenance or upgrades, and new 

customers need to be connected to the grid. This work requires scheduled power outages to 

enable safe working conditions. These power outages typically lead to a loss of revenue due 

to customers being without supply. Further financial losses can be experienced from other 

sources, such as rescheduling work that need to be conducted by contractors due to lack of 

planning. Not carrying out these outages can lead to a loss of revenue from frequent 

equipment failures. These failures can lead to expensive emergency work being required, 

damages to the environment, injuries to humans, etc. 

As challenges increase for distribution utilities, limited strategies are developed and deployed 

to plan utility upgrades and maintenance. There was, therefore, a need to: 

• Introduce and utilise state of the art techniques to optimise distribution operations 

• Achieve accurate distribution load forecasting to drive optimal maintenance planning 

1.9. Research Objectives and Contributions 

This research’s novelty is the introduction of a unique South African distribution networks 

load forecasting system that utilises state of the art machine learning and deep learning 

techniques. The research further contributes to the body of knowledge by introducing the 

application of load forecasting in South Africa using deep learning techniques. The 

comparison of load forecasting performance of state of the art AI techniques for different 

South African distribution customer types, and the impact of data clean-up and weather 

parameters is another novel contribution of this research. The research also introduces AI in 

determining distribution loading data integrity. The research’s four contributions are 

discussed next: 
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1. Introduction of a unique South African distribution networks load forecasting system that 

utilises state of the art machine learning and deep learning techniques 

 
Why are the current methods insufficient? 

Current load forecasting research in South Africa is focused on total demand and very 

short-term for demand and supply balancing in power dispatching. There is currently no 

research work being conducted at a distribution substation level with a forecast window 

long enough to influence maintenance planning. The current research work is outdated 

and does not investigate recent state of the art techniques. 

 

How does the current system work? 

The current systems in S.A. do not use AI techniques for load forecasting to improve 

maintenance planning. Utility engineers sometimes use naïve methods to forecast loads 

to inform network configuration and maintenance scheduling. Naïve methods are globally 

outdated in load forecasting and usually consider limited data to inform a decision.  

 

What needs to be done? 

A system that takes advantage of the technological development, such as powerful and 

recent state of the art machine and deep learning techniques, needs to be introduced in 

distribution load forecast.  

 
How does this solve the problem? 

Recent state of the art AI techniques, such as deep learning, can utilise larger quantities 

of data to efficiently forecast distribution networks loads. These load forecast can then 

be utilised to improve utility maintenance planning.  

 

2. Introduction of the application of deep learning techniques in South African load 

forecasting  

 

Why are the current methods insufficient? 

Deep learning techniques have not yet been applied in South African load forecasting and 

South African distribution networks load forecasting. 
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How does the current system work? 

Other machine learning techniques have been studied/applied in total demand load 

forecasting and day ahead load forecasting for optimal power dispatch.  

What needs to be done? 

Deep learning techniques need to be studied and applied in South Africa load forecasting 

to harness their ability to learn more features.  

 
How does this solve the problem? 

Deep learning techniques can lead to high accuracy load forecasts. 

 

3. A novel comparative study of sophisticated AI techniques’ performance on different 

South African distribution customers. An investigation of the impact of data clean-up and 

the inclusion of geographical temperature on the performance of these techniques per 

customer type is also studied 

 

Why are the current methods insufficient? 

A comparative study of AI application on different South African distribution customer 

types has not yet been studied. The impact of temperature and data clean-up on the 

performance of recent AI techniques for different South African distribution load types 

has also not been investigated. 

 

How does the current system work? 

Temperature has been included in a South African load forecasting study and is usually 

considered to have an impact on the load forecast accuracy. The impact of excluding 

temperature against including it in the development of AI techniques models and on 

different South African loads has not yet been studied. The impact of cleaning dips and 

spikes from different South African distribution customer types power 

consumption/loading data on AI techniques’ performance has also not been studied.  

 

What needs to be done? 

Data preparation and sourcing weather data can be daunting tasks. Access to weather 

data is sometimes not possible or the data need to be purchased if it is to be used 
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commercially. Hence, the impact of these two parameters on the load forecasting of 

different distribution customer types needs to be well understood before committing 

time and money to them.  

 
How does this solve the problem? 

This understanding can lead to utilities achieving high accuracy load forecasting without 

the need to invest (time and money) in these two areas or being able to justify the 

investment. 

 

4. Introduction of a novel AI based process to determining distribution loading data integrity 

 

Why are the current methods insufficient? 

AI has not been applied to determine South African power systems distribution network 

data integrity.  

 
How does the current system work? 

Business Intelligence and other visual tools are implemented to determine loading data 

integrity. This can be a time-consuming process depending on the amount of data being 

analysed. 

 

What needs to be done? 

With data sizes growing utilities can utilise AI techniques in their process to determine 

their loading data integrity.  

 
How does this solve the problem? 

This can save utilities time and money by freeing up their staff’s time, having a view of 

areas in the distribution network that have data integrity issues and have the issues 

addressed to enable data utilisation to help take improved business decisions. 

1.10. Thesis Layout 

Chapter 2 presents an overview of AI. Examples of application of machine learning and deep 

learning techniques are given in this chapter. The techniques used in this study, ANFIS, OP-

ELM, LSTM-RNN and restricted Boltzmann machine's DBN, as well as their advantages and 
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disadvantages, are also presented. The chapter also discusses the concept of learning and 

intelligence. Classification, forecasting and prediction are also briefly defined.  

Chapter 3 presents the proposed load forecasting system. The experimental setup is 

presented together with the three performance measures that are used to measure the AI 

model’s performance in this study. These performance measures are the following error 

measurements; symmetric mean absolute percentage error (sMAPE), mean absolute error 

(MAE) and the root mean square error (RMSE). The statistical significance test used to 

measure if a significant difference exists in the performance of the different techniques is also 

presented. This chapter further presents an AI approach to determine loading data integrity.  

Chapter 4 gives the first experimental case study on distribution substation A, which is a 

power redistributor customer. The substation has two 40 MVA, 88/11 kV transformers. The 

distribution network overview and data used for experiments are presented. The results for 

this case study are presented and discussed. 

Chapter 5 presents the second distribution substation case study (substation B). The 

substation supplies a single industrial customer through multiple supply points and at 

different voltage levels (132/22 kV) to substation A. The results of the experiments for this 

substation are presented and discussed.  

Chapter 6 presents the third case study (Substation C). The substation is a power redistributor 

supplied power at 132 kV. The load forecasting performance of the four techniques’ models 

in load forecasting are presented. A comparison between the findings of the three case 

studies is also presented in this chapter. 

Chapter 7 gives concluding remarks through a summary of the findings. Recommendations 

for future work on machine learning and deep learning techniques application in distribution 

power systems and distribution load forecasting are suggested. 

1.11. Chapter Summary 

This chapter introduced distribution power systems networks. A typical power system setup 

was also outlined. A load forecasting literature review was presented, together with a South 

Africa specific load forecasting literature review. Machine learning and deep learning 

concepts were introduced. The problem statement was presented together with the research 
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objective. The research objective presented and discussed the research’s novel contribution. 

The layout of this thesis was also outlined in this chapter. 



Efficient Use of Deep Learning and Machine Learning for Load Forecasting in South African 
Power Distribution Networks 

Chapter 2 – Artificial Intelligence 

 

 

 

 

 

 

 

 

“The measure of intelligence is the ability to change.” 

Albert Einstein 
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2.1.  Introduction 

Chapter 1 introduced distribution power system networks, load forecasting and AI aspects. 

The chapter also presented the research problem statement and contributions. A load 

forecasting literature review was presented, which included a South African specific load 

forecasting literature review. 

This chapter introduces machine learning and deep learning, as well as the specific machine 

learning and deep learning techniques used in this research. A machine learning and deep 

learning literature review is also presented in this chapter. This literature review looks at the 

application of machine learning and deep learning in different fields. The concepts of 

machines that are capable of learning and are intelligent towards human levels are presented. 

2.2. Knowledge, Intelligence and Learning  

Human beings use knowledge to help them make everyday decisions. Knowledge is key in 

building AI systems. Knowledge can be defined as the state of knowing or a human being 

accumulating a body of facts and principles. Knowledge has familiarity with procedures, rules, 

ideas, abstraction, customs, facts, etc. Knowledge has three key basic concepts, namely, a 

data set, a form of information and belief or hypothesis. Knowledge can be one or all of these 

concepts in a slightly different form. Data is a raw form of observation, and knowledge is 

organised data and procedures which have some useful purpose. Information is data plus its 

meaning. Information can be classified as knowledge if it can create more information and 

become a part of some action. Knowledge is a true justified belief as opposed to just a 

coherent expression (belief) or a belief that may or may not be true but is supported by some 

fact (hypothesis). The relation between knowledge and intelligence lies in that, to be 

intelligent one needs access to and possession of knowledge [31].  

The Oxford Dictionary defines intelligence as “the ability to acquire and apply knowledge and 

skills”. Intelligence’s exact definition is not known. There has however been a number of 

different definitions of intelligence [31], [43].  

“Intelligence = ability to accomplish complex goals” 

“Intelligence is the ability to learn, to deal with different situations, to acquire, understand 

and apply knowledge and to analyse and reason.” 
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As there are different goals that different species can try to obtain, quantifying intelligence 

becomes a futile exercise. For example, who is more intelligent between a chess Grandmaster 

and a chief executive officer (CEO) who turns around a multibillion-Rand company from near 

bankruptcy? Due to different goals, it is not easy to deduce who is more intelligent than the 

other. This challenge is because the Grandmaster may or may not be able to turn around a 

company, the CEO may or may not be able to defeat the chess Grandmaster in chess. In 

addition the CEO may not be able to turn around a company which is in the same state but in 

a different sector. If however, there exists a third person who can accomplish both tasks and 

is better at one of the tasks, say company turnarounds in different industries, it may be safe 

to say that she or he is "more intelligent" than the original CEO. Since there are spectrums of 

intelligence, the argument of whether an entity is intelligent or not in borderline cases is at 

times not worthwhile. An example is who, between a toddler in a pre-school soccer team or 

a professional football player like Lionel Messi who plays for one of the biggest soccer teams 

in the world, has the ability to play soccer. Before discussing the ‘Artificial’ part of ‘Artificial 

Intelligence’, it is important to also state three earliest and most accepted definitions of 

intelligence which are [31]: 

“Intelligence is a state grasping the truth, involving reason, concerned with action about 

what is good or bad for human beings….” 

“The ability to learn or understand from experience, the ability to acquire and retain 

knowledge and the ability to respond quickly and successfully to a new situation, use of the 

faculty of reason in solving problems, directing the conduct effectively. ” 

“The test of the first rate intelligence is the ability to hold two opposite ideas in the mind at 

the same time and still retain the ability to function.” 

‘Artificial’, refers to something that is not natural or is not real. Human intelligence can, 

therefore, be regarded as ‘real intelligence’ as humans naturally develop their intelligence. AI 

is created using mathematics, engineering, computers, data, etc. and is not regarded as real 

intelligence [31].  

As stated previously, to be regarded as intelligent one must possess knowledge. Learning is 

key to acquiring knowledge. Thus, for a machine to be intelligent it has to have the ability to 

learn. This is where the concept of machine learning comes in. Learning has two key features 
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– skill refinement and knowledge refinement. Skill refinement is the improvement of a skill 

by repetitive execution of the same task. Knowledge acquisition is skill improvement by being 

able to gain knowledge or remembering past experience. An entity can learn in five different 

ways, by [31]: 

i. Memorisation 

ii. Taking advice 

iii. Induction 

iv. Deduction 

v. Analogy 

Memorisation, also known as rote learning, is repeatedly storing a task's data for use in 

performing the task in the future [44]. In this case, whenever a task is performed, the memory 

is used to determine the best option from the possible options based on what has been 

observed to work well and what has been observed in the past. Learning by taking advice 

involves an external person giving advice, guidance or instructions to the person seen as 

learning. An example of this is a baby learning from his or her parents. This type of learning is 

common throughout a person's life. Likewise, when an engineer writes a piece of code to run 

on a computer, the code can be seen as a set of instructions that tell the computer what to 

do [44]. Induction means generalising from specific instances [31]. This case can be likened 

to the observations of a number of BMW (Bavarian Motor Works) vehicles and then being 

able to tell when presented with a picture of a car if it is a BMW or not, and if it is a BMW 

which model it is. Deductive learning is based on improving performance by exploiting the 

previous problem-solving experiences [44]. Here an entity uses what they found to work or 

not to work in solving previous problems to solve a current problem. Analogy is a strong 

inference tool which human reasoning and speech are full of. In inference, there is usually an 

underlying meaning based on the mapping of concepts which seem to be dissimilar [44]. An 

example is when one says, “He kept an eagle's eye on the opponent". Which means he was 

closely watching the opponent and not that that he took an eagle’s eye and put it on the 

opponent. 
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2.3. Application of Deep Learning 

The rise of computational power and access to big data has enabled progress in deep learning 

techniques. These techniques have been popular in language processing and computer vision, 

and have for example, led to computers being able to interpret handwritten text with high 

accuracy [36], [45], [46]. The use of deep learning techniques has spread to other topics such 

as load forecasting, solar energy forecasting, and electricity price forecasting [47], [48], [49]. 

The most popular deep learning techniques are DBN, convolutional neural networks (CNN) 

and recurrent neural network (RNN). LSTM-RNN's performance has been shown to supersede 

or match the state of the art techniques [50]. LSTM has also been shown to outperform CNN 

in energy consumption forecasting and natural language processing [50], [51]. DBN differs 

from CNN and RNN in that they combine unsupervised learning and supervised learning in 

their learning process. DBN has been applied in energy load forecasting, very short-term wind 

power prediction, wind speed forecasting and photovoltaic power forecasting [52], [53], [54], 

[55]. CNN was found to have comparable performance to RNN and DBN, but outperformed 

SVR, in energy load forecasting [52].  

LSTM has been used to forecast wafer lots’ short-term cycle time for production planning and 

control in semiconductor wafer manufacturing [56]. In [57] the authors use LSTM to 

automatically generate conversations. The LSTM models are deployed as chat bots. In another 

application, LSTM was used to recognise single Chinese character font [58].  

DBNs have been applied in various areas including medicine, text recognition, computer 

vision, and many other applications. Jemimma et al. utilised DBN to segment and classify brain 

tumours [59]. DBN has also been used to classify pedestrians, bikes, motorcycle and vehicle 

classification using a small training data set [60]. In [61] DBN was used to diagnose wind 

turbine gearbox faults. DBN has also been used to detect intruders on a computer network 

[62].  

Deep learning techniques have been applied in domestic violence identification [63]. Victims 

in critical need were identified by analysing Facebook posts and identifying important words 

that might indicate critical posts. Deep convolutional neural networks were used to classify 

music [64]. The aim of this study was to investigate the performance of the deep CNN when 
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the data contains noise. CNN has also been used to detect breast cancer using crowd-sourced 

images [65]. CNN has also been applied to determine human personality traits from text [46].  

2.4. Application of Machine Learning  

Machine learning has been widely used across multiple fields such as engineering, power 

systems, medicine, economics, insurance, gaming, social media, law, emergency response, 

search and rescue, online shopping, voice assistance, robotics and military.  

Machine learning is the process of machines learning from data to be able to give an answer 

similar to that which a human could give. There are various machine learning techniques such 

as ANFIS, OP-ELM, ANN, autoregressive moving average (ARMA), ARIMA, autoregressive 

moving average with exogenous variable (ARMAX) and support vector machine (SVM). The 

detailed manner in which these techniques learn is different, but follows a similar principle 

based on the learning approach. The general learning approach is to present a set of data 

inputs and targets to the machine learning model. The model then tries to predict the output 

and learns by adjusting its parameters based on the error between the predicted and target 

value. These machine learning techniques sometimes suffer from a number of challenges 

during training or application. Examples of challenges are overfitting, not finding an optimal 

solution due to getting stuck on local minima, unexplainability, and many others. Researchers 

have come up with workarounds to these challenges. These workarounds include combining 

two or more techniques to leverage their strengths. An example is the combination of fuzzy 

logic and ANN to form an ANFIS, which enables the manner in which the model gets to its 

output to be explainable. 

ANFIS and other machine learning techniques, including ARIMA, ARMAX, ANN and 

evolutionary algorithms have been applied in load forecasting [1], [21], [25], [66], [67], [68], 

[69], [70], [71]. ANFIS was found to be more superior to these techniques in a number of these 

studies [21], [70], [71]. ANFIS has also been applied in rainfall prediction, robot stabilisation 

control and image tracking, DC motor speed control, navigation systems, power electronics 

converter stages open circuit fault diagnosis [72], [73], [74], [75], [76]. The performance of 

ARIMA, ANFIS and an ensemble of the two techniques was compared for rainfall prediction. 

The two individual methods showed better performance than their ensemble, each in one of 

the two respective towns that were under study [72].  
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Computational complexity has been observed to increase with an increase in the data used. 

Due to high computational power not always being available, there was an inclination to not 

use non-linear models as broadly. This decline was despite the models’ overall good 

performance [77]. Huang et al. introduced extreme learning machines (ELM), which is an 

algorithm that reduces neural networks’ computational time and model structure selection 

of neural networks [78]. ELM has been applied to solve various problems such as predicting 

stock volatility, forecasting wind generation, analysing power utility non-technical losses, 

forecasting electricity prices and load forecasting [27], [79], [80], [81], [82]. In [27] OP-ELM 

was found to outperform ANFIS, ARMA, support vector regression (SVR), ANN and ELM in 

South African electricity demand forecasting. Wang et al. found that multi-kernel ELM 

outperformed basic-ELM, single kernel ELM, SVM and back propagation neural network (BP-

NN) in most cases, in predicting the Hong Kong Exchange stock volatility [79].  

Another application of machine learning in stock exchange is the study conducted by Khoza 

et al. on stock price prediction for the Johannesburg Stock Exchange stocks [83]. Here rough 

set theory was used to extract a set of reducts and trading rules to predict stock prices. An 

ensemble of rough set theory and multi-layer perceptron has been used to predict the 

direction South Africa’s GDP will turn [84]. Ensemble techniques have also been applied in 

photovoltaic (PV) systems maximum power point tracking (MPPT). Farayola et al. investigated 

and compared the performance of ANNs combined with rational quadratic gaussian process 

regression (RQGPR), ANN combined with linear SVM regression and ANN in MPPT [85]. The 

ensemble of ANN and RQGPR was found to achieve the best results. Machine leaning 

techniques: random forest, boosting and SVM, were applied to detect fake identities on 

twitter accounts [86]. This research shows that features used to detect fake accounts created 

by bots are not similar to those required to detect fake accounts created by humans. The 

machine learning techniques used here achieved the best accuracy of 49.75 %, which is lower 

than the accuracy one would achieve when taking a guess. SVM was also applied to identify 

endangered tree species in Dukuduku forest in South Africa [87].  

2.5. Techniques Applied in This Research 

Four techniques are applied in this research for load forecasting, two machine learning 

techniques (ANFIS and OP-ELM) and two deep learning techniques (RBM-DBN and LSTM-
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RNN). Fuzzy logic is an additional technique used in this research to determine the integrity 

of the data, which the data used in this research was a subset.  

2.5.1. Neuro-Fuzzy Systems 

Neuro-Fuzzy Systems also referred to as Adaptive Neuro-Fuzzy Inference Systems were 

introduced as a combination of ANN and Fuzzy Logic to combine their strengths and overcome 

their weakness. ANN cannot represent knowledge and is not easy to explain and Fuzzy Logic 

is not able to learn from data. The technique was introduced in the 1990s by Jang [88], [89], 

[90]. 

2.5.1.1. Fuzzy Logic 

Fuzzy logic is an expert system that needs to be taught by an expert or from expert knowledge 

and cannot learn from data [91]. Fuzzy logic was developed in 1930 by Jan Łukasiewicz, a 

Polish philosopher and logician. Mamdani and Tagaki-Sugeno (TS) are the two popular fuzzy 

logic inference systems. The fuzzy logic inference system is applied in four key steps: 

Step 1: Input variable fuzzification 

Step 2: Evaluation of rules 

Step 3: Aggregating rule outputs 

Step 4: Defuzzification 

The key difference between these two inference systems is the last two steps. The TS output 

function is a linear function or a constant, whereas the Mamdani output is a value based on 

the rule’s inputs and their antecedent. The Mamdani rule can be summarised as (3) [92]: 

 Rn: if z is An AND x is Bn then yn= cn  (3) 

The TS output is defined by (4). Rn is the rule, An is the antecedent of input z, Bn is the 

antecedent of input x, cn is the output, bn is the bias, ai the consequent parameter vector and 

n=1,2,….i.  

 Rn: if z is An then yn= an
 Tz + bn (4) 

In data-driven applications the Takagi-Sugeno, which is also used in ANFIS, is more popular. 

The fuzzy logic aggregated output, y, is given by (5), where αi is the ith rule’s degree of 
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fulfilment. The TS model can be regarded as a piecewise smooth linear approximation of the 

non-linear function. This is due to the TS parameters being local linear models of non-linear 

systems [1]. 

 � � ∑ α������� ��∑ α�������    (5) 

2.5.1.2. Artificial Neural Networks 

ANNs are models designed to work like a human brain, with neurons being connected to each 

other using synaptic weights. Neurons can have a single output and multiple inputs. An 

activation function and sum of bias and weighted values are used to map the output to the 

input as given by (6). This mapping can be seen in the structure of a neural perceptron given 

in Figure 3. The aim of the model training is to minimise the error between the target value 

and the model output by adjusting synaptic weights through an iterative process. The 

iteration stops when the error is acceptable or a set number of iterations is reached.  

 � � ∑ ��	��� �� � ��  (6) 

 

 

Figure 3: A structure of neural perceptron 

 

The error is given by (7) and the synaptic weights are updated using (8) [1]. 

 ��� � �
� ∑ ����� , �! " #��$� 	�  (7) 
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 �&'(� � �&' " λ∇�'�&' �  (8) 

In (6) and (7), z is the input, y the output, b the bias , w the synaptic weights, t the target value 

and E the total error. In (8) s is the iteration step, m is the weight index, λ the learning rate 

and the gradient ∇E(w) is given by (9). 

 ∇��� � ) *+
*,- , *+

*,� , … … , *+
*,/0 (9) 

2.5.1.3. Adaptive Neuro-Fuzzy Inference System 

ANFIS is seen to be adaptive due to its ability to learn. Gradient descent can be used to train 

this technique’s models instead of expert knowledge. The first layer in the ANFIS structure, 

shown in Figure 4, is made up of adaptive nodes. These nodes compute the membership 

degree of the input in the antecedent Gaussian fuzzy sets. Equation (10) gives the Gaussian 

membership function commonly used. Here g is the centre of the Gaussian function and δ is 

the variance of the Gaussian membership function [1]. 

 1������ , 	2��	, 3��! � exp 7" ��89�:�;
�<�:; =  (10) 

 

 

Figure 4: ANFIS structure 
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In the second layer the fuzzy AND operator is applied, and then the mean operator is attained 

with the normalisation (N) and summation (∑). Equation (11) gives the TS output, in relation 

to the input. 

 � � ∑ >���$��� ?�@� � A�� (11) 

Here z is the input, ai the consequent parameter, ci is the bias and >�  is given by (12). 

 >��� � ∏ CDE	8F:�� ��89:� �;��/�δ�:; �
∑ ∏ CDE	8F:�� ��89:� �;��/�δ�:; �H���  (12) 

The TS follows a hybrid training process with a least square estimator and gradient descent 

method. This method starts with finding an optimal number of rules and then partitions the 

input space to be equally divided, with widths and slopes of functions having enough overlaps. 

There is a forward and backward pass in the training. In the forward pass, the neuron outputs 

calculated from input data are used to determine the consequent parameters. In the 

backward pass, backpropagation is applied and the error signals are used to update the 

antecedent parameters.  

2.5.2. Optimally Pruned Extreme Learning Machines 

After the introduction of ELM by Huang et al. in the mid- 2000s. Miche et al. proposed optimal 

pruning to improve the technique. This improvement was to address the drawback in 

approximating correlated and irrelevant variables included in the training set [77]. The 

optimal pruning is achieved by marginalising the irrelevant neurons of the ELM built network. 

To illustrate how the model learns, suppose there is a training set zi, where i=1,…..n, with a 

target vector ti the ELM’s goal is to decrease the training error function E to be as low as 

possible. The ELM can then be represented by (13).  

 ∑ I��� , ��, J�!K� � #�L���  (13) 

Here wj is the input weight vector that connects the jth hidden neuron and the input, Kj is the 

output weight that connects the jth hidden neuron and the output and the jth hidden node’s 

bias is represented by bj. If the ELM model can estimate the data sample with an error of zero, 

that is ∑ ‖�� " #�‖	��� � 0, a wj, bj and Kj exist such that ∑ I���, ��, J�!K� � ��L��� , i=1,….n. 

Equation (13) can thus be re-written in a compact form as (14): 

 OK � P (14) 
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 O � QI��, ��, J�� ⋯ I�L , �L , J��⋮ ⋯ ⋮I��, ��, J	� … I�L , �L , J	�T
	×L

 (15)  

H is the hidden layer output matrix, which can be written as (15). It has been demonstrated 

that the input weight and hidden bias do not require tuning [82]. Hence, H can be left 

unchanged after assigning random values to it at the beginning of the training. If H is a square 

matrix, hidden nodes can be randomly assigned and the output weights can be calculated 

through the inversion of H. The ELM can thus estimate the data sample with an error of zero. 

H is, however, in most cases not invertible due to not being a square matrix. In this case, a wj, 

bj and Kj such that OK � P may not exist. The ELM training process then corresponds to 

solving a least square problem. Here, the hidden layer output matrices’ generalised inversion 

can be utilised to determine the ELM weight between the output and hidden layer, unlike in 

conventional Neural Networks. This operation is called the Moore-Penrose. The weights are 

then given by (16): 

 K � O∗P � OO@�8�OP@ (16) 

Where H* is matrix H‘s Moore-Penrose generalised inverse [93]. The OP-ELM training 

algorithm can be summarised in five key steps: 

 Step 1: Assignment of weights (wj) and bias (bj,) at random, j=1… k  

Step 2: Determine H, the hidden layer’s output matrix 

Step 3: Determine K, the output weight using (13) 

Step 4: Use multi-response sparse regression (MRSR) to rank the neurons 

Step 5: Use the Leave-One-Out validation method to select an optimal number of neurons 

2.5.3. Deep Belief Networks 

A restricted Boltzmann machine (RBM) is a generative stochastic neural network model that 

learns the probability distribution over the inputs [35]. An RBM has a Boolean layer of hidden 

neurons and a binary-valued layer of neurons [94]. A basic structure of the RBM is given in 

Figure 5 [95]. Here the RBM consists of a visible layer, n, with j units and a hidden layer, h, 

with i units. 
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Figure 5: An RBM basic structure 

 

DBNs were introduced by Geoffrey Hinton [96]. DBN uses RBM as its building block. RBMs are 

stacked to form DBN layers, with the hidden input of a previous layer (n-1) being the visible 

input of the layer of the next layer (n). Figure 6 shows an illustration of an n-layered DBN 

structure [95]. The DBN has no connection of neurons in the same layer. However, there are 

symmetrical and bidirectional connections between the layers [94]. The joint distribution over 

the hidden and visible units is defined by (17). 

 WX, Y� � Z[\�,]�
∑ ∑ Z[\�,]�]�  (17)  

Where E(n,h) is the energy function and is expressed as (18). 

 �X, Y� � " ∑ �̂X�L���� " ∑ K�Y�L]��� " ∑ ∑ Y�_��X�L]���L����  (18) 

In (17) and (18) Wij is the weight matrix of the links between the visible unit, n j, and the hidden 

unit, hi, αj and Ki are the respective biases for the two layers. The hidden and visible unit 

conditional probabilities, given that they are conditionally independent are given in (19) and 

(20). If the hidden and visible unit’s values are limited between 0 and 1, the conditional 

probabilities are respectively given by (21) and (22). Where Sigmoid() presents the logistic 

sigmoid function [95]. 

 `X|Y� � 	 ∏ `�X�bY!�  (19) 

 `Y|X� � 	 ∏ `Y�|X��  (20)  
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 `�X� � 1bY! � de2fgeh �̂ � ∑ _��Y�L]��� � (21) 

 `�Y� � 1bX! � de2fgehK� � ∑ _��X�L���� � (22) 

 

 

Figure 6: An illustration of a DBN with n layers 

 

The training of a DBN can be summarised in two steps: 

Step 1. (Pre-Training): Unsupervised learning where the DBN is trained by contrastive 

divergence to reduce the set of features. Here the input data is used to determine the 

visible and hidden state. The model parameters’ (weights and biases) initial values are 

also determined in this step. This step is also known as greedy learning.  

Step 2. (Fine Tuning): The model uses supervised training to train an appended layer 

to the pre-trained network in Step 1. The supervised training is achieved using 

backpropagation. 

Optimisation techniques, such as scaled conjugate gradient algorithm, Levenberg-Marquardt 

(LM) algorithm and one step secant algorithm, can be used in Step 2 to optimise the training 

[97]. 
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2.5.4. Long Short-Term Memory Recurrent Neural Network 

Recurrent neural networks (RNN) are artificial intelligent techniques that use temporal 

information to estimate their output. The unit achieves this by having an edge, called a 

recurrent edge, which is connected to an adjacent time step. A basic structure of an RNN is 

given in Figure 7. By stacking several recurrent neural network units, a deep recurrent neural 

network is attained. RNNs’ foundation was introduced in the early 1980s by John Hopfield 

[98]. They became more popular around the late 1980s and early 1990s [99], [100].  

 

Figure 7: An RNN Basic structure 

 

LSTM-RNNs were introduced to overcome the long-term dependency challenges experienced 

in other RNN architectures. This challenge can be described as the fading of previously 

learned patterns with time. The LSTM has a memory cell that enables it to keep its memory 

over time. Non-linear gating units manage the memory cell's information flow. The LSTM 

updates and erases the internal state vectors through the interaction of the input zt and 

previous step’s output, with the intermediate state, ht-1, and cell state, st-1, where t is the time 

step. The structure of an LSTM block is given in Figure 8 [101]. The non-linear gates (input 

gate (it) and output gate (ot)) and the forget gate (ft) are respectively given by (23) to (25). 

Equation (26) gives the input node (gt).  

 ei � j_���i � _�kYi8� � ��� (23) 

 gi � j_l��i � _lkYi8� � �l� (24) 

 Ii � j_m��i � _mkYi8� � �m� (25) 
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 2i � ∅_9��i � _9kYi8� � �9� (26) 

Where σ, is the sigmoid function, Wiz, Wih, Woz, Woh, Wfz, Wfh, Wgz, and Wgh are the network’s 

activation functions' corresponding inputs weight matrices, and ø is the tanh function. The 

state and cell state at time step t are shown in (27) and (28), with ⨀ representing element-

wise multiplication. 

 di � 2i⨀	ei � di8�⨀	Ii (27) 

 Yi � ∅di�⨀	gi  (28) 

 

Figure 8: A LSTM unit 

 

2.6. Forecasting, Prediction, Classification and Regression 

Prediction is defined as determining a value or range of values that a certain sample is likely 

to have [42]. Forecasting is a prediction of future values over time. If it does not involve time 

it cannot be termed forecasting [27]. Classification and regression are regarded as prediction 

problems; with the difference, being classification is used to predict an individually distinct 

value and regression predicting a continuous value. An example of classification is a program 

being able to classify a German Shepherd as a dog after observing many images of different 
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dog types. The problem studied in this research is a regression problem, where the load is 

being predicted over a period of time. Because the load prediction involves time, it is termed 

load forecasting. 

2.7. Chapter Summary  

This chapter presented an overview of AI. The concepts of knowledge, intelligence and 

learning were also presented. A literature review of machine learning and deep learning 

techniques, with some of the applications of these techniques across different fields, was 

presented. The machine learning (ANFIS and OP-ELM) and deep learning (LSTM-RNN and 

DBN) techniques used in this research were also presented. Some of their structures were 

presented, along with their basic form’s advantages and shortfalls, and how these shortfalls 

have been overcome. Forecasting, prediction, classification and regression were also defined 

in this chapter.  
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“The best thing about the future is that it comes one day at a time.” 

Abraham Lincoln 
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3.1. Introduction 

The previous chapter introduced the AI concepts, i.e. knowledge, intelligence and learning. A 

machine learning and deep learning literature review was also presented in chapter 2. The 

literature review presented the application of machine learning and deep learning techniques 

in various fields including science and engineering. Machine and deep learning techniques 

used in this study were introduced, together with their advantages and disadvantages.  

This chapter presents the proposed load forecasting system. The system implements a data 

integrity analysis module, which uses fuzzy logic to determine loading data integrity before 

training load forecasting models. The data classified to have low integrity raise an alarm for 

further investigations and system repairs. This is useful for a utility preparing for the fourth 

industrial revolution, to have data with high integrity, which they can use to draw insights 

from and to optimise their processes. The experimental approach is also presented in this 

chapter. The three performance measures (sMAPE, MAE and RMSE) used to measure the 

performance of the four AI techniques’ load forecasting models are also presented. The 

statistical significance test is also presented. This test measures the significance in the 

difference the load forecasting results obtained.  

3.2. Determining Distribution Network Data Integrity 

A power system network consists of multiple measuring devices that measure different 

parameters such as voltage, current, active power and reactive power. The measurement of 

these parameters allows for the monitoring of a power system network. These measurements 

are usually also stored for utilisation in other applications such as network optimisation, and 

network planning. This data can be seen as big data. Big data can be defined as data that move 

fast, do not fit conventional database architecture or are too big [102]. Big data have also 

been defined as “high-volume, high-velocity, high-variety information assets that demand 

cost-effective, innovative forms of information processing for enhanced insight and decision 

making” [103]. For this big data to be applied they have to be usable. The data can however 

have errors which not only affects operations, but also makes it complicated to use the data. 

As an example, metering and recording errors have led to non-technical losses [104]. 

Researchers have conducted work in power systems measurements’ accuracy. However, the 

focus of their studies was on the measuring devices and the algorithms used in the measuring 
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technique [105], [106], [107], [108]. It has however been shown that data integrity challenges 

can happen beyond the measuring point [109]. Figure 9 illustrates how data attacks at 

different parts of the network can lead to network challenges such as non-optimal power flow 

[92]. Data attacks can be defined as accidental faults, such as hardware or software glitches, 

or malicious third party interaction with the data [92] . The end user may not be aware of 

such attacks and may need to evaluate the integrity of the data before utilising it. In [110] 

data line faults, out of bounds fault, data lost faults and spike faults were presented as four 

key error scenarios. Various methods have been applied to protect data integrity. These 

methods also included looking at data before getting to the end-user [111], [112], [113].  

 

Figure 9: Optimal power flow data integrity attacks 

 

Fuzzy logic was used to determine the data integrity of the loading/power consumption data 

for the power system network in which the substations used for case studies in this research 

are located. The data integrity was determined with two aims: the first was to determine 

which distribution networks had the highest data integrity for potential case studies in this 

research and the second was to enable the utility to be aware of areas with data integrity 

issues. This second aim was to enable the utility to investigate these issues further and 

address them. The use of an AI technique, fuzzy logic, was to enable the process of 

determining the data integrity to be less time-consuming as opposed to manually analysing 

the data. The Mamdani-type fuzzy model was used for the experiments. The model used three 
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variables – number of zeroes (data lost faults), very large values (spikes and out of bounds 

fault) and a number of different entries of the same variable in the same file, to classify the 

loading data to either have high integrity, low integrity or undetermined. The data used were 

from a customer network centre (CNC) that had 36 substations. CNCs are demarcated areas 

in which certain parts of power system networks fall under. The transformer or feeder loading 

data were contained 201 files. The loading data were stored as 30 minutes average power 

consumption (active and reactive power) values. An annual loading file therefore had 17250 

line entries. Each file had eight variables, which included the date, time, recorder id, etc. 

These files were between 2 MB and 5 MB in size, with a CNC’s loading data being therefore 

between 400 MB and 1 GB for a year. Looking at a province or country level, and at other 

measurements such as voltage or current over longer periods, one can see how power 

distribution networks’ data can be regarded as big. The model used had to be able to 

determine the data integrity of different load types. Figure 10 shows a week’s load profile of 

both an industrial and a residential customer [92]. It can be seen from Figure 10 that industrial 

customers typically have a large power demand and which has a less periodic profile, as 

opposed to residential load types. The model rules were created and the fuzzy logic model 

developed.  

 

Figure 10: One week’s load profile of an industrial as well as a residential customer 
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Figure 11 shows the process followed to determine data integrity in the experiment. This 

process can be summarised in six key steps as follows:  

Step 1: Download data from the server to store locally 

Step 2: Determine the number of files, read and store file names 

Repeat Step 3 to Step 6 until all files are analysed 

Step 3: Load data files 

Step 4: Normalise data 

Step 5: Evaluate data integrity using the Fuzzy Logic model 

Step 6: Store results in excel file 

 

Figure 11: High-level process followed to determine distribution loading data integrity 

 

The CNC data were analysed and the results captured. The results were compared to those 

obtained from analysing the data manually. The manual analysis involved visual analysis (such 

as analysing data plots), load balancing and cross checking of files. This manual analysis did 

not include looking the power operations activity logs. The results are shown in Figure 12 [92].  
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Figure 12: Distribution network loading data integrity analysis 

 

The model falsely classified 11 % of the files as having low integrity and 3 % of the files were 

falsely classified as undeterminable. The main reason for these false classifications were 

found to be n-1 or n-2 firmness of certain substations. This setup was more prevalent in 

industrial customer’s dedicated substations. Here a customer typically has multiple 

transformers that supply different customer’s sub-distribution loads. Certain transformers 

are able to shift their loads to another transformer(s) or there is a backup transformer for all 

the installed transformers.  

 

Figure 13: Example of industrial customer substation setup 
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Figure 13 shows such an example, where transformers 1 and 2 can supply the same loads on 

the customer side, with transformers 3 and 4 also supplying the same load [114]. Transformer 

5 acts as a backup that supports both transformer sets. This leads to the backup transformer 

not being loaded at times, and hence a lost data (zeroes) integrity issue gets picked up in the 

AI model’s analysis. This is despite this issue being a result of the power system’s normal 

operation and not being a real data integrity issue. To have the ability to detect that such 

setups with n-1 or n-2 firmness exist, file crosscheck mechanism can be added. Here a 

corresponding feeder and transformer were picked up using their names, and their data were 

analysed to confirm interrelation and similarity in the data analysis results. In cases where the 

feeder and transformer data correspond, the data were re-classified as being accurate. From 

the example used here, this check would show that the loading on transformer 5 and that on 

load 5 correspond, and hence their data despite being classified as having low integrity, it do 

not. This approach took approximately 1.3 seconds to perform an analysis on a single file using 

MATLAB. The manual analysis in comparison took 10-15 minutes. The analysis was conducted 

on an Intel i5 (2.5 GHz) PC with 4 GB RAM. This approach can therefore be deployed to 

determine loading data accuracy, and thus save utility engineers’ and technicians’ time.  

3.3. The Proposed Load Forecasting System  

The proposed AI load forecasting system is given in Figure 14. The loading data are collected 

from field equipment via power meters. The power measurements are logged from the field 

meters to a database via fibre or microwave communication channels. The data integrity is 

then determined using the approach presented in Section 3.2. The data classified to have low 

data integrity or classified as undetermined are analysed further to determine the faults’ root 

causes leading to low data integrity. These root causes are then addressed. The AI system 

uses machine learning and deep learning techniques, deployed in the AI load forecasting 

module, to conduct the load forecasts. The models are trained and conduct these load 

forecasts for substations that have feeders and transformers with loading data that have high 

integrity. These models should be trained and tested offline before being deployed in this 

system’s AI load forecasting module. The load forecasts are used to run power systems 

simulations using simulation packages such as DigSilent Power Factory and PSS®E. The 

outcome of the simulations for the different networks inform the maintenance schedule, 

from a network loading perspective, when is the best time to schedule maintenance power 
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outages. Other parameters such as resources, spares availability and customer extraordinary 

needs are then used together with the load forecasts to optimise the outage schedule. 

 

Figure 14: Proposed AI distribution network load forecasting system 

 

3.4. Experimental Approach 

Following the evaluation of the data’s integrity, three networks with high data integrity were 

selected for the experiments. Two of these networks are supplied by the same transmission 

substation, but are supplied at different voltage levels. The third network is supplied by a 

different transmission substation. These networks will be described in detail in Chapters 4 to 

6, respectively. The three different substations’ power consumption data, also termed loading 

data, were collected for a period of 2012 to 2016 (August 2012 to May 2016, for case study 

1, January 2012 to September 2015, in case study 2 and January 2012 to December 2015 for 

case study 3). The experiments’ training and testing periods were the same in both case 

studies in this research. The apparent (total) power was used in this research. The data were 

stored on a database and could be downloaded to local storage for use. The loading was 

stored as 30 minutes average power consumption values. The data were normalised to be 

between 0 and 1 using (29).  
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Where z in the input value being normalised, zmin is the minimum input value, zmax is the 

maximum input value and znorm is the normalised value. Temperature data were requested 

from the South African Weather Services. These data were also normalised using (29). The 

input variables for training were separated into two groups for the each of the experiments 

as shown in Table 1.  

Table 1: Experiment input variables  

Input 

variables 

group 

Inputs 

Group A 

Loading t-2 years  
Corresponding time of day  
Peak or non-peak period indicator  
Loading t-1 year 
Loading t-2 weeks 

Group B 

Loading data t-2 years  
Temperature t-2 years 
Load corresponding time of day  
Peak or non-peak period indicator  
Loading t-1 year  
Temperature t-1 year 
Loading t-2 weeks 
Temperature t-2 weeks 

 

Temperature was used as an input variable in only one of the two input variables groups. This 

was to determine its impact on load forecast accuracy, per technique used. The other 

variables used in developing the models were the two-week loading data; two years before 

the target forecast period, a year before the target forecast period, and two weeks before the 

target forecast period. The corresponding time of day was also included as an input variable. 

The values are mapped to be between 0 and 1. Here 0 corresponds to the value stored at 

00:30, the day’s first 30 minutes average loading, and 1 corresponds to the value at 00:00, 

which is the day’s last 30 minutes average loading. An indicator for peak and non-peak periods 

was also used as an input variable, with a 0 indicating non-peak period and a 1 indicating the 

peak period. For this study the winter peak periods were taken as 06:00 to 09:00 for the 

morning peak and 18:00 to 21:00 for the evening peak. The training and testing were 

conducted for a winter period. Winter was chosen due to its favourability for maintenance by 
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the utility mainly due to reduced rainfall and thunderstorms. These conditions provide 

benefits such as ease of performing work in non-rainy conditions, ease of access to 

mountainous areas and gravel road and reduced lightning strike risks. The datasets used for 

training the models were different to those used in testing the models. The different 

techniques’ models were trained differently based on their properties and their training 

procedure. The following subsections summarise how each of the models were trained in 

respect of the three cases studied. 

3.4.1. ANFIS 

A trial and error approach was used to experiment with ANFIS tuning parameters. These 

parameters determine the number of membership functions, overlaps, number of rules and 

the rules. Four main parameters were established and are used to report the results in this 

document. This was due to the similarity in their results, in relation to other parameters 

experimented with. These four parameters were used for training all ANFIS models in this 

research. 

3.4.2. OP-ELM 

For OP-ELM the key parameter that was tuned was the model’s dimensions. This tuning was 

conducted through adjusting the model’s number of hidden nodes. The model’s performance 

was then tested. Due to optimal pruning the ultimate number of hidden nodes is determined 

from the leave one out method, and the exact number of hidden nodes cannot always be 

obtained across different corresponding sub-experiments. However, for consistency and 

comparison of such cases, the closest number of hidden nodes obtainable were used in the 

corresponding experiments. 

3.4.3. DBN 

A single layer DBN was used in the experiments, with the number of hidden units being varied. 

The results will show why more layers were not explored, based on the performance with an 

increase in the number of units and versus the other techniques explored.  

3.4.4. LSTM 

LSTM models were trained with the number of hidden stacked LSTM units being varied per 

sub-experiments. The different corresponding sub-experiments in both case studies had the 

same number of hidden units. 
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3.5. Performance Measures 

To measure how well an entity performs, different performance measures can be used. The 

performance measure used depends on the specific activity whose performance is of interest. 

In Section 1.3 it was mentioned that the performance of a distribution network can be 

measured in terms of the network’s availability and the number of customer interruptions, 

using SAIDI and SAIFI respectively. Generation units’ performance can be measured by their 

efficiency, which can be a measure of the electrical energy output in relation to the input 

thermal energy [115]. In AI application for classification, the aim is usually to correctly classify 

what is being presented to an AI model. The AI model may need to correctly classify a signal, 

a picture, an electrical fault, etc. Here, what one would typically measure is how well the AI 

model classifies the intended object. Hasan used four performance measurements to 

determine how well AI models predicted dam water level and energy consumption by 

classification [2]. The author used classification and misclassification accuracy as primary 

performance measures. He used the RMSE and mean square error as secondary performance 

measures. Taigman et al. used the mean recognition accuracy as a performance measure to 

determine how well their AI model, DeepFace, was able to classify human faces [37]. In 

forecasting, one would want to measure how accurately his/her model can predict the 

variable of interest over time. A common way to achieve this is to measure the error [1]. The 

common error measurements used in load forecasting studies are RMSE [116], [117], [118], 

MAE [116], [117], mean absolute percentage error (MAPE) [117], [119], [120], sMAPE [21], 

[121], and mean percentage error (MPE) [120]. Even though it is not common, some authors 

have also used the normalised versions of these error measurements. Dong et al. used 

normalised root square mean error and normalised mean absolute error to measure CNN 

performance in load forecasting [117]. The sMAPE is preferred over the MAPE due to 

challenges that affect the traditional MAPE. These are challenges such as: unequal errors 

being obtained when the forecasted value is greater than or is less than the target value by 

the same absolute value and the percentage error can become very large when the target 

value is very small [121], [122]. 

Three error measurements were used to determine the performance of the load forecasting 

models in this research. These measurements were the sMAPE, MAE and RMSE. These error 

measurements are, respectively, given by (30) to (32) [95]. 
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Where Yk is the kth forecasted value, Tk is the kth target value and N is the total number of 

forecasts. The sMAPE in (30) calculates an error between 0 % and 200 %, after multiplication 

by the 100 % factor. To get a percentage value between 0 % and 100 %, the “2” is removed 

before multiplying with the 100 % factor.  

3.6. Statistical Significance Test 

When using performance measures stated in section 3.6 to determine the performance of AI 

techniques’ models, different levels of errors are obtained. The residual differences may 

reflect particular sample differences as opposed to that of the population data it is sampled 

from [27]. The importance of a statistical significance assessment of the difference in the error 

is thus evident. One of the ways to conduct this test is through a t-test. This test checks if two 

samples are from the same population using the variance and the mean of the two samples. 

A significance value, also called a p-value, is calculated from the test. An acceptable value of 

p in academic studies is p = 0.05. If the p-value is less than 0.05 there is a significant difference 

in the samples being compared and thus the model with the lowest error has the best 

performance. 

3.7. Chapter Summary  

This chapter presented the proposed AI distribution load forecasting system. The load 

forecasts from the load forecasting module are inputs into maintenance planning/scheduling. 

The system also has a data integrity analysis module that uses fuzzy logic to determine the 

integrity of loading data, before the data go into the load forecasting model. The data 

classified by this model to have low integrity raise alarms for further investigations and system 

repairs. The experimental approach followed in this research was also presented. Three 

performance measures used to measure the performance of load forecasting models in this 

research were also presented. These measures are the sMAPE, MAE and RMSE. The statistical 
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significance test was also presented. This test measures the significance in the load 

forecasting performance difference of the different techniques’ models. 
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4.1. Introduction 

The proposed AI distribution network load forecasting system was presented in the previous 

chapter. Different components of this system were also presented. These components 

included the module that determines the loading data’s integrity. The experimental approach, 

together with the performance measures used in this study were also outlined.  

This section presents a case study of a power redistributor customer. The customer’s 

substation, therefore, has different types of customers connected to it. This section gives an 

overview of the distribution network that this substation is a part of. An overview of the 

substation under study is also presented. Four techniques were trained and tested using the 

substation’s historical power consumption/loading data. These historical data are also 

described in this section. The load forecasting test results for the different machine learning 

and deep learning techniques are also presented and discussed. 

4.2. Case Study A Distribution Network Overview 

The distribution substation under study is located in the North-Eastern part of South Africa. 

The substation was commissioned in 2012, and had loading data available from August 2012 

until May 2016. This relatively recent commissioning date further illustrates the country’s 

electrification drive. The substation is connected to the grid via a 275 kV main transmission 

substation‘s 88 kV lower voltage network side. This connection is at a T-off section on a line 

towards another 88 kV distribution network. The network is given in Figure 15 with the lines 

representing three phase systems [101]. The network is interconnected with other networks 

and generation sources via main transmission substations connections and other distribution 

networks. These interconnections are not fully shown in Figure 15. The substation under 

study is an 88/11 kV, 80 MVA substation with two 40 MVA transformers. The customer has 

their own distribution network that reticulates power to their different customers. There are 

power measuring devices on different parts of the substation. The key points of 

measurements are: the incoming feeder, the transformer primary sides and point of supply 

on the lower voltage side. The measuring point utilised in this study was the one on the main 

supply feeder. This was to forecast the substation’s total load. The substation under study is 

also referred to as Substation A in the remainder of this document. 
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Figure 15: The distribution network where the redistributor substation under study is located  

 

4.3. Data Description 

As mentioned in Section 4.2., the data were collected for the period from the year 2012 to 

2016. The loading data were observed to have a period of low loading just after 

commissioning in August 2012. This was observed to have only occurred in this period. The 

data in this period were disregarded from this study and all data processing excluded it. The 

data were also observed to have dips in them, which were where the load went to zero. The 

actual reasons for these dips were not known with certainty, but could have potentially been 

from trips or planned breaker operations. It was unknown if the data should be used as is or 

have these dips and spikes cleaned out. The impact of cleaning these dips out on the 

forecasting performance was also unknown. Cleaning out these dips can also be cumbersome 

and time-consuming, and counter-progressive when working toward making the load 

forecasting system have limited human intervention. Part of the experiments was then to 

evaluate the impact of the data clean-up versus non-cleaned up/raw data. The data were, 

hence, cleaned up to remove these dips. These zero values were replaced with the previous 
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week’s corresponding time’s values. The raw loading data and cleaned data are shown in 

Figure 16 and Figure 17.  

 

Figure 16: Plot of Substation A’s incoming feeder raw loading data  

 

 

Figure 17: Plot of Substation A’s incoming feeder cleaned-up loading data 
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The loading data had a periodic pattern that stood out when looking at the load profile over 

shorter periods. Figure 18 and Figure 19 show the daily and two-week load profile, 

respectively.  

 

Figure 18: Substation A’s day load profile for 15th June 2015 

 

 

Figure 19: Substation A’s two-week load profile for the 15th to 28th June 2015 

 

The weather-related data were also requested from the South African Weather Services. The 

requested data included temperature, rainfall, humidity and wind speed. As explained 

previously, temperature is the most commonly used weather parameter in load forecasting 

studies. This research used it as the first weather parameter to investigate and establish if 

weather parameters have an impact on South African distribution load forecasting. Figure 20 

and Figure 21, respectively show a daily and a two-week temperature profile corresponding 

to the load profiles in Figure 18 and Figure 19. 
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Figure 20: Day temperature profile for study location for 15th June 2015 

 

 

Figure 21: Two-week temperature profile for study location for the 15th to 28th June 2015 

 

4.4. Experiment Results and Results Discussion 

The different experiments were conducted following the approach described in Section 3.4. 

The load forecasting test results are presented in the following subsections. 

4.4.1. ANFIS Results 

The results showed that lower errors were obtained with the models trained with raw loading 

data. The first input variables group (Group A), which did not include temperature, was 

observed to lead to models with lower errors as compared to input variable Group B. This 
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observation was in both cases with the cleaned and raw data. The lowest obtained test errors 

with raw and cleaned data are highlighted in Table 2 and Table 3, respectively. The lowest 

obtained errors as shown in bold in Table 2, were an sMAPE of 0.138483 (6.92 %), MAE of 

0.052392 (5.23 %) and RMSE of 0.071799 (7.18 %). The lowest obtained errors by ANFIS 

models developed with cleaned loading data are bolded in Table 3. 

Table 2: ANFIS models’ test errors with raw loading data 

Input 

variables 

Model 

tuning 

parameters 

Performance 

sMAPE MAE RMSE 

Group A 

1 0.1495145 0.0567013 0.0804968 

2 0.17506 0.066914 0.092543 

3 0.138483 0.052392 0.071799 

4 0.1495145 0.0567013 0.0804968 

Group B 

1 0.1836643 0.0696844 0.0920817 

2 0.177639 0.068296 0.092137 

3 0.162643 0.05886 0.07956 

4 0.1968307 0.0728959 0.0964678 

 

Table 3: ANFIS models test errors with cleaned-up loading data 

Input 

variables 

Model 

tuning 

parameters 

Performance 

sMAPE MAE RMSE 

Group A 

1 0.226631 0.064804 0.092812 

2 0.279851 0.078866 0.109888 

3 0.207322 0.059294 0.081476 

4 0.226631 0.064804 0.092812 

Group B 

1 0.280986 0.079387 0.104689 

2 0.27447 0.078297 0.104904 

3 0.243374 0.066815 0.090639 

4 0.295661 0.079239 0.105947 

 

The statistical significance test was conducted between four sets of results as shown in Table 

4, using the t-test. The aim was to determine if there was a significant difference or not 

between the different results obtained from the tests. The statistical significance test showed 

that there was no significant difference between the respective results, which gave lowest 
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forecast errors, respectively, with and without temperature as input variable. This was an 

observed finding with both the raw and cleaned up data results, respectively. There was, 

however, a significant difference between the forecasted load results with the lowest error 

and those with the highest error, respectively for the models developed using raw data. The 

t-test also showed that there was a significant difference between the forecast results of 

lowest obtained forecast errors with the raw and the cleaned data. Therefore, in this case of 

a distribution power redistributor, ANFIS load forecasting models can be trained without 

temperature as one of the input variables. Since the lowest error was observed without 

temperature as an input variable and there was no significant difference to the lowest error 

results obtained with temperature as an input variable, the use of temperature should be 

avoided for this case. The loading data also do not need to be cleaned up to obtain a high load 

forecasting accuracy and should therefore not be cleaned.  

Table 4: ANFIS models’ load forecast t-test results for Substation A 

Compared model’s results P-value 

Lowest errors: Cleaned vs Raw 
data 

0.0000000000 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

0.3808930563 

Raw data lowest errors: Input 
Group B vs Input Group A 

0.1570281141 

Raw Data: Lowest vs Highest 
error 

0.0000006557 

 

The plot of the two-week ahead test load forecast for the model that obtained the lowest 

error is shown in Figure 20 versus the target load for the test experiment. The load forecasts 

can be seen to follow the target load closely. However, some portions were overestimated 

and relatively fewer parts were underestimated.  
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Figure 22: ANFIS lowest test error model’s two-week ahead load forecast vs target load 

  

4.4.2. OP-ELM Results 

The lowest errors were obtained with raw data used for model development. The lowest error 

was obtained without temperature as an input variable. Lower errors were observed with a 

lower number of hidden units. The results are given in Table 5 and Table 6, with the lowest 

errors with the raw and cleaned bolded. The lowest attained errors were an sMAPE of 

0.1315575 (6.58 %), MAE of 0.0491749 (4.92 %) and RMSE of 0.0657673 (6.58 %).  

Table 5: OP-ELM models test errors with raw loading data 

Input 

variables 

Hidden 

nodes 

Performance 

sMAPE MAE RMSE 

Group A 

10 0.1315575 0.0491749 0.0657673 

55 0.1406914 0.0528443 0.0721915 

80 0.1542054 0.0568670 0.0779820 

100 0.1645267 0.0592804 0.0812588 

Group B 

8 0.1364757 0.0511859 0.0682780 

58 0.1596773 0.0587954 0.0754893 

103 0.1484154 0.0552860 0.0712436 

158 0.1793395 0.0681535 0.0885394 
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Table 6: OP-ELM models’ test errors with cleaned-up loading data 

Input 

variables 

Hidden 

nodes 

Performance 

sMAPE MAE RMSE 

Group A 

10 0.2014222 0.0562507 0.0752450 

50 0.2171528 0.0601624 0.0818262 

100 0.2294828 0.0617002 0.0826178 

110 0.2319736 0.0641421 0.0835023 

Group B 

8 0.2004182 0.0564162 0.0759865 

58 0.2264838 0.0629379 0.0841188 

108 0.2645317 0.0714689 0.0917274 

158 0.2996661 0.0777273 0.0992270 

 

The statistical significance test was conducted and the results are captured in Table 7. The 

results showed that a significant difference exists between all the compared load forecast 

results, respectively. There was therefore a significant difference between the lowest error 

results obtained with and without temperature as an input variable. This finding was observed 

for results with models developed using the raw and the cleaned data, respectively. The 

lowest and the highest load forecast errors results with raw data were also found to be 

significantly different. Therefore, for this case of a distribution power redistributor, OP-ELM 

load forecasting models should be developed without temperature as one of the variables. 

The loading data do not need to be cleaned up to obtain a high load forecasting accuracy. This 

was due to the best performance being obtained by a model developed without temperature 

as an input variable and with raw loading data. 

Table 7: OP-ELM models’ load forecast t-test results for Substation A 

Compared models’ results P-value 

Lowest errors: Cleaned vs Raw 
data 

0.00 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

0.0001007222 

Raw data lowest errors: Input 
Group B vs Input Group A 

0.0003847982 

Raw Data: Lowest vs Highest 
error 

0.0000798700 
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The two-week test load forecast was plotted against the target load for the lowest attained 

error, which was with the raw data. The forecasted load was seen to follow the target load, 

with a number of over estimates more prevalent than under estimates as shown in Figure 23.  

 

Figure 23: OP-ELM lowest test error model’s two-week ahead load forecast vs target load  

 

4.4.3. DBN Results 

The load forecasting test errors for the DBN models are presented in Table 8 for experiments 

with raw data and Table 9 for experiments with cleaned up data. For experiments without 

temperature as a variable, i.e. variable Group A, it was observed that the errors increased 

with an increase in the number of hidden units. After a certain number of hidden units the 

error stopped increasing and became constant. The error with temperature as an input 

variable did almost the opposite to errors with variable Group A. Here the errors decrease 

with an increase in the number of hidden units and then start increasing after reaching the 

lowest error. The lowest obtained errors, bolded in the Tables 8, were an sMAPE of 0.0785323 

(3.93 %), MAE of 0.0306600 (3.07 %) and RMSE of 0.0429001 (4.29 %). These lowest errors 

were obtained with temperature used as an input variable in the experiment and with raw 

data. The inclusion of temperature was, therefore, seen to lead to lower errors. The lowest 

errors with non-cleaned data is bolded in Table 9. 

The statistical significance test was conducted and showed that a significant difference exists 

between all the compared load forecast results, respectively. As can be seen in Table 10 the 

p-value was less than 0.05 for all the cases. There was, therefore, a significant difference 

between the lowest error results obtained with and without temperature as an input variable. 
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This finding was observed for results with raw and cleaned data, respectively. The lowest and 

the highest forecast error results with raw data were also found to be significantly different. 

Therefore, for this case of forecasting a distribution power redistributor’s load, DBN models 

should be trained with temperature as one of the variables. The loading data does not need 

to be cleaned up to obtain a high load forecasting accuracy. This was due to the best 

performance being obtained with temperature and raw loading data. Figure 24 shows the 

two-week ahead load forecasting results, which attained the lowest error, plotted against the 

target load. 

Table 8: DBN models’ test errors with raw loading data 

Input 

variables 

Number 

hidden 

units 

Performance  

sMAPE MAE RMSE 

Group A 

 

4 0.1248296 0.0466474 0.0600733 

8 0.1280208 0.0478700 0.0625895 

9 0.1261236 0.0470927 0.0608853 

10 0.1279107 0.0478198 0.0625180 

11 2.0000000 0.3837948 0.3979794 

12 2.0000000 0.3837937 0.3979785 

13 2.0000000 0.3837937 0.3979785 

14 2.0000000 0.3837937 0.3979785 

15 2.0000000 0.3837937 0.3979785 

16 2.0000000 0.3837937 0.3979785 

32 2.0000000 0.3837937 0.3979785 

Group B 

4 0.1624387 0.0629639 0.0763579 

8 0.0815791 0.0317031 0.0431172 

9 0.0800122 0.0311290 0.0429411 

10 0.0795810 0.0309429 0.0427489 

11 0.0790919 0.0307875 0.0426642 

12 0.0790417 0.0307235 0.0425964 

13 0.0788268 0.0307212 0.0426948 

14 0.0789635 0.0307617 0.0426318 

15 0.0785323 0.0306600 0.0429001 

16 0.0787966 0.0306738 0.0425675 

32 2.0000000 0.4043417 0.4168377 
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Table 9: DBN models’ test errors with cleaned up loading data 

Input 

variables 

Number 

hidden 

units 

Performance  

sMAPE MAE RMSE 

Group A 

 

4 0.19381 0.053706 0.069287 

8 0.193659 0.053843 0.07006 

9 0.193488 0.053816 0.070244 

10 0.195002 0.054301 0.071079 

11 0.195413 0.054335 0.071006 

12 2.0000000 0.300239 0.323178 

13 2.0000000 0.300239 0.323178 

14 2.0000000 0.300239 0.323178 

15 2.0000000 0.300239 0.323178 

16 2.0000000 0.300239 0.323178 

32 2.0000000 0.300239 0.323178 

Group B 

4 0.28181 0.079471 0.091373 

8 0.196174 0.054889 0.073198 

9 0.194538 0.054675 0.073365 

10 0.195685 0.054717 0.072961 

11 0.195084 0.054702 0.072975 

12 0.195787 0.054657 0.07245 

13 0.195351 0.054596 0.072592 

14 0.195662 0.054694 0.072842 

15 0.193782 0.054397 0.072643 

16 0.195299 0.054625 0.072978 

32 2.0000000 0.300239 0.323178 

 

Table 10: DBN models’ load forecast t-test results for Substation A 

Compared results P-value 

Lowest errors: Cleaned vs Raw 
data 

0.0000000000 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

1.05432 × 10-68 

Raw data lowest errors: Input 
Group B vs Input Group A 

7.38277 × 10-05 

Raw Data: Lowest vs Highest 
error 

0.0000000000 
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 Figure 24: DBN lowest test error model’s two-week ahead load forecast vs target load  

 

4.4.4. LSTM-RNN Results 

The results for raw and cleaned data are presented in Table 11 and Table 12, respectively. The 

lowest error was obtained with raw data and input variable Group B. This performance was 

achieved with the hidden number of units in the lower region of the number of units in the 

experiments. An sMAPE of 0.1268958 (6.34 %), MAE of 0.0477758 (4.78 %) and RMSE of 

0.0632759 (6.33 %), bolded in Table 11, were the lowest obtained errors. The error did not 

consistently increase with an increase in the number of hidden units, however, lower errors 

were generally observed at the lower end of the number of hidden units. The lowest obtained 

error with the cleaned up data was also with input variable Group B as shown in Table 12. 

Hence, the inclusion of temperature led to lower forecast errors. 
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Table 11: LSTM-RNN models’ test errors with raw loading data 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

60 0.1278800 0.0482684 0.0641278 

67 0.1333182 0.0508165 0.0682295 

336 0.1306934 0.0497548 0.0671990 

470 0.1425678 0.0529337 0.0668141 

538 0.1394558 0.0536316 0.0722546 

672 0.1375375 0.0520812 0.0704330 

Group B 

60 0.1311405 0.0495421 0.0674328 

67 0.1268958 0.0477758 0.0632759 

336 0.1338203 0.050850 0.0649749 

470 0.1343266 0.0510782 0.0629332 

538 0.1957023 0.0696217 0.0818892 

672 0.1486360 0.0566232 0.0755845 

  

Table 12: LSTM-RNN models’ test errors with cleaned-up loading data 

Input 

variables 

Number 

Hidden 

Units 

Performance 

sMAPE MAE RMSE 

Group A 

60 0.2076085 0.0605033 0.0817285 

67 0.2144895 0.0626986 0.0843537 

336 0.2011207 0.0563641 0.0733492 

470 0.2540580 0.0748961 0.0936343 

538 0.2235020 0.0638470 0.0837461 

672 0.2127313 0.0595342 0.0764751 

Group B 

60 0.1909078 0.0533111 0.0695006 

67 0.1916753 0.0546699 0.0739185 

336 0.2071473 0.0585931 0.0787505 

470 0.2076085 0.0605033 0.0817285 

538 0.2144895 0.0626986 0.0843537 

672 0.2011207 0.0563641 0.0733492 
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The statistical significance test results from the conducted t-test are captured in Table 13. The 

p-value was less than 0.05 for all the cases, indicating a significant difference between all the 

compared load forecast results, respectively. There was therefore a significant difference 

between the lowest error results obtained with and without temperature as an input variable. 

This finding was observed for comparison between the results with raw and cleaned data, 

respectively. The lowest and highest forecast error results with raw data were also found to 

be significantly different. Therefore, for this case of forecasting a distribution power 

redistributor’s load, LSTM-RNN models should be developed with temperature as one of the 

variables. The loading data does not need to be cleaned up to obtain a high load forecasting 

accuracy. This was due to the best performance being obtained by a model developed with 

temperature as an input variable and using raw loading data. A significant difference test also 

showed that these results were better than the results without temperature as an input 

variable. 

Table 13: LSTM-RNN models’ load forecast t-test results for Substation A 

 

 

 

 

 

 

 

Compared results P-value 

Lowest errors: Cleaned vs Raw 
data 

0.0000000000 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

1.05432× 10-68 

Raw data lowest errors: Input 
Group B vs Input Group A 

7.38277× 10-05 

Raw Data: Lowest vs Highest 
error 

0.0000000000 
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Figure 25: Substation A LSTM-RNN lowest test error model’s two-week ahead load forecast 

vs target load 

4.4.5. Results Discussion  

The model’s lowest obtained error results for each machine learning and deep learning 

technique are summarised in Table 14. The load forecasting results, corresponding to these 

lowest errors per model, were compared using the t-test. All these lowest errors were 

obtained by models developed using raw loading data. The models for all four techniques, 

therefore, do not need to be trained with cleaned data to achieve the lowest errors. The t-

test results are captured in Table 15. The p-value for all comparisons was found to be less 

than 0.05, which meant all the results were significantly different from each other. The best 

performance was, therefore, obtained using DBN with temperature as an input variable. The 

two deep learning techniques were found to outperform the machine learning techniques, 

with ANFIS achieving the worst performance. The machine learning techniques performed 

better without the inclusion of temperature as opposed to the deep learning techniques. This 

could be due to deep learning techniques’ ability to generally perform better with more data 

by extracting more features from the data. To forecast a distribution network load for a 

redistributor or a similar load profile machine learning and deep learning techniques can 

therefore both be used. In cases where weather data is not available and accuracies around 

95 % are acceptable, machine learning techniques may be deployed. These can be cases such 

as forecasting load of feeders for an outage, where feeders can typically be overloaded by 

10 % to 25 % for a number of hours depending on their condition. Deep learning techniques’ 

can still be used in the absence of weather data. It was observed that the errors obtained with 
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the deep learning models without the use of temperature were still lower than those 

obtained with machine learning techniques. To achieve better performance, therefore, deep 

learning techniques can be deployed with temperature as one of the input variables. 

Table 14: Summary of first case study’s lowest errors per model 

Technique 
Input 

variables 

Performance 

sMAPE MAE RMSE 

ANFIS Group A 0.138483 0.052392 0.071799 

OP-ELM Group A 0.1315575 0.0491749 0.0657673 

DBN Group B 0.0785323 0.0306600 0.0429001 

LSTM- RNN Group B 0.1268958 0.0477758 0.0632759 

 

Table 15: Substation A different techniques’ lowest error models’ load forecast t-test results 

Compared models’ lowest errors P-value 

ANFIS vs OP-ELM 0.0054268064 

ANFIS vs DBN 5.9475 × 10-06 

ANFIS vs LSTM 1.40419 × 10-20 

OP-ELM vs DBN 0.0005862928 

OP-ELM vs LSTM 4.05716 × 10-21 

DBN vs LSTM 0.0031420008 

 

4.5. Chapter Summary 

This chapter presented the first case study in this research. This case study researched the 

performance of deep learning and machine learning techniques on forecasting the load of a 

distribution customer that redistributes power. The customer has an 88/11 kV, 80 MVA 

substation. The impact of cleaning up loading data and the inclusion of temperature in the 

model development was also investigated. It was found that uncleaned loading data led to 

machine learning and deep learning models with the best load forecasting performance. 

machine learning techniques’ models’ performance was not the best without the inclusion of 

temperature in the development of the models. The deep learning techniques’ models’ were 

found to achieve their best load forecasting performance when temperature is utilised in their 

development.  
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5.1. Introduction 

The previous chapter presented the first case study on an 88/11 kV, 80 MVA redistributor, 

distribution substation network. Deep learning techniques were found to achieve lower 

errors than the machine learning techniques. Raw/uncleaned loading data led to machine 

learning and deep learning models which achieved the lowest errors in all experiments. The 

inclusion of temperature in the development of machine learning models was found not to 

improve their load forecasting performance. Whereas the inclusion of temperature in the 

development of deep learning to models led to lower forecasting errors. 

This section presents the second case study. The substation in this study is a dedicated 

industrial large power user substation. The network this substation is located in is also 

described in this section, as well as the substation setup. The data used to train and test the 

models is discussed. The load forecasting results are also presented and discussed. A 

discussion and comparison of the models in the two case studies is also presented. 

5.2. Case Study B Distribution Network Overview 

The distribution substation under study, which will be referred to as Substation B, is also 

located in the North-Eastern part of South Africa. The substation is connected to the same 

main transmission substation as the substation A from the first case study. The substation is 

however connected through the MTS 275/132 kV transformer set’s bus bar. The MTS also 

supplies an 88 kV distribution network. Substation B is in a ring network with one other 

substation. The two substations are each supplied from the MTS through a single feeder, and 

have an interconnecting feeder which connects their 132 kV bus bars. The interconnecting 

feeder can be opened or closed from either of the two substations. This configuration, shown 

in Figure 26, is also a cost-effective network firmness mechanism. Here, if one of the feeders 

is off due to failure or planned maintenance, the remaining feeder can potentially supply the 

two substations with power. An example is if feeder 1 is off, substation B can be supplied from 

the MTS through feeder 2 and then the interconnecting feeder from the other substation’s 

bus bar. Substation B has five 132/22 kV, 40 MVA transformers, each with its own point of 

supply. From an analysis of the transformer’s data it was observed that the transformers, 

possibly through an internal configuration, may have a grouping in terms of the loads they 

supply power to. Transformers 1 and 2 had the same load profile and, transformers 3 and 4 



Chapter 5 - 2nd Case Study: Distribution Substation B – Industrial Large Power End User Load 

66 

also had the same load profile to each other, which led to the deduction that these groups of 

transformer supply the same load. Transformer 5 was observed to be a backup transformer 

that supports both groups of transformers. Similar to the first case study there are power 

measuring devices on the incoming feeders and the primary side of each transformer. Power 

measuring devices are also installed at each point of supply on the lower voltage side.  

 

Figure 26: The distribution network in which the bulk large power user substation under 

study is located  

 

5.3. Data Description 

The loading data were collected for the period between January 2012 and September 2015. 

Hence the winter periods for the year 2012 to the year 2015 were captured. The data were 

observed to have irregular dips to zero load. The possible causes of these zero loading values 

are similar to those described in section 4.3. for case study 1. The data were cleaned up as in 

the previous case and, following the same rationale the experiments were conducted with 

raw and cleaned-up data. Figure 27 shows the plot of the collected raw loading data and 

Figure 28 shows the plot of the cleaned-up loading data. The daily and two-week load profiles 
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are respectively shown in Figure 29 and Figure 30. The same temperature data used in case 

study 1 were used in this case study as the stations were closest to the same weather station 

in relation to other weather stations. This also allowed a good way to observe the impact of 

the temperature on the different distribution load types.  

 

Figure 27: Plot of transformer 2 raw loading data 

 

 

Figure 28: Plot of transformer 2 cleaned-up loading data  
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Figure 29: Transformer 2’s day load profile for 15th June 2015 

 

 

Figure 30: Transformer 2’s two-week load profile for the 15th to 28th June 2015 

 

5.4. Experiment Results and Discussion 

The different experiments were conducted following the approach described in Section 3.4. 

The test results are presented in the following subsections. 
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5.4.1. ANFIS Results 

The ANFIS model’s test results are captured in Table 16 and Table 17, respectively, for 

experiments with non-cleaned and cleaned data. From the results it can be seen that the 

lowest error was obtained with the non-cleaned data and input variable Group A. This model 

obtained the following load forecasting test errors; an sMAPE of 0.078875 (3.94 %), MAE of 

0.0548 (5.48 %) and RMSE of 0.067278 (6.73 %). This model’s results are shown in Figure 31, 

plotted with the target load. The models trained with Group A input variables achieved lower 

load forecasting test errors than those trained with Group B input variables. The inclusion of 

temperature, therefore, did not lead to better performance. Cleaning up the data also did not 

lead to a better performance. 

Table 16: Substation B ANFIS models’ performance with non-cleaned loading data 

Input 

variables 

Model 

tuning 

parameters 

Performance 

sMAPE MAE RMSE 

Group A 

 

1 0.086554 0.05962 0.075169 

2 0.233798 0.156265 0.221828 

3 0.078875 0.0548 0.067278 

4 0.088155 0.06063 0.07585 

Group B 

1 0.121348 0.081983 0.104547 

2 0.09584 0.065327 0.080201 

3 0.08605 0.059333 0.073461 

4 0.126163 0.086611 0.114288 

 

The t-test revealed that there was a significant difference in all compared results except for 

one comparison. This was the comparison between the results with the lowest and highest 

load forecasting errors, respectively, with raw loading data. There was a significant difference 

between the results with the lowest errors with input variable Groups A and B, respectively, 

for both cleaned and non-cleaned loading data. This observation means that the results 

obtained without temperature as an input variable were better than those obtained with 

temperature as an input variable. The t-test results are given in Table 18. 
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Table 17: Substation B ANFIS models’ performance with cleaned loading data 

Input 

variables 

Model 

tuning 

parameters 

Performance 

sMAPE MAE RMSE 

Group A 

 

1 0.09473 0.064364 0.080462 

2 0.236399 0.157662 0.211377 

3 0.088012 0.060583 0.073518 

4 0.0921 0.062804 0.078134 

Group B 

1 0.12329 0.083074 0.105467 

2 0.105026 0.070778 0.087629 

3 0.089798 0.061756 0.076607 

4 0.128889 0.086846 0.108592 

 

Table 18: ANFIS models’ load forecast t-test results for Substation B 

Compared models’ results P-value 

Lowest errors: Cleaned vs Raw 
data 

3.49697 × 10-60 

Cleaned data lowest errors: Input 
Group B vs Input Group A 

0.008872329 

Raw data lowest errors: Input 
Group B vs Input Group A 

6.87824 × 10-18 

Raw Data: Lowest vs Highest 
errors 

0.068706595 

 

 

Figure 31: ANFIS lowest test error model’s two-week ahead Substation B load forecast vs 

target load 
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5.4.2. OP-ELM Results 

Table 19 and 20 present the load forecasting test results’ errors, with the lowest errors shown 

in bold. This model achieved an sMAPE of 0.076639 (3.83 %), MAE of 0.053231 (5.32 %) and 

RMSE of 0.065293 (6.53 %). The two-week ahead test load forecasting results are shown, 

plotted against the target load, in Figure 32. The errors increased with an increase in the 

number of hidden units. This was however not the case with cleaned data and Group B input 

variables. Here the errors increased with an increase in the number of hidden units and then 

dropped again after 108 hidden units at 158 hidden units. 

Table 19: OP-ELM models’ performance with non-cleaned loading data 

Input 

variables 

Number of 

hidden 

nodes 

Performance 

sMAPE MAE RMSE 

Group A 

 

10 0.077614 0.053866 0.065600 

55 0.091838 0.061893 0.097532 

80 0.100575 0.067402 0.096671 

105 0.114489 0.073351 0.116556 

Group B 

8 0.076639 0.053231 0.065293 

58 0.088769 0.061137 0.076092 

103 0.100233 0.06852 0.089016 

158 0.107616 0.072069 0.093743 

 

Table 20: OP-ELM models’ performance with cleaned-up loading data 

Input 

variables 

Number of 

hidden 

nodes 

Performance 

sMAPE MAE RMSE 

Group A 

 

10 0.0827701 0.056119 0.068664 

50 0.092224 0.061758 0.075695 

70 0.101389 0.067256 0.089437 

80 0.120470 0.077187 0.138783 

Group B 

8 0.090344 0.060570 0.077942 

58 0.112712 0.076688 0.148648 

108 0.123649 0.078600 0.115015 

158 0.111106 0.073698 0.097400 
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Table 21 gives the t-test results for the OP-ELM model’s results. All the compared results had 

a significant difference to each other. For non-cleaned data, the lowest error results from the 

model where temperature was used as a variable outperformed that where temperature was 

not used as a variable. With cleaned up data it was the opposite case, where the inclusion of 

temperature did not improve the forecasting accuracy.  

Table 21: OP-ELM models’ load forecast t-test results for Substation B 

Compared model’s results P-value 

Lowest errors: Cleaned vs Raw 
data 

2.8778 × 10-107 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

7.51278 × 10-08 

Raw data lowest errors: Input 
Group B vs Input Group A 

0.016049816 

Raw Data: Lowest vs Highest 
errors 

0.002344021 

 

 

Figure 32: OP-ELM lowest test error model’s two-week ahead Substation B load forecast vs 

target load 

 

5.4.3. DBN Results 

The load forecasting test results for the DBN models are captured in Table 22 and Table 23. 

The lowest error was achieved by a model trained with raw data without temperature as part 

of the input variables. The sMAPE achieved here was 0.074553 (3.73 %), with a MAE of 

0.051886 (5.19 %) and RMSE of 0.06325 (6.33 %). Lower errors were observed with a lower 
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number of hidden units. The error stagnated after increasing past a different number of 

hidden units for each sub-experiment. With non-cleaned data the error stagnated from nine 

and 13 hidden units, respectively, with variable Group A and B. With cleaned data this 

behaviour was observed, respectively, from nine and ten hidden units for input variables 

Group A and Group B. A t-test conducted showed that the results with the lowest errors in 

each respective experiment, with cleaned and raw data, had the best performance. The t-test 

results are presented in Table 24. The experiments also showed that the exclusion of 

temperature led to a better performance with DBN in forecasting transformer 2’s load.  

Table 22: DBN models’ performance with non-cleaned loading data 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

 

4 0.084358 0.058398 0.071928 

8 0.074553 0.051886 0.06325 

9 0.355518 0.300051 0.305125 

10 0.355518 0.300051 0.305125 

11 0.355518 0.300051 0.305125 

12 0.355518 0.300051 0.305125 

13 0.355518 0.300051 0.305125 

14 0.355518 0.300051 0.305125 

15 0.355518 0.300051 0.305125 

16 0.355518 0.300051 0.305125 

32 0.355518 0.300051 0.305125 

Group B 

4 0.098332 0.067465 0.082154 

8 0.076923 0.053481 0.065309 

9 0.077413 0.053808 0.065873 

10 0.076501 0.053202 0.065006 

11 0.07527 0.052338 0.064215 

12 0.077017 0.053483 0.06562 

13 0.355518 0.300051 0.305125 

14 0.355518 0.300051 0.305125 

15 0.355518 0.300051 0.305125 

16 0.355393 0.299922 0.305005 

32 0.355518 0.300051 0.305125 
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Table 23: DBN models’ performance with cleaned loading data 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

 

4 0.096254 0.064928 0.079892 

8 0.081501 0.055427 0.067506 

9 0.376716 0.314994 0.320321 

10 0.376716 0.314994 0.320321 

11 0.376715 0.314993 0.320319 

12 0.376716 0.314994 0.320321 

13 0.376716 0.314994 0.320321 

14 0.376716 0.314994 0.320321 

15 0.376716 0.314994 0.320321 

16 0.376716 0.314994 0.320321 

32 0.376716 0.314994 0.320321 

Group B 

4 0.082468 0.05608 0.068781 

8 0.083146 0.056521 0.069206 

9 0.081904 0.055714 0.068124 

10 0.080669 0.054858 0.067393 

11 0.376715 0.314993 0.320319 

12 0.376716 0.314994 0.320321 

13 0.083201 0.056469 0.069171 

14 0.082861 0.05626 0.068955 

15 0.376716 0.314994 0.32032 

16 0.37661 0.314884 0.320219 

32 0.376716 0.314994 0.320321 

 

Table 24: DBN models’ load forecast t-test results for Substation B 

Compared models’ results P-value 

Lowest errors: Cleaned vs Raw 
data 

0.0000000000 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

0.025323222 

Raw data lowest errors: Input 
Group B vs Input Group A 

7.6528 × 10-07 

Raw Data: Lowest vs Highest 
errors 

0.0000000000 
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Figure 33 shows a plot of the load forecast results for the best performing model against the 

target load. The forecasted load was observed to track the target load. However the forecast 

load did not vary much and was more flat in comparison to the target load. 

 

Figure 33: DBN lowest test error model’s two-week ahead Substation B load forecast vs 

target load 

 

5.4.4. LSTM-RNN Results 

The LSTM models with the highest number of hidden layers in the experiments gave the 

lowest test errors, with both raw and cleaned data. These errors are bolded in Table 25 and 

Table 26. The lowest errors were obtained with a model developed with uncleaned data. In 

both cases, with cleaned and uncleaned loading data, temperature was not an input variable 

in the model development. The lowest obtained values for the different performance 

measures are an sMAPE of 0.065859 (3.29 %), MAE of 0.04598 (4.6 %) and RMSE of 0.055058 

(5.51 %). The load forecasting results which gave these performance measures are plotted 

against the target load in Figure 34. The statistical significance, t-test, results are given in Table 

27. The statistical significance test showed these results were the best results for LSTM-RNN. 

For this type of distribution customer, the best performance when using LSTM-RNN can 

therefore be obtained with uncleaned data and without temperature data.  



Chapter 5 - 2nd Case Study: Distribution Substation B – Industrial Large Power End User Load 

76 

Table 25: LSTM-RNN models’ performance with non-cleaned loading data 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

60 0.077626 0.053888 0.06557 

67 0.075899 0.052738 0.064054 

336 0.067377 0.047037 0.057051 

470 0.067405 0.047036 0.0567 

538 0.072826 0.050744 0.062387 

672 0.065859 0.04598 0.055058 

Group B 

60 0.068902 0.04807 0.059121 

67 0.069627 0.048554 0.059077 

336 0.083265 0.057628 0.070237 

470 0.067387 0.047039 0.057631 

538 0.071501 0.049845 0.061517 

672 0.066452 0.046385 0.056338 

 

Table 26: LSTM-RNN models’ performance with cleaned loading data 

Input 

variables 

Hidden 

layers 

Performance 

sMAPE MAE RMSE 

Group A 

60 0.076185 0.051969 0.063520 

67 0.077460 0.052804 0.064516 

336 0.072048 0.049197 0.059428 

470 0.073190 0.049974 0.060671 

538 0.076781 0.052359 0.064038 

672 0.070594 0.048218 0.057900 

Group B 

60 0.074273 0.050665 0.062063 

67 0.074493 0.050818 0.062484 

336 0.071403 0.048768 0.059263 

470 0.084471 0.057327 0.070240 

538 0.076295 0.052030 0.064442 

672 0.071717 0.048970 0.060011 
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Table 27: LSTM-RNN models’ load forecast t-test results for Substation B 

Compared models’ results P-value 

Lowest errors: Cleaned vs Raw 
data 

0.0000000000 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

2.76 × 10-175 

Raw data lowest errors: Input 
Group B vs Input Group A 

9.7376 × 10-125 

Raw Data: Lowest vs Highest 
errors 

0.0000000000 

 

 

Figure 34: LSTM-RNN lowest test error model’s two-week ahead Substation B load forecast 

vs target load 

 

5.4.5. Results Discussion  

Deep learning techniques were found to have better load forecasting performance than the 

machine learning techniques. This was confirmed via a statistical significance test on each 

technique’s models’ results with the lowest error. These lowest errors and the t-test results 

are presented in Table 28 and Table 29, respectively. It was, however, found that there was 

no significant difference between the ANFIS and DBN load forecasting results. All these 

techniques’ best performing models were obtained with raw data and Group A variables. This 

observation was with the exception of OP-ELM, which attained its best performing model 

with Group B variables. The exclusion of temperature, therefore, did not influence the 

performance of the models negatively. To forecast load for this type of distribution load 

customer profile, the LSTM-RNN model should be developed with Group A variable to achieve 

the best performance.  
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Table 28: Summary of second case study’s lowest errors per model 

Technique 
Input 

variables 

Performance 

sMAPE MAE RMSE 

ANFIS Group A 0.078875 0.0548 0.067278 

OP-ELM Group B 0.076639 0.053231 0.065293 

DBN Group A 0.074553 0.051886 0.06325 

LSTM-RNN Group A 0.065859 0.04598 0.055058 

 

Table 29: Substation B different techniques’ lowest error models’ load forecast t-test results 

Compared model's 

lowest errors 
P-value 

ANFIS vs OP-ELM 1.4661 × 10-06 

ANFIS vs DBN 0.07521253 

ANFIS vs LSTM 4.193 × 10-109 

OP-ELM vs DBN 4.6263 × 10-08 

OP-ELM vs LSTM 1.06 × 10-246 

DBN vs LSTM 0 

 

5.5. Chapter Summary 

This chapter presented the second case study in this research. This case study was conducted 

on one of the five, 132/22 kV, 40 MVA, transformers in large industrial power user’s dedicated 

distribution substation. The performance of machine learning techniques (ANFIS and OP-ELM) 

and deep learning techniques (DBN and LSTM-RNN) were investigated in forecasting this 

distribution substation’s load. The impact of temperature and data clean-up on the load 

forecasting performance was also investigated. It was found that deep learning techniques 

outperform machine learning techniques. All the techniques’ models, apart from OP-ELM, 

performed better without the inclusion of temperature in their development as opposed to 

when the temperature was included. All the techniques’ models achieved their best load 

forecasting performance when the raw uncleaned used in their development.  
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“Sometimes when you innovate, you make mistakes. It is best to 

admit them quickly, and get on with improving your other 

innovations.” 

Steve Jobs 
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6.1. Introduction 

The previous chapter presented the second case study on a 132/22 kV distribution large 

power consuming customer’s substation. Here the loading data used were from one of the 

customer’s five 40 MVA transformers. Deep learning techniques’ models were found to 

achieve lower errors than the machine learning techniques. All the techniques’ models, apart 

from OP-ELM, achieved their lowest errors without the inclusion of temperature in their 

development. All the four techniques’ models achieved their lowest errors when developed 

with uncleaned data. An LSTM-RNN’s model achieved the lowest load forecasting error in 

case study 2. 

This chapter presents the third case study. The load used in this case study is that of a power 

redistributor which is located in a different distribution network to that in the first two case 

studies. This distribution network and loading data are described in this chapter. The load 

forecasting performance of machine learning techniques, ANFIS and OP-ELM, and deep 

learning techniques, DBN and LSTM-RNN, is investigated. This investigation’s results are 

presented and discussed. A comparison of the three case studies’ findings is also presented.   

6.2. Case Study C Distribution Network Overview 

The substation in this case study is also located in the North-Eastern part of South Africa. The 

substation is located in a neighbouring town, which is approximately 30 kilometres away from 

the town the Substation A and Substation B are locate in. The substation in this case study is 

referred to as Substation C in the rest of this document. Substation C is connected to the grid 

through a 400/132 kV transmission substation, which also supplies other distribution 

substations and networks at 132 kV. The distribution network overview is shown Figure 35. 

The customer is supplied via a switching substation and has its own distribution substation 

with transformers to step down the voltage for distribution. A switching substation is a 

substation that does not have transformers. The switching substation is also connected to the 

transmission substation through a 132 kV substation it is in a ring with. There are two feeders 

from the switching substation to the point of supply. The customer has different types of 

consumers it supplies with the power it redistributes. The power, which is supplied by 

Substation C, is measured at point of supply.   
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Figure 35: The distribution network the power redistributor’s switching substation under 

study is located 

6.3. Data Description 

The loading data were collected for a period of four years between January 2012 and 

December 2015. These data were also stored in 30 minutes averages. The loading data in this 

case study also had dips and were cleaned-up to remove these dips. The plots of the 

raw/uncleaned data and the cleaned data are shown in Figure 36 and Figure 37, respectively. 

From these plots, it can be seen that there was a significant increase in the power 

consumption, by above 100 %, from January 2015.  

 

Figure 36: Plot of Substation C's raw loading data 
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Figure 37: Plot of Substation C's cleaned-up loading data  

 

The one day and the two-week load profiles are, respectively, presented in Figure 38 and 

Figure 39. Both these graphs are plotted with uncleaned loading data. It can be seen from 

these figures that the power consumption typically fluctuated from a loading of 5 000 and 

7 000 KVA during the early non-peak hours of the day, to over 35 000 KVA during the evening 

peak. The temperature data used in this case study is the same data used in the first two case 

studies. The only difference is that this substation in this case study is located in the same 

town as the weather station used to measure the temperature. 

 

Figure 38: Substation C’s day load profile for 15th June 2015 
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Figure 39: Substation C’s two-week load profile for the 15th to 28th June 2015 

6.4. Experiment Results and Discussion 

The different techniques’ models were developed as per the approach described in Section 

3.4. The load forecasting performance of these models was determined. These performance 

results are presented and discussed in this Section. 

6.4.1. ANFIS Results 

The load forecasting performance test results are captured in Table 30 and Table 31 for 

models developed with non-cleaned and cleaned loading data, respectively. The models 

developed with cleaned loading data attained the lowest load forecasting errors. The 

inclusion of temperature did not lead to an improved accuracy with both non-cleaned and 

cleaned loading data. The lowest attained errors with both the models developed with non-

cleaned and cleaned loading data are bolded in Tables 30 and 31. The lowest attained load 

forecasting errors were an sMAPE of 13.05 %, MAE of 10.09 % and RMSE of 14.99 %, as shown 

in Table 31. The statistical significance test was conducted and the results are presented in 

Table 32. The t-test showed that there is a significant difference between all the compared 

results, except for the results with and without temperature for models with cleaned data. 

The load forecasting performance of the models developed with cleaned loading data were 

thus not significantly different. 
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Table 30: Substation C ANFIS models’ performance with non-cleaned loading data 

Input 

variables 

Model 

tuning 

parameters 

Performance 

sMAPE MAE RMSE 

Group A 

 

1 0.3280877 0.1244868 0.1763246 

2 0.3548188 0.1181713 0.1698449 

3 0.3485234 0.1591555 0.3033930 

4 0.356657 0.128948 0.182569 

Group B 

1 0.509364 0.184724 0.272112 

2 0.919458 0.765156 1.386215 

3 0.4223565 0.1656288 0.2677004 

4 0.470634 0.179244 0.26091 

 

Table 31: Substation C ANFIS models’ performance with cleaned loading data 

Input 

variables 

Model 

tuning 

parameters 

Performance 

sMAPE MAE RMSE 

Group A 

 

1 0.261473 0.103331 0.150772 

2 0.259367 0.101062 0.153101 

3 0.260919 0.100845 0.149861 

4 0.261473 0.103331 0.150772 

Group B 

1 0.299051 0.114858 0.166327 

2 0.875142 0.79492 2.006465 

3 0.299748 0.11146 0.160826 

4 0.299051 0.114858 0.166327 

 

Table 32: ANFIS models’ load forecast t-test results for Substation C 

Compared model’s results P-value 

Lowest errors: Cleaned vs Raw 
data 

1.94743 × 10-10 

Cleaned data lowest errors: Input 
Group B vs Input Group A 

0.124759926 

Raw data lowest errors: Input 
Group B vs Input Group A 

2.05816 × 10-9 

Raw Data: Lowest vs Highest 
error 

5.29115 × 10-18 
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The two-week load forecast is shown plotted along the target load in Figure 40. The load 

forecast was seen to follow the target load closely, except for when the loading suddenly 

reduced.  

 

Figure 40: ANFIS lowest test error model’s two-week ahead Substation B load forecast vs 

target load 

6.4.2. OP-ELM Results 

The OP-ELM models were tested for a two-week ahead load forecast and the performance 

for was recorded. This performance is presented in Table 33 and Table 34, respectively. It was 

found that the OP-ELM models achieved their lowest errors when developed with cleaned 

loading data as opposed to the uncleaned data. The inclusion of temperature in the models’ 

development was found to lead to increased errors. The lowest achieved errors were 

therefore with a model developed with cleaned loading data and without temperature. This 

model had sMAPE of 0.226413 (11.32 %), MAE of 0.09043 (9.04 %) and RMSE of 0.143772 

(14.38 %). These errors were achieved by a model with ten hidden nodes and are bolded in 

Table 34. The lowest attained errors was with a model developed with cleaned data and ten 

hidden nodes. These lowest attained errors are bolded in Table 33. Models with 100 and 110 

hidden nodes were not attainable when using cleaned data with input variables Group A.  
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Table 33: Substation C’s OP-ELM models’ load forecasting performance with non-cleaned 

loading data  

Input 

variables 

Number of 

hidden 

nodes 

Performance 

sMAPE MAE RMSE 

Group A 

 

10 0.279146 0.105113 0.16436 

55 0.375057 0.156518 0.232913 

80 0.515501 0.229931 0.38793 

100 0.483081 0.221968 0.396976 

Group B 

8 0.285174 0.106607 0.161916 

58 0.410711 0.144622 0.203808 

103 0.578441 0.208359 0.275639 

158 0.595474 0.212417 0.312686 

 

Table 34: Substation C’s OP-ELM models’ load forecasting performance with cleaned up 

loading data 

Input 

variables 

Number of 

hidden 

nodes 

Performance 

sMAPE MAE RMSE 

Group A 

 

10 0.226413 0.09043 0.143772 

50 0.347886 0.22436 0.482956 

100 - - - 

110 - - - 

Group B 

8 0.235541 0.092093 0.141977 

58 0.281593 0.108865 0.169301 

108 0.376353 0.149048 0.232213 

158 0.626704 0.213157 0.29973 

 

The t-test showed that the results that attained the lowest errors with and without 

temperature had no significant difference. This was observed with both the experiments with 

cleaned and non-cleaned data. Since the errors were still lower without the use of 

temperature, OP-ELM models for this type of load profile should be developed without the 

use of temperature. The two-week load forecast for the OP-ELM model that achieved the 

lowest error is plotted against the target load in Figure 41. 



Chapter 6 - 3rd Case Study Distribution Substation 3: Power Redistributor Load 

87 

Table 35: OP-ELM models’ load forecast t-test results for Substation C 

Compared model’s results P-value 

Lowest errors: Cleaned vs Raw 
data 

2.31535 × 10-32 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

0.759253005 

Raw data lowest errors: Input 
Group B vs Input Group A 

0.11326398 

Raw Data: Lowest vs Highest 
error 

0.007879207 

 

 

Figure 41: OP-ELM lowest test error model’s two-week ahead Substation C load forecast vs 

target load 

6.4.3. DBN Results 

Tables 36 and 37, respectively, show that DBN models achieved their lowest load forecasting 

errors when developed without temperature in both experiments with non-cleaned and 

cleaned loading data. A model that attained the lowest error was developed with cleaned 

loading data, using input variables Group B and had nine hidden units. This models’ load 

forecasting performance results were an sMAPE of 0.24054 (12.03 %), MAE of 0.092952 

(9.3 %) and RMSE of 0.145891 (14.6 %) as shown in bold in Table 37.  
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Table 36: DBN models’ load forecasting performance with non-cleaned loading data for 

substation C 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

 

4 0.398581 0.148483 0.180647 

8 2 0.418499 0.461072 

9 2 0.418499 0.461072 

10 - 0.418499 0.461072 

11 2 0.418499 0.461072 

12 - 0.418499 0.461072 

13 2 0.418499 0.461072 

14 - 0.418499 0.461072 

15 - 0.418499 0.461072 

16 - 0.418499 0.461072 

32 - 0.418499 0.461072 

Group B 

4 0.344318 0.128328 0.164776 

8 0.31624 0.118985 0.160006 

9 0.297192 0.11072 0.159004 

10 2 0.418499 0.461072 

11 2 0.418499 0.461072 

12 2 0.418499 0.461072 

13 0.296264 0.110234 0.158867 

14 2 0.418499 0.461072 

15 2 0.418499 0.461072 

16 2 0.418499 0.461072 

32 - 0.418499 0.461072 
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Table 37: DBN models’ load forecasting performance with cleaned loading data for 

substation C 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

 

4 0.280238 0.108589 0.1449 

8 1.999999 0.430297 0.469002 

9 0.45363 0.182622 0.227979 

10 1.601264 0.401537 0.437211 

11 2 0.430297 0.469002 

12 2 0.430297 0.469002 

13 - 0.430297 0.469002 

14 - 0.430297 0.469002 

15 - 0.430297 0.469002 

16 - 0.430297 0.469002 

32 - 0.430297 0.469002 

Group B 

4 0.284593 0.111641 0.146439 

8 0.279181 0.107977 0.1433 

9 0.24054 0.092952 0.145891 

10 0.241173 0.092986 0.146564 

11 1.619861 0.386188 0.424417 

12 0.764644 0.224283 0.259192 

13 0.376284 0.132758 0.186961 

14 2 0.430297 0.469002 

15 2 0.4302970 0.469002 

16 2 0.430297 0.469002 

32 - 0.430297 0.469002 

 

The t-test was conducted and it showed that there was a significant difference in the results 

that gave the lowest error for experiments with cleaned data. The model developed with 

temperature as an input variable and cleaned loading data was the best performing DBN load 

forecasting model. The t-test results for the DBN models are shown in Table 38. The 

forecasted load that gave the lowest DBN load forecasting error is plotted against the target 

load in Figure 42.  
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Table 38: DBN models’ load forecast t-test results for Substation C 

Compared model’s results P-value 

Lowest errors: Cleaned vs Raw 
data 

6.894 × 10-55 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

8.21832 × 10-11 

Raw data lowest errors: Input 
Group B vs Input Group A 

0.057609591 

Raw Data: Lowest vs Highest 
error 

0.057609591 

 

 

Figure 42: DBN lowest test error model’s two-week ahead Substation C load forecast vs 

target load 

6.4.4. LSTM Results 

LSTM models were trained and tested with cleaned and uncleaned data as detailed out in 

Section 3.4. These models’ load forecasting performance is presented in Table 39 and Table 

40, respectively. From these results it was observed that the lowest load forecasting error 

was attained by a model developed with cleaned loading data and input variable Group 2. 

This model achieved an sMAPE of 0.2307 (11.54 %), MAE of 0.0896 (8.96 %) and RMSE of 

0.14065 (14.07 %).  
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Table 39: LSTM-RNN models’ performance with non-cleaned loading data 

Input 

variables 

Number 

hidden 

units 

Performance 

sMAPE MAE RMSE 

Group A 

60 0.286864 0.106295 0.162173 

67 0.347221 0.121265 0.16158 

336 0.298951 0.109542 0.15679 

470 0.301678 0.112097 0.154771 

538 0.288156 0.105127 0.152514 

672 0.293449 0.106803 0.151341 

Group B 

60 0.383348 0.141005 0.192572 

67 0.39196 0.146102 0.179556 

336 0.344087 0.122243 0.170315 

470 0.263784 0.098621 0.153207 

538 0.291305 0.10337 0.152825 

672 0.32681 0.121577 0.159715 

 

Table 40: LSTM-RNN models’ performance with cleaned loading data 

Input 

variables 

Hidden 

layers 

Performance 

sMAPE MAE RMSE 

Group A 

60 0.258684 0.102794 0.156705 

67 0.278574 0.107823 0.152683 

336 0.356105 0.139668 0.167961 

470 0.265542 0.099076 0.149288 

538 0.340204 0.132768 0.171631 

672 0.24577 0.101353 0.152643 

Group B 

60 0.251145 0.100358 0.155083 

67 0.272416 0.102874 0.153517 

336 0.242085 0.094544 0.143096 

470 0.299866 0.114675 0.146952 

538 0.412537 0.171554 0.208968 

672 0.230693 0.089595 0.14065 

 

All load forecasting results compared using the t-test were found to be significantly different 

to each other. This finding was with the exception of the results obtained by models 
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developed with and without temperature data, for experiments with cleaned loading data. 

The t-test results are presented in Table 41. The two-week load forecasting results that gave 

the lowest LSTM load forecasting error are plotted against the target load in Figure 43. 

Table 41: LSTM-RNN models’ load forecast t-test results for Substation B 

Compared model’s results P-value 

Lowest errors: Cleaned vs Raw 
data 

9.86346E × 10-05 

Cleaned data lowest errors: 
Input Group B vs Input Group A 

0.346937152 

Raw data lowest errors: Input 
Group B vs Input Group A 

8.06653 × 10-19 

Raw Data: Lowest vs Highest 
error 

3.11834 × 10-12 

 

 

Figure 43: LSTM-RNN lowest test error model’s two-week ahead Substation C load forecast 

vs target load 

 

6.4.5. Results Discussion 

A deep learning technique, LSTM-RNN, was found to achieve the highest load forecasting 

accuracy. All the techniques’ models achieved their lowest errors when developed with 

cleaned-up loading data. The deep learning techniques all achieved their lowest errors with 

models developed with temperature as an input variable. The opposite behaviour was 

observed for machine learning techniques, where the lowest errors were attained without 

the use of temperature. The lowest obtained errors with each of the technique are presented 
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in Table 42. The lowest attained errors ANFIS, were the higher than the other three 

techniques lowest errors. DBN had the second highest errors, followed by OP-ELM.  

Table 42: Summary of third case study’s lowest errors per model 

Technique 
Input 

variables 

Performance 

sMAPE MAE RMSE 

ANFIS Group A 0.260919 0.100845 0.149861 

OP-ELM Group A 0.226413 0.09043 0.143772 

DBN Group B 0.24054 0.092952 0.145891 

LSTM-RNN Group B 0.230693 0.089595 0.14065 

 

The results for the statistical significance tests between the different techniques’ models’ 

results that led to their lowest attained errors are presented in Table 43. It was observed that 

the LSTM model’s results were significantly different to those of the other three techniques. 

There was no significant difference between the DBN results and the ANFIS results. There was 

a significant difference between the rest of the techniques’ results. Therefore the model 

whose results achieved the lowest error between the compared models had superior 

performance. Hence, for this case study, based on the t-test: LSTM can be regarded to be 

superior than all the three techniques, OP-ELM to be more superior than DBN and ANFIS and, 

ANFIS and DBN comparable.  

Table 43: Substation C different techniques’ lowest error models’ load forecast t-test results 

Compared model's 

lowest errors 
P-value 

ANFIS vs OP-ELM 0.01315299 

ANFIS vs DBN 0.42192947 

ANFIS vs LSTM 0.00345749 

OP-ELM vs DBN 0.00548995 

OP-ELM vs LSTM 6.5567E-21 

DBN vs LSTM 3.7124E-18 
 

6.5. Case Studies’ Results Comparison 

In Substation A, in the first case study a DBN model obtained the best performance. This 

model was trained with Group B input variables, which included temperature as an input 

variable. This model achieved an sMAPE of 3.93 %, MAE of 3.07 % and RMSE of 4.29 %. With 

Substation B, in the second case study, an LSTM model trained with Group B input variables 
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achieved the lowest error with an sMAPE of 3.29 %, MAE of 4.6 % and RMSE of 5.51 %. In the 

third case study, an LSTM model achieved the lowest load forecasting error with an sMAPE of 

0.2307 (11.54 %), MAE of 0.0896 (8.96 %) and RMSE of 0.14065 (14.07 %). Deep learning 

techniques thus achieved the best load forecasting performance in all three case studies. This 

could be further observed from deep learning techniques achieving the 2nd best load 

forecasting performance in the first and the second case study, respectively. The machine 

learning techniques’ models were found to be less accurate than those of deep learning 

techniques in all case studies. This observation was with the exception of OP-ELM and DBN in 

the third case study. In this case study OP-ELM achieved a higher accuracy than DBN. ANFIS’ 

best load forecasting model in each case study achieved the highest error in relation to the 

other techniques’ best load forecasting models. However, the ANFIS results were found not 

to be significantly different to the DBN results in the 2nd and 3rd case study. This finding was 

despite ANFIS achieving a higher load forecasting error in both cases. DBN results were 

significantly different and better than those of OP-ELM in the 2nd case study. Following these 

results we can deduce that deep learning techniques can be regarded as the more efficient 

techniques for load forecasting in South African distribution networks. In both the 1st and the 

2nd cases, the best performing models were attained with non-cleaned loading data. Hence 

the applications of the load forecasting system can be implemented by using uncleaned 

loading data from the database as is, as long as the data has an acceptable integrity. This 

finding was opposite with Substation C, where all the techniques’ lowest errors were obtained 

by models developed with cleaned data. From the three cases it can be generalised that both 

machine learning and deep learning techniques can achieve high load forecasting accuracies 

without cleaning up loading data. However, other factors, such as significant load growth, 

combined with the dips in loading may lead to a need to clean up the loading to achieve higher 

accuracies as in case study 3.  

In the 1st and 3rd case study, it was found that the deep learning techniques achieved their 

highest accuracy when developed with input variable Group B, which included temperature. 

Here the machine learning techniques achieved lower errors without the inclusion of 

temperature. In the second case study, only the OP-ELM models achieved higher accuracies 

with the inclusion of temperature in the model development. Generalising across the three 

cases it can be stated that machine learning techniques models generally achieve low load 
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forecasting errors without the inclusion of temperature in their development. It can be 

further stated that deep learning techniques’ models achieve lower errors with the inclusion 

of temperature. This observation can be regarded to be more applicable to power 

redistributor load types than it is to large industrial customer load types. Thus, for a 

redistributor customer type or a customer with a load profile similar to that in case study 1 

and 3, temperature should be used in to develop deep learning load forecasting models as it 

can lead to better performance. For a customer type or a customer with a load profile similar 

to that in case study 2, temperature should not be used when using deep learning techniques 

to forecast the customer’s load. 

6.6. Chapter Summary 

This chapter presented the third case study in this research. The case study was conducted 

using a power redistributor that is supplied power at 132 kV through a switching substation. 

The load forecasting performance of machine learning techniques, ANFIS and OP-ELM, and 

deep learning techniques, DBN and LSTM, was investigated on this substation load. The 

impact of using temperature data and cleaning up loading data for dips was also investigated. 

It was found that all the techniques achieved the lowest load forecasting error with models 

developed with cleaned loading data. The deep learning techniques achieved their lowest 

error when temperature data was used to develop their models. An LSTM load forecasting 

model achieved the lowest load forecasting error.  

The chapter further compared the three case studies’ findings. It was found that in the first 

two cases using raw data, i.e. not cleaning up the data for spikes and dips, led to the 

techniques’ models’ best load forecasting results. The opposite was true in the third case 

study. Temperature was seen to affect performance based on the machine learning/deep 

learning technique used and the type of load that was being forecasted. It was however, 

observed that the inclusion of temperature generally led to deep learning techniques’ models 

with low errors. The use of raw/non-cleaned loading data generally led to machine 

learning/deep learning load forecasting models with low forecasting errors.  
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“No country can really develop unless its citizens are educated” 

Nelson Mandela 
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7.1. Introduction 

This study was conducted to introduce an artificial-intelligence based system that can be 

implemented for load forecasting South African distribution power system networks’ loads to 

improve maintenance planning. The study’s rationale, objectives and contributions were 

presented in Chapter 1. The load forecasting literature review was also presented in this 

chapter. Chapter 1 furthermore introduced machine learning and deep learning concepts. 

Chapter 2 introduced AI concepts and the application of machine learning and deep learning 

techniques. The machine learning and deep learning techniques used in this research were 

presented in this chapter. Chapter 3 presented the proposed load forecasting system and the 

experimental approach. Chapters 4, 5 and 6 presented the two case studies in this research. 

This includes the experiments conducted, the results obtained and a discussion of these 

results. 

This chapter concludes the document. Hence, the findings of this study and each chapter’s 

conclusions are presented in this chapter. This discussion is followed by an assessment of the 

thesis’ novel contributions. Future work recommendations are made and then the paper is 

concluded with final remarks.  

7.2. Conclusions 

It was mentioned that South Africa has an extensive electrification program which aims to 

achieve universal access by 2025/2026. However, South African distribution power utilities 

are faced with multiple challenges over and above the need to connect customers to the grid. 

These are challenges such as a financial strain, rising non-technical losses and aging 

equipment that requires maintenance or upgrades. Maintenance work and connection of 

customers to the grid require scheduled power outages to enable personnel to work safely 

on the power system equipment. These outages can mean a further loss of revenue if not 

optimally planned for. Not carrying out these outages and hence, not conducting 

maintenance, can lead to loss of revenue from frequent equipment failures, emergency work, 

etc. Development and deployment of limited strategies by distribution utilities in planning for 

utility equipment upgrades and maintenance can lead to utilities in worse financial situations. 

The literature review showed that there are limited studies on the application of state of the 

art AI techniques in South African load forecasting, with studies focusing on distribution 
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networks almost non-existent. It also became evident that recent state of the art deep 

learning techniques have not been applied in South African load forecasting. The problem 

statement, hence, led to the following key objectives: 

• Introduce and utilise state of the art techniques to optimise distribution operations 

• Achieve accurate distribution load forecasting to drive optimal maintenance planning 

How the novel contributions following these objectives were achieved will be discussed in 

Section 7.3.  

An AI literature review was presented. This included the introduction of related concepts such 

as learning and intelligence. The literature review also presented machine learning and deep 

learning applications in various areas such as robotics, medicine, natural language processing, 

power systems, power electronics and computer vision. The machine learning and deep 

learning techniques utilised in this study, together with their advantages and disadvantages, 

were presented. These techniques are ANFIS, OP-ELM, LSTM-RNN and restricted Boltzmann 

machine's DBN. 

An AI distribution network load forecasting system was proposed. The system had a number 

of modules, including the module dealing with the measurement and collection of the loading 

data, the module that determines the loading data’s integrity and the hybrid AI/deep learning 

load forecasting module. The experimental setup was presented together with the three 

performance measures that were used to measure the AI model’s performance. These 

performance measures are the following error measurements: sMAPE, MAE and RMSE. The 

statistical significance test to measure the significance in the performance of the different 

techniques was also presented. An AI data integrity analysis module was presented as a part 

of the proposed load forecasting system. 

Three case studies were conducted on three different South African distribution substations 

in this research. The substation used in the first case study (Substation A) is a distribution 

customer who redistributes power. While the second case study was conducted using an 

industrial large power user’s substation (Substation B). The third case study (Substation C) 

was also a power redistributor customer. In all three case studies, the machine learning and 

deep learning techniques’ load forecasting models were compared to each other across two 

main experiments, one with “cleaned” loading data and the other with uncleaned/raw data. 
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These two experiments had two sub-experiments, where one sub-experiment included 

temperature in the development of models, and the other one did not include temperature. 

Statistical significance tests were conducted to evaluate the difference in the performance of 

each techniques’ models.  

In the first two case studies, with Substation A and Substation B, it was found that the best 

performance was obtained with uncleaned loading data. It was also found that the best load 

forecasting model in both cases was a deep learning model. The best performing model in the 

first case study, a DBN, achieved an sMAPE of 3.93 %, MAE 3.07 % and RMSE of 4.29 %. An 

LSTM-RNN model achieved the best performance in the second case study. In the third case 

study, with Substation C, the machine learning techniques’ models with the lowest load 

forecasting error were those developed without the use of temperature. With the deep 

learning techniques these models with the lowest error where those developed with 

temperature as an input variable. Both machine learning and deep learning techniques 

achieved their lowest errors with models developed with cleaned-up loading data. LSTM-RNN 

achieved the lowest load forecasting errors in the third case study with an sMAPE of 0.2307 

(11.54 %), MAE of 0.0896 (8.96 %) and RMSE of 0.14065 (14.07 %). Deep learning techniques 

overall gave the higher load forecasting accuracies over the machine learning techniques. The 

cleaning up of loading data was also generally seen to not lead to improved load forecasting 

performance. The observation of the opposite behaviour in the third case study could be as a 

result of the drastic change in consumption that was observed, or a combination of this and 

the amount of zero load consumption data points this substation had.  

7.3. Assessment of Thesis’ Novel Contributions 

This research work’s novel contributions were presented in Section 1.8 to solve the challenges 

presented in Chapter 1. This section will present how each of these novel contributions was 

achieved.  

1. Introduction of a unique South African distribution networks load forecasting system that 

utilises state of the art machine learning and deep learning techniques 

 

The unique system for forecasting South African distribution network loads using state of the 

art machine learning and deep learning techniques was introduced in Section 3.3. In Chapters 
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4 to 6 load forecasting models were developed and tested using real South African 

distribution substations’ data. machine learning and deep learning techniques were found to 

be effective in forecasting South African distribution loads and can therefore be used to 

improve Dx maintenance planning. 

2. Introduction of the application of deep learning techniques in South African load 

forecasting  

 

Two deep learning techniques, DBN and LSTM-RNN were introduced in Section 3.4.3. and 

Section 3.4.4, respectively. The load forecasting performance of these two deep learning 

techniques on South African distribution networks was investigated via three different 

distribution substation case studies in Chapter 4, Chapter 5 and Chapter 6. The deep learning 

techniques were found to outperform machine learning techniques. 

3. A novel comparative study of sophisticated AI techniques’ performance on different 

South African distribution customers. The impact of data clean-up and the inclusion of 

geographical temperature on the performance of these techniques per customer type is 

also studied 

 

Section 4.4.5, Section 5.4.5., Section 6.4.5 and Section 6.5 compared the performance of 

machine learning and deep learning techniques for the three case studies in this research. 

These case studies were conducted on three different South African distribution customers. 

This comparison included an analysis of the impact of using loading data that has been 

cleaned up to remove dips versus data that was not modified before the development of the 

models on the model’s performance. It was found that the machine learning and deep 

learning techniques’ models generally achieved their highest accuracy when developed using 

the non-cleaned loading data. The impact of including the geographical temperature as a 

variable in the machine learning and deep learning models’ development was investigated 

and the findings presented in Section 4.4.5, Section 5.4.5., Section 6.4.5 and Section 6.5 . A 

summary of these findings was also presented in Section 7.2 of this chapter. The temperature 

impact on the performance of the different models was observed to depend on the machine 

learning /deep learning technique used and the customer type.  
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4. Introduction of a novel AI based process for determining distribution loading data 

integrity  

 

A novel AI based process to determine power consumption data integrity in distribution 

networks was presented in Section 3.2. The system was developed and then tested on South 

African distribution loading data. The model falsely classified 11 % of the data as having low 

data integrity and 3 % as undeterminable, in comparison to a manual analysis which included 

feeder balancing and loads cross-checking.  

The discussions in this section show that the novel contributions of this study were achieved. 

The system presented in this study can be extended to other distribution networks, such as 

power redistributors’ reticulation networks or industrial customers’ internal distribution 

networks, to improve maintenance planning. The application of machine learning/deep 

learning techniques in South African Dx load forecasting can lead to optimal planning of 

maintenance outages and thus achieve cost savings. There are areas that were identified 

during this study that presented opportunities in utility load forecasting and optimal 

maintenance planning. These areas were not pursued in this research, as they did not form 

part of the scope of this study and are presented in Section 7.4. 

7.4. Recommended Future Work 

There are opportunities related to this research work that were identified but not pursued in 

this research as they were not this study’s focus. It is recommended that these identified 

opportunities be pursued further.  

It is recommended that the machine learning and deep learning techniques studied here, be 

investigated for application in transmission networks load forecasting. The study should focus 

on integrating distribution networks’ load forecasting with transmission network load 

forecasting to achieve improved load forecasting.  

It was found that the adaptation of AI in load forecasting is almost non-existent in other 

African countries. It is therefore, also recommended that the feasibility of the techniques 

studied in this research be applied in other African countries and other developing countries. 
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The performance of machine learning and deep learning with the addition of other weather 

parameters, humidity, wind speed, rainfall, etc. should be investigated further for models that 

showed an improved performance with temperature in their development.  

Lastly, the use of optimisation techniques such as particle swarm and genetic algorithms for 

optimal maintenance scheduling using load forecasting as an input, should be investigated.  

7.5. Closing Remarks  

This study presented a novel South African power distribution networks AI load forecasting 

system. The study introduced recent state of the art machine learning and deep learning 

techniques in South African distribution load forecasting. Deep learning techniques that were 

introduced to South African load forecasting were found to outperform machine learning 

techniques in forecasting three different distribution substation’s loads. This study also 

investigated the impact of data ‘clean-up’ or modification during pre-processing. It was found 

that models developed without cleaning the loading data generally achieved lower errors 

than those developed with cleaned-up loading data in two of the three case studies. The 

impact of weather parameters were also investigated. This impact was studied by using 

temperature as an input variable in the development of machine learning and deep learning 

models. It was found that the impact of temperature depends on the customer type and the 

technique being used. However, it was observed that in general, machine learning techniques 

achieved lower errors without the inclusion of temperature and deep learning techniques 

reached lower load forecasting errors with the inclusion of temperature in the development 

of their models. This research’s findings and introduced system can be implemented by 

utilities to assist in maintenance planning and hence reduce cost. 
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