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ABSTRACT 

Amid growing concerns about climate change and non-renewable energy sources depletion, 

variable renewable energy sources (VRESs) are considered as a feasible substitute for 

conventional environment-polluting fossil fuel-based power plants. 

Furthermore, the transition towards clean power systems requires additional transmission 

capacity. Dynamic thermal line rating (DTLR) is being considered as a potential solution to 

enhance the current transmission line capacity and omit/postpone transmission system expansion 

planning, while DTLR is highly dependent on weather variations. With increasing the 

accommodation of VRESs and application of DTLR, fluctuations and variations thereof impose 

severe and unprecedented challenges on power systems operation. Therefore, short-term 

forecasting of large-scale VERSs and DTLR play a crucial role in the electric power system op-

eration problems. To this end, this thesis devotes on developing forecasting models for two large-

scale VRESs types (i.e., wind and tidal) and DTLR. 

Deterministic prediction can be employed for a variety of power system operation problems 

solved by deterministic optimization. Also, the outcomes of deterministic prediction can be 

employed for conditional probabilistic prediction, which can be used for modeling uncertainty, 

used in power system operation problems with robust optimization, chance-constrained 

optimization, etc. By virtue of the importance of deterministic prediction, deterministic prediction 

models are developed. Prevalently, time-frequency decomposition approaches are adapted to 

decompose the wind power time series (TS) into several less non-stationary and non-linear 

components, which can be predicted more precisely. However, in addition to non-stationarity and 

nonlinearity, wind power TS demonstrates chaotic characteristics, which reduces the predictability 

of the wind power TS. In this regard, a wind power generation prediction model based on 

considering the chaosity of the wind power generation TS is addressed. The model consists of a 

novel TS decomposition approach, named multi-scale singular spectrum analysis (MSSSA), and 

least squares support vector machines (LSSVMs). 

Furthermore, deterministic tidal TS prediction model is developed. In the proposed prediction 

model, a variant of empirical mode decomposition (EMD), which alleviates the issues associated 

with EMD. To further improve the prediction accuracy, the impact of different components of 

wind power TS with different frequencies (scales) in the spatiotemporal modeling of the wind farm 
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is assessed. Consequently, a multiscale spatiotemporal wind power prediction is developed, using 

information theory-based feature selection, wavelet decomposition, and LSSVM.   

Power system operation problems with robust optimization and interval optimization require 

prediction intervals (PIs) to model the uncertainty of renewables. The advanced PI models are 

mainly based on non-differentiable and non-convex cost functions, which make the use of heuristic 

optimization for tuning a large number of unknown parameters of the prediction models inevitable. 

However, heuristic optimization suffers from several issues (e.g., being trapped in local optima, 

irreproducibility, etc.). To this end, a new wind power PI (WPPI) model, based on a bi-level 

optimization structure, is put forward. In the proposed WPPI, the main unknown parameters of the 

prediction model are globally tuned based on optimizing a convex and differentiable cost function. 

In line with solving the non-differentiability and non-convexity of PI formulation, an 

asymmetrically adaptive quantile regression (AAQR) which benefits from a linear formulation is 

proposed for tidal uncertainty modeling. In the prevalent QR-based PI models, for a specified 

reliability level, the probabilities of the quantiles are selected symmetrically with respect the 

median probability. However, it is found that asymmetrical and adaptive selection of quantiles 

with respect to median can provide more efficient PIs. To make the formulation of AAQR linear, 

extreme learning machine (ELM) is adapted as the prediction engine. Prevalently, the parameters 

of activation functions in ELM are selected randomly; while different sets of random values might 

result in dissimilar prediction accuracy. To this end, a heuristic optimization is devised to tune the 

parameters of the activation functions. 

Also, to enhance the accuracy of probabilistic DTLR, consideration of latent variables in DTLR 

prediction is assessed. It is observed that convective cooling rate can provide informative features 

for DTLR prediction. Also, to address the high dimensional feature space in DTLR, a DTR 

prediction based on deep learning and consideration of latent variables is put forward.  

Numerical results of this thesis are provided based on realistic data. The simulations confirm the 

superiority of the proposed models in comparison to traditional benchmark models, as well as the 

state-of-the-art models.  
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 INTRODUCTION 

 General Context 

Ever growing global electricity demand, fossil fuel depletion crisis, global warming concerns, 

and environmental pollution issues necessitate looking for alternative substitutes for electricity 

power generation. Figure 1-1 demonstrates the greenhouse gas emissions (GHGEs) per person in 

different provinces of Canada in 2015  [2, 3]. As it is apparent from this figure, Saskatchewan 

province is ranked first in producing greenhouse gas. Besides, according to the statistics presented 

in [4], in 2015, Canada was amongst the top-10 countries in GHGEs.  

Since 2015, Canada, as a member of G7 [5], has aimed at cutting the GHGEs by terminating the 

use of fossil fuels by the end of the century [6]. The electricity sector is one of the major producers 

of greenhouse gases; therefore, as part of this plan, in 2016, Canada has announced phasing out 

the use of coal-fired electricity generation units by 2030 [7]. In support of this national transition 

to a cleaner electricity sector, provincial governments along with their electricity sectors have 

 

Figure 1-1: The greenhouse gas emission in Canada in 2015. 
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planned to ambitiously increase the penetration of renewable energy sources (RESs), including 

hydro, wind, tides, etc.  

Figure 1-2 displays an example of future power systems without coal-fired generation units. In 

such case, the electricity load, which is highly uncertain, should be predicted for the next day 

and/or next coming hours. Various load forecasting tools (i.e., [8-11]) have been developed in the 

literature to decrease the uncertainty of the electricity load values for the next hours. Based on the 

load forecasting output, the generation units which are usually far from load centers need to be 

economically scheduled such that the electricity demand is met. However, some degree of 

uncertainty in load forecast is inevitable. In this regard, operating reserve units need to be at 

disposal to meet the demand in the case that the demand is more than the forecasted values. On 

 

Figure 1-2: An example of the power system future scenario under high penetration of RESs. 
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the other hand, in the case that the demand is lower than the scheduled power generation, some 

generation units need to ramp down and decrease their generation.  

Changing the generation in a short period requires the high flexibility of the generation units. As 

shown in Figure 1-2, in the future scenario only gas-fired generation and hydropower plants are 

flexible, and their generation output can be dispatched in the case operating reserve or ramp down 

is required; while wind power generation and tidal power generation varies based on the weather 

[12, 13]; and therefore, they cannot be used as an operating reserve. Besides, due to the high level 

of uncertainty in weather and consequently wind and tidal power generation, economic scheduling 

of dispatchable and flexible generation units (i.e., hydro and gas-fired generation units) for the 

next day and/or coming hours become hardened. Accurate forecasting of the variable RESs 

(VRESs), e.g., wind and tidal, can substantially facilitate the power system operation problem by 

alleviating the VRESs uncertainty. Based on the aforementioned discussion, precise forecasting of 

available generation from VRESs is a key for future power systems operation.  

In generation scheduling, the capability of transmission lines in carrying the available power and 

delivering to load center is an imperative constraint. Generally, the large-scale VRESs are far from 

the load centers; therefore, transmission lines are required to connect them thereto. Transmission 

expansion planning (TEP) requires huge investments and time. Besides, it also brings several 

adverse environmental impacts. Prevalently, the transmission systems are designed conservatively. 

In this manner, the maximum allowable power carrying capability, known as static thermal line 

rating (STLR), is calculated such that the transmission line’s temperature does not exceed the 

maximum tolerable temperature under the worst weather conditions. Unlike the conservative 

STLR, a dynamic thermal line rating (DTLR) estimates the transmission line’s actual ampacity 

under the present weather conditions [14]. The additional exploitable headroom of the transmission 
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lines can accommodate the VRESs; and thus, the need for TEP can be postponed or even omitted. 

As DTLR is weather dependent, the surplus transmission line ampacity varies. To effectively 

consider the DTLR in generation scheduling, its prediction becomes of great importance. 

To recapitulate, with the increasing need for the integration of higher amount of VRESs and 

curtailing fossil fuel use in the electricity industry. Uncertainty in power system operation 

significantly increase and therefore results in unprecedented issues. Prediction of large-scale 

VRESs and DTLR can greatly address the power system operation problems. 

 Research Motivations 

Wind―one of the most distributed available energy sources―is increasingly exploited for 

electricity generation all around the world [15]. Due to more than 40% average reduction of the 

levelized cost of energy (LCOE) of renewable energy generation during the last five years, 

nowadays, wind provides electricity competitively comparable with fossil-fuel-fired generation 

units in terms of overall cost [16]. Consequently, in several countries, such as Denmark, Spain, 

etc., wind directly participates in the market. Furthermore, several other countries, including 

Canada, have already considered the wind as a valuable and clean alternative, and have 

substantially added wind power to their electricity supply systems. As an example, in the last five 

years, the average growth in wind power generation capacity in Canada has an average of 23% 

increase per year [17]. In 2016, Canada invested $1.5 B in the wind power industry [18]. Wind 

energy provides approximately 5% of Canada’s total electricity and is projected to generate 20% 

or more of the electricity demand by 2025. Also, SaskPower set an ambitious goal of wind power 

penetration increment to 30% by 2030.  
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In addition to wind harnessing, marine RESs (MRESs) harvesting has recently grabbed 

remarkable attention across governments and power industries in the United States, Canada, 

Australia, France, Ireland, China, and South Korea [19]. Although the MRESs technology is still 

in developing stage, Ocean Energy Systems (OES) projects the potential of developing 748 GW 

installed MRESs by 2050 [20]. Among MRESs, tidal energy is of the main interest in Canada due 

to several potential sites [19]. The Bay of Fundy, located in Canada, has the highest tides in the 

world, it is assessed that more than 2,500 MW can be extracted from the 8,000 MW of the kinetic 

resource in the Bay of Fundy [21]. In this regard, Fundy Ocean Research Center for Energy 

(FORCE)―a not-for-profit corporation―is attracted $239.6 M funding from both public and 

private sectors for establishing research platform, site characterization and monitoring, and in-

creasing the tidal energy capacity. In 2014, FORCE created the largest transmission capacity (64 

MW) for tidal power in the world.  

With the enormous investments in wind and tidal energy generation, unprecedented challenges 

are faced by power systems. These are mainly due to uncertainty and variability of the output 

generation of these VRESs, such as wind and tidal. However, employing forecasting tools and 

using their outputs as the input of the generation scheduling optimization problem can substantially 

alleviate the emerged issues [22]. 

With the electricity demand growth as well as the extensive VERSs exploitations, transmission 

lines, which are operated near their STLR constraints, may not be able to transfer the electric power 

due to transmission line congestions. In such a case, there are two main solutions including 

transmission system expansion and DTLR. The former requires vast investments and time; also, it 

causes several environmental concerns, while the latter can lead to an increment of the current 

transmission lines’ ampacity and therefore delaying the need for transmission expansion with 
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minimum costs. However, DTLR highly varies based on meteorological variables, and therefore, 

the maximum available transmission line capacity is uncertain.  

Increasing the penetration of VRESs, including wind and tidal, surges the power systems 

uncertainty. On the other hand, employing the DTLR for meeting the ever-growing demand 

through exploiting VRESs intensifies the uncertainty in power systems. The progressively growing 

uncertainty can lead to several challenges in both power systems operation and planning problems. 

Forecasting tools can provide estimations of the available generation from VRESs and available 

ampacity of transmission lines. Employing the forecasting tools outcome as the input of the 

operation optimization problems can markedly decrease the uncertainty in VRESs and DTLR. The 

cost of VRESs error in forecasting manifests depending on power system operation structures. In 

a study conducted by Xcel Energy1 [23], it is concluded that reduction of the normalized mean 

absolute error (NMAE) by one percent would have saved over $1 million in Public Service of 

Colorado in 2008 [24]. Besides, the prediction model which is preferred by power producers and 

system operators (ISOs) are widely different from each other. For instance, some system operators 

like the Electric Reliability Council of Texas (ERCOT) use historical data of prediction error 

statistics to determine the non-spinning reserve2 requirements. While some others like Sacramento 

Municipal Utility District (SUMD) in CA, USA requires spatial and temporal variability of VRESs 

for energy market and dispatch decisions [16]. Therefore, the need for more accurate prediction 

models and different types of prediction models are the main motivations of this thesis.  

                                                 

1 Xcel Energy currently manages about 7000 megawatts of installed wind power. 

2 The non-spinning reserve, which is also known as supplemental reserve, is the ancillary generating capacity that is not currently offline and 

disconnected from the electric power grid but can be brought online within a short period of time. In an isolated electric power grid, non-spinning 
reserve is supplied by fast-start generators. While, in an interconnected electric system, the non-spinning reserve might be the additional power 
which can be imported from other electric power grids.  
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Based on the forecast horizon, prediction models can be categorized into four groups, comprising 

long-, medium-, short-, and very short-term prediction [12]. Long- and medium-term prediction 

models with horizons more than 6 hours ahead are employed for maintenance scheduling, reserve 

planning, unit commitment, etc., while short- and very short-term prediction models are vital for 

economic dispatch, electricity market clearing, regulation and control actions, etc. Physical models 

are preferred for prediction horizons longer than 6 hours ahead; however, statistical models are 

utilized for shorter horizons due to their low computational complexity and high accuracy. Due to 

the high importance of short-term prediction horizons, this work zeros in on developing a statistical 

prediction for short horizons. 

 Research Objectives and Scope 

The main objective of this research is to provide proficient short-term prediction 

models required for optimal operation of electric power system in high penetration of 

large-scale VRESs, specifically wind and tidal. The objective of this Ph.D. study can 

be apportioned to six sub-objectives.  

The first is to develop accurate deterministic prediction models which are capable of predicting 

the wind power and tidal energy. This deterministic prediction can be used for a range of power 

system problems, such as economic dispatch [25], energy storage sizing and planning [26], etc. 

The second is to develop wind power prediction (WPP) considering the spatiotemporal correlation 

among wind farms. Usually, several wind farms may be situated in a region; and therefore, the 

reflection of the correlation of wind farms power generation during the last samples with the target 

wind farm output in the next samples in the prediction model can enhance the prediction accuracy. 

The third is to address probabilistic prediction tools for robust [27] or interval optimization-based 
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[28] power system problems. The fourth is to develop DTLR forecasting model which facilitates 

efficient integration of large-scale VRESs to the electric power systems.  

In line with the first sub-objective, in Chapters 0 and 3-, two deterministic prediction models 

are developed for wind and tidal prediction, respectively. According to the literature, wind power 

time series (TS) possesses nonlinearity and nonstationarity, which are the main culprits for 

inaccurate prediction of wind power. Signal processing approaches have been recently used to 

decompose the wind power TS into several less non-stationary and non-linear components which 

can be predicted more efficiently. Some recent studies reveal that wind power TS contains chaotic 

components. chaos is the property of some types of nonlinear system and results in wild and 

random looking patterns in TS. The existence of strong chaos in wind power TS can lead to 

inaccurate prediction. In Chapter 4-, the importance of considering different components with 

different frequency ranges (scales) in spatiotemporal wind power prediction modeling is analyzed, 

and a multiscale spatiotemporal prediction model is developed towards realizing the second sub-

objective. To facilitate the power system operators with PI models which are of great importance 

for robust or interval-based power system optimization, prediction models for wind and tidal are 

respectively developed in Chapters 5-6- and 6 as the third sub-objective. In Chapter 7-, a DTLR 

probabilistic forecasting is proposed towards realizing the fourth sub-objective.   

In this thesis, real-world data are used to develop and validate prediction models. The data are 

mainly available for the public. For wind power generation prediction, the data from AESO, 

Sotavento wind farm (located in Spain), and Saskatchewan wind farms, are used. While for tidal 

prediction due to unavailability of historical tidal power data, the influential factor to tidal power 

generation, including tidal level (TL), tidal current speed (TCS), and tidal current direction (TCD), 

are predicted. In the literature (e.g., [29, 30]), models are developed to estimate the tidal power 
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based on the mentioned factors. To develop tidal prediction models, the TL data from Port Dover 

(located in Ontario, Canada) and TCS and TCD data from Bay of Fundy (located in Nova Scotia, 

Canada) and Shark River Entrance (located in New Jersey, US) are used. Also, the DTLR model 

is developed based on the data related to M2 met tower in National Wind Energy Center (NWEC) 

[31]. 

 Thesis Contributions 

To achieve the objectives stated in Section 1-3, several contributions have been made to the 

related literature. A summary of these contributions is illustrated in the following. However, in 

each chapter of this manuscript-based thesis, these contributions are further elaborated.  

The first contribution of this thesis is to develop a multi-step deterministic prediction model 

for wind power forecasting. This multi-step prediction model can be used for a range of power 

system problems, e.g., economic dispatch [32], energy storage planning and coordination [33], 

etc. The proposed prediction model consists of two main stages, including decomposition, and 

prediction. In the decomposition stage, a TS decomposition framework, based on considering 

the non-linearity, non-stationarity, and chaosity of the wind power TS. Prevalently, wind power 

TS is decomposed into several components using the decomposition tools, such as wavelet 

decomposition (WD), empirical mode decomposition (EMD), etc. Afterward, the decomposed 

components, which are less non-linear and non-stationary, are used to develop the prediction 

models. The existence of strong chaotic components can deteriorate the predictability of a TS. 

In recent literature, the presence of chaotic components in the decomposed wind power TS 

components are shown; however, no decomposition framework has been proposed to deal with 

these chaotic components, thus far. To this end, In Chapter 0 [12], I propose a decomposition 
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framework based on ensemble EMD (EEMD), chaotic TS analysis, and singular spectrum 

analysis (SSA).  To realize the multi-step prediction, in the prediction stage, iterative prediction 

strategy is devised for non-chaotic components. While the chaotic components are predicted 

using direct prediction strategy, which prevents from accumulating the prediction error in 

predicting the chaotic components.  

As the second contribution, a tidal energy prediction is proposed which considers the non-

stationarity and non-linearity of the TCS and TCD TS. In the recent literature, it is shown that 

the TCS and TCD TS cannot be represented by a set of periodic components, and therefore, the 

TCD and TCS are non-stationary [34]. Besides, it is shown that TCS and TCD are nonlinear, 

and thus, linear prediction models, such as autoregressive moving average (ARMA), are not 

apposite for TCS and TCD prediction [34]. To address these issues, first, a decomposition 

approach named improved complete EEMD adaptive noise (ICEEMDAN), is proposed. 

ICEEMDAN is employed to decompose the TCS/ TCD TS into several less non-stationary 

components. The main reason behind proposing ICEEMDAN is to address the issues related to 

EEMD. Traditionally, to perform EEMD different realizations of the white noise are added to 

the original TS (i.e., TCS and TCD) [13]. However, using various realizations of the noise with 

the original TS can result in various extracted components for each noise associated TS; thus, 

the final components, obtained from EEMD, might vary for different sets of noise. Secondly, 

adding various noises can result in a different number of EMD components; therefore, the final 

averaging process for finding EEMD components becomes problematic. To further improve the 

prediction accuracy, a localized prediction model is developed. In the proposed prediction 

model, unlike the thus far TCD and TCS prediction, the prediction model is trained and 

developed based on the feature input vectors and their corresponding target, which are nearest 
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to the test feature input vector. To this end, K-nearest neighbor (KNN) is employed to identify 

the training set. Least square support vector machine (LSSVM), which has several advantages 

compared to the other prediction engines (e.g., neural networks, support vector machine, etc.) 

is employed to the TCS and TCD for the first time. To modify the prediction error, an error 

correction stage, consisting of an ensemble of extreme learning machines (ELMs), is developed. 

As the third contribution, a multiscale spatiotemporal wind power prediction model is 

developed. In this prediction model, the correlations of wind farms located in the vicinity of the 

target wind farms are considered, using wavelet decomposition and a mutual information-based 

feature selection (FS). In this prediction model, first, the wind power TS of different wind farms 

are decomposed into different frequency ranges (scales). Then, using FS, the most relevant 

scales of different wind farms in different time lags are considered as the input of the prediction 

engine. Afterward, localized prediction models are developed to predict the next value of each 

component, and the wind power generation in the next sample is predicted by aggregation of 

predicted values of all components. 

As the fourth contribution, a WPP interval (WPPI) for short-term prediction is proposed to 

provide information about the wind power generation uncertainty. This WPPI can be employed 

as the input of different power system regulation tasks. Tuning the prediction engine is one of 

the most imperative steps in developing a WPPI. The prediction engine parameters are tuned 

using a cost function, which needs to be optimized. Most of the thus far proposed WPPI models 

are based on non-differentiable and non-convex cost functions, which make the use of heuristic 

optimization unescapable. However, heuristic optimizations are prone to be trapped in local 

solutions. Besides, with increasing the number of prediction parameters, which need to be 

tuned, finding the optimal prediction engine parameters by heuristic optimizations become 
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more troublesome. To this end, I propose a bi-level WPPI, in which the upper-level controls 

the quality of the WPPI based on the power system operator preference using few 

hyperparameters. While the lower-level tunes the ELM parameters via a differentiable and 

convex optimization using global optimization techniques.  

As the fifth contribution, a tidal prediction interval (PI) for short-term prediction is put 

forward. This PI model is developed for TL, TCS, and TCD prediction, which are key factors 

in tidal power generation by means of different technologies. The proposed model is based on 

a bi-level optimization formulation, in which ELM prediction engine and quantile regression 

(QR) are employed. The quantile probabilities are asymmetrically and adaptively chosen in the 

upper-level optimization, which assesses the quality of the PIs. Additionally, the training 

process of ELM is amended by adaptively selecting ELM’s hidden neurons via upper-level 

optimization. The lower-level problem attains ELM’s output weighting coefficients by linear 

programming of QR. The heuristic optimization, consisting of gray wolf optimizer and simplex 

method, is designed to equip the NPI with high exploration and exploitation capabilities in the 

upper-level optimization. 

As the sixth and the last contribution, a probabilistic DTLR is introduced for short-term power 

system operation problems. The proposed DTLR PI model benefits from new predictors which 

can provide valuable information about DTLR by representing the highly nonlinear and 

complex relation of DTLR values with meteorological variables. Besides, in the DTLR PI, for 

the first time, a deep neural network (DNN) is adapted as the prediction engine. Stacked 

denoising autoencoder (SDAE) is employed for feature extraction and dimension reduction. 

The DNN is composed of recurrent neural networks (RNNs) which are more suitable in TS 
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forecasting. A novel cost function, defined to facilitate the training of the prediction model for 

probabilistic forecasting, is another valuable feature of this work.  

 Thesis Organizations 

The rest of this manuscript-based thesis is as follows.  

Chapter 0 is titled “A novel multi-step short-term wind power prediction framework based on 

chaotic time series analysis and singular spectrum analysis.” In this Chapter, the proposed multi-

step deterministic wind power prediction, which is published in IEEE Transactions on Power 

Systems, is described. Mr. G. C. D. Price is a co-author of this paper, and he provided me with 

invaluable technical comments. Also, he helped me to evaluate the proposed model using the 

Centennial wind power generation. I developed and implemented the model, performed the 

simulation, and analyzed the results, along with the paper write-up 

Chapter 3- is titled “An advanced multistage multi-step tidal current speed and direction 

prediction model.” This chapter presents the proposed deterministic prediction for TCS and TCD, 

which has been published as an article in Proceedings of the Electric Power and Energy Conference 

(EPEC), Saskatoon, Saskatchewan, CA, October 2017. Mr. Khorramdel and Mr. Zare assisted me 

in preparing the presentation and programming the forecasting model in MATLAB software. I 

developed and implemented the model, performed the simulation, and analyzed the results, along 

with the paper write-up 

Chapter 4- titled “A spatiotemporal wind power prediction based on wavelet decomposition, 

feature selection, and localized prediction.” This chapter demonstrates the multiscale 

spatiotemporal wind power prediction modeling, which has been published as an article in 

Proceedings of the EPEC, Saskatoon, Saskatchewan, CA, October 2017. Ms. Y. Chen, Mr. B. 
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Khorramdel, and Mr. L. P. Mao assisted me in developing the model in MATLAB and preparing 

the presentation. I developed and implemented the model, performed the simulation, and analyzed 

the results, along with the paper write-up. 

Chapter 5- titled “Very short-term wind power prediction interval framework via bi-level 

optimization and novel convex cost function.” This chapter describes the proposed wind power PI, 

which has been submitted to IEEE Transactions on Power systems for the third round of revision. 

Dr. Mazhari as the co-author provided invaluable comments and suggestions during the 

development of the model. I developed and implemented the model, performed the simulation, 

and analyzed the results, along with the paper write-up. 

Chapter 6- is titled “Tidal current and level uncertainty prediction via adaptive linear 

programming.” This chapter demonstrates the proposed tidal PI, which has been published in IEEE 

Transactions on Sustainable Energy. Dr. Mazhari as the co-author provided invaluable comments 

and suggestions during the development of the model. I developed and implemented the model, 

performed the simulation, and analyzed the results, along with the paper write-up. 

Chapter 7- is titled “A secure deep probabilistic dynamic thermal line rating prediction.” This 

chapter demonstrates the proposed DTLR probabilistic prediction, which is going to be submitted 

to IEEE Transactions on Power Systems. Dr. Mazhari as the co-author provided invaluable 

comments and suggestions during the development of the model. Dr. S. B. Ko provided priceless 

comments on presentation of the proposed model. I developed and implemented the model, 

performed the simulation, and analyzed the results, along with the paper write-up. The conclusions 

of this thesis are provided in Chapter 8-.  
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 A NOVEL MULTI-STEP SHORT-TERM WIND POWER 

PREDICTION FRAMEWORK BASED ON CHAOTIC TIME SERIES 

ANALYSIS AND SINGULAR SPECTRUM ANALYSIS3 

Decomposition methods are widely applied as a prestage of wind power prediction (WPP) to 

reduce the prediction errors caused by the nonstationarity and nonlinearity of wind power time 

series (TS); however, they cannot address the issues posed by the chaotic behavior of wind power 

TS. This paper, therefore, proposes a novel decomposition approach to take the chaotic nature of 

wind power TS into account and to improve WPP accuracy. In this decomposition approach, as a 

primary step, the wind power TS is separated into several components with different time-

frequency characteristics (scales) by means of ensemble empirical mode decomposition. Chaotic 

TS analysis is then applied to determine which components are chaotic, and then singular spectrum 

analysis (SSA) is applied thereto. This multi-scale SSA (MSSSA) can maintain the general trend 

of chaotic components, which become smoother by eliminating extremely rapid changes with low 

amplitudes, and thus several steps ahead WPP with higher accuracy can be realized. Following the 

proposed decomposition, a novel short-term WPP method comprised of localized direct and 

iterative prediction is proposed to perform multi-step prediction for the chaotic and nonchaotic 

components of MSSSA, respectively. The proposed framework is finally validated using historical 

data related to overall wind power generation for Alberta (Canada), the Sotavento wind farm 

(Spain), and Centennial wind farm in Saskatchewan (Canada). 

                                                 

3 © 2018 IEEE. Reprinted, with permission from [12] N. Safari, C. Chung, and G. Price, “A novel multi-step short-term wind power 
prediction framework based on chaotic time series analysis and singular spectrum analysis,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 590-601, 
Jan. 2018. 
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 Introduction 

Duo to high intermittency and non-dispatchability, large-scale wind power integration creates 

new challenges in power system operation, but these can be significantly alleviated by short-term 

wind power prediction (WPP) [35]. Existing WPP methods are mainly based on three types of 

prediction models: physical models [36], statistical models [37, 38], and hybrid models (combining 

aspects of physical and statistical models) [39, 40]. Physical models are based on detailed physical 

descriptions of terrain and wind farm layout as well as simulation results obtained from numerical 

weather prediction (NWP), while statistical models only require time series (TS) of historical data 

such as wind speed and wind power [38]. Due to the high computational cost of NWP, physical 

models based on NWP are not preferred for short-term WPP (≤ 6-h ahead) [35]. Because hybrid 

models also require results of NWP, their application to short-term WPP is also limited. In contrast, 

statistical WPP models have lower cost and complexity and therefore can be used for shorter-term 

WPP [37, 38].  

Generally, statistical WPP can be classified into two types: indirect and direct prediction. In 

indirect prediction, wind speed values are first predicted and then mapped into wind power by a 

parametric or non-parametric wind power curve (e.g., [38, 39, 41, 42]). An accurate wind power 

curve requires data for several environmental and meteorological variables [43], but such variables 

have not been considered in indirect prediction [44]. Consequently, the indirect prediction has 

limited accuracy. In direct prediction, wind power is directly predicted from historical data (e.g., 

[37, 45, 46]), resulting in greater accuracy [44, 47].  

Most recent direct statistical WPP methods [37, 46, 48-50] decompose the TS into several 

components with different characteristics [51] as a pre-stage of prediction; this remedies the 
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inaccuracy originating from the non-linearity and non-stationarity of the original TS. In [46], a 

morphological-based decomposition approach for separating wind power TS into a mean trend 

component and a stochastic component is proposed. In [37, 49], the effectiveness of the wavelet 

transform (WT) decomposition method is assessed. Recently, a few studies in WPP have employed 

empirical mode decomposition (EMD) variants [48, 50]. Generally, WT decomposition requires 

some prior knowledge and assumptions about the TS to find an appropriate mother wavelet, while 

EMD is a data-driven heuristic method that does not need initial assumptions about TS shape prior 

to decomposition [52]. A comprehensive comparison of the performance of EMD vs. WT variants 

shows the superiority of the former [50]. Ensemble EMD (EEMD) has the best performance in 

terms of improvement in WPP accuracy compared to other EMD variants and WT [50]. 

Additionally, the low computational complexity of EEMD has been theoretically demonstrated 

[53], confirming its suitability in terms of a low computational burden for short-term WPP. 

Although decomposition methods can deal with the non-linearity of the components to a large 

extent, the components obtained from wind power TS can still be of a chaotic nature, which can 

lead to prediction errors [54]. In a chaotic component, some subcomponents highly fluctuate in 

unpredictable patterns with low amplitudes [55, 56]. Singular spectrum analysis (SSA) can remove 

highly fluctuating and low amplitude variations from the chaotic TS, and therefore significantly 

improve the accuracy of the prediction [56]; however, this has not yet been applied to WPP as a 

supplementary tool for decomposition processes to handle the chaotic behavior of wind power TS. 

After decomposition, various prediction methods can be used for WPP. Machine learning tools 

including neural networks (NNs) and support vector machines (SVMs) have recently been 

employed for this purpose due to their efficiency in predicting non-linear TS (e.g., [46, 57]). In 

[57], a comparative study of the conventional statistical approach known as autoregressive 



 

18 

 

integrated moving average (ARIMA) and NNs shows the superiority of the latter approach. 

Recently, a modified SVM, known as least squares-SVM (LSSVM), was successfully employed 

in WPP [46, 58]. LSSVM demonstrates better performance than SVM and NNs in terms of 

computational burden, simplicity, and the probability of convergence to global minima [58].  

For all of the methods mentioned above, the prediction model should first be trained. Global 

[58] and localized [46] training are two possible training procedures that can be utilized. Localized 

prediction with an on-line training process, which makes use of historical data points that are very 

similar to the most recent data points, has superior performance in terms of prediction accuracy 

compared to global fitting approaches [46, 59]. Localized prediction focuses only on predicting 

the upcoming output from the current data point; hence, the model should be kept updated by 

historical data points with the smallest Euclidean distance to the most recent data points.  

According to prediction output, statistical WPP models proposed in the literature can be 

categorized into probabilistic prediction  [60], prediction interval [45], and deterministic prediction 

[46-52]. Probabilistic prediction and prediction interval are the extension of deterministic WPP to 

model the uncertainty in prediction [61]. Having information about WPP uncertainty is very useful. 

However, system operators need probabilistic or interval WPP results accompanied by 

deterministic WPP to make an optimal decision [62]. Deterministic WPP can be interpreted as the 

most likely wind power [27]. The application of deterministic WPP has been reported for short-

term power system security [35], various unit commitment strategies [63], energy storage sizing 

[26], etc. In addition, a deeper understanding of the chaotic behavior of TS, such as wind power, 

can significantly reduce the prediction uncertainty and make the predicted value closer to the actual 

value [59]. For the aforementioned reasons, this paper aims at developing deterministic WPP 



 

19 

 

framework and improving prediction accuracy by proposing a deterministic chaotic time series 

analysis-based WPP.  

Multi-step WPP is crucial for multi-step optimization problems such as unit commitment [64]. 

Several machine learning algorithms can be used in multi-step prediction; however, only a limited 

number of studies have been carried out for short-term multi-step WPP [46]. Multi-step prediction 

can be divided into direct prediction and iterative prediction. In the latter approach, the predicted 

values from previous steps are used to predict the next step; in the former approach, the predicted 

values at different steps are only calculated based on historical data. Iterative prediction is 

appropriate for predicting multi-step non-chaotic TS while multi-step direct prediction is suitable 

for chaotic TS [59, 65]. Indeed, iterative prediction can lead to significant accumulative error in 

predicting chaotic components [59]; however, hitherto no WPP has employed direct and iterative 

prediction methods to predict chaotic and non-chaotic components, respectively. 

From the above discussion, the main purpose of this paper is to consider both the chaotic and 

non-chaotic natures of wind power TS. Considering the distinguishing characteristics of chaotic 

and non-chaotic components in both decomposition and prediction stages can result in a significant 

increase in WPP accuracy. In this regard, a novel decomposition stage based on the proposed 

multi-scale singular spectrum analysis (MSSSA) is developed. The MSSSA is used to decompose 

the wind power TS. Utilizing MSSSA alleviates the issues related to wild patterns in wind power 

TS. MSSSA consists of three main building blocks: EEMD, chaotic TS analysis, and SSA. EEMD 

is first applied to wind power TS, resulting in decomposition of TS into several components 

(scales). Then, by employing chaotic TS analysis, chaotic components (scales) are detected. To 

increase the predictability of the chaotic components, the wildest and most unpredictable 

subcomponents in each scale (component) are recognized based on SSA. Thereafter, the chaotic 
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components are processed to make them smoother and more predictable. Hence, this MSSSA 

framework is different from the decomposition-based WPP models presented thus far. After the 

decomposition stage, a localized LSSVM-based framework is employed and a multi-step short-

term WPP method is proposed that comprises localized direct and iterative prediction of chaotic 

and non-chaotic components, respectively. Using direct multi-step prediction helps to avoid the 

accumulated error in the prediction of chaotic components, while iterative multi-step increases the 

accuracy of the prediction for non-chaotic components. The proposed framework that comprises 

MSSSA and LSSVM is herein named MSSSA-LSSVM.  

To see the effectiveness of the proposed WPP in the prediction of aggregated wind power 

generation, as well prediction of wind farm generation, data from Alberta Electric System Operator 

(AESO), in Canada, Sotavento wind farm located in Spain, and Centennial wind farm, in 

Saskatchewan, Canada, are reported. Several well-established WPP models have been employed 

to confirm the superiority of the proposed MSSSA-LSSVM. 

The remainder of this paper is organized as follows. Section 2-2 presents the proposed 

decomposition method. Section 2-3 introduces the proposed multi-step WPP. Data, evaluation 

indices, and simulation results of the proposed MSSSA-LSSVM framework are discussed in 

Section 2-4. Section 2-5 concludes the paper.  

 Decomposition Method 

This section first provides a brief overview of EEMD, chaotic TS analysis, and SSA, and then 

introduces the proposed decomposition method in detail.  
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 EEMD 

EEMD is obtained from an ensemble of NE (number of generated trials from combinations of 

the original TS and white noises) EMDs. Hereafter, we assume 𝑥(𝑛𝑇𝑆) is the TS of wind power, 

n is the sample number with 𝑇𝑆 sampling time, and N is the total number of available samples. 

Decomposing the wind power TS with EEMD can be summarized according to the following steps. 

A detailed explication can be found in [66]. 

1) Add white noise (𝑤𝑗(𝑛𝑇𝑆), 𝑗 = 1,… ,𝑁𝐸) to the original TS (𝑥(𝑛𝑇𝑆)) to construct 𝑁𝐸 trials 

of TS (𝑥(𝑛𝑇𝑆)) as follows: 

𝑥𝑗(𝑛𝑇𝑆) = 𝑥(𝑛𝑇𝑆) + 𝑤𝑗(𝑛𝑇𝑆) (2-1) 

then perform Steps 2-6 for every trial (𝑗) to find corresponding EMD components. 

2) Find the local maxima and local minima of 𝑥𝑗(𝑛𝑇𝑆). 

3) Interpolate the identified local maxima and minima points to find the upper envelope ( 

𝑈𝐸𝑗(𝑛𝑇𝑆)) and lower envelope (𝐿𝐸𝑗(𝑛𝑇𝑆)) of 𝑥𝑗(𝑛𝑇𝑆) respectively. 

4) Calculate the difference between 𝑥𝑗(𝑛𝑇𝑆)  and the mean of 𝑈𝐸𝑗(𝑛𝑇𝑆)  and 𝐿𝐸𝑗(𝑛𝑇𝑆)  as 

follows: 

𝑚𝑗(𝑛𝑇𝑆) = 𝑥𝑗(𝑛𝑇𝑆) −
𝑈𝐸𝑗(𝑛𝑇𝑆) + 𝐿𝐸𝑗(𝑛𝑇𝑆)

2
 (2-2) 

5) Repeat Steps 2-4 with 𝑚𝑗(𝑛𝑇𝑆) instead of 𝑥𝑗(𝑛𝑇𝑆), until 
𝑈𝐸𝑗(𝑛𝑇𝑆)+𝐿𝐸𝑗(𝑛𝑇𝑆)

2
≤ 𝜀 (where 𝜀 is 

the acceptable error and should be close to zero), then keep 𝑐𝑗
1(𝑛𝑇𝑆) = 𝑚𝑗(𝑛𝑇𝑆) as the first 

EMD component of𝑥𝑗(𝑛𝑇𝑆). At this stage, the residue 𝑟𝑗
1(𝑛𝑇𝑆) = 𝑥𝑗(𝑛𝑇𝑆) − 𝑐𝑗

1(𝑛𝑇𝑆) is then 

calculated. 
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6) Given 𝑐𝑗
𝑖(𝑛𝑇𝑆) and 𝑟𝑗

𝑖−1, for 𝑖 > 1 then 𝑐𝑗
𝑖+1(𝑛𝑇𝑆) can be calculated by setting 𝑟𝑗

𝑖(𝑛𝑇𝑆) =

𝑟𝑗
𝑖−1(𝑛𝑇𝑆) − 𝑐𝑗

𝑖(𝑛𝑇𝑆)  and repeating Steps 2-5 with 𝑥𝑗(𝑛𝑇𝑆)  replaced by 𝑟𝑗
𝑖(𝑛𝑇𝑆) . 

Theoretically, the above iteration should continue until the residue becomes monotonic; 

however, different stoppage criteria are required to find the appropriate number of necessary 

components [51, 66]. In this paper, the number of required components (𝑀) is selected based 

on a tradeoff between computational burden and monotonicity. Based on this process, 

𝑥𝑗(𝑛𝑇𝑆) can be decomposed into different EMD components as follows: 

𝑥𝑗(𝑛𝑇𝑆) =∑𝑐𝑗
𝑖(𝑛𝑇𝑆) + 𝑟𝑗

𝑀(𝑛𝑇𝑆)

𝑀

𝑖=1

 (2-3) 

7) Calculate the components of EEMD (𝑐𝑖(𝑛𝑇𝑆)) by averag-ing the respective components 

(𝑐𝑖(𝑛𝑇𝑆)) of all trials. 

Finally, 𝑥(𝑛𝑇𝑆) can be reconstructed as follows: 

𝑥(𝑛𝑇𝑆) =∑𝑐𝑖(𝑛𝑇𝑆) + 𝑟
𝑀(𝑛𝑇𝑆)

𝑀

𝑖=1

 (2-4) 

where 𝑟𝑀(𝑛𝑇𝑆) is the residue and calculated by averaging 𝑟𝑗
𝑀(𝑛𝑇𝑆), 𝑗 = 1,… ,𝑁𝐸. Notably, 

the amplitude of the residue is very small and hence is negligible in WPP. 

 Chaotic TS Analysis 

Chaotic TS has wild and non-periodic behaviors [59] and its chaosity can be determined by its 

corresponding maximal Lyapunov exponent (MLE) (Appendix A). To find the MLE, the TS must 

first be embedded in a multidimensional space to form the trajectory matrix. This can be done with 

the method of delays (MOD) [67]. In such an embedding, each point in multidimensional space is 
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a vector whose components are the delayed version of the TS. In this multidimensional space, 

Lyapunov exponents determine the exponential convergence or divergence of nearby points, and 

MLE is the largest Lyapunov exponent that shows the largest convergence or divergence. If the 

sign of MLE is positive, then the TS is recognized as a chaotic TS; otherwise, it is non-chaotic. A 

detailed discussion of the MLE, as well as the program for calculating it, is available in [67]. 

 SSA 

A TS is comprised of several intrinsic components with different time-frequency characteristics 

[55]. SSA is a non-parametric spectral extraction method that can be used to separate the general 

trend, fluctuations, and noise components in a TS. First, to find components of the TS by means 

of SSA, the TS is mapped into a multidimensional space by the construction of the trajectory 

matrix. Then, eigenvalues and corresponding eigenvectors of the trajectory matrix are calculated 

by means of singular value decomposition. Using eigenvectors, the components in the trajectory 

matrix corresponding to every eigenvalue can be extracted. Next, in a grouping stage, the 

components which share some similarity are grouped together. In the last step, using diagonal 

averaging [55], the grouped components should be mapped from reconstructed multidimensional 

space to form a TS.  

The smallest eigenvalues in SSA correspond to components with the smallest amplitudes, 

highest fluctuations, or noise, which are called non-informative (as they do not provide useful 

information and distort the main trend of the TS); the largest eigenvalues (dominant eigenvalues) 

are related to the highest amplitudes and smallest variations (i.e., the general trend of the TS) [55].  

Using the advantages of SSA, the components obtained from SSA can be grouped into 

informative and non-informative groups. In other words, SSA can reconstruct the TS with 



 

24 

 

informative components (large eigenvalues), thereby increasing the prediction accuracy. Further 

information on SSA can be found in [56]. 

 Proposed MSSSA Decomposition Method 

Figure 2-1 shows the flowchart of the proposed MSSSA decomposition method for obtaining its 

ith component. The detailed procedure of the proposed method is also provided as follows: 

1) Apply EEMD to find components related to wind power TS by following the procedure 

described in Section 2-2-1.  

2) Identify the chaotic and non-chaotic components based on chaotic TS analysis as 

explained in Section 2-2-2.  

3) Carry out SSA as described in Section 2-2-3 for any chaotic components, while non-chaotic 

components remain unchanged. To perform SSA for a chaotic component, the 

corresponding trajectory matrix by means of MOD is constructed. If 𝑐𝑖(𝑛𝑇𝑆) in Eq. ((2-4) 

is a chaotic component, the corresponding trajectory matrix can be defined as 

𝑪𝑖 = [𝐶1
𝑖 𝐶2

𝑖 ⋯ 𝐶𝑙
𝑖 ⋯ 𝐶𝑚

𝑖 ]𝑑×𝑚
𝑇  (2-5) 

where 𝑑 is the number of lags (or embedding dimension) and its appropriate value [54] can 

be found based on Cao’s method [68]. Cao’s method is a computationally efficient way to 

find the minimum number of time-delay elements (i.e., the number of lags) required to 

represent the TS in a multidimensional space if every row of the trajectory matrix in Eq. 

(2-5) is considered as a point in that space (Appendix B). In Eq. (2-5), 𝑚 = 𝑁 − 𝑑 + 1and 

𝐶𝑙
𝑖 is 

𝐶𝑙
𝑖 = [𝑐𝑖(𝑙𝑇𝑆) 𝑐𝑖((𝑙 + 1)𝑇𝑆) ⋯ 𝑐𝑖((𝑙 + 𝑑 − 1)𝑇𝑆)]1×𝑑

𝑇
 (2-6) 
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4) Find eigenvalues and the corresponding eigenvectors for trajectory matrix 𝑪𝑖. Here, the 

auto-correlation of 𝑪𝑖 should be first constructed as follows [55]: 

𝑨𝑖 = (𝑪𝑚×𝑑
𝑖 )

𝑇
𝑪𝑚×𝑑
𝑖  (2-7) 

where 𝑨𝑖  is a (𝑑 × 𝑑) matrix. Afterward, eigenvalues of 𝑨𝑖 , (𝜆1
𝑖 , … , 𝜆𝑑

𝑖 ) , and its 

corresponding eigenvectors (𝑈1
𝑖 , … , 𝑈𝑑

𝑖 ) can be found and are equal to those of 𝑪𝑖. 

5) Discard the non-informative and wild subcomponents from the chaotic components. The 

eigenvalues are first ordered from largest to smallest. According to Section 2-2-3, non-

informative and high-frequency variations with low amplitudes result from subcomponents 

related to small eigenvalues. An analysis of historical data for different case studies 

conducted for this paper showed those eigenvalues that are smaller than one-tenth of the 

largest eigenvalue can be removed so that the non-informative subcomponents of the 

chaotic component are discarded. 

 

Figure 2-1: Flowchart of the MSSSA method for obtaining the 𝑖th component. 
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6) Find the trajectory matrix corresponding to dominant eigenvalues. For 𝑟  dominant 

eigenvalues, the trajectory matrix related to 𝑈𝑗
𝑖  (𝑗 = 1,… , 𝑟) can be obtained as follows: 

𝑪𝑗
𝑖 = 𝑪𝑚×𝑑

𝑖 𝑈𝑗(𝑑×1)
𝑖 (𝑈𝑗(𝑑×1)

𝑖 )
𝑇
 (2-8) 

7) Construct the refined trajectory matrix. By adding all the reconstructed matrices 

corresponding to dominant eigenvalues in Eq. (2-8), the original trajectory matrix 𝑪𝑖 can 

be refined by removing information related to small eigenvalues: 

𝑪MSSSA
𝑖 = 𝑪1

𝑖 + 𝑪2
𝑖 +⋯+ 𝑪𝑟

𝑖  (2-9) 

8) Convert 𝑪MSSSA
𝑖  to the MSSSA component  (𝑐MSSSA

𝑖 ) corresponding to 𝑐𝑖(𝑛𝑇𝑆) by means 

of diagonal averaging in Eq. (2-10) [55]. 

𝒄𝐌𝐒𝐒𝐒𝐀
𝒊 (𝑛𝑇𝑆) =

{
 
 
 
 

 
 
 
 1

𝑛
∑𝑪MSSSA

𝑖 (𝑛 − 𝑘 + 1, 𝑘)

𝑛

𝑘=1

1 ≤ 𝑛 ≤ 𝑑

1

𝑑
∑𝑪MSSSA

𝑖 (𝑛 − 𝑘 + 1, 𝑘)

𝑛

𝑘=1

𝑑 < 𝑛 < 𝑚

1

𝑁 − 𝑛 + 1
∑ 𝑪MSSSA

𝑖 (𝑛 − 𝑘 + 1, 𝑘)

𝑑

𝑘=𝑛−𝑚+1

𝑚 < 𝑛 < 𝑁

 (2-10) 

After all MSSSA components are obtained, the original wind power TS can be then 

reconstructed as follows: 

𝑥(𝑛𝑇𝑆) =∑ 𝒄𝐌𝐒𝐒𝐒𝐀
𝒊 (𝑛𝑇𝑆) + 𝑟𝑀𝑆𝑆𝑆𝐴(𝑛𝑇𝑆)

𝑀

𝑖=1

 (2-11) 

 Prediction Method 

LSSVM is a powerful machine learning approach that can be used as a main integrant in WPP  

[46, 58]. A detailed description of LSSVM can be found in [69]. This section briefly explains the 

LSSVM and then introduces the proposed WPP. 
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 LSSVM 

In the LSSVM, the predicted value (y) corresponding to the input vector, also called the test 

vector ( TestX ), can be calculated as follows [69]: 

𝑦 = 𝒘𝑇𝜑(𝑋𝑇𝑒𝑠𝑡) + 𝑏 (2-12) 

where 𝒘 and 𝑏 are the weight vector and bias, respectively. 𝜑 is a feature vector and depends on 

the kernel function and its parameters [70]. There are various kernel functions, such as linear 

kernel, polynomial kernel, Gaussian kernel, and so on. Among all kernel functions, the Gaussian 

kernel has the best performance for wind speed prediction [70] and so is employed herein. The 

width of the Gaussian kernel (𝜎) must be determined. In addition, 𝒘 and 𝑏 should also be found 

through optimization.  

The values of 𝒘 and 𝑏 can be found by solving the following optimization problem with a 

training dataset comprised of 𝐾 training input vectors 𝑋𝑖 (𝑖 = 1,2, … , 𝐾) and their corresponding 

training output 𝑦𝑖: 

𝐶 =
1

2
𝒘𝑇𝒘+

𝛾

2
∑𝜀𝑖

2

𝐾

𝑖=1

 

s.t. 𝒘𝑇𝜑(𝑋𝑖) + 𝑏 = 𝑦𝑖 − 𝜀𝑖 

(2-13) 

where C is the cost function (to be minimized) and K and 𝛾 are the number of training vectors and 

a regularization parameter, respectively. 𝜀𝑖 is the error of the model related to the ith training input 

vector and its output. Here, 𝛾, which controls the tradeoff between bias and variance of the model, 

should be determined [70].  
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To solve the optimization problem in Eq. (2-13), 𝛾 and 𝜎, which are called hyperparameters, 

should be selected through optimization before training the LSSVM. In this regard, a coupled 

simulated annealing (CSA) [71] is first performed to find a starting point for the simplex algorithm, 

and then simplex is performed as a fine-tuning step. Employing CSA-simplex in tuning 

regularization and kernel function parameters in LSSVM has been successfully achieved (e.g., 

[72]). Notably, to make optimization of hyper-parameters robust, cross-validation (CV) [69] is 

employed herein. CV is a statistical technique to prevent over-fitting as well as the dependency on 

datasets for finding parameters. In this paper, k-fold CV is used and the original training set is 

randomly divided into k equal-sized subsets. A subset is chosen as a validation set and the 

remainder are used as the training set. The LSSVM is then trained, and 𝒘 and b, which suitably fit 

the LSSVM to the training set, are calculated by using different combinations of hyperparameters 

based on the CSA. For each chosen combination of hyper-parameters, the trained LSSVM is 

evaluated with the validation set by means of an evaluation index (such as mean square error or 

mean absolute error). The process is repeated k times, with each of the subsets used once as the 

validation set. The average value of the evaluation index is calculated. The CSA process is repeated 

until the predetermined acceptable evaluation index value is satisfied. The optimized 

hyperparameters are then used as the starting point for simplex for fine-tuning the hyper-

parameters. After the hyper-parameters are determined, Eq. (2-13) can be simply solved by a 

Karush-Kuhn-Tucker approach to find 𝒘 and b.  

 Proposed Multi-Step WPP 

In this proposed WPP, the localized direct multi-step prediction is employed for chaotic 

components while iterative multi-step prediction is used for non-chaotic components. 
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To predict multi-step wind power values for, say, p-steps ahead and related to a chaotic 

component, the direct multi-step prediction model comprises p LSSVMs. Each LSSVM is trained 

to predict a specific step, but the predicted value in each step is not used to predict other steps. 

Assume that, at time NTs, the procedure for predicting the next p values for the ith component of 

MSSSA ( ( )MSSSA
i

Sc nT ) in (2-10) is summarized as follows: 

1) Find the test vector and training datasets. The test vector is used as the input for the 

prediction model. The test vector is identical for all of the p LSSVMs. To find the required 

test vector, the trajectory matrix corresponding to the ith chaotic component (𝑐𝑀𝑆𝑆𝑆𝐴
𝑖 (𝑛𝑇𝑆)) 

should be found. To find the trajectory matrix, a similar approach to Step 3 in Section 2-2-

4 should be employed by using the MSSSA components instead of the original components 

of wind power TS in Eq. (2-5). The last row of trajectory matrix (𝑚), which contains the 

most recent data points, is selected as the test vector, as follows: 

𝑋𝑇𝑒𝑠𝑡 = [𝑐MSSSA
𝑖 ((𝑚)𝑇𝑆) ⋯ 𝑐MSSSA

𝑖 ((𝑚 + 𝑑 − 1)𝑇𝑆)] (2-14) 

where m is defined as in Section 2-2-4. For each LSSVM, the training dataset consists of 

input vectors and their corresponding outputs. These training input vectors and outputs are 

used to tune LSSVM parameters by solving (2-12). Based on the trajectory matrix related to  

𝑐MSSSA
𝑖 (𝑛𝑇𝑆), the  matrix 𝑿 in (2-15) can be found.  

𝑿 =

[
 
 
 
 
𝑐MSSSA
𝑖 (1𝑇𝑆) 𝑐MSSSA

𝑖 (2𝑇𝑆) ⋯ 𝑐MSSSA
𝑖 (𝑑𝑇𝑆)

𝑐MSSSA
𝑖 (2𝑇𝑆) 𝑐MSSSA

𝑖 (3𝑇𝑆) ⋯ 𝑐MSSSA
𝑖 ((𝑑 + 1)𝑇𝑆)

⋮ ⋮ ⋮ ⋮
𝑐MSSSA
𝑖 (𝑟𝑇𝑆) ⋯ ⋯ 𝑐MSSSA

𝑖 ((𝑟 + 𝑑 − 1)𝑇𝑆)]
 
 
 
 

 (2-15) 

Each row of matrix X is a candidate for training input. For prediction step l, where l=1,…p, 

the number of rows of matrix X is r m l= − ; this is because training output does not exist for 
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rows in the trajectory matrix that are greater than 𝑚 − 𝑙. The column vector with all of the 

training outputs corresponding to matrix 𝑿 is as follows: 

𝑌𝑙 = [𝑐MSSSA
𝑖 ((𝑑 + 𝑙)𝑇𝑆) 𝑐MSSSA

𝑖 ((𝑑 + 𝑙 + 1)𝑇𝑆) ⋯ 

           𝑐MSSSA
𝑖 ((𝑑 + 𝑙 + 𝑖)𝑇𝑆) ⋯ 𝑐MSSSA

𝑖 ((𝑟 + 𝑑 + 𝑙 − 1)𝑇𝑆)]
𝑇
 

(2-16) 

where the ith row constitutes the training output vector corresponding to the ith training row 

vector in matrix 𝑿. However, a localized prediction model only requires the training vectors 

that have smaller Euclidean distances to the test vector. Therefore, by means of the k-nearest 

neighbors algorithm (KNN), and using Eqs. (2-15) and (2-16), for the lth LSSVM the 

training input matrix 𝑿𝐾𝑁𝑁(𝐾×𝑑) contains K row vectors of matrix 𝑿 that have the closest 

Euclidean distance to the test vector in Eq. (2-14). Consequently, the corresponding training 

output to 𝑿𝐾𝑁𝑁(𝐾×𝑑) can be represented by 𝑌𝑙𝐾𝑁𝑁(𝑘×1).  

2) Train the LSSVM model. Using the training input vectors and training output, and based 

on Section 2-3-1, kernel function parameters, the weight vector, and the bias 

corresponding to each LSSVM can be found. 

3) Predict the value of the next p-step using the p trained LSSVMs and the obtained test 

vector. The LSSVM in step l is as follows: 

𝑐̂MSSSA
𝑖 ((𝑁 + 𝑙)𝑇) = 𝒘𝑇𝜑(𝑋𝑇𝑒𝑠𝑡) + 𝑏 (2-17) 

As shown above, to predict p-steps ahead in direct multi-step prediction, p LSSVMs are trained 

separately by means of historical data and are independent of predicted values in previous steps. 

Unlike the direct approach, however, the predicted values at previous steps in iterative prediction 

are used as test and training datasets for the next steps. 
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Values predicted for each step for all chaotic and non-chaotic components are then respectively 

added to find the predicted values (i.e., predicted wind power) for the next p-step in the original 

wind power TS. The flowchart of the WPP framework (MSSSA-LSSVM) is provided in Figure 2-

2. 

 Case Studies 

 Description of Datasets 

Simulation studies are carried out to evaluate the performance of the proposed MSSSA-LSSVM. 

For this purpose, three sets are used: Set 1 is wind power generation data related to AESO [62], 

located in Canada; Set 2 is the historical wind power generation data for a wind farm in Sotavento 

[73], located in Spain; and Set 3 is the historical wind power generation of wind power in 

Centennial wind farm, located in Saskatchewan, Canada. The main reason for choosing these three 

different sets is to validate the performance of the MSSSA-LSSVM for different types of wind 

power generation profiles.  

 

Figure 2-2: Flowchart of the proposed MSSSA-LSSVM framework. 
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As case studies, WPP for Set 1 is carried out from February to March 2012, for Set 2 it is carried 

out from Aug. 2011 to Oct. 2011, and for Set 3 is carried out for October 2016. 

The historical wind power generation data in all Sets are sampled every 10 minutes. In this study, 

the multi-step WPP was conducted with the step length of 10-min. Note that wind power 

generation data is the only data used for developing the WPP. More studies can be carried out to 

find other effective exogenous variables that can be employed for predicting both chaotic and non-

chaotic components. 

 Benchmark Models for Numerical Comparison 

For comparison, the proposed MSSSA-LSSVM framework is compared with a persistence 

model (PM) commonly used as a benchmark model for WPP. As LSSVM and EEMD are 

employed as building blocks in the proposed framework, the performance of LSSVM [58] and 

EEMD-LSSVM [51] benchmarks are also compared to the proposed WPP model. A radial basis 

function neural network (RBFNN) is a mature ANN that is widely used in WPP. Hence, RBFNN 

is used here as another benchmark model. Similar to the WPP model in [46], the MSSSA-LSSVM 

is based on localized prediction. Hence, for further comparison, the performance of the proposed 

framework is compared with a recently developed localized WPP based on a mean trend detector 

(MTD) and a mathematical-morphology-based wind local prediction (MLP) (MTD/MLP) [46]. It 

is also useful to compare the performance of the proposed method against a standard nonlinear 

regression benchmark model such as generalized additive model (GAM) [74]. Thus, a well-trained 

GAM has also been used as the last benchmark model. 

It is noteworthy to mention that for a fair comparison, LSSVM and EEMD-LSSVM are locally 

trained and their parameters and coefficients have been kept updated by performing training for 
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each prediction step, like MSSSA-LSSVM. In fact, without this consideration, the improvement 

in prediction accuracy of MSSSA-LSSVM in comparison to LSSVM and EEMD-LSSVM is more 

significant than what is reported in this section.  

The results of the simulation are limited to prediction horizons up to 6 hours ahead. Prediction 

horizons up to 6 hours ahead are of great importance for electricity market and power system 

security. While, hybrid and physical WPP models are preferred for longer prediction horizons [35], 

which are beyond the scope of the current study. 

 Evaluation Indices 

A variety of well-defined and widely accepted evaluation indices are used. These include the 

normalized mean absolute error (NMAE), the normalized root-mean-squared error (NRMSE), and 

the normalized absolute error (NAE). NMAE and NAEi measure the accuracy of the predicted 

values as compared to actual values, and NRMSE estimates the variation and degree of bias in the 

predicted values. NRMSE also gives a measure of large errors. NMAE, NRMSE, and NAEi can 

be defined, respectively, as 

𝑁𝑀𝐴𝐸 =
1

𝐿
∑

|𝑥𝑖 − 𝑥̂𝑖|

𝑃𝐼𝑛𝑠𝑡.

𝐿

𝑖=1

× 100%, (2-18) 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑃𝐼𝑛𝑠𝑡.
×√

1

𝐿
∑(𝑥𝑖 − 𝑥̂𝑖)2
𝐿

𝑖=1

× 100%, (2-19) 

𝑁𝐴𝐸𝑖 =
|𝑥𝑖 − 𝑥̂𝑖|

𝑃𝐼𝑛𝑠𝑡.
× 100, 

(2-20) 
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where 𝐿 is the number of test points, 𝑃𝐼𝑛𝑠𝑡.is the installed wind power capacity of the case study, 

𝑥𝑖 is the actual value, and 𝑥̂𝑖 is the corresponding predicted value. For Sets 1-3, 𝑃𝐼𝑛𝑠𝑡.values are 

967 MW, 17.5 MW, and 150 MW, respectively.  

 Numerical Results and Analysis 

2-4-4-1 Length of Training Data and Computation Time 

The simulation was done on a Windows 7 PC with a 3.4 GHz Intel Core i7 CPU and 16 GB of 

memory. The WPP was run on MATLAB 2014b. A range of lengths for the training dataset was 

evaluated to find a suitable length of the training dataset with 6-hour ahead WPP carried out for 

Set 1.  

The NRMSE values, as well as computation time for different training dataset lengths, are 

presented in Figure 2-3. Increasing the length of the training dataset can enhance WPP accuracy 

and increase the computation time. In Figure 2-3, the trend of improvement in NRMSE by 

increasing the training dataset length to more than 10 days is very gentle, while the slope of 

 

Figure 2-3 NRMSE and computation time variation for different training dataset lengths. 
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incrementally increasing computation time is severe. To obtain an appropriate WPP accuracy with 

an affordable computation burden, 10 days of historical data prior to the predicting moments was 

used as the training dataset in this study.  

In 6-hour ahead WPP, with 10-day training dataset, the training and prediction for the PM, 

RBFNN, LSSVM, EEMD-LSSVM, and MSSSA-LSSVM took 0.0050, 34.9201, 30.2298, 

110.8001, and 120.0108 s, respectively. Although the computation time of the proposed prediction 

model is higher than the benchmark prediction models, this computation time is acceptable 

considering the 6-hour WPP horizon.  

2-4-4-2 Numerical Comparisons of WPP Models 

WPP for 1-hour (6-step), 2-hour (12-step), 4-hour (24-step), and 6-hour (36-step) ahead 

prediction were carried out for Sets 1-3 and the results summarized in Tables 2-1-2-3, respectively. 

From the NRMSE values in Tables 2-1-2-3, it can be easily observed that the proposed MSSSA-

LSSVM outperforms all of the benchmark models; hence, it can be concluded that MSSSA-

LSSVM successfully eliminates large prediction errors. It is clear from the NRMSE related to 

EEMD-LSSVM, which has the best performance among benchmark models, that increasing the 

number of prediction steps significantly increases the NRMSE until the performance is even worse 

than PM. This observation is an additional confirmation of the importance of considering the 

chaotic behavior of wind power TS and how the existence of large errors results from accumulated 

prediction error as the number of prediction steps increases in EEMD-LSSVM. To depict the 

impact of improvement in NRMSE more clearly, the NAEs related to different WPP models for 

6-h ahead (36 samples) are presented in Figures 2-4 -2-6. The improvement in error reduction by 

means of the proposed WPP model can be observed in these figures. Benchmark models lead to 
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large errors (high NRMSE) in prediction, while, the MSSSA-LSSVM is more robust with respect 

to prediction and limits prediction errors.  

The NMAE for different prediction models are also shown in Tables 2-1-2-3. The NMAE for 

MSSSA-LSSVM is less than all prediction models for all observations except for three cases in 

which the EEMD-LSSVM has about 2% improvement compared to the MSSSA-LSSVM. 

However, by increasing the number of prediction steps, the MSSSA-LSSVM performs 

significantly better in terms of NMAE. Moreover, for those very few cases in which the EEMD-

LSSVM provides a slightly lower NMAE compared to the MSSSA-LSSVM, its NRMSE is 

significantly worse than the MSSSA-LSSVM. Considering both NMAE and NRMSE for all case 

studies as well as the importance of reducing large errors, MSSSA-LSSVM can be concluded to 

have the best overall performance. 

As a comparison, the histograms of the NAE for the proposed model and benchmark models are 

depicted in Figures 2-7-2-9. The percentage of NAE is divided into 10 bins and the figures 

highlight the reduction in prediction error. The largest proportion of prediction errors related to 

MSSSA- LSSVM lies in the first bin (NAE<10%). This result confirms the effectiveness of 

MSSSA-LSSVM in reducing large prediction errors. Table 2-4 shows the percentage of NRMSE 

and NMAE reduction compared with the PM for Sets 1-3 for one month. The significant 

improvement even with increasing prediction horizon indicates the need to consider the chaotic 

behavior of wind power TS in WPP.  
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Table 2-2: Performance evaluation of different prediction models for set 2 (%). 

Method Month 

1-h ahead 

(6-step) 

2-h ahead 

(12-step) 

4-h ahead 

(24-step) 

6-h ahead 

(36-step) 

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE 

PM 

Aug. 5.3631 2.8342 6.8941 3.6823 8.8727 4.9713 9.9232 5.6647 

Sep. 4.7240 2.7712 5.8742 3.5647 7.4720 4.6145 8.4314 5.3941 

Oct. 7.6521 4.2648 9.1524 5.3317 11.3025 6.8641 12.5321 7.5326 

RBFNN 

Aug. 5.4490 2.9184 7.3508 4.0046 9.2790 5.3593 9.6805 6.2036 

Sep. 4.7302 2.9189 6.1443 3.8753 7.6890 4.8738 9.2236 5.9151 

Oct. 7.4801 4.4303 9.0022 5.6201 11.5695 7.2954 12.7602 8.2512 

LSSVM 

Aug. 5.7523 3.0421 7.2517 4.0448 9.4601 5.5634 9.8612 5.9732 

Sep. 5.1635 3.0345 6.5730 3.9823 8.1921 5.1236 9.0512 5.6501 

Oct. 8.7276 4.9148 9.8712 6.1302 12.3914 7.8742 13.3123 8.7325 

EEMD-

LSSVM 

Aug. 3.2138 1.4686 5.3532 2.2612 9.7347 3.9248 7.1332 3.9887 

Sep. 2.5778 1.3245 5.8314 2.3247 11.9721 4.5415 12.1813 5.4832 

Oct. 4.9112 2.5197 7.8311 3.9236 10.6845 5.5132 15.6403 8.1245 

MSSSA-

LSSVM 

Aug. 2.7345 1.2813 3.7002 1.4221 5.5096 2.7797 5.9671 3.4262 

Sep. 2.5321 1.3613 2.7834 1.4132 5.5714 3.1215 6.3932 3.6113 

Oct. 4.2331 2.3912 6.5693 3.2452 8.4302 4.6278 9.4322 5.4665 

 

 

Table 2-1: Performance evaluation of different prediction models for set 1 (%). 

 

Method 

1-h ahead (6-step) 2-h ahead (12-step) 4-h ahead (24-step) 6-h ahead (36-step) 

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE 

PM 3.7136 2.3275 5.8915 3.7519 9.0445 6.0778 11.1534 7.6267 

RBFNN 4.0971 2.6343 6.3300 4.1005 9.3550 6.2947 12.0060 8.0824 

LSSVM 4.4329 2.8627 7.2480 4.7615 11.1493 7.6406 13.7940 9.5471 

EEMD-LSSVM 2.9793 1.3419 3.9113 1.6431 8.5352 3.7225 13.5456 6.9815 

MSSSA-LSSVM 2.2375 1.2957 2.8880 1.6543 5.5206 3.3645 5.8514 4.0267 
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Figure 2-5: The NAE error corresponding to different 6-h ahead WPP for Set 2. 

 

Figure 2-4: The NAE error corresponding to different 6-h ahead WPP for Set 1. 

Table 2-3: Performance evaluation of different prediction models for set 3 (%). 

Method 
1-h ahead (6-step) 2-h ahead (12-step) 4-h ahead (24-step) 6-h ahead (36-step) 

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE 

PM 9.7862 5.1654 13.3897 7.4448 17.6991 10.5855 23.5440 14.4854 

RBFNN 11.0354 6.4792 14.2940 8.9314 17.9384 11.8037 22.1108 13.5694 

LSSVM 11.3892 6.3665 13.7598 8.3654 18.3379 11.6879 21.8332 13.8207 

EEMD-LSSVM 6.1853 3.2891 8.5135 4.2330 14.8693 7.3922 19.7464 10.7848 

MSSSA-LSSVM 5.9457 3.3657 6.9232 4.0859 8.2468 5.2468 9.5223 6.1952 
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To closely compare the effectiveness of the proposed MSSSA against EEMD, the prediction 

 

Figure 2-6: The NAE error corresponding to different 6-h ahead WPP for Set 3. 

 

 

Figure 2-8: NAE distribution for 6-h ahead WPP in Set 2, Oct. 2011. 

 

 

 

 

Figure 2-7: NAE distribution for 6-h ahead WPP in Set 1, Feb 2012. 
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results for 36-step ahead prediction of one of the chaotic components in Set 3 for 72 samples are 

shown in Figure 2-10. This figure clearly indicates that employing MSSSA makes the training data 

smoother and hence, the suitable K nearest neighbors can be obtained. In contrast, due to wild 

changes in training data in EEMD-based prediction, the K nearest neighbors cannot properly train 

the prediction engine. In this regard, using EEMD-LSSVM for multi-step prediction results in 

large errors and consequently, a large NRMSE. In this case study, to further examine the 

 

Figure 2-9: NAE distribution for 6-h ahead WPP in Set 3, Oct. 2016. 

 

 

 

Figure 2-10: Comparing the effectiveness of MSSSA and EEMD in WPP. 
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effectiveness of the proposed MSSSA-LSSVM in comparison to EEMD-LSSVM, the 

performance of the MSSS-LSSVM in predicting the aggregated chaotic components, as well as 

the aggregated non-chaotic components have been separately evaluated. To conduct a meaningful 

comparison, in calculating NRMSE of the chaotic and non-chaotic components, the 𝑃𝐼𝑛𝑠𝑡.in Eq. 

(2-19) is replaced with the maximum values of the aggregated actual chaotic components and 

aggregated actual non-chaotic components, respectively. The NRMSE values which are resulted 

from EEMD-LSSVM and MSSSA-LSSVM in predicting chaotic components are 17.2670% and 

6.0478%, respectively. While the NRMSE in the prediction of the non-chaotic components for 

both EEMD-LSSVM and MSSSA-LSSVM is 5.4803%. Thus, due to a significant reduction in 

prediction error of chaotic component in MSSSA-LSSVM, the overall wind power prediction 

using MSSSA-LSSVM leads to considerably lower prediction error.  

 

2-4-4-3 Further Numerical Comparisons with Localized WPP Models 

As another comparison, a 5-h ahead WPP for Set 1 in March 2012, which has been used in [46], 

has been conducted. The NRMSE and NMAE of the MSSSA-LSSVM, are compared with the 

results of MTD/MLP [46]. To make the proposed WPP comparable with MTD/MLP WPP results 

reported in [46], for this case study similar to [46], 2 days of historical data prior to the prediction 

point is used as the training dataset. Quoting the results of MTD/MLP WPP from [46], the NRMSE 

and NMAE for 5-h ahead WPP using MTD/MLP are 12.974% and 9.2940%, respectively. While, 

Table 2-4: Percentage of NRMSE and NMAE reduction compared to persistence model 

Set 
6-step ahead 12-step ahead 24-step ahead 36-step ahead 

NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE 

1 44.33 44.33 51.12 55.91 38.96 44.64 47.54 47.20 

2 49.01 54.79 46.33 61.38 37.90 44.85 39.87 65.33 

3 39.24 34.84 48.29 45.14 53.40 50.43 59.55 57.23 
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for MSSSA-LSSVM the NRMSE, with the same length of training data, are 7.8144% and 

5.4683%, respectively. The result of WPP, using MSSSA-LSSVM, for Set 1, March 2012 is 

depicted in Figure 2-11. From this figure, it can be concluded that in the whole month the proposed 

WPP can effectively track the actual data. To closely investigate the performance of the proposed 

model, the close-up view of the WPP result for one day has been shown in Figure 2-12. This figure 

can validate the significant accuracy of WPP model is prediction wind power for in day which the 

wind power has a large range of variations, from approximately 100 MW to 600 MW. This WPP 

model can be a very helpful tool for power system operators in short-term decision-making 

applications. 

 

 

Figure 2-11: 5-h ahead WPP results of MSSSA-LSSVM in Set 1 for March 2012. 

 

 

Figure 2-12: 5-h ahead WPP results of MSSSA-LSSVM in Set 1 for March 2012 for 25 hours 
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2-4-4-4 Further Numerical Comparisons with GAM 

A well-trained GAM based WPP model has been developed and the results of prediction for Set 

2 in August 2011 are reported in Table 2-5. Both NMAE and NRMSE caused by GAM are 

significantly larger compared to the proposed MSSSA-LSSVM. Furthermore, with increasing the 

prediction horizon the NRMSE and NMAE of GAM markedly increase, while the proposed 

MSSA-LSSVM provides a more robust prediction accuracy with increasing the prediction 

horizons. 

 Conclusion 

A novel framework (MSSSA-LSSVM) for short-term multi-step WPP that can consider the 

chaotic nature of the components obtained from wind power TS in both decomposition and 

prediction stages is proposed. In the decomposition stage, the chaotic TS analysis identifies the 

chaotic components obtained from EEMD, and then the chaotic components become more 

predictable by eliminating high-frequency variations that are small in amplitude based on SSA 

theory. In the prediction stage, the proposed WPP employs localized direct and iterative prediction 

for chaotic and non-chaotic components, respectively. Simulation results validate the efficacy of 

the MSSSA-LSSVM for predicting aggregated wind power generation of a region, as well as wind 

Table 2-5: Performance comparison of GAM and MSSSA-LSSVM 

Prediction horizon 

GAM MSSSA-LSSVM 

NRMSE 
NMA

E 

NRMS

E 
NMAE 

6-step ahead 5.7182 3.1378 2.7345 1.2813 

12-step ahead 6.7947 4.1540 3.7002 1.4221 

24-step ahead 9.7345 5.8139 5.5096 2.7797 

36-step ahead 12.6565 7.0902 5.9671 3.4262 
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power generation in different locations for single wind farm power generation. The model 

significantly outperforms PM (a widely-used benchmark model) as well as other comparable 

models including RBFNN, LSSVM, EEMD-LSSVM, MTD/MLP, and GAM. 
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 AN ADVANCED MULTISTAGE MULTI-STEP TIDAL CURRENT 

SPEED AND DIRECTION PREDICTION MODEL4 

Non-stationarity and non-linearity of the tidal current speed (TCS) and tidal current direction 

(TCD) time series are among the main barriers for enhancing the TCS and TCD prediction 

accuracy. In this regard, this paper proposes an improved complete ensemble empirical mode 

decomposition adaptive noise (ICEEMDAN) which is employed to decompose the non-stationary 

TCS and TCD time series into several components (modes) with unique characteristics. Then, to 

capture the nonlinear pattern of TCS and TCD in different modes, several prediction engines based 

on least squares support vector machine (LSSVM) are developed. To modify the prediction error 

which occurs in predicting different components, a prediction modification stage based on a 

combination of extreme learning machines (ELMs) is utilized to reconstruct the final prediction 

values. The proposed TCS and TCD prediction model, named ICEEMDAN-LSSVM-ELM, has 

been evaluated using the data recorded from Shark river entrance, NJ. Performance of the proposed 

prediction model is compared with various well-developed benchmark models. 

 Introduction 

Hydrokinetic tidal power resulting from extracting kinetic energy of tides has a huge potential 

to be an alternative for fossil fuel-fired generation [76]. As a result, the International Energy 

Agency (IEA) expects increase in tidal energy generation in near future [77].  

                                                 

4 © 2018 IEEE. Reprinted, with permission from [75] N. Safari, B. Khorramdel, A. Zare, and C. Y. Chung, “An advanced multistage 
multi-step tidal current speed and direction prediction model,” in Proc. IEEE Electrical Power and Energy Conference (EPEC), 2017, pp. 1-6. 
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As the penetration of tidal power generation units will be increased, the uncertainty and 

variability of tidal power can cause several unprecedented power system operation challenges [78]. 

Accurate short-term prediction and uncertainty models of tidal power generation can be used as a 

key tool in alleviating the adverse impacts of tidal generation units on power system operation 

[79].  

To predict tidal power, first, the effective tidal current speed (TCS) which flows into the area 

swept by tidal turbine blades needs to be predicted. Then, using the tidal turbine characteristics, 

the tidal power can be predicted [78]. The effective TCS can be calculated by TCS accompanied 

by tidal current direction (TCD). For this reason, several prediction models have been proposed 

for both TCS and TCD [13, 34, 79, 80]. As TCS and TCD time series are non-stationary and non-

linear employing stationary and linear framework can result in large prediction errors [80].  

Wavelet decomposition (WD) and empirical mode decomposition (EMD) variants have been 

considered as effective tools in decomposing non-stationary time series into several components 

with considerably lower non-stationarity [81, 82]. In [79], WD is utilized to decompose the TCS 

and TCD time series into several components; then, each component is individually predicted, and 

all the predicted components are reconstructed to find the predicted TCS and TCD in the next 

sample time. In [13], ensemble EMD (EEMD) is used to decompose the TCS and TCD into 

different components; then, the prediction is conducted on the extracted components. By adding 

some noise to the time series and constructing an ensemble of the original time series associated 

with noise, EEMD addresses the mode mixing issue of traditional EMD. In EEMD, first, by 

applying EMD on each noise added time series, EMD components are obtained. Then, averaging 

the EMD components related to noise added times series results in the find the EEMD components.  
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Despite promising advantages of EEMD in TCS and TCD, some aspects of EEMD need further 

considerations. Firstly, associating different realizations of the noise with the original time series 

can result in various extracted components for each noise associated time series; thus, the final 

components, obtained from EEMD, might vary for different sets of noise. Secondly, adding 

various noises can result in dissimilar number of EMD components; therefore, the final averaging 

process for finding EEMD components becomes problematic. In [83], a complementary EEMD 

(CEEMD) is proposed to circumvent the above-mentioned issues. In CEEMD, both positive and 

negative realizations of white noise are used to construct ensembles of the original time series. 

This approach can substantially eliminate the first issue; while the second issue remains 

unaddressed. In [84, 85], variants of EEMD, known as complete EEMD with adaptive noise 

(CEEMDAN) is proposed to alleviate the second issue. The proposed approach can deal with both 

issues, but there is no guarantee that the noises added to the time series eliminate each other in the 

final CEEMDAN components. However, due to employing various noises for constructing 

ensemble of noise associated time series, the final components, obtained from CEEMDAN, might 

vary every time that CEEMDAN is conducted. In this paper, to benefit from the advantages of 

both CEEMD and CEEMDAN in TCS and TCD prediction and address the drawbacks of 

CEEMDAN, an improved version of CEEMDAN, named ICEEMDAN is proposed. 

Following the decomposition stage, prediction engines are employed to predict the 

corresponding value of different components in the next sample time. To address the nonlinearity 

of the time series, in [34] artificial neural network (ANN)-based prediction engine is used; 

however, ANN is prone to overfitting and being trapped in local minima during the process of 

parameters tuning [80]. In this regard, in [80] a TCS and TCD prediction model based on support 

vector machine (SVM) is proposed. SVM training involves quadratic programming which requires 
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a high computational burden [69]. Hence, an SVM variant, known as least squares support vector 

machine (LSSVM) has been proposed in [69]. In this powerful machine learning tool, the training 

process is done by solving linear equations, instead of quadratic programming. Among LSSVM 

kernels, the Gaussian kernel has superior performance in modeling nonlinear time series [70]. 

LSSVM has been successfully employed in renewable energy generation prediction [12, 13]. For 

this reason, LSSVM is selected as the prediction engine of the proposed model. 

After Predicting TCS and TCD components through ICEEMDAN-LSSVM, the overall TCS and 

TCD predicted values need to be obtained. Conventionally, in decomposition-based prediction 

models, the sum of all the predicted components are considered as the final predicted value [51, 

80]. However, aggregation of the predicted values of different components can result in erroneous 

prediction result. Besides, the prediction of each component is accompanied by some degrees of 

uncertainty. In this regard, we propose a prediction aggregation and modification stage which 

compensates the prediction error exists in the ICEEMDAN-LSSVM. To realize this stage, an 

extreme learning machine (ELM)-based stage is hybridized with ICEEMDAN-LSSVM. As the 

ELM is greatly impacted by the initialization, a combination of ELMs has been developed, and 

the well-trained ELMs are selected. 

From the above discussion, proposing a hybrid TCS and TCD prediction model, named 

ICEEMDAN-LSSVM-ELM, is the main contribution of this paper. This prediction model benefits 

from ICEEMDAN in decomposition stage, LSSVM-based prediction engines in prediction stage, 

and an ELM-based prediction aggregation and modification stage. The proposed ICEEMDAN-

LSSVM-ELM is tested, using the historical TCS and TCD datasets which are recorded in Shark 

River Entrance [86], one of the potential sites for tidal energy generation [87].  
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The remainder of this paper is organized as follows. Section 3-2 briefly illustrates the main 

building blocks of the proposed model. The proposed prediction model is expounded in Section 3-

3. Data, evaluation, and simulation results of the proposed ICEEMDAN-LSSVM-ELM are 

discussed in Section 3-4. Section 3-5 concludes the paper. 

 Building blocks of the proposed prediction model 

The general scheme of the proposed prediction model is depicted in Figure 3-1. As can be seen 

in this figure, ICEEMDAN, LSSVM, and ELM are three main building blocks of the proposed 

prediction model, and they are briefly elucidated in this section.  

 Proposed ICEEMDAN 

The procedure of the applying the proposed ICEEMDAN to the TCS and TCD time series, 

{𝑥(𝑛𝑇𝑠)}𝑛=1
𝑁    where 𝑇𝑠 is the sample time and 𝑁 is the number of samples, is as follows: 

1) Generate 𝑀  different realizations of white noise with zero mean, 𝑤𝑖(𝑛𝑇𝑠) where  𝑖 =

1,… ,𝑀. Then, perform Steps 2 to 6 to find the first component of ICEEMDAN, 𝑐1(𝑛𝑇𝑠). 

2) Find the M complimentary white noises 𝑤𝑖(𝑛𝑇𝑠), where 𝑖 = 𝑀 + 1,… ,2𝑀, to 𝑤𝑖(𝑛𝑇𝑠), 

where 𝑖 = 1,… ,𝑀 as follows: 

𝑤i(𝑛𝑇𝑆) = −𝑤𝑖−𝑀(𝑛𝑇𝑆) (3-1) 

3) Find the 2𝑀 ensembles of {𝑥(𝑛𝑇𝑠)}𝑛=1
𝑁    aggregated with 𝑤𝑖(𝑛𝑇𝑠), as follows: 

𝑥𝑖(𝑛𝑇𝑆) = 𝑥(𝑛𝑇𝑆) + 𝑤𝑖(𝑛𝑇𝑠) (3-2) 

4) Find the first EMD component of 𝑥𝑖(𝑛𝑇𝑠), where 𝑖 = 1,… ,2𝑀. 

5) Find the 𝑗th ICEEMDAN component, 𝑐𝑗(𝑛𝑇𝑠), by averaging all the first EMD components 

obtained from the previous stage. 
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6) Find the residual of the 𝑥(𝑛𝑇𝑠) after subtracting 𝑐𝑗(𝑛𝑇𝑠), then replace it with 𝑥(𝑛𝑇𝑠) as 

follows: 

𝑥(𝑛𝑇𝑠) = 𝑥(𝑛𝑇𝑠) − 𝑐
𝑗(𝑛𝑇𝑠) (3-3) 

7) Check the stopping criteria. If the stopping criteria are not satisfied, repeat Steps 2-6 to find 

all the components, otherwise, terminate the decompostion. Note: there are several stopping 

criteria which exist in the literature. Based on the application, the most appropriate criteria 

can be selected. Here, the maximum number of components and the number of local extrema 

points have been employed as the stopping criteria.  

 LSSVM 

In LSSVM, the relationship between the input vector (X) and the output y is as follows: 

𝑦 = 𝑤𝜙(𝑋) + 𝑏 (3-4) 

where w and b are the weight vector and bias, respectively. The input vector, 𝑋, can be formed 

based on different feature selection approaches. However, in this paper, the features are determined 

based on Cao’s embedding dimension [12]. In (3-4), 𝜙 is the feature vector and depends on kernel 

function. Here, due to the advantages of the Gaussian kernel function in prediction [70], we use 

this kernel function. 

To find w and b, the following constrained optimization problem should be solved [69]:  

𝑀𝑖𝑛 𝐶(𝑤, 𝑏) =
1

2
‖𝑤2‖ + 𝜎∑     

𝐾

𝑘=1

𝛼𝑘
2 

𝑠. 𝑡.  |𝑦𝑘 − 〈𝑤, 𝑥𝑘〉 − 𝑏| ≤ αk     𝑘

= 1,2, … , 𝐾 

 

(3-5) 
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where 𝜎 and 𝛼 are user defined parameters which make a trade-off between the empirical risk and 

the model flatness. These parameters have been chosen by hybrid optimization based on coupled 

simulated annealing (CSA) and simplex.  

 Single Layer ELM 

Single layer ELM is simply a single-hidden layer feedforward ANN. Thus, in an ELM with J 

neurons in hidden layer, the relationship between 𝑖𝑡ℎ  input vector, 𝑋𝑖 = [𝑋𝑖1, … , 𝑋𝑖𝑁] and 𝑖𝑡ℎ 

output 𝑦𝑖 can be written as follows [88]: 

𝑦𝑖 =∑𝛽𝑗𝑓𝑗(𝑎𝑗. 𝑋𝑖 + 𝑏𝑗)

𝐽

𝑗=1

 
(3-6) 

where 𝛽𝑗 is the weighting coefficient which connects the output of 𝑗𝑡ℎ hidden neurons to the output 

and 𝑓𝑗  is the activation function of the 𝑗𝑡ℎ  hidden neuron. In (3-6), 𝑎𝑗 = [𝑎𝑗1, … , 𝑎𝑗𝑁]
𝑇

is the 

weighting vector, including the weights of different elements of input vector, and 𝑏𝑗  is the 

threshold of the activation function.  

For the training data with the length of 𝐿, (3-6) can be written in a compact form as follows: 

𝑌 = 𝑯𝜷 
(3-7) 

where 

𝑯 = [

𝑓1(𝑎1. 𝑋1 + 𝑏1) ⋯ 𝑓𝐽(𝑎𝐽. 𝑋1 + 𝑏𝐽)

⋮ ⋱ ⋮
𝑓1(𝑎1. 𝑋𝑁 + 𝑏1) ⋯ 𝑓𝐽(𝑎𝐽. 𝑋𝑁 + 𝑏𝐽)

]

𝑁×𝐽

 
(3-8) 

𝜷 = [𝛽1, … , 𝛽𝐽]
𝑇
 (3-9) 

where 𝜷 can be calculated as follows: 
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𝜷 = 𝑯+𝑌 
(3-10) 

where 𝑯+ is the Moore-Penrose generalized inverse of 𝑯. As it is clear, to find 𝑯+, the hidden 

neurons weight vectors, {𝑎𝑗 𝑗 = 1, … , 𝐽}, and activation thresholds, {𝑏𝑗  𝑗 = 1,… , 𝐽} , should be 

known a priori. Usually, the mentioned parameters are randomly generated. Hence, the initial 

random numbers highly affect the performance of the ELM. This issue will be further discussed 

and addressed in the Section 3-3.  

 

 The Proposed Prediction Model Description 

Now based on the above-explained building blocks the proposed prediction model can be 

constructed as shown in Figure 3-1. In this prediction model, first, TCS and TCD time series are 

decomposed into several components by following the proposed ICEEMDAN procedure in 

Section 3-2-1. Then, the corresponding predicted values of each component are obtained using the 

LSSVM. In this paper, in training the LSSVM, a localized and online training strategy has been 

employed. The localized training strategy for predicting the value of 𝑗𝑡ℎ component, 𝑐𝑗, in the next 

sample time, (𝑁 + 1)𝑇𝑆, is as follows: 

 

Figure 3-1: The flowchart of the proposed prediction model. 
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1) Find the training input vector candidates, their corresponding output, and the test input 

vector. For this purpose, construct the Hankel matrix, 𝑪𝑗, for 𝑁 available historical sample 

time of 𝑗𝑡ℎ component, 𝑐𝑗, as follows: 

𝑪𝑗 = [𝐶1
𝑗

⋯ 𝐶𝑘
𝑗

⋯ 𝐶𝑟
𝑗]
𝑇
 (3-11) 

where 𝑟 = 𝑁 − 𝑑 + 1 and d is the embedding dimension, obtained from Cao’s embedding 

dimension method. 𝐶𝑘
𝑗
 in (3-11) can be obtained as follows:  

𝐶𝑘
𝑗
= [𝑐𝑗(𝑘𝑇𝑆) 𝑐𝑗((𝑘 + 1)𝑇𝑆) … 𝑐𝑗(𝑚𝑇𝑆)] (3-12) 

The 𝑟 − 1  row vector constructing the first 𝑟 − 1  rows of 𝑪𝑗  can be considered as the 

candidates of the training input vectors, 𝑋𝑇𝑟𝑎𝑖𝑛, and hereafter the matrix, including all the 

training input vectors, is denoted by 𝑿𝑇𝑟𝑎𝑖𝑛. Outputs 𝒀𝑇𝑟𝑎𝑖𝑛 can be simply obtained from the 

last column of the last 𝑟 − 1 rows in (3-11). The vector including all elements in the last row 

of 𝑪𝑗is the test vector, 𝑋𝑇𝑒𝑠𝑡. 

2) Find the 𝐾 most relevant training sets {𝑋𝑇𝑟𝑎𝑖𝑛
∗ , 𝑦𝑡𝑟𝑎𝑖𝑛

∗ } based on 𝐾-nearest neighbor (KNN) 

approach. In other words, by means of KNN, the candidate training input vectors which are 

nearest to 𝑋𝑇𝑒𝑠𝑡 are selected. 

3) Train LSSVM, using {𝑋𝑇𝑟𝑎𝑖𝑛
∗ , 𝑦𝑡𝑟𝑎𝑖𝑛

∗ } and following the procedure explained in Section 3-2-

2. 

4) Use the trained LSSVM and input vector, 𝑋𝑇𝑒𝑠𝑡, to find the corresponding predicted value 

of 𝑗𝑡ℎ component.  

5) To perform a multi-step-ahead prediction, the predicted value at each step is recursively 

used, and Steps 1-4 are repeated.  
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After finding the predicted values of all the components, in the aggregation and modification 

stage, the final TCS and TCD in the next sample time are obtained by using a combined ELM. The 

initial random number generation highly influences the accuracy of ELM. For instance, in two 

ELMs with the same number of hidden neurons and similar training sets, the accuracy of might be 

significantly different. In this paper, a combined ELM module, including several ELMs with 

various initializations, has been used. Then, based on the accuracy of ELMs in training datasets, 

they are ranked, and the first K ELMs are selected to be utilized for testing input. Finally, using a 

weighted averaging among the K ELMs, the TCS and TCD in the next sample time is predicted. 

 Experimental Results and Comparisons 

 Data Description 

Simulation studies are conducted to assess the efficacy of the proposed ICEEMDAN-LSSVM-

ELM prediction model. For this purpose, TCS and TCD historical data of Shark River Entrance, 

recorded from Oct. 1999 to Nov. 1999, has been used. The data resolution is 6-min, and the 

prediction horizon is set 1-h with 6-min resolution. In other words, in this study, a 10-step ahead 

prediction is carried out. 

 Training Length and Prediction Horizon 

To make a trade-off between computation time and the prediction accuracy, the training data 

with the length of 20 days has been chosen. In other words, 20 days prior to the prediction point 

are used as the training data.  
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 Evaluation Indices 

For comparing the proposed prediction model with other models, three widely-used evaluation 

indices including the absolute error (AE), normalized mean absolute error (NMAE) and 

normalized root-mean-squared error deviation (NRMSD) have been used [13]. AE measures the 

deviation of the predicted values from the real value at each sample point. NMAE indicates the 

average absolute deviation of the predicted values from actual values, and NRMSD is more 

sensitive to large errors and the lowers the importance of the small prediction error. NMAE and 

NRMSD can be calculated as follows: 

NMAE(%) =
1

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)𝑁
∑|𝑦𝑖 − 𝑦̂𝑖| × 100

𝑁

𝑖=1

 (3-13) 

NRMSD(%) =
1

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)
√
1

𝑁
|𝑦𝑖 − 𝑦̂𝑖| × 100 (3-14) 

 

 Benchmark Models 

To compare the performance of ICEEMDAN-LSSVM-ELM with other prediction approaches. 

Two well-developed benchmark models have been utilized. As LSSVM is used in TCS and TCD 

prediction [13], and it is one the main building blocks of the proposed approach, LSSVM-based 

prediction model is developed as the first benchmark model. Proposing a novel decomposition 

method, named ICEEMDAN, is one of the contributions of this paper. For this reason, as the 

second benchmark model, EEMD-LSSVM, which has been recently developed in [13], is used to 

compare the performance of ICEEMADAN with EEMD in enhancing prediction accuracy.  
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 Numerical Results and Analysis 

The simulations are implemented in two parts. In the first part, the performance of the proposed 

ICEEMDAN is studied. Figure 3-2 shows a 20-day historical TCS which is used for training the 

prediction model, its extracted components, resulting from ICEEMDAN, and the residual 

 

Figure 3-2: Historical TCD and its ICEEMDAN components for 20 days, (a) Original time series, (b)-(j) 

ICEEMDAN components, (k) the residual component. 
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component. As it can be observed, the proposed decomposition approach is efficient in 

decomposing the TCS components into several components, ranging from high-frequency 

variations to low-frequency variations, with the negligible residual component.  

In the second part, the effectiveness of the proposed ICEEMDAN in TCS and TCD is evaluated 

and compared against different benchmark models. Tables 3-1-3-2 summarize the prediction error, 

 

Figure 3-3: The results of 1-h ahead TCS prediction obtained from different decomposition-based 

prediction models. 

 

 

 

 

 

 

Figure 3-4: The results of 1-h ahead TCS prediction obtained from different decomposition-based prediction 

models. 

 

 

Table 3-1: Performance evaluation of different prediction models for 1-h (10-step) ahead TCS prediction 

Method NMAE (%) NRMSD (%) 

LSSVM 6.56 9.30 

EEMD-LSSVM 1.96 2.93 

ICEEMDAN-LSSVM 1.65 2.45 

ICEEMDAN-LSSVM-ELM 1.54 2.18 
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in terms of NMAE and NRMSD, resulted from different prediction models for 1-h ahead 

prediction. As it can be observed, compared to EEMD, the proposed ICEEMDAN decomposition 

is more effective in decreasing the prediction error. Besides, in ICEEMDAN-LSSVM-ELM, the 

prediction accuracy is even higher.  

To more closely investigate the superiority of the proposed ICEEMDAN-LSSVM-ELM in 

comparison to other decomposition-based models, a close view of TCS and TCD 1-h prediction 

and their corresponding absolute error for a 12-h interval are shown in Figures 3-3-3-6. It can be 

observed that the proposed ICEEMDAN-LSVVM-ELM possesses a high level of robustness in 

predicting sudden changes in both TCS and TCD prediction.  

 

Figure 3-5: The results of 1-h ahead TCD prediction obtained from different decomposition-based prediction 

models. 

 

 

 

Figure 3-6: The results of 1-h ahead TCS prediction obtained from different decomposition-based prediction 

models. 
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 Conclusion 

A novel deterministic prediction model, named ICEEMDAN-LSSVM, has been addressed for 

tidal energy application. The proposed approach benefits from a novel ICEEMDAN 

decomposition approach, which is a modified version of the prevalent CEEMDAN, which avoids 

EEMD drawbacks. Besides, to further enhance the prediction accuracy an additional stage 

including a combination of ELMs is considered to ICEEMDAN-LSSVM. The proposed 

ICEEMDAN-LSSVM-ELM outperforms various well-developed benchmark for 1-h ahead 

prediction with 6-min resolution. This short-term prediction model can be utilized a wide range of 

power system applications, such as optimal power flow, real-time unit commitment, and so forth.  

 

 

 

 

 

 

 

Table 3-2: Performance evaluation of different prediction models for 1-h (10-step) ahead TCS prediction 

Method NMAE (%) NRMSD (%) 

LSSVM 6.56 9.30 

EEMD-LSSVM 1.96 2.93 

ICEEMDAN-LSSVM 1.65 2.45 

ICEEMDAN-LSSVM-ELM 1.54 2.18 
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 A SPATIOTEMPORAL WIND POWER PREDICTION BASED ON 

WAVELET DECOMPOSITION, FEATURE SELECTION, AND 

LOCALIZED PREDICTION5 

Wind power possesses a high level of non-linearity and non-stationarity which are the main 

barriers to developing an accurate wind power prediction (WPP). In this regard, a multiresolution 

wavelet decomposition (WD), based on discrete wavelet transform, is employed to decompose the 

wind power time series (TS) into several components. Afterward, in a feature selection (FS) stage, 

which benefits from the spatiotemporal relation among the wind farms, the double input 

symmetrical relevance (DISR) has been adopted to find the most suitable features in predicting 

each component. Then, to have a high-accuracy prediction with an affordable computation time, 

localized prediction engines have been used to predict each component. The final WPP value is 

obtained by superposition of all the predicted values corresponding to components. The proposed 

spatiotemporal WPP is evaluated using the wind power generation historical data in Saskatchewan, 

Canada. The performance of the proposed WPP is compared with other well-developed and 

widely-used WPP models. Various evaluation indices have been utilized for conducting the 

performance evaluation. 

                                                 

5 © 2018 IEEE. Reprinted, with permission from [89] N. Safari, Y. Chen, B. Khorramdel, L. Mao, and C. Chung, “A spatiotemporal 
wind power prediction based on wavelet decomposition, feature selection, and localized prediction,” in Proc. IEEE Electrical Power and Energy 
Conference (EPEC), 2017, pp. 1-6. 
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 Introduction 

Wind power generation is one of the fastest-increasing types of clean and renewable energy 

generations. Due to the intermittent and variable nature of wind power generation, high penetration 

of wind power generation can cause several unprecedented challenges in power system operation 

[90, 91]. Wind power prediction (WPP) models can provide useful information about the 

upcoming wind power generation profile. In this regard, WPP models have been proposed in the 

literature (e.g. [12, 45, 92-94]). 

Based on the nature of WPP output, the WPP literature can be divided into two main categories 

of deterministic WPP and probabilistic WPP. In deterministic WPP, the most probable power 

generation value for the next sample time is predicted, while in probabilistic WPP, upper and lower 

bounds for wind power in the next sample time are calculated. The application of deterministic or 

probabilistic WPP depends on the decision-making problems in power systems. For example, in 

[95] probabilistic WPP has been used in economic dispatch and unit commitment, and in [26] 

energy storage sizing and coordination strategies have been proposed based on deterministic WPP. 

Besides, in some probabilistic WPP approaches, deterministic WPP models need to be employed 

since probabilistic WPP results conditionally depend on the deterministic WPP values [96]. Hence, 

due to the importance of deterministic WPP [12], it is the focus of this paper. 

Taking the spatiotemporal correlations among the meteorological variables into account, the 

accuracy of wind power generation prediction can be improved [97]; thus, the spatiotemporal 

based WPP models have been proposed in [98, 99]. In [98], using differential equations of wind 

turbines located in a wind farm with wake effect considerations, the spatial correlation matrix of 

the wind turbines speed has been constructed. Although this approach proposes an effective way 
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to model the correlation among the wind turbines in a wind farm, the spatiotemporal correlations 

among the wind farms in a wide region are not studied. In [99], the spatiotemporal correlations 

among the generation of wind farms have been considered, and a WPP model has been developed 

based on sparse vector auto-regression.  

An efficient feature selection (FS) can effectively enhance the spatial WPP model accuracy. 

Among feature selection approaches, information theory-based FS approaches have gained the 

attention of many researchers in dealing with wide range of problems, ranging from load 

forecasting [100] to WPP [92, 101]. Unlike traditional correlation coefficient-based FS 

approaches, in this type of FS, the non-linear relations between the feature candidates and the 

target variable can be measured [92]. In [102], an FS named double input symmetrical relevance 

(DISR) has been proposed for cancer classification based on an objective function defined using 

mutual information (MI). Due to the effectiveness of double input symmetrical relevance (DISR) 

in different problems [103, 104], we adopt the DISR for spatiotemporal wind power prediction. 

The non-stationary wind power time series (TS), obtained from historical data of wind farms, 

can be decomposed into several components with less non-stationarity [12]. These components are 

more predictable; hence, the prediction accuracy can be significantly enhanced. Among 

decomposition approaches, wavelet decomposition (WD) [105] and empirical mode 

decomposition (EMD) [12, 13] have been effectively applied to non-stationary TS prediction. 

Wavelet transformation (WT)-based decomposition approaches, e.g., discrete wavelet transform 

(DWT), can decompose the TS into several components with a predefined frequency range. Thus, 

adopting WT-based decomposition on all the wind farms TS using DISR can lead to detecting the 

most suitable feature from various wind farms in predicting every component. For this reason, in 
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this paper, first, the wind power TS of all wind farms are decomposed, then the appropriate features 

for each component are identified through an FS stage. 

As the last stage of the WPP, a prediction engine for predicting the value of each component 

should be employed and trained. Due to the non-linearity of wind power TS, nonlinear prediction 

engines can be employed. Artificial neural networks (ANNs) variants and support vector machine 

(SVM) variants are widely used for non-linear TS prediction [11-13]. Least squares support vector 

machine (LSSVM), which is a variant of SVM has shown promising advantages in wind power 

and wind speed prediction [12, 70]. Hence, this paper employs the LSSVM for spatiotemporal 

WPP.  

In this paper, based on the above discussion, a spatiotemporal WPP model which is comprised 

of the wavelet transform, DISR, and LSSVM is proposed. The proposed WPP, named WD-FS-

LSSVM, has been validated using the wind power generation historical data of the Saskatchewan, 

Canada. The WPP accuracy of WD-FS-LSSVM has been compared against well-developed WPP 

benchmark models, using various evaluation metrics. The remainder of this paper is as follows. 

Section 4-2, presents the building blocks of the WPP. The proposed approach is introduced in 

Section 4-3. Data sets, evaluation indices, and simulation results of the proposed WD-FD-LSSVM 

are discussed in Section 4-4. Section 4-5 concludes the paper. 

 Building Blocks of the Wind Power Prediction 

 Wavelet Decomposition 

To obtain more accurate results from WPP, WD is employed. In the following, a summary of 

WT is presented.  
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WD can be categorized into decomposition based on continuous wavelet transform (CWT) and 

DWT. Both CWT and DWT functions are obtained by continuously scaling and translating the 

mother wavelet using discretely sampled. However, increased computational time and memory 

required to calculate the wavelet coefficients are needed in CWT. Thus, DWT is used because of 

its efficiency to present the similarity between the original TS and the translated mother wavelet. 

The DWT is calculated as follows [105]:  

𝑊(𝑎, 𝑏) =
1

√𝑎
∑𝑥(𝑛𝑇𝑆)𝑔((𝑛 − 𝑏)/𝑎)

𝑁

𝑛=0

 (4-1) 

where 𝑥 (𝑛𝑇𝑆 ) is the wind power TS with the sample time TS, which is kept constant and equal 

to 30-min, and 𝑔 is the mother wavelet function. In (4-1), a and b, which can be obtained from 

(4-2), are scaling and translation functions [105]. 

𝑎 = 2𝑚 

𝑏 = 𝑛𝑎 

(4-2) 

where m and n are integer variables.  

This paper utilizes Mallat’s decomposition algorithm. As an example, a three-level Mallat’s 

decomposition algorithm is depicted in Figure 4-1. The “approximations” and “details” of the 

wind power TS are extracted from the multiresolution procedure via Mallat’s pyramidal algorithm. 

 

Figure 4-1: The process of multilevel decomposition based on Mallat’s algorithm. 
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An approximation is a low-frequency depiction of the TS, holding general trend of the original 

signal; and detail illustrates the difference between two successive approximations, representing 

high-frequency components of the original signal. In every level of decomposition, the 

approximation components can be further decomposed into approximation and detail. 

Decomposing the approximation components is repeated until obtaining a desirable number of 

decomposition levels.  

 Feature Selection 

In this paper, in the feature selection stage, the appropriate features are selected using DIRS 

[102]. To adopt the DIRS, in WPP application in which the TS can have elements with any positive 

values, the TS (𝑧𝑖(𝑛𝑇𝑆)), which represents ith feature, should be discretized. For this purpose, first, 

the data is normalized as follows: 

𝑧𝑛
𝑖 (𝑛𝑇𝑆) =

𝑧𝑖(𝑛𝑇𝑆) − 𝑧
𝑖

𝑧
𝑖
− 𝑧𝑖

 (4-3) 

where 𝑧
𝑖
 and 𝑧𝑖 represents the maximum and minimum values of 𝑧𝑖(𝑛𝑇𝑆). Afterward, 𝑧𝑖(𝑛𝑇𝑆) is 

divided into 10 bins which are labeled by 10 different values from 1 to 10. The objective of the 

DIRS, like other feature selection approaches, is to find a set of k features, 𝐹𝑆𝐵𝑒𝑠𝑡 = {𝑓𝑆1, … , 𝑓𝑆𝑘}, 

and can be formulated as follows: 

max 𝐼(𝑭𝑺; 𝑌) (4-4) 

where Y denotes the wind power TS labels for the wind farm which its WPP is our interest. In 

(4-4), 𝑭𝑺 is the joint variable which is obtained from multiple features. As an illustrative example, 

the joint variable of two vectors 𝑎 = [1,0,1,0,2]  and 𝑏 = [1,1,0,1,3]  is 𝑐 = [1,2,3,2,4] ( 𝑐 =

𝐽(𝑎, 𝑏)). In (4-4), operator 𝐼(∙) calculates the MI. The MI is a measure of mutual relevancy of 
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variables. Hence, the higher of 𝐼(𝑭𝑺; 𝑌) means the more information about Y can be obtained from 

𝐹𝑆𝐵𝑒𝑠𝑡 [102]. The MI between potential feature X and a target can be calculated using (4-5). 

𝑀𝐼(𝑋; 𝑌) = ∑∑𝑝(𝑥, 𝑦) log (
𝑝(𝑥). 𝑝(𝑦)

𝑝(𝑥, 𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (4-5) 

here 𝑝(. ) is the joint probability distribution function of x and y.   

Now, let’s assume we want to select the k most appropriate features from a feature pool, the 

feature selection stage can be performed by the following steps. 

1) Find the relevant features through the feature relevancy stage using (4-5), and discard the 

irrelevant features from feature pool. 

2) Find the most informative feature using (4-5), and store that as the first best feature in 

𝐹𝑆𝐵𝑒𝑠𝑡. 

3) Build the joint variable of 𝐹𝑆𝐵𝑒𝑠𝑡 with every feature from feature pool. 

4) Calculate the MI for each constructed joint variable and Y using (4-5).  

5) Find the highest MI obtained in Step 4, and store the feature which was jointed with the 

feature(s) in 𝐹𝑆Best. 

6) Check the stopping criteria. If the stopping criteria have not been satisfied, repeat Steps 3-

5. It is noteworthy to mention that in this work the number of preferred features, determined 

by evaluating the performance of the prediction model on an evaluation set, is used as the 

stopping criterion.  

 Least Squares Support Vector Machine 

In the LSSVM, the predicted value (𝑦) corresponding to the input vector, also called the test 

vector (𝑋𝑇𝑒𝑠𝑡), can be estimated as follows [69]: 
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𝑦̂ = 𝒘𝑇𝜑(𝑋𝑇𝑒𝑠𝑡) + 𝑏 (4-6) 

where 𝑦̂, 𝒘, and 𝑏 are the estimation of 𝑦, the weight vector, and bias, respectively. 𝜑 is a feature 

vector and depends on the kernel function and its parameters [69]. Among the kernel functions, 

the Gaussian kernel has shown promising advantages in WPP [91]. In LSSVM with Gaussian 

kernel, the width of the Gaussian kernel (𝜎) must be determined. Moreover, the weight vector and 

bias should also be found through an optimization procedure.  

The values of weight vector and bias can be calculated by solving the optimization problem in 

(4-7), with a training dataset comprised of K training input vectors 𝑋𝑖 (𝑖 = 1,2, … , 𝐾) and their 

corresponding training output 𝑦𝑖. 

𝐶 =
1

2
𝒘𝑇𝒘+

𝛾

2
∑𝑒𝑖

2

𝐾

𝑖=1

 

s.t. 𝒘𝑇𝜑(𝑋𝑖) + 𝑏 = 𝑦𝑖 − 𝑒𝑖 

(4-7) 

where C is the cost function (to be minimized) and K and 𝛾 are the number of training vectors and 

a regularization parameter, respectively.𝑒𝑖  is the error of the model related to ith training input 

vector and its output. Here, 𝛾, which controls the tradeoff between bias and variance of the model, 

should be determined [69].  

To solve the optimization problem (4-7), first, 𝛾  and 𝜎 , which are called hyperparameters, 

should be selected through an optimization before training the LSSVM. In this regard, a coupled 

simulated annealing (CSA) [69] is first performed to find a starting point for the simplex algorithm, 

which is one of the most popular linear programming approaches, and then simplex is performed 

as a fine-tuning step for non-linear optimization problems. CSA-simplex in tuning regulation and 

kernel function parameters in LSSVM has been successfully employed (e.g., [12]). After the 
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hyper-parameters are determined, (4-7) can be simply solved by a linear optimization to find 𝒘 

and 𝑏.  

 Proposed Wind Power Prediction Model Procedure 

To conduct the spatiotemporal WPP of L wind farms at (𝑁 + 1)𝑇𝑆, where N is the number of 

available data points in the historical data, the following steps should be conducted. 

1) Decompose the TS constructed by wind power historical data of all wind farms, based on 

what is discussed in Section 4-2-1. Repeat Steps 2-10 to perform the prediction of each 

component of the target wind farm.  

2) Hankelize the jth component of wind power historical data for wind farm i (i=1,…, L), and 

construct i
W , with (N-48+1)-by-(48) dimension, as shown in (4-8) for all the wind farms. It 

is noteworthy to mention that the 48 elements in each row of i
W represent the wind power 

generation in one day with the sample time of 30-min. 

 

𝑾𝑖 =

[
 
 
 
𝑤𝑖(1𝑇𝑆) 𝑤𝑖(2𝑇𝑆) … 𝑤𝑖(48𝑇𝑆)

𝑤𝑖(2𝑇𝑆) ⋮ ⋮ 𝑤𝑖(49𝑇𝑆)
⋮ ⋮ ⋮ ⋮

𝑤𝑖(𝑅𝑇𝑆) … … 𝑤𝑖(𝑁𝑇𝑆) ]
 
 
 

 (4-8) 

 

where 𝑅 = 𝑁 − 48 + 1. 

3) Construct the feature candidate vectors, using (4-8), as follows: 

𝑭𝑺 = [𝐹𝑆1
1, … , 𝐹𝑆48

1 , … , 𝐹𝑆𝑖
𝑙 , … , 𝐹𝑆1

𝐿 , … , 𝐹𝑆48
𝐿 ] (4-9) 
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where 𝐹𝑆𝑖
𝑙 corresponds to all elements in ith column (excluding the last row) of the Henkel 

matrix of lth wind farm. 

4) Construct the target vector. If WPP is related to ith wind farm, the target vector, Y, is a column 

vector consisting of the elements of the last columns of 𝑾𝑖  in (4-8), except the first row.  

5) Perform FS, illustrated in Section 4-2-2. Find the best features and store in 𝑭𝑺𝐵𝑒𝑠𝑡. 

6) Build the input of training candidate and input for the test, using  𝑭𝑺𝐵𝑒𝑠𝑡.  

7) Find the most suitable training input vectors corresponding to the test vector. It is worth 

noting that the test vector is the last row of  𝑭𝑺𝐵𝑒𝑠𝑡, and by means of K-nearest neighbor 

(KNN) approach, the closest rows of 𝑭𝑺𝐵𝑒𝑠𝑡 to test vector is selected as the suitable training 

input vectors. 

8)  Find the target vector for the most suitable candidates. If an input vector is constructed from 

rth row of Hankel matrix in (4-8), and we want to construct the WPP for ith wind farm, the 

target value corresponding to this input vector is the last element of (r+1)th row of 𝑾𝑖. 

9) Train the LSSVM, introduced in Section 4-2-3, for predicting jth component,  

10) Apply the test vector and find the estimation of the component for the next sample time. 

11) Aggregate all the predicted values and find the final WPP for ith wind farm, considering the 

spatiotemporal correlation among the wind farms. 

 Case Studies and Analysis 

 Description of Data 

To evaluate the performance of the proposed WPP, the historical wind power generation data 

of wind farms, located in Saskatchewan province, is used. The location of wind farms in 
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Saskatchewan has been shown in Figure 4-2. As it is clear from this figure, the wind farms are 

installed over a wide area; thus, considering the spatiotemporal correlation among the wind farms 

can enhance WPP accuracy.  

The data are recorded with 1-min resolution. In this paper, 30-min ahead WPP has been carried 

out, and the one-minute data has been averaged to construct time series with 30-min resolution. 

Hence, in one step ahead prediction, the average wind power in the next 30-min is predicted. Wind 

power generation data of wind farms is the only data which have been utilized in this paper. 

However, other meteorological variables might help in improving WPP accuracy.  

The historical data recorded from June 2016 to July 2016 has been used for training and 

testing the proposed WPP. The last 30 days prior to prediction has been used for constructing the 

training vectors. In this paper, spatiotemporal WPP of Red Lily and Sunbridge wind farms, using 

the wind power generation data of all the five existing wind farms, have been developed.  

 

Figure 4-2:  Location of wind farms in Saskatchewan, Canada 2016. 
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 Evaluation Indices 

Three well-defined and widely used evaluation indices including the normalized absolute error 

(NAE), normalized root-mean-squared error (NRMSE), and normalized mean absolute error 

(NMAE) have been employed to assess the accuracy of the WPP. Using (4-10)-(4-12), NAE, 

NRMSE, and NMAE can be calculated, respectively. 

𝑁𝐴𝐸(𝑛𝑇𝑆) = |
𝑃̂(𝑛𝑇𝑆) − 𝑃(𝑛𝑇𝑆)

𝑃𝐼𝑛𝑠𝑡.
| (4-10) 

𝑁𝑅𝑀𝑆𝐸 = √∑ (𝑁𝐴𝐸(𝑁𝑇𝑆))
2𝑁

𝑛=1

𝑁
 (4-11) 

𝑁𝑀𝐴𝐸 =
∑ (𝑁𝐴𝐸(𝑁𝑇𝑆))
𝑁
𝑛=1

𝑁
 (4-12) 

where 𝑃̂(𝑛𝑇𝑆) is the nth predicted wind power; and N is the number of test points. 

 Benchmark Models 

To compare the prediction accuracy of the proposed spatiotemporal WD-FS-LSSVM, the 

performance of the proposed WPP is compared with four well-developed benchmark models, 

including persistence model (PM), FS-LSSVM without considering the spatiotemporal 

correlation, FS-LSSVM with considering the spatiotemporal correlation, and WD-FS-LSSVM 

without considering the spatiotemporal correlation.  

The PM, which is widely used as the main benchmark, can provide useful information about 

the percentage of improvement in reducing the WPP error [12]. As WD, FS, and LSSVM are the 

three main building blocks of the proposed spatiotemporal WD-FS-LSSVM WPP, comparing the 

performance of the proposed WPP with benchmark models comprised of these building blocks can 
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provide a fair comparison. Besides, the impact of considering spatiotemporal can be investigated 

by developing both spatiotemporal and non-spatiotemporal WPP models. 

 Numerical Results and Comparisons 

To find the optimal number of features in the FS stage, the different number of features have 

been used and the resultant NRMSE and NMAE have been analyzed. The NRMSE and NMAE in 

30-min ahead prediction of Sunbridge for the different number of features is shown in Figure 4-3. 

From this figure, it can be found that by selecting 7 features from the feature pool, DISR provides 

the most informative and useful features.  

The performance of the proposed spatiotemporal WD-FS-LSSVM WPP and benchmark models 

in 30-min ahead WPP of Sunbridge and Red Lily have been summarized in Tables 4-1-4-24-1. 

From these tables, it can be observed that compared to benchmark models, the proposed WPP has 

the lowest NRMSE and NMAE. Furthermore, it can be also seen that considering the 

 

Figure 4-3: The relation between number of features and WPP. 
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spatiotemporal correlation in WPP without decomposition stage might deteriorate the WPP 

accuracy. From these tables, it can be concluded that in different frequency ranges, different wind 

farms can provide useful information. Hence, decomposition prior to FS, plays a crucial role in 

identifying the informative feature which enhance the accuracy of predicting each component, and 

can consequently improve the WPP accuracy. 

Table 4-1: Performance comparison of different WPP models for Sunbridge wind power facility in July 2016. 

Prediction Models 
NRMSE 

(%) 

NMAE 

(%) 

PM 12.9901 10.0091 

FS-LSSVM (Non-Spatiotemporal) 13.7150 10.0722 

FS-LSSVM (Spatiotemporal) 13.8276 10.7934 

WD-FS-LSSVM (Non-
Spatiotemporel) 

5.7034 3.8945 

WD-FS-LSSVM (Spatiotemporal) 4.1200 2.9567 

 
Table 4-2: Performance Comparison of Different WPP Models for Red Lily Wind Power Facility in July 

2016. 

Prediction Models 
NRMSE 

(%) 

NMAE 

(%) 

PM 16.88 12.42 

FS-LSSVM (Non-Spatiotemporal) 16.46 12.20 

FS-LSSVM (Spatiotemporal) 17.69 13.01 

WD-FS-LSSVM (Non-

Spatiotemporel) 
5.51 3.77 

WD-FS-LSSVM (Spatiotemporal) 4.41 3.27 
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To more closely investigate the performance of the proposed WPP model, the 30-min WPP in 

Sunbridge and Red Lily wind farms for one day have been depicted in Figures 4-4- 4-5, 

respectively. Besides, the kernel density estimation of NAE distribution of various prediction 

models for Sunbridge has been shown in Figure 4-6. This figure clarifies the effectiveness of the 

proposed WPP model in limiting the NAE to lower values. 

 

 

Figure 4-5: WPP for 30-min ahead in Red Lily wind farm. 

 

 

 

 

Figure 4-4: WPP for 30-min ahead in Sunbridge wind farm. 
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 Conclusion 

In this paper, a novel spatiotemporal WPP based on WD and DISR has been addressed. The 

proposed WPP benefits from various wind farms information in different frequency range, thus 

the WPP accuracy is significantly enhanced. Besides, it has been observed that, the spatiotemporal 

might deteriorate the WPP accuracy, unless the decomposition approaches are employed. The 

proposed WPP is compared with other well-developed and widely used benchmark models. This 

WPP tool can be employed in short-term power system operation. 

 

 

 

 

 

 

Figure 4-6: Kernel density estimation of NAE distribution of various WPP models in Sunbridge wind farm. 
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 VERY SHORT-TERM WIND POWER PREDICTION INTERVAL 

FRAMEWORK VIA BI-LEVEL OPTIMIZATION AND NOVEL 

CONVEX COST FUNCTION6 

Substantial challenges in power systems operation and control as a result of the intermittent and 

stochastic nature of wind power generation can be significantly alleviated by proficient short-term 

wind power prediction interval (WPPI) models. In WPPI models, minimization of cost functions 

is conducted to train prediction engines and consequently tune their parameters. The prevalent cost 

functions of prediction engines in WPPI models are mainly non-differentiable and non-convex, 

and therefore the training process becomes problematic. To transcend such a crucial barrier, this 

paper addresses a new short-term WPPI framework based on a bi-level formulation and benefiting 

from a differentiable and convex cost function. The prediction engine is trained by classical global 

optimization of the cost function in the lower-level problem, while hyperparameters that control 

the quality of the WPPIs are injected thereto from the upper-level problem. The hyperparameters 

can be tuned such that the most useful WPPIs are constructed from the lower-level problem 

depending on the power system operator’s preferences. Lessening the need to heuristically tune a 

large number of prediction engine parameters is the foremost contribution of this work to the WPPI 

literature. The superior performance of the proposed WPPI is verified in the multistep ahead 

prediction of real wind power generation data in comparison to well-tailored benchmark models. 

                                                 

6 © 2018 IEEE. Reprinted, with permission from [106] N. Safari, S. M. Mazhari, and C. Y. Chung, “Very Short-Term Wind Power 

Prediction Interval Framework via Bi-level Optimization and Novel Convex Cost Function,” IEEE Trans. Power Syst., Early Access. 
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 Nomenclature 

{𝑦𝑛}𝑛=1
𝑁  Wind power time series with N points. 

𝑇𝑆 Sample time. 

𝐿 

Number of sample points in the datasets for training, validation, or 

testing. 

𝑦
𝑛
,  𝑦𝑛 Upper and lower bounds for the 𝑛th wind power observation. 

𝑀 Number of hidden neurons. 

𝒽𝑚(∙),𝒘𝑚, 𝑏𝑚 

Activation function, weight vector, and bias for the 𝑚th hidden 

neuron. 

𝑿𝑛 Input vector corresponding to the 𝑛th point. 

𝛽
𝑚
 ,  𝛽𝑚 

Output weights related to the 𝑚th hidden neurons of the upper and 

lower bounds. 

𝜏 Embedding delay time. 

𝐷 Embedding dimension. 

𝛿𝑛 

Binary variable equal to one when the lower and upper bounds 

encircle the 𝑛th observation, and zero otherwise. 

𝑅𝐿, 𝑅𝐿∗ Calculated and preferred reliability level. 

Δ𝑦
𝑛

, Δ𝑦𝑛 Deviation of the upper and lower bounds from actual wind power. 

𝐶(∙) The proposed cost function. 

ℰ(∙), 𝑅(∙) Elements of 𝐶(∙). 

𝜃 Indicator of Δ𝑦
𝑛
and Δ𝑦𝑛. 
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𝜔, 𝒂, 𝑐 Hyperparameters of the proposed cost function. 

𝐹𝑢𝑝(∙), 𝐹𝑙𝑜(∙) Lower-level function of upper and lower bounds. 

𝑢, 𝑈 Set of all upper and lower bounds hyperparameters and its domain. 

𝓀,𝒦 Set of unknown parameters of the prediction engine and its domain. 

𝜷,𝜷 Output weight vectors of the upper and lower bounds. 

𝐺(∙) , 𝐺𝑢𝑝(∙), 𝐺𝑙𝑜(∙) Derivatives of overall lower-level function, 𝐹𝑢𝑝(∙), and 𝐹𝑙𝑜(∙). 

 Introduction  

Wind power prediction (WPP) models are amongst the most indispensable tools for addressing 

particular issues posed to power systems by uncertainties accompanying the power generation 

injected from wind farms [107]. The importance of a precise WPP model is further underlined by 

the ever-growing increase in wind power penetration. Based on the prediction horizon, WPP 

models can be divided into four categories, comprising long-, medium-, short-, and very short-

term prediction [108].  

Prediction models with horizons less than 1-hour ahead, which also belong to the short-term and 

very short-term WPP category [108], are of utmost importance to various power system operation 

problems, including regulation and control actions [108], real-time electricity market and power 

dispatch [95], optimal power flow [109], etc., and invaluable efforts have been made to develop 

accurate prediction models for these horizons (e.g., [12, 46, 110-113]). By virtue of the importance 

of WPP model accuracy, this paper zeros in on developing a WPP model for few minute-ahead to 

1-hour ahead horizons. 
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Traditionally, WPP models provide the most likely wind power values in the next sample points 

as the deterministic estimation of wind power [12, 46, 110, 111]. These prediction models have 

been widely used in various power system operation and planning problems (e.g., [25, 26]). 

However, due to the chaotic and intermittent nature of wind power time series (TS), some degree 

of uncertainty in WPP is inescapable [112]. In this regard, many power system decision-making 

tasks (e.g., [95, 109]) call for WPP models that can estimate the uncertainties of wind power 

generation in a probabilistic manner [112].  

Probabilistic WPP can be conducted using two different approaches: parametric [112] and non-

parametric [113-116]. Amongst these, non-parametric probabilistic WPPs that do not limit the 

shape of the wind power probability distribution function (PDF) are preferred [113]. Non-

parametric probabilistic WPPs can be categorized into four types [117]: quantile regression [114], 

kernel density estimation methods [115], ensemble approaches [116], and machine learning-based 

frameworks [113]. Some WPP approaches are an amalgamation of some or all of these types and 

do not exclusively belong to a specific category (e.g., [60]). 

Owing to fruitful advancements in machine learning, significant attention has been devoted to 

machine learning-based probabilistic prediction [1, 45, 60, 113, 118-121]. WPP interval (WPPI) 

models are versatile probabilistic models that are used in a wide range of decision-making tasks 

[60]. The cost function and prediction engine are two major components of WPPI models [121]. 

In the optimization process, tailored cost functions are employed to train the prediction engine and 

find its unknown parameters; this is the most imperative step for acquiring a high-quality WPPI 

model and therefore is the focus of this work. 
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Reliability level (𝑅𝐿) and sharpness are two crucial evaluation factors in this context and have 

been used as primary blocks of various cost functions [1, 45, 60, 113, 118-121]. 𝑅𝐿 measures the 

probability that the constructed WPPIs encircle the future real wind power values while the 

sharpness of the WPPIs scales the deviation of their upper and lower bounds from real wind power 

values. A WPPI model with high 𝑅𝐿  and sharpness facilitates the economical and reliable 

integration of wind power to the power system [60].  

In [118, 121], a single objective problem is put forward by means of a novel cost function, called 

the coverage width-based criterion (CWC), which reflects both 𝑅𝐿 and sharpness. In [1], the CWC 

is further extended to form a new CWC (NCWC) by taking the prediction interval root-mean-

square-error (𝑃𝐼𝑀𝑆𝐸 ) into consideration. In the CWC and its variants, an exponential term, 

containing a hyperparameter penalizes the violation from the 𝑅𝐿 requirement. The cost functions 

proposed in [119, 120] are constructed based on a weighted combination of 𝑅𝐿 and sharpness 

measurements to circumvent the challenge of tuning the hyperparameter in the CWC. In [45], the 

problem of maximizing sharpness and 𝑅𝐿 is formulated as a two-objective problem defined via 

fuzzifications. In [113], a constrained optimization problem is proposed, and the sharpness is 

maximized while 𝑅𝐿 meets the required 𝑅𝐿.  

As the previously proposed cost functions are non-differentiable [119], WPPI models in [1, 45, 

113, 118-121] are inevitably forced to employ heuristic optimization techniques to find a large 

number of parameters in the prediction engine. However, heuristic optimization procedures may 

be trapped in local optima [60]; they are also highly dependent on initial values [60, 121], and the 

results of independent runs can differ from one another. Importantly, the optimization problem 

markedly scales up by increasing the size of the prediction engine [122]. In [60, 123], the WPPI 
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problem is formulated as convex programming using the quantile regression (QR) concept and 

extreme learning machine (ELM). However, the WPPI literature on differentiable and convex cost 

functions is still in its infancy. Besides, supervised control for examining and/or modifying the 𝑅𝐿 

and sharpness according to the system operator (SO) preference is beneficial. However, it cannot 

be achieved by the thus-far single level convex programming due to the inherent non-convexity of 

𝑅𝐿 as well as other prediction interval metrics. 

To overcome the shortcomings of the cost functions developed in [1, 45, 113, 118-121] and their 

corresponding optimization difficulties in WPPI modeling, a bi-level formulation is proposed in 

this paper. The lower-level optimization problem is responsible for optimizing the prediction 

engine parameters by a differentiable formulation, which enables the use of derivative-based 

classical global optimization algorithms. Not being trapped in a local optimum and the availability 

of mature derivative-based global optimization packages are two of the most salient advantages of 

the proposed lower-level problem. Importantly, a few tunable hyperparameters, determined in the 

upper-level problem, influence the lower-level problem optimization.  

The upper-level problem is devised so the operator’s preference can be met by tuning 

hyperparameters that are upper-level variables. Maximizing 𝑅𝐿  and sharpness are set as the 

objectives of the upper-level problem. Non-dominated sorting genetic algorithm II (NSGA-II) 

[124]—a widely-used and adept meta-heuristic optimization in power system problems [125]—is 

adopted for this purpose. In the proposed WPPI model, only a few hyperparameters, which are 

defined in the upper-level optimization problem, are heuristically obtained while a large number 

of prediction engine parameters are derived from classical optimization. Therefore, although the 

proposed WPPI formulation utilizes heuristic optimization in the upper-level problem, the search 

space is limited due to the small number of upper-level variables, which makes finding the optimal 
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values of upper-level variables highly feasible [122]. Remarkably, the number of hyperparameters 

is independent of the scale of the prediction engine and the number of unknown parameters therein; 

in other words, scaling up the prediction engines will not increase the difficulty and complexity of 

the upper-level problem.  

The bi-level optimization structure and the proposed cost function must be employed along with 

an appropriate prediction engine. In [1, 45, 113, 118, 121], the unknown parameters of neural 

networks (NNs) have been tuned heuristically such that the cost function is minimized. However, 

NNs are not only prone to becoming trapped in local minima [118], but they also suffer from high 

computational costs [119]. Unlike NNs, training of support vector machines (SVMs) obtains the 

global minimum [126, 127]. The main parameters of SVMs have been found via quadratic 

programming while hyperparameters are heuristically tuned by optimizing 𝑅𝐿  and sharpness. 

ELM is another learning algorithm, initially developed for training feed-forward NNs [128]. The 

hidden neuron parameters in ELM are randomly chosen while the output weights are found by 

means of a simple optimization with mild constraints. The authors of [129] show that ELM 

outperforms SVM in WPP and its training is thousands of times faster [128]; the simplicity of the 

optimization problem for finding ELM output weights are amongst the chief benefits of ELM. 

Additionally, employing ELM along with the proposed cost function leads to a differentiable and 

convex optimization problem; thus, its global solution can be attained. Hence, in this paper, ELM 

is employed as the prediction engine of the proposed WPPI. 

Based on the above discussion, this paper addresses the challenges in tuning a large number of 

parameters in WPP that trace back to the cost function. The proposed WPPI model features a bi-

level optimization structure and a novel cost function for tuning the prediction engine parameters. 

The upper-level variables control the 𝑅𝐿 and sharpness of the WPPI are fed into the lower-level 
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problem, which is differentiable and convex. Then, the lower-level variables, including the 

prediction engine parameters, are obtained via classical convex optimization. From the SO’s 

viewpoint, knowing the value of wind power from the next multi-sample of wind power is of great 

importance. Hence, the WPPI model is developed as a multistep prediction. To evaluate the 

effectiveness and performance of the proposed WPPI model in comparison to well-developed 

benchmark models, two real-world wind power generation datasets, including aggregated wind 

power generation of a wide region and individual wind farm, with diverse characteristics are used. 

In short, the main contributions of this work are two-fold: 

• A novel differentiable and convex cost function for tuning prediction engine parameters 

of the WPPI model. The prediction engine parameters are tuned globally and consequent-

ly, training the prediction models several times will lead to unique WPPIs for both 

training and test datasets. 

• For the first time, a bi-level optimization structure for the WPPI is developed to supervise 

the quality of WPPIs based on the SO’s criteria, while primary parameters of the predic-

tion engines are tuned globally.  

The remainder of this paper is structured as follows. In Section 5-3, the general formulation of 

the prevailing ELM-based WPPI models is reviewed, and the proposed cost functions are 

described. Section 5-4 describes the proposed WPPI formulation and its solution approach. Case 

studies and simulation results are described in Section 3-4. Finally, Section 3-5 contains salient 

remarks and conclusions from the work.   
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 Conventional ELM-based WPPI and The Proposed Cost Function 

 Conventional ELM-based WPPI  

Based on the outstanding advantages of ELM discussed earlier, an ELM is employed as the 

prediction engine without loss of generality. 𝑦
𝑛
 and 𝑦𝑛 can be obtained using (5-1) and (5-2) [128], 

respectively: 

𝑦
𝑛
= ∑(𝒽𝑚(𝒘𝑚

𝑇 𝑿𝑛 + 𝑏𝑚) 𝛽𝑚)

𝑀

𝑚=1

 (5-1) 

𝑦𝑛 = ∑ (𝒽𝑚(𝒘𝑚
𝑇 𝑿𝑛 + 𝑏𝑚)𝛽𝑚)

𝑀

𝑚=1

 (5-2) 

Hidden neuron weighting coefficients and bias are chosen randomly while the output weights must 

be selected optimally [128]. Therefore, for an ELM with 𝑀 hidden neurons, 2 × 𝑀 prediction 

engine parameters (i.e.,  𝛽
𝑚

 and 𝛽𝑚, 𝑚 = 1,… ,𝑀) need to be tuned; therefore, the ELM formulations 

in (5-1)-(5-2) are linear with respect to unknown parameters. Note that this study utilizes historical 

wind power data as the input of the WPPI model. However, exogenous variables (e.g., wind speed, 

wind direction, etc.) can also be considered. Various feature selection (FS) approaches can be 

adapted to construct the feature vector (𝑿𝑛), e.g., [68, 92, 130, 131]. Due to the extreme nonlinearity 

of wind power TS [12], a state space representation of TS, based on the method of delay, is used 

in this paper. In this regard, the wind power TS is mapped to an embedding space by means of 

informative features, including a series of wind power lags [12]. The input vector, 𝑿𝑛, is as follows: 

𝑿𝑛 = [𝑦(𝑛−1)−(𝐷−1)𝜏 … 𝑦(𝑛−1)−𝜏 𝑦𝑛−1]1×𝐷 (5-3) 



 

85 

 

where 𝜏 is found using the mutual information-based approach proposed in [130] and embedding 

dimension, 𝐷, is determined based on Cao’s embedding dimension method [68].  

The accuracy of the WPPI model is mainly assessed by 𝑅𝐿 and sharpness. The 𝑅𝐿 of a WPPI 

model is calculated as follows [45]: 

𝑅𝐿 =
1

𝐿
∑ 𝛿𝑛
𝐿
𝑛=1 ,  (5-4) 

where 𝛿𝑛 is defined as follows: 

𝛿𝑛 = {
1, 𝑦𝑛 ≤ 𝑦𝑛 ≤ 𝑦

𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

The sharpness of a WPPI model is determined based on the prediction interval normalized 

average width (𝑃𝐼𝑁𝐴𝑊), which is defined as follows [45]: 

𝑃𝐼𝑁𝐴𝑊 =
1

(𝑀𝑎𝑥({𝑦𝑛}𝑛=1
𝐿 )−𝑀𝑖𝑛({𝑦𝑛}𝑛=1

𝐿 )).𝐿
∙ ∑ (𝑦

𝑛
− 𝑦𝑛)

𝐿
𝑛=1   (5-5) 

In the literature, prediction engines of WPPI models are trained such that 𝑅𝐿 is maximized or 

close to the preferred 𝑅𝐿  (𝑅𝐿∗ ), while 𝑃𝐼𝑁𝐴𝑊  is close to zero (𝑃𝐼𝑁𝐴𝑊 → 0 ). 𝑅𝐿  is non-

differentiable and non-convex due to the discontinuous piecewise function used for 𝛿𝑛 calculation. 

For this reason, heuristic optimization techniques are widely used for finding the prediction 

engines parameters in (5-1) and (5-2). Therefore, in total, 2 × 𝑀 parameters need to be found 

through a heuristic optimization process. The optimization problem also linearly scales up by 

increasing the number of hidden neurons due to a substantial increment of search space. In 

addition, heuristic optimization is highly dependent on initial values, and the outcomes for 

different runs can differ from each other.  
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In this regard, Section 5-3-2 aims to alleviate the aforementioned side effects by defining a 

convex and differentiable cost function for tuning the prediction engine’s parameters. Hence, 

classical convex optimization can be employed for acquiring the prediction engine unknown 

parameters. This consequently brings about reproducibility in tuning prediction engine parameters 

and attaining high quality WPPIs.  

 Description of the Proposed Cost Function 

To construct accurate WPPIs, upper and lower bounds should be determined such that their 

deviations from the actual wind power tend to zero, while the actual wind power is encircled by 

upper and lower bounds. Based on this, a cost function, which benefits from differentiability and 

convexity, is put forward to acquire prediction engine parameters. 

The deviations of 𝑦
𝑛

 and 𝑦𝑛 from 𝑦𝑛 are defined as follows: 

Δ𝑦
𝑛
= 𝑦

𝑛
− 𝑦𝑛  (5-6) 

Δ𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛 (5-7) 

According to (5-6) and (5-7), if the observed value is encircled by 𝑦
𝑛

 and 𝑦𝑛, then 

𝑦
𝑛
≥ 𝑦𝑛 or Δ𝑦

𝑛
≥ 0 (5-8) 

𝑦𝑛 ≤ 𝑦𝑛 or Δ𝑦𝑛 ≥ 0 (5-9) 

Inequalities (5-8) and (5-9) describe the requirement for reliable upper and lower bounds, 

respectively. To efficiently train the prediction engine, substantial penalties need to be imposed if 

either of the inequalities (5-8) and (5-9) is violated. Meanwhile, depending on deviations of the 

lower and upper bounds from the actual value, the cost should be adaptively selected. In other 

words, Δ𝑦
𝑛

 and Δ𝑦𝑛 should tend to zero, while the actual points should lie within the upper and 
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lower bounds, for a high-quality WPPI. To this end, the cost function proposed for tuning the 

prediction engine unknown parameters is defined as follows: 

𝐶(𝜔, 𝜃, 𝒂) = ℰ(𝜔, 𝜃) ∙ 𝑅(𝜃, 𝒂) (5-10) 

ℰ(𝜔, 𝜃) = {
𝜔 𝜃 ≥ 0
1 𝜃 < 0

 (5-11) 

𝑅(𝜃, 𝒂) = ∑𝑎𝑘𝜃
2𝑘

𝐾

𝑘=1

 (5-12) 

In (5-10), ℰ(∙) accounts for the effects of any violation of (5-8) and (5-9) and is the primary term 

of the cost function. The second term, 𝑅(∙), is set to make the whole cost function differentiable. 

𝜃 is the variable of cost indicator and represents Δ𝑦
𝑛

 or Δ𝑦𝑛. 𝜔 is a hyperparameter that regulates 

both sharpness and 𝑅𝐿. 𝒂 = {𝑎𝑘, 𝑘 = 1,… , 𝐾} is a vector consisting of a set of polynomial co-

efficients. 𝐾 is the number of non-zero coefficients.  

In (5-11), 𝜔 is selected within the range of [0  1]. For a constant 𝜔, ℰ(𝜔, 𝜃) is a piecewise 

function with output 𝜔, if 𝜃 ≥ 0; otherwise, its output is 1. Therefore, ℰ(𝜔, 𝜃) can be used as a 

cost function for constructing reliable upper and lower bounds and tuning the prediction engine 

parameters. However, ℰ(𝜔, 𝜃) is still a non-convex function of 𝜃, which makes it troublesome to 

find the set of prediction engine unknown parameters for a global optimal solution. Furthermore, 

ℰ(𝜔, 𝜃) is non-differentiable at 𝜃 = 0, which is a barrier for utilization of classical convex opti-

mization approaches. Multiplication of ℰ(𝜔, 𝜃)  with certain convex functions is an efficient 

approach for convexification [132]. The multiplied function should be convex with its global opti-

mum at 𝜃 = 0 to reward sharp and reliable WPPIs and discourage construction of WPPIs with low 

sharpness. Amid the convex and differentiable functions, a combination of the even-degree terms, 

as shown in (5-12), not only meets the aforementioned requirements but also forms a generalized 
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structure that creates enough freedom to cover various shapes of the cost function. The convexity 

of 𝐶(∙) is further discussed in Appendix C. The first derivative of (5-10)  is as follows: 

𝜕𝐶(𝜔, 𝜃, 𝒂)

𝜕𝜃
= {

𝜔 ×
𝜕𝑅(𝜃, 𝒂)

𝜕𝜃
𝜃 ≥ 0

𝜕𝑅(𝜃, 𝒂)

𝜕𝜃
𝜃 < 0

 (5-13) 

where 

𝑅(𝜃 = 0, 𝒂) = 0 and 
𝜕𝑅(𝜃 = 0, 𝒂)

𝜕𝜃
= 0 

Therefore, Eq. (5-10) is differentiable for all 𝜃 values, and its first derivative with respect to 𝜃 

is continuous. This feature will be used in Section 5-4-2 to tune the prediction engine parameters.   

Figure 5-1 describes the impact of different 𝜔 on 𝐶(∙) while a simple 2nd degree function, for 

instance, is considered for 𝑅(∙). Once 𝜔 =1, the cost reaches a minimum at 𝜃 = 0. Employing 

such a cost function for training the prediction engine results in ignorance of the error sign; and 

therefore, the prediction engine parameters are tuned to minimize the absolute error of the predic-

tion engine output from the real wind power value. This case is equivalent to a wind power point 

forecast with the mean squared error as the cost function. On the other hand, in the case of 𝜔 = 0, 

 

Figure 5-1: 𝐶(𝜔, 𝜃, 𝒂) for different 𝜔. 

 

 

 

𝜃𝑖 = 0 

𝜃𝑖 ≥ 0 𝜃𝑖
< 0 

0 < 𝜔 < 1 

𝜔 = 0 

𝜔 = 1 

𝜃𝑖  

𝐶(𝜔, 𝜃𝑖,𝒂) 
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the cost function evenly imposes the minimum cost if the inequality in (5-8) or (5-9) is met, and 

the sharpness of the prediction is disregarded; for 0 < 𝜔 < 1, some degrees of both sharpness and 

reliability are considered as described in Figure 5-1. As an example, let us assume the actual power 

at the 𝑛th point is 𝑦𝑛 = 𝑝, and we have two possible upper bounds of 𝑝
1
≥ 𝑝 and 𝑝

2
< 𝑝. Based 

on Eq. (5-10), the penalties associated with them are 𝜔 × (𝑝
1
− 𝑝)

2
 and (𝑝

2
− 𝑝)

2
, respectively. 

As we set out to minimize Eq. (5-10), the value of 𝜔 is a determinant for selecting 𝑝
1
 or 𝑝

2
. In 

other words, 𝜔  decides whether 𝑅𝐿  or 𝑃𝐼𝑁𝐴𝑊  matters. Therefore, the optimal  𝜔  needs to be 

found to construct optimal upper and lower bounds. Hereafter, 𝜔 related to the upper and lower 

bounds are respectively denoted by  𝜔  and 𝜔  and  are hyperparameters in the proposed WPPI 

model. 

Moreover, to optimally construct WPPIs, 𝒂 related to constructing both upper bound (𝒂) and 

lower bound (𝒂) need to be aptly selected and are considered as hyperparameters. Sensitivity 

analysis should be carried out to find the proper degree of the polynomial; therefore, the number 

of hyperparameters can be substantially reduced.  

According to the above discussion, Eq. (5-10) can be employed to construct proficient upper and 

lower bounds. The overall set of hyperparameters, 𝑢, is as follows: 

𝑢 = {𝜔,𝜔, 𝒂, 𝒂 } (5-14) 

Based on (5-6)-(5-12), (5-14), and substituting Δ𝑦
𝑛

 and Δ𝑦𝑛 for 𝜃, the generalized cost function 

for tuning the prediction engine parameters is as follows: 

𝐹(𝑢, 𝓀) = ∑(𝐶(𝜔, Δ𝑦
𝑛
, 𝒂) + 𝐶 (𝜔, Δ𝑦𝑛, 𝒂))

𝐿

𝑛=1

 (5-15) 
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where 𝓀 should be optimally found by minimizing (5-15) subject to (5-6) and (5-7). It should not 

escape our notice that the proposed cost function in (5-15)  is differentiable, which facilitates the 

use of derivative-based optimization approaches; however, the convexity of (5-15)  can be affected 

by the prediction engine formulation. Therefore, Eq. (5-15) is convex and differentiable if the 

prediction engine formulation is convex and differentiable with respect to its unknown variables. 

However, even if the prediction engine is non-convex, the proposed cost function can ameliorate 

the non-convexity of WPPI problem. As described earlier in Section 5.2.1, ELM possesses a linear 

formulation with respect to the unknown parameters. Hence, (5-15)  becomes differentiable and 

convex, and the global solution can be determined by convex optimization techniques. 

 Specified Cost Function for ELM 

In ELM, the prediction engine parameters related to the upper and lower bounds are independent 

of one another; hence, the cost function terms in (5-15) for the upper and lower bounds can be 

considered individually as shown in (5-16) and (5-17), respectively. In addition, minimizing the 

norm of output weights (i.e., 𝜷 and 𝜷 in (5-1) and (5-2)) is also added to the cost function to 

minimize the output weights and avoid overfitting on training data in (5-16) and (5-17), similar to 

the prevalent ELM formulation in [128]: 

𝐹𝑢𝑝(𝑢, 𝜷) = 𝑐 . (∑ 𝐶(𝜔, Δ𝑦
𝑛
, 𝒂)𝐿

𝑛=1 ) + 𝜷
𝑇
𝜷  (5-16) 

𝐹𝑙𝑜 (𝑢, 𝜷) = 𝑐 . (∑𝐶 (𝜔, Δ𝑦𝑛, 𝒂)

𝐿

𝑛=1

) + 𝜷𝑇𝜷 (5-17) 

where 𝑐 is the user-specified hyperparameter that should be optimally selected for trade-off 

between empirical and structural risks [128]. In ELM, output weights related to the upper bound 
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(𝜷 = {𝛽1, … , 𝛽𝑀}) and lower bound (𝜷 = {𝛽1, … , 𝛽𝑀}) are unknown parameters of the prediction 

engine. 𝑢 = {𝜔,𝒂, 𝑐}  and 𝑢 = {𝜔, 𝒂 , 𝑐}  are sets of hyperparameters for ( 5-16) and ( 5-17), 

respectively. 

 The Proposed WPPI Model 

In this section, the WPPI model formulation and its solution approach for different prediction 

steps are elucidated. It is worth mentioning that the direct prediction approach is applied to conduct 

multistep ahead prediction. Thus, for prediction of the 𝑗th -step ahead, 𝐽  different prediction 

engines are trained and prediction of the 𝑗th-step ahead is independent of the (𝑗 − 1)th-step ahead 

[12]. Direct WPPI has two chief merits. First, parallel computation can be employed, and therefore 

WPPIs related to different prediction steps can be simultaneously constructed. Second, for a 

nonlinear and chaotic wind power TS, direct prediction enhances the prediction accuracy and 

prevents accumulation of prediction errors that might occur in an iterative prediction [12].  

 WPPI Formulation 

Considering the cost function in (5-16) and (5-17), the prediction engine parameters and the 

hyperparameters of the proposed WPPI for the 𝑗th-step ahead prediction can be formulated as a 

bi-level optimization, as described below: 

𝑀𝑖𝑛
𝑢={𝑢,𝑢}∈𝑈,𝓀={𝜷,𝜷}∈𝒦

{−𝑅𝐿, 𝑃𝐼𝑁𝐴𝑊} 
(5-18) 

𝓀 = {𝜷, 𝜷} ∈ arg { 𝑀𝑖𝑛
{𝓏,𝓏}∈𝒦

{𝐹𝑢𝑝(𝑢, 𝓏), 𝐹𝑙𝑜(𝑢, 𝓏)}} 
(5-19) 
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Eq. (5-18) represents the upper-level optimization problem. To introduce the efficacy of the 

proposed WPPI model, in this paper, based on Section 5-3, a multi-objective optimization 

consisting of maximization of 𝑅𝐿  in (5-4) (i.e., minimization of −𝑅𝐿 ) and minimization of 

𝑃𝐼𝑁𝐴𝑊 in (5-5) is regarded as the upper-level optimization function. However, other objective 

functions, defined in the literature (e.g., skill score in [119]), can be employed based on SO 

preference. The lower-level optimization is presented in (5-19), and its cost function is described 

in Section 5.2.3 as ( 5-16) and ( 5-17). In ( 5-19), 𝓏  and 𝓏  correspond to prediction engine 

parameters and representative of 𝜷 and 𝜷 in (5-16) and (5-17), respectively. The convexity of 

(5-19) is analyzed in Appendix C. 

Figure 5-2 demonstrates the overall scheme of the proposed bi-level prediction model. The 

lower-level optimization function can be solved and 𝜷 and 𝜷 can be found by classical convex 

optimization methods provided the variables in sets 𝑢 and 𝑢 are imported from the upper-level 

optimization problem.  

 

Figure 5-2: General scheme of the proposed WPPI. 
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 Solution Approach 

Classical convex optimization techniques are employed to solve the lower-level optimization, 

while the upper-level optimization is conducted heuristically by NSGA-II. Keen readers can find 

a description of this powerful meta-heuristic optimization tool in [124].  

The general flowchart of the proposed solution approach for tuning parameters of the proposed 

WPPI formulation, introduced in Section 5.3.1, is provided in Figure 5-3. As shown in the figure, 

wind power TS is preprocessed in the first step of the training procedure, and any gaps in historical 

data are detected. The data gaps are filled using interpolation and extrapolation techniques; 

 

Figure 5-3: Flowchart of the proposed WPPI training procedure. 
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however, advanced outlier detection and removal techniques can be employed in this step without 

loss of generality. Detrending is conducted to reduce the nonstationarity and enhance the predic-

tion accuracy. Data are normalized in the range of [0, 1] for a more efficient training procedure. In 

the second step, data are divided into training and validation sets. This helps to avoid overfitting 

while ensuring acceptable consistency in the performance of both training and validation sets. 

Next, the feature vector needs to be constructed using FS. 

According to Section 5.2.1, Cao’s embedding dimension, along with a mutual information-based 

approach for delay selection, is used. Afterward, NSGA-II is initialized, and a set of solutions for 

𝑢 are imported from the upper-level; then, the lower-level optimization described in (5-19) is 

solved for each set of 𝑢. Objective functions 𝐹𝑢𝑝(∙) and 𝐹𝑙𝑜(∙)  in the lower-level optimization 

problems are convex. Also, as shown in Appendix C, 𝐹𝑢𝑝(∙)  and 𝐹𝑙𝑜(∙)  are differentiable. 

Therefore, global optimal solutions of 𝐹𝑢𝑝(∙)  and 𝐹𝑙𝑜(∙)  ((𝜷,𝜷 )=  (𝓀,𝓀) ) are the root of 

𝐺(𝑢, 𝑢, 𝓀, 𝓀) defined as follows: 

𝐺(𝑢, 𝑢, 𝓀, 𝓀) = [
𝐺𝑢𝑝(𝑢,𝓀)

𝐺𝑙𝑜(𝑢,𝓀)
] = [

𝛻𝓀𝐹𝑢𝑝(𝑢, 𝓀)

𝛻𝓀𝐹𝑙𝑜(𝑢,𝓀)
] (5-20) 

where 

𝐺𝑢𝑝(𝑢, 𝓀) = 𝑐[𝛻𝓴𝑅(𝜃, 𝒂) ∘ 𝓔  + 2𝓴]𝑀×1
 

𝐺𝑙𝑜(𝑢,𝓀) = 𝑐[𝛻𝓴𝑅(𝜃, 𝒂) ∘  𝓔 + 2𝓴]
𝑀×1

 

(5-21) 

𝓔 = [ℰ(𝜔, Δ𝑦
1
) … ℰ(𝜔, Δ𝑦

𝐿
)] (5-22) 

𝓔 = [ℰ (𝜔, Δ𝑦1) … ℰ (𝜔, Δ𝑦𝐿)] (5-23) 
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where ∘  is the element-wise multiplication, known as the Hadamard product. The root 

of  𝐺(𝑢, 𝑢, 𝓀, 𝓀)  in (5-20) can be found using different nonlinear solvers. In this work, the 

MATLAB Optimization Toolbox [133] and fsolve function are put to use for finding the roots of 

𝐺(𝑢, 𝑢, 𝓀, 𝓀). The Levenberg-Marquardt method is employed to find the solution of (5-20) [39]. 

This algorithm is available in commercial packages and has several advantages, including robust 

performance, even in a near singular or singular Jacobian matrix, compared to other algorithms 

such as Newton’s method. To improve the convergence, an appropriate initial set, {𝓀, 𝓀} =

{𝜷(0), 𝜷
(0)
}, is provided to fsolve using the ELM output weights in the deterministic prediction. 

The lower-level problem needs to be solved for different sets of hyperparameters provided from 

the upper-level. Parallel computation is performed to enhance the computation time. At every 

iteration, 𝑖, NSGA-II updates the non-dominated sets and population position {𝑢, 𝑢} based on its 

ELM output weights and its resultant upper-level objective function value. When 𝑖 > 𝑖𝑚𝑎𝑥, this 

iterative process is stopped, and the Pareto front set is constructed from non-dominated sets. 

Therefore, an SO can choose the most appropriate solution set according to the problem. To reduce 

the computation time, the lower-level problem is solved in a parallel manner for different sets of 

𝑢 = {𝑢, 𝑢} in population. 

 Case Studies 

 Data Description 

To evaluate the performance of the proposed WPPI, several realistic case studies are conducted 

using publicly available historical data, including accumulated wind power generation data from 



 

96 

 

the Alberta Electric System Operator (AESO) [62] and wind power generation for the Adelaide 

wind farm from the Independent Electric System Operator (IESO) [134].  

AESO operates the power grid in Alberta, Canada and is authorized for the operating energy 

market. AESO wind power generation constitutes approximately 9% of installed generation 

capacity in Alberta, Canada. AESO’s wind power generation data demonstrate different patterns 

in various months of year. To this end, evaluation of the proposed model for different months of a 

year and comparison to other WPPI models is conducted to assess the efficacy of the WPPI models. 

Eleven case studies related to different months (Feb. 2012 to Dec. 2012) are considered. 

IESO operates the real-time power system and oversees the electricity market in Ontario, 

Canada. Individual wind farms possess more chaotic and intermittent behavior compared to aggre-

gated wind power generation in a wide region. Therefore, prediction of wind power generation for 

the Adelaide wind power facility from 1 Jan. 2017 to 7 Apr. 2017 is considered to evaluate the 

performance of the proposed WPPI for individual wind farm power generation.  

High-quality WPPI for intra-hour and hour-ahead resolution can address several severe impacts 

of the volatile and intermittent behavior of wind power on power system balance in the electricity 

market [45, 60, 108]. In this regard, this paper demonstrates the results of multistep ahead 

prediction for 1-hour ahead with 10-min resolution.  
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 Training Dataset Length and Number of Hidden Neurons 

Figure 5-4 shows the wind power generation in AESO in Feb. 2012, as an example. The wind 

power generation possesses a high level of volatility and intermittency, and therefore the proposed 

model is trained online in a daily manner to construct a model with historical data close to the 

prediction day. The WPPI model is not updated during a given day, as adding few points to the 

training dataset cannot significantly affect model accuracy yet increases the computational burden 

[92].  

Training dataset length and number of hidden neurons are determined by analyzing data for the 

required prediction horizon. Here the process is described for 10-min ahead prediction in AESO 

wind power TS.  

Figure 5-5 demonstrates the normalized root-mean-square error (NRMSE) [12] of both training 

and test datasets for 10-min ahead forecasting using ELM. Increasing the length of training dataset 

to more than 10 days results in minimal improvement but increases the computational burden. 

Also, the accuracy of prediction does not significantly improve significantly for approximately 

above 30 neurons. Notably, enlarging the training dataset and enhancing the number of neurons 

increase the computational burden of the training process. In this regard, 10 days of data for the 

 

Figure 5-4: 10-min ahead wind power generation for AESO (Feb. 2012). 
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training dataset and 30 neurons are considered for 10-min ahead WPP prediction of the AESO. 

Empirical simulations for other prediction horizons verify that similar lengths of training dataset 

can lead to satisfactory training of the prediction model. However, the number of neurons varies 

based on the prediction horizon.  

 Benchmark Models and Evaluation Criteria 

Persistence model (PM) is currently the most used classical benchmark model in renewable 

generation prediction [60]. Comparing the effectiveness of the proposed WPPI with this traditional 

benchmark can provide insightful information about the efficacy of the proposed approach in 

comparison to other models. The recently proposed QR-based ELM [60] is the second benchmark 

model considered. A prediction model called the hybrid intelligent algorithm (HIA) [119] is 

another ELM-based WPPI and is used as the third benchmark model. To compare the ability of 

the proposed ELM-based method against previous models, a feed-forward NN-based WPPI [121] 

called the lower upper bound estimation (LUBE) is used as the fourth benchmark model. 

Prediction models are trained with similar feature sets and training datasets; the exception is PM, 

 

Figure 5-5: NRMSE for 10-min ahead forecasting. 
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for which the mean and variance of the latest observations are used to construct a Gaussian 

distribution representing the uncertainty of forthcoming sample points [119]|.  

𝑅𝐿 and 𝑃𝐼𝑁𝐴𝑊, which are respectively described in (5-4) and (5-5) are widely used in literature 

[19], are the first two evaluation metrics. Skill score (𝑆𝑐) is another evaluation metric that considers 

𝑃𝐼𝑁𝐴𝑊 along with 𝑅𝐿; therefore, it provides an overall score for a WPPI model. 𝑆𝑐 is used as the 

third evaluation metric and is defined as follows [119]: 

𝑆𝑐 =
1

𝐿
∑ 𝒦 (𝑦𝑛, 𝑦𝑛, 𝑅𝐿

∗)𝐿
𝑛=1   (5-24) 

where 

𝒦 (𝑦𝑛, 𝑦𝑛, 𝑅𝐿
∗) = {

ℬ − 4 (𝑦𝑛 − 𝑦𝑛) , 𝑦𝑛 < 𝑦𝑛

ℬ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ℬ − 4(𝑦𝑛 − 𝑦𝑛), 𝑦𝑛 > 𝑦𝑛

 

ℬ = −2. (1 − 𝑅𝐿∗) ∙ (𝑦𝑛 − 𝑦𝑛) 

where 𝑅𝐿∗ is the preferred 𝑅𝐿. 𝑆𝑐 is a negative-sign evaluation metric, and a prediction model with 

𝑆𝑐 closer to zero possesses better performance from the 𝑆𝑐 viewpoint. It is worth mentioning that 

all of these evaluation indices might need to be considered together to identify the most superior 

prediction model. For example, there might be a WPPI in which |𝑆𝑐| → 0 but 𝑅𝐿 ≪ 𝑅𝐿∗. In such 

cases, the operator would probably prefer a WPPI with less deviation from 𝑅𝐿∗  but featuring 

constructed WPPIs that are narrow (𝑃𝐼𝑁𝐴𝑊 → 0). 
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 Test Results and Analysis for AESO 

5-5-4-1 Sensitivity Analysis 

As described in Section 5-3-2, the degrees of polynomials 𝑅(𝜃, 𝒂) and 𝑅(𝜃, 𝒂) in (5-21) impact 

the quality of the WPPI. In addition, increments in the degrees of polynomials can result in 

increases in the number of hyperparameters, which should be optimally selected from the upper-

level problem. Hence, sensitivity analysis is conducted to determine the appropriate degrees of 

𝑅(𝜃, 𝒂) and 𝑅(𝜃, 𝒂). WPPIs related to 1-step ahead prediction during Feb. 2012 for different 

degrees of polynomials are constructed, and the results for 𝑅𝐿∗ = 90% are summarized in Table 

5-1. The resultant 𝑅𝐿s, using different degrees of polynomials, are greater than 90%; hence, the 

𝑅𝐿 criterion is met. Moreover, the 𝑃𝐼𝑁𝐴𝑊 decreases by increasing the degree of the polynomial; 

however, the maximum increment occurs by the 4th-degree polynomial. The number of 

hyperparameters increases by increasing the degree of the polynomial, and so the 4th-degree 

polynomial is used in this paper as a tradeoff. Therefore, according to Section II-B, 𝒂 and  𝒂 only 

consist of two elements. In this paper, 𝒂 = 𝒂 , and therefore, considering 𝜔 , 𝜔 , and 𝑐 , five 

parameters need to be tuned by the upper-level optimization.  

5-5-4-2 Analysis of Diversity in Pareto Front  

The first characteristic examined here is the Pareto frontier of the proposed WPPI model, so as 

to construct WPPIs that ensure that the Pareto set consists of solutions for a wide range of 𝑅𝐿 and 

Table 5-1: Evaluation of the Proposed WPPI in 1-Step Ahead Prediction for Feb. 2012 and 𝑅𝐿∗ = 90%. 

 

 

 
 2nd 4th 6th 8th 

𝑃𝐼𝑁𝐴𝑊(%) 3.8107 3.607 3.5901 3.5807 

 

 Evaluation Metrics 
Max. Degree 
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𝑃𝐼𝑁𝐴𝑊. In this regard, a Pareto frontier for the AESO for 10-min ahead prediction is shown in 

Figure 5-6. This figure shows optimal WPPI models can be achieved for various values of 𝑅𝐿∗, 

which is of great importance to SOs, and as expected when training WPPI models with lower 𝑅𝐿∗, 

𝑃𝐼𝑁𝐴𝑊 is much lower than its value for realizing higher 𝑅𝐿∗. 

5-5-4-3 Steadiness in WPPI for Training and Testing 

Consistency in performance of the proposed WPPI model in training and testing is of particular 

interest. Any overtraining or undertraining is detected by consistency analysis. To conduct this 

analysis, the WPPI was run for Feb. 2012 to Dec. 2012, and 𝑆𝑐 values for 𝑅𝐿∗ = 90% calcauted 

for both the training and test datasets in  each  month  are  calculated. Figure 5-7 demonstrates  the 

𝑆𝑐 values for different months in 1-step (10-min) ahead prediction and shows a strong consistancy 

between 𝑆𝑐 values related to the training and test datasets. The average and maximum deviation 

 

Figure 5-6: Pareto front derived by the proposed WPPI for 1-step ahead (10-min ahead) prediction. 
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between the 𝑆𝑐 values of the training and test datasets are about 0.07 and 0.2%, respectively. Thus, 

empirical results confirm that the model is not overtrained or undertrained. In this regard, the SO 

can estimate the 𝑆𝑐 of the test dataset from the 𝑆𝑐 of the training dataset.  

5-5-4-4 Comparison with Benchmark Models for Various Months 

After investigating the capability of the proposed WPPI for constructing WPPIs with any 𝑅𝐿∗ in 

Section 5.4.4.2 and observing the consistency of the WPPI model in Section 5.4.4.3, we now 

compare our model against other models. 

Due to the high importance of 𝑅𝐿∗ = 90%  in many power system operation problems, 

evaluation of WPPI models for 𝑅𝐿∗ = 90% is well-known in the literature [1, 45, 127]. Figure 5-

8 demonstrates 𝑆𝑐 and 𝑃𝐼𝑁𝐴𝑊 values of WPPIs for 𝑅𝐿∗ = 90% in different prediction steps that 

are averaged from Feb. 2012 to Dec. 2012. Amongst WPPI models, the proposed WPPI presents 

superior performance in terms of 𝑆𝑐. In this figure, the result of PM is not reported due to very 

large 𝑃𝐼𝑁𝐴𝑊 and 𝑆𝑐  thereof which makes the comparison with other WPPIs difficult. QR 

demonstrates the best performance in terms of providing sharp WPPIs for different prediction steps 

 

Figure 5-7: 𝑆𝑐 values for various months in training and test datasets for 𝑅𝐿∗ = 90%. 
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but is unable to construct WPPIs with 𝑅𝐿 ≥ 𝑅𝐿∗, which results in higher |𝑆𝑐| compared to the 

proposed WPPI. The proposed WPPI model ranked second in terms of 𝑃𝐼𝑁𝐴𝑊 while 𝑅𝐿∗ ≥ 𝑅𝐿 

for all prediction steps. In this regard, the proposed model outperforms benchmark models in the 

case where meeting 𝑅𝐿∗ becomes crucial with minimum 𝑃𝐼𝑁𝐴𝑊 for the SO.  

Table 5-2 summarizes the performance of different WPPI models in 6-step (1-hour) ahead 

prediction of wind power in various months for 𝑅𝐿∗ = 90%. This table shows that PM constructs 

the most conservative WPPIs, and 𝑅𝐿 ≫ 𝑅𝐿∗. Consequently, the sharpness has been substantially 

Table 5-2: Performance Evaluation of Different Prediction Models for Various Months in 6-step 

Ahead Prediction for 𝑅𝐿∗ = 90% 

Month 

PM LUBE HIA QR Proposed WPPI Avr. 

𝑃𝐼𝑁𝐴𝑊 

Improvement 

(%) 

𝑷𝑰𝑵𝑨𝑾 

(%) 
𝑹𝑳(%) 

𝑷𝑰𝑵𝑨𝑾 

(%) 
𝑹𝑳(%) 

𝑷𝑰𝑵𝑨𝑾 

(%) 
𝑹𝑳(%) 

𝑷𝑰𝑵𝑨𝑾 

(%) 
𝑹𝑳(%) 

𝑷𝑰𝑵𝑨𝑾 

(%) 
𝑹𝑳(%) 

Feb. 8.77 96.67 6.66 90.05 6.53 92.67 4.90 88.98 5.55 90.76 22.80 

Mar. 11.54 93.06 7.09 88.07 6.45 85.84 7.05 86.13 8.70 91.07 24.63 

Apr. 9.53 95.35 7.61 91.01 6.77 91.42 5.36 87.74 6.14 90.66 21.43 

May 9.33 95.52 6.97 89.71 6.23 90.49 5.21 88.23 5.70 90.33 23.62 

Jun. 11.57 95.30 8.05 89.01 7.06 88.20 7.56 90.05 7.05 90.03 22.90 

Jul. 8.34 94.89 6.09 90.01 6.25 91.27 5.88 89.07 5.20 90.20 23.05 

Aug. 9.05 95.27 6.89 93.05 5.30 89.81 5.45 88.25 5.60 91.07 28.14 

Sep. 7.01 92.79 6.30 91.05 6.97 89.90 5.80 90.02 5.47 92.06 13.59 

Oct. 10.64 94.11 8.80 89.40 6.67 87.98 6.06 86.79 6.76 90.10 36.42 

Nov. 9.73 94.72 4.95 86.91 7.47 90.45 6.24 87.06 6.28 90.01 25.73 

Dec. 8.02 92.72 7.85 89.77 6.73 90.43 5.58 88.51 6.40 91.00 12.56 

 

 

 

Figure 5-8: Average 𝑃𝐼𝑁𝐴𝑊 and 𝑆𝑐 evaluation of WPPIs with 𝑅𝐿∗ = 90% for the proposed WPPI and 

benchmark models for different prediction steps. 
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sacrificed. Due to the nonstationarity of the data, the performance of the WPPI models can vary 

for different months.  

The results related to the WPPI with the sharpest WPPIs for 𝑅𝐿 ≥ 𝑅𝐿∗ are presented in bold. 

The proposed WPPI model meets the 𝑅𝐿  requirement ( 𝑅𝐿 ≥ 𝑅𝐿∗ ) while its 𝑃𝐼𝑁𝐴𝑊  is 

substantially lower than benchmark models that satisfy the 𝑅𝐿 requirements.  

The last column in Table 5-2 demonstrates the average relative improvement in reducing the 

𝑃𝐼𝑁𝐴𝑊 as a result of employing the proposed WPPI. The PINAWs related to WPPI models in 

which  𝑅𝐿 < 𝑅𝐿∗  are excluded when calculating the average 𝑃𝐼𝑁𝐴𝑊  improvement for every 

month. The WPPIs constructed by the proposed model improve the 𝑃𝐼𝑁𝐴𝑊 by at least 12.56%. 

Additionally, it can be concluded from Table 5-2 that the proposed WPPI model demonstrates 

more consistency in prediction during different months in contrast to the benchmark models. 

Figure 5-9 presents the constructed 1-hour ahead WPPIs for the 2nd week of Feb. 2012. To 

perceive the effectiveness of the proposed  WPPI in comparison to the benchmark models, their 

resultant WPPIs are demonstrated in Figure 5-9 for two periods, in which QR and HIA have the 

best performance among the benchmark models. This figure clearly shows that the wind power 

changes significantly during this week; however, the proposed WPPI is proficient at constructing 

WPPIs for this period while HIA and QR may result in abrupt and irregular changes.  

 

Figure 5-9: WPPIs with 𝑅𝐿∗ = 90% constructed by the proposed WPPI in the 2nd week of Feb. 2012. 
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5-5-4-5 Reproducibility of WPPIs and Independency of the Proposed WPPI to 

Initial Values 

As mentioned in this paper, the main motivation behind developing the proposed 

WPPI stems from issues caused by heuristically tuning a large number of parameters in 

prevalent WPPI. As stated in Section 5-5-4-1, the proposed WPPI still features five 

hyperparameters that must be tuned heuristically. Table 5-3 demonstrates the mean and 

standard deviation of 𝑃𝐼𝑁𝐴𝑊 and 𝑅𝐿 associated with 10 runs of LUBE, HIA, and the 

proposed model in conducting 1-step (10-min) ahead prediction during Feb. 2012 with 

𝑅𝐿∗ = 90%. The proposed model outperforms other heuristic optimization-based 

models in terms of reproducibility of high-quality WPPIs in different runs. Therefore, 

the proposed model can lead to a reduced possibility of becoming trapped in local 

minima. Notably, similar results were observed for other case studies and prediction 

horizons. 

5-5-4-6 Convergence and Computation Burden 

Convergence and the resulting computational burden of WPPI for short-term wind power 

prediction are of great importance. Figure 5-10 describes the convergence of solving the convex 

optimization demonstrated in Eq. (5-20). As shown, the lower-level problem can be solved within 

Table 5-3: Summary of Performance Evaluation of WPPI Models in 1-Step Ahead for Multi Runs 

and 𝑅𝐿∗ = 90% 

Prediction 
Models 

𝑃𝐼𝑁𝐴𝑊(%) 𝑅𝐿(%) 

𝑀𝑒𝑎𝑛 𝑆𝑡𝑑 𝑀𝑒𝑎𝑛 𝑆𝑡𝑑 
LUBE 6.014 1.853 91.051 1.010 

HIA 5.871 1.221 92.963 0.350 

Proposed WPPI 4.010 0.004 90.861 0.151 
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a few iterations. Figure 5-11 shows the overall convergence of the proposed model in 1-step ahead 

prediction of AESO during Feb. 2012, where the proposed WPPI model can be tuned and 

converged within limited iterations. 

All prediction models are developed using a 3.4 GHz Intel Core i7-6700 CPU with 16 GB of 

RAM.  Average training required by all prediction models for 1-step ahead prediction are reported 

in Table 5-4. 

The training process is conducted once a day when prior day data are available. In the AESO 

case, wind power samples are available every 10 minutes; the model can be trained at 23:50 every 

 

Figure 5-10: Convergence of convex optimization of Eq. (5-20). 

. 

 

 

X: 7 
Y: 3.885e-12 

 

  

Iteration # 

 

Figure 5-11: Convergence of proposed WPPI for 𝑅𝐿∗ = 90%. 

Table 5-4: Summary of Computation Time for Training 

Prediction Models 
Training Time 

(s) 

PM 0.01 

LUBE 51.01 

HIA 40.11 

QR 27.63 

Proposed WPPI 160.04 
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day to predict the wind power from 00:00 to 23:59 of the next day. During the test, it is observed 

that computations in all prediction models can be completed within fractions of a second. Thus, 

all prediction models are feasible for short-term WPPI.   

5-5-4-7 Test Results and Analysis for IESO  

To evaluate the performance of the proposed model in prediction of generated power related to 

a single wind farm in IESO, a one-hour ahead WPP with 𝑅𝐿∗ = 90% is conducted for the Adelaide 

wind power generation facility. To make the proposed WPP comparable with two state-of-the-art 

prediction models [1], specifically the NCWC-based Elman and NCWC-based nonlinear auto-

regressive exogenous (NARX) WPP models, for this case study the models are evaluated for wind 

power generation from 1 Jan. to 7 Apr. 2017; this is similar to [1] from which results quoted.  

To make the comparison more comprehensive and in line with [1], 𝑃𝐼𝑀𝑆𝐸 [1], which is defined 

in (5-25), is measured. 

𝑃𝐼𝑀𝑆𝐸 =
1

𝐿
∑ [(𝑦𝑛 − 𝑦𝑛)

2 + (𝑦𝑛 − 𝑦𝑛)
2]

𝐿

𝑛=1

 (5-25) 

This metric signifies large deviations from actual wind power and, from the 𝑃𝐼𝑀𝑆𝐸 prospective, 

a prediction model is more skillful if it leads to lower 𝑃𝐼𝑀𝑆𝐸 . Table 5-5 summarizes the 

performance of the proposed model and two state-of-the-art models. The proposed model leads to 

significantly sharper WPPIs (
68.63−44.66

68.63
× 100 ≅ 35% perfection) with the required 𝑅𝐿, and its 

Table 5-5: Performance Evaluation of NCWC-based Elman and NARX WPP Models and the 

Proposed WPPI for Prediction for 𝑅𝐿∗ = 90% 

Evaluation Metrics NCWC-based Elman [1] 
NCWC-based NARX 

[1] 
Proposed WPPI 

𝑹𝑳(%) 93.81 93.04 90.38 
𝑷𝑰𝑵𝑨𝑾 (%) 63.71 68.63 44.66 

𝑷𝑰𝑴𝑺𝑬 1.42 1.64 0.73 
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𝑃𝐼𝑀𝑆𝐸 is also substantially lower than other benchmark models. This case study is a further tes-

timony to the efficiency of the proposed model. 

5-5-4-8 Discussion 

As experimental results elucidate, the proposed WPPI model possesses superior performance for 

short-term WPPI compared to several state-of-the-art well-established prediction models.  

The proposed WPPI model benefits from a low number of heuristically tuned hyperparameters 

which results in a marked reduction in the required search space for the heuristic optimization 

process while the main parameters are tuned through a convex optimization process. The 

reproducibility and convergence of the proposed model are verified.  

The proposed model presents robust performance for different datasets, while such robustness 

not observed in benchmark models. In line with [1, 45, 60, 118-121, 123], this study only presents 

WPPIs for horizons up to 1-hour, which make up a portion of short-term WPPI [117]. Wind power 

is closely related to meteorological variables, such as wind speed, wind direction, etc. Numerical 

weather prediction results are also beneficial for prediction for longer horizons. Performing 

accurate prediction for a look-ahead time of more than one hour requires advanced FS due to a 

large number of feature candidates. Moreover, as revealed in the case studies, the performance of 

WPPI models for a single wind farm is lower than observed for accumulated wind power 

generation. The main reason is because the TS of AESO is affected by spatial smoothing, whereas 

the TS of Adelaide wind farm is volatile with all 18 wind turbines located in a small area. 

Spatiotemporal modeling of this wind farm, accounting for meteorological features from the 

vicinity, might improve the prediction accuracy. 



 

109 

 

 Conclusion 

This paper presents a framework for short-term WPPI that benefits from a bi-level optimization 

structure along with a convex and differentiable cost function for optimally tuning unknown 

parameters of the prediction engine. In the proposed WPPI, prediction engine parameters can be 

globally tuned via classic optimization while only a few hyperparameters are tuned with heuristic 

approaches from the upper-level optimization problem. Hyperparameters are found based on a 

multi-objective optimization procedure, which results in a Pareto front with a wide range of 

𝑃𝐼𝑁𝐴𝑊  and 𝑅𝐿 . The comprehensive case studies reveal consistency in the results of WPPI 

evaluations for training and test datasets. Moreover, case studies validate the superior effectiveness 

of the proposed WPPI framework compared to traditional benchmark and state-of-the-art 

prediction models. The proposed WPPI model is competent with respect to forming sharp and 

reliable WPPIs for different datasets. SOs can benefit greatly from the proposed WPPI in various 

short-term power system operation tasks. 

Further research could be conducted to adapt the proposed approach to solar prediction. 

Moreover, application of the proposed bi-level optimization framework in considering various SO-

defined objective functions can be investigated. 
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 TIDAL CURRENT AND LEVEL UNCERTAINTY PREDICTION 

VIA ADAPTIVE LINEAR PROGRAMMING7 

Short-term uncertainty prediction modeling of tidal power generation supports power systems 

in reserve and regulation markets. In tidal power generation via various tidal energy harvesting 

technologies, tidal current and level are the most influential factors. This paper addresses a 

nonparametric prediction interval (NPI)-based uncertainty model thereof. The proposed model 

adapts a bi-level optimization formulation, based on extreme learning machine (ELM) prediction 

engine and quantile regression (QR). The quantile probabilities are asymmetrically and adaptively 

chosen in the upper-level optimization to make prediction intervals (PIs) sharper for a specific 

reliability level (RL). Besides, the training process of ELM is improved by adaptively selecting 

ELM’s hidden neurons via upper-level optimization. The lower-level optimization finds ELM’s 

output weighting coefficients through linear programming of QR. The heuristic optimization, 

consisting of gray wolf optimizer and simplex method, is designed to facilitate the NPI with high 

exploration and exploitation capabilities in upper-level optimization. The performance of the 

proposed NPI is examined using empirical data recorded in three different sites, located in North 

America. The results of case studies show that the proposed NPI can provide sharper PIs in 

comparison to the well-tailored rival models whilst a pre-specified RL criterion is met. 

 Nomenclature 

Abbreviations  

                                                 

7 © 2018 IEEE. Reprinted, with permission from [135] N. Safari, S. M. Mazhari, B. Khorramdel, and C. Y. Chung, “Tidal Current and 

Level Uncertainty Prediction via Adaptive Linear Programming,” IEEE Trans. Sustain. Energy, Early Access. 
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TL Tidal level. 

TCS Tidal current speed. 

TCD Tidal current direction.  

NPI Nonparametric prediction interval. 

SVM Support vector machine. 

PI Prediction interval. 

RL Reliability level. 

QR Quantile regression. 

LP Linear programming. 

CDF Cumulative distribution function. 

TS Time series. 

AAQR Asymmetrically adaptive QR. 

LSSVM Least squares SVM. 

ELM Extreme learning machine. 

GWO Grey wolf optimizer. 

GA Genetic algorithm.  

PSO Particle swarm optimization.  

PINAW Prediction interval nominal average width. 

 

 Introduction 

Due to growing concerns about climate change and fossil fuel depletion, renewable energy 

sources are considered as a feasible substitute for conventional environment-polluting fossil-
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fuel-based power plants. To this end, various alternative energy sources have been found and 

successfully deployed all over the world. Amongst them, tidal energy has recently grabbed 

remarkable attentions across governments and power industries [136], owing to high 

predictability feature of influencing factors in tidal energy harvesting [137]. 

With the increasing penetration of tidal power generation, output fluctuation and variation—

known as intrinsic characteristics of this technology—impose severe and unprecedented 

challenges on power systems operation [78]. Hence, the further need for employing expensive 

dispatchable fast generation units for operational reserves and regulation purposes is raised. 

Accurate short-term uncertainty prediction tools provide reliable estimates of tidal energy and 

significantly decrease the system uncertainty. Consequently, their employment causes a 

noticeable reduction in the total cost of power systems operation with requiring less backup 

generation units [138]. By virtue of short-term uncertainty prediction importance, this work is 

devoted to this topic.  

Tidal power generation depending on the tidal energy harvesting technology is mainly 

influenced by tidal level (TL), tidal current speed (TCS), and tidal current direction (TCD) [139]. 

These three factors are the chief culprits for uncertainty and fluctuation in tidal power generation, 

and their direct relations with tidal power are shown in [78], [140, 141]. Ergo, researchers zero 

in on developing prediction models for these factors in tidal energy harvesting applications (e.g. 

[137], [138], [140]). It is worth mentioning that there are similar trends in modeling any other 

variable renewable energy resources. As instances, in [42, 110], wind speed prediction models 

are developed for wind energy application, while in [142, 143], solar irradiance prediction 

models are developed for solar energy harvesting. Despite the importance of uncertainty 

modeling of both tidal current and TL, the most recent studies have mainly focused on TCS and 
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TCD (e.g., [79, 80, 127, 137, 138, 144]). 

Several models have been developed in recent years for tidal prediction. Approaches based on 

harmonic analysis, which provide rough estimates of tidal current and level, have been 

traditionally used for this problem [145]. However, these methods suffer from two critical 

drawbacks: a) they require large historical datasets (several years) [145] and b) they have 

inefficient performances with respect to predicting sudden and aperiodic patterns resulting from 

weather-based factors [140, 146]. To overcome these barriers and consider the nature of tides 

and the weather-based irregularities, machine learning-based prediction models have been 

proposed [145]. Owing to striking advancements in this topic, several powerful tidal prediction 

models have been proposed and successfully applied in recent years. These studies can be 

categorized into two main groups: deterministic [79, 127, 137, 138, 145] and probabilistic [127, 

144] prediction models.  

While deterministic prediction models focus on minimizing the prediction error associated 

with a single output [137], probabilistic prediction models provide sufficient information about 

the prediction uncertainty, which is most welcome by power systems operators and planners 

[144]. In this regard, the probabilistic prediction is also referred as uncertainty prediction [1, 

144]. Uncertainty prediction modeling of tidal is in its infancy, but uncertainty prediction of 

other renewable energy sources is well discussed with respect to different types of renewable 

energy generation, including wind [1] and solar [147]. Moreover, widely used parametric 

uncertainty prediction models are not applicable to tidal prediction as any assumptions with 

respect to the probability distribution of tidal data can result in erroneous uncertainty prediction 

[127]. Hence, few nonparametric prediction interval (NPI) models, which fit into the 

probabilistic prediction domain, have been proposed for TCS and TCD [127, 144]. In NPI, 
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uncertainty prediction of tidal data is conducted, relying upon historical data in lieu of making 

assumptions about the probability distribution shape of tidal data [127]. In [144], a feed-forward 

neural network is heuristically trained based on nonlinear and non-differentiable cost function; 

however, such process may become trapped in local solutions [127]. In [127], support vector 

machine (SVM) is trained based on the traditional quadratic programming problem formulation, 

while few hyperparameters are heuristically tuned to construct prediction intervals (PIs) with a 

required reliability level (RL). In comparison to the training process of prediction engines in 

which their parameters can be acquired by solving a linear system (e.g., [128, 148]), tuning SVM 

parameters might be a time-consuming task [128]. An NPI formulation can be formed by a linear 

representation using the quantile regression (QR) concept [60, 123, 149]; the problem can then 

be solved by the state-of-the-art linear programming (LP) packages, leading to global optima. 

Nevertheless, to the best of our knowledge, any QR-based NPI with/without LP has not yet been 

introduced for tidal prediction.  

In QR-based NPI, models are trained for creating upper and lower quantiles, known as 

prediction intervals (PIs), to encircle the observed value with a specific RL [150]. For a specified 

RL, determined by the system operator, in QR-based NPI, the probabilities of the quantiles pair 

are symmetrically chosen with respect to the probability of the median from the cumulative 

distribution function (CDF) for wind and solar power prediction [60, 147]. In [123], the quantile 

probabilities are selected asymmetrically in an offline procedure for wind power prediction. 

Besides, in all the thus far QR-based NPI models, the difference between the tuning parameter 

of the upper and lower quantiles probabilities is equal to RL [147]. However, suchlike selection 

of quantile probabilities may result in low-quality uncertainty prediction for two main reasons. 

Firstly, the QR-based NPI suffers from inevitable regression error comparable to any other 
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regression tools [151]. Since QR-based NPI model does not directly evaluate empirical RL and 

sharpness of the constructed PIs, the resultant PIs might not satisfy the power system operator’s 

requirements. Secondly, as elaborated within this paper, symmetrical selection of quantile 

probabilities might not bring about the sharpest PIs with the required RL. Notably, due to non-

stationarity of tidal time series (TS) [144], offline selection of quantile probabilities might not 

result in an efficient NPI model, particularly for test dataset. To circumvent these impediments, 

in this paper, a bi-level optimization framework is put forward to select quantile probabilities 

asymmetrically and adaptively by evaluating the RL and sharpness of the PIs constructed by 

QR-based NPI. In this regard, the proposed NPI model is called asymmetrically adaptive QR 

(AAQR)-based NPI. 

The prediction engine is one of the essential building blocks of an NPI and is adopted 

considering the cost function structure. Because the AAQR-based NPI, employed in this paper, 

is developed by an LP formulation; the prediction engine should also have linear formulation. 

Amid prediction engines with linear formulations, least squares SVM (LSSVM) [148] and 

extreme learning machine (ELM) [128] have been successfully applied in a wide range of 

applications (e.g. [147]). The specialized literature shows that ELM is not only more 

computationally efficient than LSSVM but also provides higher accuracy in prediction 

applications [128]. However, the ELM’s performance depends on the random numbers selected 

as the hidden neuron parameters; and consequently, there might be inconsistency in ELM 

performance for different runs [152]. Hence, adaptive approaches are recommended to adjust 

these parameters [152]. However, this has not be taken into consideration in tidal uncertainty 

prediction.  
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This paper devotes specific consideration to gray wolf optimizer (GWO) and simplex method 

to adaptively tune the hidden neurons parameters of ELM. GWO is a powerful swarm 

intelligence optimization method with high exploration ability that benefits from fast 

convergence and few adjustable parameters compared to traditional meta-heuristic optimization 

techniques, such as differential evolution, genetic algorithm (GA), etc. [153]. GWO leads to 

satisfactory results in many power system problems compared to other traditional meta-heuristic 

optimization techniques, such as GA, particle swarm optimization (PSO), etc. [154, 155]. The 

simplex method is an optimization technique that is popular due to its high exploitation 

capability and its ability to fine-tune parameters [148]. Therefore, a self-adaptive ELM is 

addressed based on a hybrid optimization strategy, incorporating GWO and simplex method to 

result in a heuristic optimization algorithm with high exploration and exploitation capability. 

This paper proposes an NPI model for tidal prediction application. Inspired by the QR and LP 

formulation, AAQR-based NPI is put forward. It employs hyperparameters to select the optimal 

quantile probabilities by an upper-level optimization automatically. A hybrid GWO and simplex 

method is devised to set the hidden neuron parameters, as well as the hyperparameters in the 

upper-level optimization. While LP conducts the lower-level optimization to find the ELM’s 

output weighting coefficients using the parameters, injected from upper-level optimization. A 

wide range of tidal data is used to demonstrate the effectiveness of the developed approach, 

followed by a presentation of results with comparison to those of prior research. The main 

contributions of this work are three-fold: 

• A QR-based NPI with LP formulation for tidal uncertainty prediction; 

• A bi-level optimization framework for the AAQR-based NPI; and 

• A hybrid GWO and simplex algorithm for parameter tuning. 
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The remainder of the paper is organized as follows: Section 6-3 sheds light on the problem in 

tidal uncertainty prediction. In Section 6-4, the QR-based PI model for tidal uncertainty 

prediction is described. Section 6-4 clarifies the need for asymmetrically adaptive QR 

formulation and developing the AAQR-based NPI in tidal prediction. Section 6-6 describes the 

proposed AAQR-based NPI. Comprehensive empirical evaluation and analysis are provided in 

Section 6-7. Finally, the main concepts and conclusions are provided in Section 6-8. 

 Problem Description of Tidal Uncertainty Prediction in Power 

System Operation 

Tidal energy can be converted into electrical energy via three main technologies, including tidal 

range, tidal stream, and hybrid technologies [139]. Hybrid technology is the combination of the 

first two technologies and is still in the research and development stage. In this paper, we mainly 

focus on the first two developed technologies.  

Tidal range is the most traditional harvesting technology. A general scheme of a tidal barrage, 

which is the common form of tidal range technology, is shown in Figure 6-1. As illustrated in this 

figure, a dam-like construction is required, and sluice gates are devised at both sides of the dam. 

There are three different operating modes for this type of tidal energy harvesting technology, 

including ebb generation, flood generation, and two-way generation. As an example, Figure 6-1 

describes the ebb generation mode; the gates are open, and the water can flow into the reservoir in 



 

118 

 

the landside and fill it up during the flood tide. Once water reaches the maximum level, the gates 

close and the water is trapped into the landside of the dam [156]. As the tides ebb in the seaside, a 

gradual head height difference occurs between water levels in different sides of the dam. Then, the 

gates open and the turbine produces electric power by the potential energy resulted from such 

difference. The tidal electrical power can be estimated as follows [30]: 

𝑃 = 𝜌𝑔𝐻𝜂𝑄𝑡, (6-1) 

where 𝜌 is the water density (≈1025 𝑘𝑔/𝑚3), 𝑔 is the acceleration related to earth’s gravity, and 

𝐻 = 𝐿𝑎𝑛𝑑𝑠𝑖𝑑𝑒 𝑊𝑎𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 − 𝑆𝑒𝑎𝑠𝑖𝑑𝑒 𝑊𝑎𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 . 𝜂  and 𝑄𝑡  are turbine’s efficiency 

coefficient and discharge across the turbine, respectively. 𝜂 and 𝑄𝑡 are determined based on a hill 

chart providing that 𝐻 is available [30]; but 𝐻 is specified by TL. As can be found from (6-1) and 

above descriptions, predicting TL is considerably imperative for estimating available tidal power 

in advance. 

Figure 6-2 shows a sketch of a tidal stream turbine. The power as a result of moving masses of 

water due to tidal current can be expressed by [78]: 

𝑃 = {

0 0 ≤ 𝑊 < 𝑊𝑐𝑢𝑡𝑖𝑛

0.5𝐶𝑝𝜌𝐴𝑊
3 𝑊𝑐𝑢𝑡𝑖𝑛 ≤ 𝑊 < 𝑊𝑟𝑎𝑡𝑒𝑑

𝑃𝑟𝑎𝑡𝑒𝑑 𝑊𝑟𝑎𝑡𝑒𝑑 ≤ 𝑊

 (6-2) 

 

Figure 6-1: Conversion of potential energy of tides to electrical energy in tidal range. 
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where 𝐴 is the swept area of the turbine’s blades, and 𝑊 is the effective TCS, faced by blades. 𝐶𝑃 

(0.4 ≤ 𝐶𝑝 ≤ 0.5 [78]) is turbine’s power coefficient. Models have been developed to estimate 𝐶𝑃 

based on the effective TCS [29]. The effective TCS can be obtained based on the TCS and TCD 

measurements from measuring units. 𝑊𝑐𝑢𝑡𝑖𝑛  and 𝑊𝑟𝑎𝑡𝑒𝑑 are cut-in and rated effective TCS, 

respectively. As can be perceived from Eq. (6-2), the output power of tidal stream is proportionate 

to velocity cubed. There-fore, relatively small errors in the effective TCS, and TCD prediction can 

result in an operationally significant error [146].  

Tidal TS possesses non-stationarity [144], and correspondingly any assumption about tidal TS 

uncertainty distribution is erroneous. In timespans less than or equal to one hour, the non-harmonic 

components exist in tidal data as a result of supra-tidal fluctuations, which cannot be modeled by 

conventional harmonic analysis-based prediction models [146]. Precise short-term (e.g., 10-

minute and 1-hour ahead) uncertainty prediction of tidal power helps to firm up regulation actions 

and reserve market. It also assists system operators in better managing the dispatchable generation 

and realizing the generation-load balance with the optimal cost [147, 157]. The facts, mentioned 

above, motivate us to focus on short-term uncertainty prediction of TL, TCS, and TCD data using 

a nonparametric PI model.  

 

Figure 6-2: Conversion of the kinetic energy of tides to electrical energy in a tidal stream. 
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 QR-based NPI Model for Tidal Uncertainty Prediction 

Hereafter the tidal TS, which can be TCS, TCD, or TL, is presented by {𝑦(𝑛𝑇𝑆)}𝑛=1
𝑛=𝑁. 𝑁 is the 

total number of tidal data samples that are recorded every 𝑇𝑆 . At time 𝑡0 = (𝑛 − 1)𝑇𝑆 , the 

uncertainty in 𝑦(𝑡), related to 𝑡 = 𝑛𝑇𝑆, can be predicted by its predictive probability distribution 

function (PDF), or CDF (𝐹𝑡). As an instance, let assume that the predictive PDF of 𝑦(𝑡) is a 

uniform distribution. This assumption is made for illustration purposes, while there is no 

supposition underlying the proposed prediction model. Considering CDF of the uniformly 

distributed random variate, 𝑦(𝑡), in Figure 6-3, with the probability of 𝛼, the tidal TS value at time 

𝑡 is less than 𝑦(𝑡). Also, one can note that with the probability of 𝛼, the tidal TS value at time 𝑡 is 

less than 𝑦(𝑡). To this end, the tidal TS value at time 𝑡 may lay in the interval of [𝑦(𝑡), 𝑦(𝑡)] with 

the probability of 𝐶𝐿 = 𝛼̅ − 𝛼. 𝑦(𝑡)  and 𝑦(𝑡) are quantiles of tidal TS at time 𝑡, and they are 

respectively known as upper and lower bounds. In the literature [147], to acquire preferred 

reliability level (𝑅𝐿∗) for encircling TS values with upper and lower bounds, the relationships 

among 𝑅𝐿∗, 𝛼̅, and 𝛼 are as follows: 

𝛼̅ = 1 − 𝛼 (6-3) 

 

Figure 6-3: CDF of various probability distributions. 
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where 

𝛼 =
1 − 𝑅𝐿∗

2
. (6-4) 

From ( 6-3)-( 6-4) it can be perceived that probabilities of upper and 

lower bounds are chosen symmetrically with respect to the 

probability of median in CDF (0.5) [147] as shown in Figure 6-3. Such 

selection of quantile probabilities leads to 𝐶𝐿 = 𝑅𝐿∗ which will be further discussed in this paper. 

In practice, finding the predictive distribution is troublesome and may result in some inaccurate 

assumptions about the PDF or CDF of the TS. But without any assumption about the predictive 

CDF and using QR-based NPI [150], the tidal TS uncertainty prediction can be formulated as 

follows: 

𝑀𝑖𝑛 
𝑩,𝑩

         ∑ (𝜌𝛼(𝑦(𝑡) − 𝑦(𝑡)) + 𝜌𝛼(𝑦(𝑡) − 𝑦(𝑡)))

𝑁.𝑇𝑆

𝑡=𝑇𝑆

 (6-5) 

𝑠. 𝑡. 

𝑦(𝑡) ≤ 𝑦(𝑡) (6-6) 

[
𝑦(𝑡)

𝑦(𝑡)] = [
[𝑞(𝒂1. 𝑿𝑡 + 𝑏1) … 𝑞(𝒂𝑀. 𝑿𝑡 + 𝑏𝑀)]. 𝑩
[𝑞( 𝒂1. 𝑿𝑡 + 𝑏1) … 𝑞( 𝒂𝑀. 𝑿𝑡 + 𝑏𝑀)]. 𝑩

] (6-7) 

where  𝑦(𝑡) and 𝑦(𝑡) are obtained based on a prediction engine, which is ELM [128] in this paper. 

The ELM’s unknown parameters need to be tuned using the optimization problem, defined in 

(6-5)-(6-7). The relation between 𝑦(𝑡) and 𝑦(𝑡) and input features of the prediction engine 𝑿𝑡 is 

demonstrated in (6-7). 𝑞(∙) is the activation function of each hidden neuron. 𝒂𝑖 and 𝑏𝑖, 𝑖 = 1, . . , 𝑀 
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are the hidden neuron parameters of ELM, and they are chosen randomly in the conventional ELM. 

While 𝑩  and 𝑩  are ELM’s output weighting coefficients corresponding to upper and lower 

bounds, respectively. To construct 𝑿𝑡, feature selection (FS) techniques need to be employed for 

finding the most appropriate features, which provide useful information about 𝑦(𝑡). In this paper, 

different lags of the tidal TS are considered as the input features, and then fed into the Cao’s 

method [68], which is a simple and effective FS process. However, other feature candidates (such 

as various meteorological measurements), and other FS approaches can be utilized without loss of 

generality. In (6-5), 𝜌𝛼(∙) and 𝜌𝛼(∙) are asymmetrical weighting functions that consider different 

penalties for 𝑦(𝑡) and 𝑦(𝑡) based on the quantile probabilities: 

𝜌𝛼(𝑦(𝑡) − 𝑦(𝑡)) = {
𝛼 .  (𝑦(𝑡) − 𝑦(𝑡))            𝑦(𝑡) ≤ 𝑦(𝑡)

(𝛼 − 1) .  (𝑦(𝑡) − 𝑦(𝑡))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6-8) 

𝜌𝛼(𝑦(𝑡) − 𝑦(𝑡)) = {
𝛼 .  (𝑦(𝑡) − 𝑦(𝑡))                  𝑦(𝑡) ≤ 𝑦(𝑡)

(𝛼 − 1) .  (𝑦(𝑡) − 𝑦(𝑡))     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (6-9) 

Based on (6-8) and (6-9), the optimization problem (6-5) imposes a penalty on ELM if the 

observed tidal TS value at 𝑡 is beyond [𝑦(𝑡), 𝑦(𝑡)]. The penalties are determined based on the 

probabilities of quantiles (i.e. 𝛼 and 𝛼). Accordingly, the ELM is heavily penalized if the observed 

tidal TS value does not lay within the upper and lower bounds by the probability of 𝑅𝐿∗. In (6-8)-

(6-9), both 𝜌𝛼(∙) and 𝜌𝛼(∙) are piecewise linear. The optimization problem described by (6-5)-

(6-9) can be simply converted to an LP problem [149]. Then, the LP problem can be efficiently 

solved using off-the-shelf mathematical programming solvers. A detailed proof of this conversion 

is provided in [149]; in the following, we summarize the results of such a process. Introducing four 
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sets of non-negative auxiliary variables (𝜃𝑛,𝜃𝑛, 𝛾𝑛, and 𝛾𝑛) accompanied by (6-5)-(6-9), the linear 

representation of (6-5) can be rewritten as follows: 

𝑀𝑖𝑛
𝑩,𝑩 

𝜃𝑛,𝛾𝑛,𝜃𝑛,𝛾𝑛

    ∑(𝛼 .  𝜃𝑛 + (1 − 𝛼) .  𝛾𝑛 + 𝛼 .  𝜃𝑛 + (1 − 𝛼) .  𝛾𝑛) ,

𝑁

𝑛=1

 (6-10) 

𝑠. 𝑡. 

(6-6),(6-7) 

𝜃𝑛, 𝛾𝑛 , 𝜃𝑛, 𝛾𝑛 ≥ 0 (6-11) 

𝑦(𝑛𝑇𝑆) − 𝑦(𝑛𝑇𝑆) − 𝜃𝑛 + 𝛾𝑛 = 0, (6-12) 

𝑦(𝑛𝑇𝑆) − 𝑦(𝑛𝑇𝑆) − 𝜃𝑛 + 𝛾𝑛 = 0 (6-13) 

The ELM’s output weighting coefficients are found based on the available tidal historical data. 

The trained QR-based PI needs to be updated every day to alleviate the adverse impacts of tidal 

TS non-stationarity on the performance of prediction model. 

 Evidence on the Need for Asymmetrically Adaptive Quantile 

Regression for Tidal TS 

After constructing a prediction model for tidal uncertainty prediction, its performance should be 

evaluated using historical tidal TS. Empirical 𝑅𝐿 and PI normalized average width (𝑃𝐼𝑁𝐴𝑊) are 

two widely used evaluation metrics, used in tidal uncertainty prediction modeling [127]. Empirical 

𝑅𝐿 and 𝑃𝐼𝑁𝐴𝑊 are defined as follows: 

𝑅𝐿(%) =
100

𝑁
 .  ∑ (𝟏

[𝑦(𝑡),𝑦(𝑡)]
(𝑦(𝑡)))

𝑁.𝑇𝑆
𝑡=𝑇𝑆

, (6-14) 
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𝑃𝐼𝑁𝐴𝑊(%) =
100

𝑁 .(𝑦𝑀𝑎𝑥−𝑦𝑀𝑖𝑛)
 . ∑ (𝑦(𝑡) − 𝑦(𝑡))

𝑁.𝑇𝑆
𝑛=𝑇𝑆

, (6-15) 

𝟏[𝑙1,𝑙2](𝑙) = {
1 𝑙 ∈ [𝑙1, 𝑙2]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (6-16) 

where 𝟏
[𝑦(𝑡),𝑦(𝑡)]

(𝑦(𝑡)) is an indicator function as defined in (6-16). In (6-15), 𝑦𝑀𝑎𝑥 and 𝑦𝑀𝑖𝑛 are 

the maximum and minimum values observed in the tidal TS, respectively.  

𝑅𝐿 of the NPI model, developed as the result of solving (6-10)-(6-13), is not assessed during the 

optimization process. In this regard, the constructed PIs might not fulfill the system operator’s 

preference, or the empirical 𝑅𝐿 becomes more than operator’spreference at the price of higher 

𝑃𝐼𝑁𝐴𝑊 and sacrificing the sharpness. Regardless of this fact, in the literature [19], for acquiring 

a specific 𝑅𝐿∗, 𝛼 and 𝛼̅ are selected such 𝑅𝐿∗ = 𝐶𝐿 = 𝛼̅ − 𝛼. 

Moreover, as described in section 6-4 and expressed in (6-3) and (6-4), in the prevalent QR, 𝛼 

and 𝛼 are symmetrically selected with respect to the median probability. Because of this selection, 

the difference between corresponding quantiles, known as interquantile range (𝐼𝑅), may not be a 

small value; ipso facto, 𝑃𝐼𝑁𝐴𝑊 increases, and the PIs’ sharpness decreases. Only in a uniform 

distribution, shown in Figure 6-3, there is no difference in selecting 𝛼 and 𝛼 with respect to median 

either symmetrically or asymmetrically (𝐼𝑅𝑎 = 𝐼𝑅𝑏). However, 𝐼𝑅 may significantly vary based 

 

Figure 6-4: An illustrative example of non-uniform CDF. 
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on the symmetrical or asymmetrical selection of quantile probabilities providing that the 

distribution is non-uniform, as shown in Figure 6-4.  

A uniform distribution is not a precise assumption for tidal TS [127]. Besides, tidal TS possesses 

nonstationary characteristics so that the TS may take different shapes of CDFs as discussed in 

Section 6-3 and shown in [144]. Hence, for obtaining small IR, the quantile probabilities need to 

be asymmetrically chosen based on tidal TS. CDFs illustrated in Figure 6-3 are related to uniform, 

Weibull ( 𝛾 = 1, 𝑘 = 1 ), and Beta ( 𝛼 = 5, 𝛽 = 1 ) distributions, where 𝛾, 𝑘, 𝛼, and 𝛽   are 

parameters of the Weibull and Beta distributions [158]. It is worth mentioning that these two 

specific types of the Weibull and Beta distributions are only used for demonstration purpose.  

To this end, in the proposed AAQR-based NPI, described in Section 6-6, an asymmetrically 

adaptive process for finding the appropriate quantile probabilities is devised to address the error 

in regression and also find a pair of quantiles probabilities, which can result in the lowest 𝑃𝐼𝑁𝐴𝑊. 

 The Proposed AAQR-based NPI for Tidal TS 

The general scheme of the proposed NPI is shown in Figure 6-5, and the solution approach is 

depicted in Figure 6-6. In this section, problem formulation of the proposed NPI for tidal TS is 

presented first, followed by the overall solution approach. 
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 Formulation of the Proposed NPI  

As shown in Figure 6-5, the proposed AAQR-based NPI has a bi-level optimization platform to 

address the issues mentioned in Section 6-5. In the proposed AAQR-based NPI, the upper-level 

optimization determines two hyperparameters (𝜏 and 𝜏) which are employed to modify the QR-

based NPI model (6-10)-(6-13) by slightly deviating 𝛼 and 𝛼̅ from their symmetrical positions. In 

addition to the hyperparameters, the upper-level optimization problem also adaptively tunes 

weighting coefficients input vector and bias (𝒂𝑖, 𝑏𝑖, 𝑖 = 1, … ,𝑀). This adaptive selection of ELM 

parameters, which are conventionally selected randomly, enhances the effectiveness of the ELM 

training. The output weight coefficients of ELM (𝑩,𝑩) are obtained from the lower-level 

optimization by an LP of QR and considering the parameters imported from the upper-level 

optimization. In this regard, the proposed AAQR-based NPI is expressed by a bi-level optimization 

problem as follows: 

𝑀𝑖𝑛
𝓊∈𝒰,𝓌∈𝒲

       ℱ(𝓊,𝓌) (6-17) 

    𝑠. 𝑡.      

−𝛼 ≤ 𝜏, 𝜏 ≤ 𝛼 (6-18) 

 

Figure 6-5: The general scheme of the proposed AAQR-based NPI model. 
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  𝓌 ∈ arg𝑀𝑖𝑛
𝑧∈𝒲

{𝒢(𝓊, 𝓏) ∶ 0 ≤ 𝑦𝑛 ≤ 𝑦𝑛 ≤ 1,

𝜃𝑛 , 𝛾𝑛, 𝜃𝑛 , 𝛾𝑛 ≥ 0, 𝑦𝑛 − 𝑦𝑛 − 𝜃𝑛 + 𝛾𝑛 = 0, 𝑦𝑛 − 𝑦𝑛 − 𝜃𝑛 + 𝛾𝑛 = 0,

𝑛 ∈ {1,… ,𝑁𝑇} 

(6-19) 

ℱ(𝓊,𝓌) = 𝐾∙𝜇𝑅𝐿(𝑅𝐿) + 𝟏[0,1](𝒟)∙(1 − 𝜇𝑃𝐼𝑁𝐴𝑊(𝑃𝐼𝑁𝐴𝑊)) (6-20) 

𝒢(𝓊,𝓌) = ∑((𝛼 + 𝜏). 𝜃𝑛 + (1 − 𝛼 − 𝜏). 𝛾𝑛 + (1 − 𝛼 +  𝜏). 𝜃𝑛 + (𝛼 − 𝜏) ∙ 𝛾𝑛)

𝑁𝑇

𝑛=1

 (6-21) 

       𝒟(%) = (𝑅𝐿 − 𝑅𝐿∗) × 100 (6-22) 

where 𝓊 = {𝒂𝑖, 𝑏𝑖, 𝜏, 𝜏} and 𝓌 = {𝑩,𝑩, 𝜃𝑛, 𝜃𝑛, 𝛾𝑛, 𝛾𝑛} are sets of unknown parameters that are 

optimized by upper- and lower-level optimization problems, respectively. In (6-20), 𝐾  is a 

hyperparameter, which emphasizes the importance of meeting 𝑅𝐿  criterion. Variables 

corresponding to the upper and lower bounds are denoted by overbars and underbars, respectively. 

Furthermore, 𝒰 and 𝒲, in (6-17), respectively refer to the domain of unknown sets 𝓊 and 𝓌. 

𝜏 and 𝜏, in (6-18) and (6-21), are a pair of hyperparameters that control the quantiles probabilities 

asymmetricity for the upper and lower quantiles, respectively.  

The upper-level optimization objective function (ℱ(∙)) in (6-17) is described in (6-20) and is 

defined based on Section 6-5 to evaluate the quality of constructed PIs from lower-level 

optimization problem (6-19). The first term of ℱ(∙) is related to 𝑅𝐿 of PIs, while the second term 

corresponds to the sharpness (𝑃𝐼𝑁𝐴𝑊). In (6-20), 𝑅𝐿 and 𝑃𝐼𝑁𝐴𝑊 are mapped in fuzzy domain 

via fuzzy membership functions (FMFs) {𝜇𝑅𝐿 , 𝜇𝑃𝐼𝑁𝐴𝑊 } as follows: 

             𝜇ℴ(ℴ) = {
ℴ∗ − ℴ

ℴ∗
ℴ ≤ ℴ∗

0 ℴ > ℴ∗
   (6-23) 

where ℴ  can be replaced by 𝑅𝐿  and 𝑃𝐼𝑁𝐴𝑊 , while their corresponding ℴ∗  are the minimum 

preferred reliability (𝑅𝐿∗) and the maximum acceptable 𝑃𝐼𝑁𝐴𝑊 (𝑃𝐼𝑁𝐴𝑊∗), respectively. It is 
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worth mentioning that different kinds of FMFs can be defined based on power system operator’s 

preference without loss of generality.  

The lower-level optimization function is shown in (6-21). Comparing (6-21) with (6-10), one 

can note that the objective function of the lower-level optimization is similar to the formulation of 

linear QR with subtle changes to include deviation from the symmetrically chosen quantile 

probabilities (𝛼 and 𝛼) using 𝜏 and 𝜏.  

As shown in Figure 6-5, minimizing ℱ(∙), which is the main cost function, is nested with 

minimization of 𝒢(∙) , which is an LP optimization problem in the bi-level optimization 

formulation shown in ( 6-17)-( 6-22). Some parameters used in 𝒢(∙) , (𝒂𝑖 , 𝒂𝑖, 𝑏𝑖 , 𝑏𝑖, 𝜏, 𝜏 ), are 

imported from the upper-level optimization; thus, solving this problem requires an iterative 

process. Moreover, the lower-level optimization can be solved by state-of-the-art LP packages, 

which not only guarantee achieving global solutions but also make the iterative optimization 

problem computationally feasible.  

 Solution Approach of the Proposed NPI 

In this section, a solution approach for finding the parameters of the proposed NPI model is put 

forward. ELM [128], GWO [153], and simplex method [159] are three main building blocks, and 

keen readers may refer to related documents for comprehensive illustrations. 

As put on show in Figure 6-6, in the first step of the proposed AAQR-based NPI, the data are 

normalized, and any gap in data is filled by linear interpolation. Further preprocessing is done by 

the first order differencing data to make it less non-stationary. Then, available data is split into 

training and validation sets. The training set is used in the training process and in solving the lower-
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level optimization problem. In other words, ELM’s output weighting coefficients (in set 𝓌) are 

obtained using the training set, while both training and validation sets are employed in assessing 

the developed AAQR-based NPI in the upper-level problem to avoid overtraining and 

undertraining. 

Due to nonlinearity and non-differentiability of the upper-level optimization and linearity of the 

lower-level optimization, a hybrid heuristic and LP optimization techniques are employed to solve 

the bi-level optimization for tuning AAQR-based NPI model parameters. In this regard, as shown 

in Figure 6-6, first, an initial population of the variables, 𝓊, which need to be determined by the 

upper-level is first generated. Then, the lower-level LP problem is solved to find ELM’s output 

 

Figure 6-6: Flowchart of the proposed AAQR-based NPI model. 
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Start 

End 

Yes 

No 
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weighting coefficients which are in set 𝓌 using training set. The quality of the PIs for both training 

and validating sets is then assessed by the upper-level optimization cost function (ℱ(∙)), and the 

heuristic optimization algorithm updates the population based on the PIs quality. This process is 

repeated until the stopping criteria are met. GWO and simplex approaches are integrated and used 

as the heuristic optimization algorithm of the above-mentioned process to simultaneously take 

advantage from exploration capability of GWO and exploitation ability of simplex. At each 

iteration, a random number 𝜐 is generated based on a uniform distribution. As shown in Figure 6-

6, relaying on this random number, GWO or simplex is selected for population modification. If 

simplex is selected, all strategies except shrinkage are repeated for an inner iteration number equal 

to the population size. If GWO is elected, the population is modified based on a set of top three 

agents found in the past iteration (obtained from GWO or simplex). This process is continued until 

the stopping criteria are satisfied and the optimal solution is the best agent among the top three. 

 Experimental Results and Comparisons 

Three different tidal datasets are used in this study. The first is hourly TL data from the Port 

Dover (located in Ontario, Canada) recorded from March 1st to April 1st [160]. This dataset is 

publicly available and possesses high variability, which makes it appropriate for assessing the 

efficacy of a prediction model. The second dataset is from Akutan Pass (located in Alaska, USA) 

from July 1st to August 1st, 2010 with a resolution of 6 minutes [161]. This location is amongst 

the high potential tidal generation sites in Alaska with a kinetic power density of 2870 𝑊/𝑚2 

[162]. The third is a 10-minute resolution data from the Bay of Fundy (located in Nova Scotia, 

Canada) recorded from September 1st to October 1st, 2008. The Bay of Fundy also has a high 

potential for tidal stream power generation [144], so this dataset is used to evaluate the 
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performance of the proposed framework for prediction of TCS and TCD. Please note that in this 

paper the entire dataset is normalized between 0 and 1. The NPI is trained every 12 hours with 15 

days of historical data, which includes both training and validation datasets.  

For the sake of performing a fair comparison with other existing PI models, a persistence model 

[147] is employed as the first benchmark model. Persistence model provides a rough estimation of 

TS and is a popular benchmark model in renewable energy prediction. To show the advantages of 

the AAQR-based NPI, the commonly used QR-based PI [60] is developed as the second 

benchmark model. Besides, to assess the efficacy of the proposed AAQR-based NPI, the obtained 

results are compared to those of the most recent prediction models in tidal application [127]. In 

this paper, the model, proposed in [127], which is based on support vector regression (SVR) and 

lower upper bound estimation (LUBE) is called SVR-LUBE for convenience in statement. 𝑅𝐿 in 

(6-14) and 𝑃𝐼𝑁𝐴𝑊 in (6-15), which are the most important evaluation criteria in uncertainty 

prediction, are used for comparing the performance of the proposed AAQR-based NPI models 

against other prediction models. Based on these criteria, the best PI model is PI that can achieve 

the minimum required RL, asked by the power system operators, while the PIs are the sharpest. It 

is worth to remind that the lower 𝒮 means the sharper PIs. In this paper, models are developed 

using MATLAB and CPLEX 12.7 [163] is employed for conducting LP by calling cplexlp function 

in MATLAB. All the prediction models are tested in an Intel 3.4-GHz CPU with 16 GB of RAM.  

In this section, the main contributions of this paper are examined numerically in scenarios. The 

first scenario evaluates the overall performance of the AAQR-based NPI model for predicting TL, 

TCD, and TCS and illustrates its advantages over the existing PI models. The second scenario is 

devoted to exploring the impacts of the main components of the AAQR-based NPI, including the 
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asymmetrically adaptive selection of quantile probabilities, as well as the hybrid GWO-Simplex 

optimization approach.  

 First Scenario 

In this scenario, the PI is analyzed for two different prediction horizons: 1 hour and 10 minutes 

due to the importance of these horizons as mentioned in Section 6-3. In all simulations, PIs are 

constructed with required reliability, 𝑅𝐿∗=90%, which is of great importance for system operators 

[144]. 

The results obtained for the 1-hour horizon are shown in Figures 6-7 -6-11 and Table 6-1. Here, 

the prediction results are visually presented for three days (72 sample points with 1-hour sample 

time) for ease of illustration. These figures represent estimations of the upper and lower bounds 

predicted by the proposed approach and show that the proposed NPI can provide sharp and reliable 

PIs for all types of tidal data. Table 6-1 reports the performance of different PI models for this 

case; results of the best PI model, which can simultaneously provide sharp and reliable PIs, are 

bolded.  

The persistence model could not construct reliable PIs for both the TCD and TCS of the Bay of 

Fundy, while the constructed PIs as the result of the persistence model are not sharp for other 

 

Figure 6-7: 1-hour ahead prediction of the TL using the proposed AAQR-based NPI for Port Dover. 
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datasets. SVR-LUBE in TL prediction and Akutan Pass TCS almost met the reliability criterion; 

for the other case studies the reliability criterion was absolutely met in tidal prediction by SVR-

LUBE. QR-based PI met the reliability criterion in all the cases except in prediction of TCS related 

to Akutan Pass. Amongst all prediction models, the proposed AAQR-based NPI satisfied the 

 

Figure 6-9: 1-hour ahead prediction of the TCS using the proposed AAQR-based NPI for Akutan Pass. 

  

 

 

Figure 6-10: 1-hour ahead prediction of the TCD using the proposed AAQR-based NPI for the Bay of 

Fundy. 

 

  

 

  

 

 

Figure 6-8: 1-hour ahead prediction of the TCD using the proposed AAQR-based NPI for Akutan Pass. 

  

 



 

134 

 

reliability requirement in all cases with the maximum sharpness, as reported in Table 6-1. The PIs 

obtained from the proposed AAQR-based NPI are (25.0078 − 17.5841)/25.0078 = 

29.6% sharper than QR-based PI for TL. Also, AAQR-based NPI model results in 13.5% and 

20.7% reduction in 𝑃𝐼𝑁𝐴𝑊 and therefore better sharpness compared to the QR-based PI in TCD 

and TCS prediction of Akutan Pass, respectively. Similarly, 26.0%, and 25.2% increases in 

sharpness of TCD and TCS for the Bay of Fundy TS are respectively achieved using AAQR-based 

PI compared to QR-based PI. The proposed approach also outperforms SVR-LUBE by meeting 

the required RL with sharper PIs. Figures 6-7-6-11 show that TL for the 1-hour horizon possesses 

irregular and non-stationary patterns compared to TCD and TCS; thus, its prediction seems 

challenging [145]. Despite this, the proposed NPI can significantly enhance the sharpness of TL 

prediction while maintaining the required RL (Table 6-1). Figure 6-9 and Figure 6-11 also show 

that the TCS of Akutan Pass and the Bay of Fundy have different characteristics. Akutan Pass has 

mixed semidiurnal characteristics while the Bay of Fundy is more semidiurnal; therefore, the 

highly accurate PIs obtained from the proposed AAQR-PI confirm the efficacy thereof for different 

tidal TS types.  

 

Figure 6-11: 1-hour ahead prediction of the TCS using the proposed AAQR-based NPI for the Bay of 

Fundy. 
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The results obtained for the 10-minute ahead PI are reported in Table 6-2. Considering the 

unavailability of tidal TS at Port Dover and Akutan Pass with the required resolution, PIs are only 

constructed for TCD and TCS of the Bay of Fundy. Table 6-2 shows that the QR-based PI cannot 

provide a reliable PI for TCS; in contrast, the SVR-LUBE and the proposed NPI constructed 

reliable PIs, but the proposed NPI offers 35.16% sharper PIs compared to SVR-LUBE. 

Table 6-1: Results of 1-hour ahead PI construction of tidal data (Minimum 𝑅𝐿∗=90%) 

Data Prediction Model 𝑅𝐿 𝑃𝐼𝑁𝐴𝑊 

TL in Port Dover 

Persistence  95.8333 39.1848 

QR-based PI 94.7917 25.0078 

SVR-LUBE 89.0610 19.0701 

AAQR-based NPI 91.6667 17.5841 

TCD 

Akutan 

Pass 

Persistence  93.7500 75.2905 

QR-based PI 95.6666 30.3951 

SVR-LUBE 90.7111 28.0810 

AAQR-based NPI 90.4464 26.2801 

Bay of 

Fundy 

Persistence  79.2208 54.6104 

QR-based PI 92.8230 16.2408 

SVR-LUBE 90.0120 13.0025 

AAQR-based NPI 97.9167 12.0148 

TCS 

Akutan 

Pass 

Persistence  90.8333 58.8451 

QR-based PI 88.0208 19.7717 

SVR-LUBE 89.0185 20.8466 

AAQR-based NPI 91.8533 15.6747 

Bay of 

Fundy 

Persistence  89.6104 68.7521 

QR-based PI 93.0555 17.0712 

SVR-LUBE 91.7100 17.6627 

AAQR-based NPI 90.0625 12.7576 

 

Table 6-2: Results of 10-minute ahead PI construction of tidal data (Minimum 𝑅𝐿∗=90%) 

Data  Prediction Model 𝑅𝐿 𝑃𝐼𝑁𝐴𝑊 

TCD 

Persistence  77.0833 26.1472 

QR-based PI 96.5301 15.0492 

SVR-LUBE 93.1167 13.5658 

AAQR-based NPI 93.0550 11.5875 

TCS 

Persistence  95.8333 37.4140 

QR-based PI 85.7638 14.5235 

SVR-LUBE 92.1416 24.2846 

AAQR-based NPI 90.0321 15.7441 
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The above descriptions and discrepancies clearly show that the proposed model outperforms the 

existing benchmark models in terms of providing sharp and reliable PIs for 1-hour and 10-minute 

horizons. Empirical observations from other simulations indicate similar performance is realized 

for other prediction horizons. Furthermore, although TL prediction is rarely considered in the 

literature, its variability in the 1-hour ahead horizon seems aperiodic and irregular, which makes 

its prediction complicated. The simulation results demonstrate that the proposed model has the 

capability to provide a reliable estimate for TL but has an intermittent pattern. 

 

 Second Scenario 

This part investigates the effectiveness of different components of the proposed NPI, including 

an asymmetrically adaptive selection of quantile probabilities, adaptive selection of ELM 

parameters, and the GWO-Simplex optimization method.  

The effects of the proposed hyperparameters (𝜏 ,  𝜏 ) on asymmetrical selection of quantile 

probabilities are reported in Figure 6-12; the results obtained are associated with the 1-hour ahead 

TCS data shown in Figure 6-11. The values of 𝜏 and 𝜏 are updated continuously every 12 hours, to 

find the optimal TCS prediction reported in Table 6-1. Moreover, not only are 𝜏 and 𝜏 asymmetric 

with respect to the median probability but their deviations from the traditionally employed quantile 

probabilities are also asymmetric. For instance, the values of 𝜏 and 𝜏 for sample # 40 in Figure 6-

12 are respectively optimized to 0.0117 and -0.0317, which result in 𝐶𝐿 = 0.8566. This shows 

that the traditionally chosen 𝑅𝐿∗ = 𝐶𝐿 = 𝛼̅ − 𝛼  may not be optimal in several cases and 

consequently demonstrates the need for the proposed AAQR.  
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Another factor that impacts on the performance of the proposed NPI is tuning kernel function 

parameters. The results obtained with and without adaptive tuning of the ELM kernel function 

parameters for 1-hour ahead TCS data are provided in Table 6-3. Adaptive tuning improves the 

sharpness of the ELMs, but the reliability is mostly unchanged. Similar behavior is empirically 

observed for other tidal data for different prediction resolutions. 

For further examination, the performance of the hybrid GWO-Simplex algorithm is assessed on 

its own as well as using two well-known optimization techniques: GA and PSO. In the case of the 

GA, a roulette wheel selection strategy is utilized to select between adaptive crossover and 

mutation operators. The classical PSO is used, in which inertia weight is fixed to 1 and accelerator 

coefficients are both set to 2. Maximum iteration number and convergence are chosen as the 

stopping criteria for all optimization approaches. For the same population size, all programs are 

 

Figure 6-12: 𝜏 and 𝜏 for 1-hour ahead TCS prediction. 

 

 

 

𝜏 𝜏   𝐶𝐿  

Table 6-3: Effects of ELM Adaptive Tuning on the Proposed NPI of TCS Data 

Training Strategy 𝑅𝐿 𝑃𝐼𝑁𝐴𝑊 

Without Adaptive Tuning 91.5157 14.0901 

With Adaptive Tuning 90.0625 12.7576 

 

Table 6-4: Results of Different Heuristic Optimization Techniques for the Proposed NPI of TCS Data 

(Minimum 𝑅𝐿∗=90%) 

Optimization 

Algorithm 

Best Solution Ave. Solution  Ave. 

Time (s) 𝑅𝐿 𝑃𝐼𝑁𝐴𝑊 𝑅𝐿 𝑃𝐼𝑁𝐴𝑊 

GA 92.3150 14.5196 96.0076 16.3719 291.7060 

PSO 92.0315 14.0102 95.3861 15.9107 211.0576 

GWO 91.7082 14.4501 93.8640 15.2761 95.50736 

Hybrid GWO 

& Simplex 
90.0625 12.7576 91.1573 13.2907 137.05513 
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implemented for 10 independent runs, with the results reported in Table 6-4. The rates of success 

to reach 𝑅𝐿∗ in all runs were 80% and 90% for PSO and GWO, respectively, and 100% for others. 

Thus, the average values reported in Table 6-4 are related to those methods for the successful 

cases. From this table, it can be concluded that hybrid GWO and simplex outperforms other 

benchmark heuristic optimization approaches in terms of meeting the 𝑅𝐿∗  with sharp PIs. 

Furthermore, its computation time is comparable with GWO and is lower that GA and PSO. 

 Conclusion 

This paper proposes an AAQR-based NPI model for short-term uncertainty prediction of tidal 

TS. The shortcomings of traditional QR-based NPI, including error in the prediction engine and 

symmetrical selection of a pair of quantiles probabilities, are discussed and addressed by proposing 

two hyperparameters. Hyperparameters and prediction engine parameters are tuned through a bi-

level optimization framework. The upper level optimization problem is solved by a hybrid 

heuristic optimization, while LP is conducted for the lower-level problem. The model developed 

has been successfully tested on a wide range of tidal data; the results obtained, and comparisons 

reported in the paper show that the proposed approach can be used as an effective tool for 

maximizing tidal energy deployment by providing more accurate uncertainty modeling of the most 

inflectional and uncertain factors. 

Further research can be conducted to investigate the effects of meteorological variables on tidal 

power generation prediction. In addition, the impacts of the asymmetrical and adaptive selection 

of quantile probabilities in power system operation problems can be scrutinized.  
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 A SECURE DEEP PROBABILISTIC DYNAMIC THERMAL LINE 

RATING PREDICTION8 

Accurate short-term prediction of overhead line (OHL) transmission ampacity can directly affect 

the efficiency of power system operation and planning. Any overestimation of dynamic thermal 

line rating (DTLR) can lead to lifetime degradation and failure of OHL, safety hazards, etc. This 

paper presents a secure yet sharp probabilistic prediction model for an hour ahead forecasting of 

DTLR. It is based on an augmented deep learning architecture which makes use of a wide range 

of predictors, including the his-torical climatology data and latent variables, obtained during 

DTLR calculation. Besides, by introducing three hyperparameters, a customized cost function is 

introduced to train a deep neural network to consider the DTLR security confidence level criterion 

while minimizing deviations of the predicted DTLRs from the actual values. The hyperparameters 

are tuned according to the power system operator’s requirement adopting a grid search algorithm. 

The proposed probabilistic DTLR is developed and verified using recorded experimental data. The 

simulation results validate the superiority of the proposed DTLR compared with the state-of-the-

art prediction models using well-known evaluation metrics.  

 Introduction 

Thermal line rating (TLR) is known as the primary culprit behind limitation of current carrying 

capability of overhead line (OHL) [164].  Both IEEE [165] and CIGRE [166] put forward TLR 

calculation methods. Although these approaches provide almost similar results, the one proposed 

                                                 

8 © To be submitted, N. Safari, S. M. Mazhari, C. Y. Chung, and S. B. Ko, “A secure deep probabilistic dynamic thermal line rating prediction,” 
IEEE Trans. Power Syst. 
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by IEEE is more simplified and easier to use [167]. TLR of OHL is a weather dependent variable 

and prevalently calculated by the heat balance equation under the worst-case weather scenarios 

[168]. Despite conservativeness of such static TLR (STLR), there might be some cases in which 

the STLR exceeds the real OHL thermal constraint. Consequently, the OHL might be exposed to 

damages due to lack of monitoring thermal line rating in the STLR-based approaches [169]. 

However, routinely, the STLR is less than the actual OHL ampacity [168, 169].   

To overcome the shortcomings of STLR, dynamic TLR (DTLR) is proposed in which the 

thermal condition of OHL can be monitored. Ergo, DTLR results in unlocking the additional 

capacity headroom of the current OHLs, thereby addressing the network congestion and 

postponing/eliminating the need for transmission expansion [168]. As a significant byproduct, 

DTLR facilitates delivering the highly variable and uncertain power of renewable energy systems 

(RESs) to the end-user due to perceptible correlation between RESs generation with the additional 

capacity provided by DTLR. For such reasons, DTLR has recently grasped attention of 

governments and transmission companies; and it is considered as an enabling tool for enhancing 

the penetration of RESs [170-172]. 

DTLR is a function of several climatology variables, such as wind speed, wind direction, etc. 

[165]; therefore, its value for up-coming hours need to be forecasted. The DTLR forecast can be 

employed in various power system problems, such as unit commitment, economic dispatch, 

optimal power flow, etc., [167, 173]. In this respect, specialized research communities have 

devoted momentous endeavors to develop DTLR monitoring and prediction models [171-181]. 

Since DTLR monitoring and prediction may not be feasible through the entire OHL, critical spans 

are identified for this mission. In [182, 183], heuristic approaches are brought forward to identify 
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the number and locations of the required monitoring stations to make the OHL fully observable 

from the thermal rating perspective. 

Relying on the literature, DTLR prediction has been interpreted with two different viewpoints. 

In a group of studies, researchers predict the maximum allowable current, in which the OHL 

temperature is equal to the OHL thermal limit [171-180]. However, on the other side, DTLR 

prediction refers to estimating the future value of an OHL temperature providing that it carries a 

certain amount of current [181, 182]. While both perspectives bring about intriguing advancements 

to the field and provide insightful information about the OHL thermal constraints, this paper zeroes 

in on the DTLR prediction based on the first definition.  

DTLR methods can be broadly divided into direct [171, 173-180], indirect [180], and hybrid 

[179, 182] approaches. In direct DTLR calculation, the required values are calculated based on 

straightforward computation of the conductor’s maximum allowable current while taking the 

maximum permissible temperature into account. In this respect, the process is accomplished by 

employing weather data and heat balance equation. This is while some measured values, such as 

sag position, mechanical tension, etc., are used in indirect DTLR calculation. Nowadays, direct 

approaches are of remarkable interest as they are less dependent to external equipment and lead to 

low-cost outcome compared to their counterparts [170].  

From the prediction output point of view, DTLR prediction models can be divided into 

deterministic [178, 180] and probabilistic [174-178] categories. In deterministic prediction, a 

single quantity associated with the most likely value of DTLR in the next sample point is 

considered as the output; while in the probabilistic approach, information about uncertainty in 

DTLR prediction can be acquired. Since any overestimation of DTLR may lead to unprecedented 



 

142 

 

issues, probabilistic prediction is most welcome by power system operators [168] and accordingly 

is the focus of this work.  

In [175, 176], parametric distributions model their associated uncertainties with climatology 

variables. In [177], Taylor series expansion is employed to find the mean and variance of DTLR 

in the coming hours on the basis of the forecasted values of mean and variance corresponding to 

the meteorological variables. To consider the interdependency among meteorological variables in 

DTLR forecast in [184], multivariate Gaussian mixture distributions, resulted from different 

meteorological variables, are used in a Monto Carlo simulation process to extract DTLR 

distribution. 

In [175-177, 184], the meteorological variables are assumed to possess a parametric 

representation for their uncertainties. However, this assumption may be erroneous due to high non-

stationarity of meteorological time series (TS) [135]. To this end, authors in [174] proposes a non-

parametric autoregression framework for probabilistic DTLR prediction based on quantile 

regression (QR). Authors in [168, 178] put forward a non-parametric DTLR prediction based on 

quantile regression forest (QRF), of which meteorological measurements and numerical weather 

predictions (NWPs) compose the input features of the prediction model. As the literature reveals, 

studies on non-parametric DTLR prediction is still in its early stage; thus, this paper is devoted to 

further contribute to this literature.  

 The weather-based DTLR prediction models mainly limit their inputs to those features, obtained 

directly from meteorological measurements. However, from DTLR formulations pro-posed in 

[165, 166], one can note that the relations of meteorological variables with DTLR value are too 

complex and non-linear. Meanwhile, there are many latent variables (e.g., convection cooling, 
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radiated heat loss rate, etc.) which are acquired in the process of DTLR calculation and may 

provide information about the complex relationship between DTLR value and meteorological 

variables. However, to the best of authors knowledge, these important predictors have not been 

considered in DTLR forecast thus far.  Thence, this paper scrutinizes the impacts of latent variables 

in DTLR forecast. Moreover, according to CIGRE recommendations, DTLR values should be 

estimated such that actual DTLR is equal to or greater than the estimated value in 99% of instances 

[167]. However, this CIGRE recommendation has not been considered in assessing the thus far 

proposed prediction models. 

The remarkable advancement in deep learning and its successful implementation in prediction 

result in forecasting accuracy enhancement in a range of meteorologically dependent variables of 

power systems [110, 185, 186]. In deep neural networks (DNNs) architectures, highly efficient 

unsupervised dimension reduction blocks (i.e., autoencoder variants) can be employed to tackle 

with the high dimension feature space issue, posed due to numerous meteorological and latent 

variables. Using DNNs, more complex patterns, which are not viable to identify in shallow 

networks, can be perceived. Compared to various building blocks of DNNs, long short-term 

memory (LSTM) [187]—a recurrent NN (RNN)—has demonstrated superior performance in wind 

speed as well as meteorological variables prediction problems [185]. The benefit of LSTM 

compared to the conventional RNNs is its capability to capture long- and short-term dependencies 

in a sequence with addressing the vanishing and exploding gradient problems of prevalent RNNs 

[187]. Despite the successful applications of RNNs, specifically LSTM, and benefits of DNNs, 

they have not been adapted to DTLR prediction. In this paper, LSTM is employed in developing 

the DTLR prediction, while the stacked denoising autoencoder (SDAE) [188] is developed for 

feature extraction and reducing the feature space dimension. To the extent of authors’ knowledge, 
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the so far developed DNN models are trained deterministically in power systems applications [110, 

185, 186]). A major impediment which made the past methods incapable of offering a probabilistic 

model in DNN may originate from lack of proficient probabilistic cost function; such function 

should consider reliability level and sharpness together so that the DNN parameters are tuned 

according to the system operator’s preference. To address this need, the current paper presents an 

innovative cost function for DNN training. 

This paper proposes a probabilistic DTLR prediction which takes benefits from the accessible 

latent variables in addition to meteorological measurements. The high dimension input feature 

space in DTLR is reduced using an SDAE. A DTLR model is developed using LSTM units in a 

DNN architecture. The prediction engine is trained by considering a novel cost function to meet 

the CIGRE requirement while the sharpness is maximized. The performance of the proposed 

models is compared with the state-of-the-art DTLR prediction models using publicly available 

data. Briefly, the main contributions of this work are three-fold: 

• For the first time, latent variables are introduced in DTLR forecast as valuable predictors; 

• For the first time, a deep learning architecture is constructed for DTLR forecasting; 

• For the first time, deep learning model is trained for probabilistic forecasting in power 

systems application. 

 Proposed Dynamic Thermal Line Rating Prediction 

Hereafter, {𝑊𝑆𝑡}𝑡=1
𝑁  and {𝑊𝐷𝑡}𝑡=1

𝑁  are TS associated to wind speed, wind direction, 

respectively. 𝑁 is the length of TS, and index 𝑡 refers to the 𝑡th sample of TS. Also, the TS of the 

wind speed components, decomposed by Cartesian coordinate system, are demonstrated by 
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{𝑊𝑆𝑋𝑡}𝑡=1
𝑁  and {𝑊𝑆𝑌𝑡}𝑡=1

𝑁 . Besides, TS of ambient temperature and solar irradiance are 

represented by {𝐴𝑇𝑡}𝑡=1
𝑁  and {𝑆𝐼𝑡}𝑡=1

𝑁 , respectively. 

Figure 7-1 demonstrates the overall framework of the proposed DTLR prediction model. The 

suitable number of lags (𝑙) to form the input vector is identified using the Cao’s embedding 

dimension approach [68]. From the measurements, 𝑙 lags of meteorological TS are imported to 

DTLR calculation model, described in Section 7-2-1. Using the DTLR calculation model, 

[𝐷𝑇𝑅𝑡−𝑙+1 … 𝐷𝑇𝑅𝑡] , [𝑞𝑐𝑡−𝑙+1 … 𝑞𝑐𝑡] , and [𝑞𝑟𝑡−𝑙+1 … 𝑞𝑟𝑡] , which respectively 

represent DTLR, convection cooling, and radiated heat loss rate for lags of meteorological inputs, 

are calculated. The obtained features from this step along with the meteorological input vector are 

utilized in feature reduction and extraction stage based on SDAE with LSTM building blocks, as 

 

Figure 7-1: General scheme of the proposed DTLR prediction. 
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discussed in Section 7-2-2. Afterwards, various trained models are employed to acquire the final 

DTLR prediction (𝐷𝑇𝑅𝑡+1 as elaborated in Section 7-3).  

 Dynamic Thermal Line Rating Calculation  

In this study, it is assumed that the power system is under normal operation; and therefore, the 

current fluctuations in the OHLs can be considered negligible, providing that the system does not 

require any abrupt and temporary switching [181]. Besides, studies reveal that the maximum time 

required to reach the steady state because of a step change in current is approximately 30 minutes 

[189]. Coming from the mentioned points, the transients in DTLR can be ignored, and DTLR can 

be estimated for every hour. 

Figure 7-2 schematically represents the influential factors in DTLR of OHL. As per IEEE Std 

738-2012, in the steady-state the heat balance equation for an OHL at 𝑡th sample can be written as 

follows [165]: 

𝑞𝑐𝑡 + 𝑞𝑟𝑡 = 𝑞𝑠𝑡 + 𝐼𝑡
2 ∙ 𝑅(𝑇𝑐𝑜𝑛) (7-1) 

where 𝑞𝑐𝑡 and 𝑞𝑟𝑡 are convection and radiated heat loss rates per unit length, respectively. 𝑞𝑠𝑡 in 

(7-1) is heat gain rate from sun, and 𝑅(𝑇𝑐𝑜𝑛) is alternating current (AC) resistance associated to 

 

Figure 7-2: A schematic diagram of DTLR. 
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conductor temperature, 𝑇𝑐𝑜𝑛. From (7-1), the allowable conductor current, 𝐼𝑡, at 𝑇𝑐𝑜𝑛 can be simply 

obtained as follows: 

𝐼𝑡 = √
𝑞𝑐𝑡 + 𝑞𝑟𝑡 − 𝑞𝑠𝑡

𝑅(𝑇𝑐𝑜𝑛)
 (7-2) 

From (7-1)-(7-2) one can observe that 𝑞𝑐𝑡 and 𝑞𝑟𝑡 are the cooling elements in the heat-balance 

equation, and their increase can help to attain more OHL ampacity, while 𝑞𝑠𝑡  is a heating 

component and is a culprit of ampacity reduction. 𝑞𝑐𝑡 is a function of 𝑊𝑆𝑡, 𝑊𝐷𝑡, and 𝐴𝑇𝑡. 𝑞𝑐𝑡 is 

calculated as follows [165]: 

𝑞𝑐𝑡 = max(𝑞𝑐𝑡
𝑓1
, 𝑞𝑐𝑡

𝑓2
, 𝑞𝑐𝑡

𝑛) (7-3) 

𝑞𝑐𝑡
𝑓1
= 𝐾𝑎𝑛𝑔𝑙𝑒 ∙ [1.01 + 1.35 ∙ 𝑁𝑅𝑒

𝑡 0.52
 ] ∙ 𝑘𝑓 ∙ (𝑇𝑐𝑜𝑛 − 𝐴𝑅𝑡) (7-4) 

𝑞𝑐𝑡
𝑓2
= 𝐾𝑎𝑛𝑔𝑙𝑒 ∙ 0.754 ∙ 𝑁𝑅𝑒

𝑡 0.6
 ∙ 𝑘𝑓 ∙ (𝑇𝑐𝑜𝑛 − 𝑇𝐴𝑡) (7-5) 

𝑞𝑐𝑡
𝑛 = 3.645 ∙ 𝜌𝑓

0.5 ∙ 𝐷𝑜
0.75 ∙ (𝑇𝑐𝑜𝑛 − 𝑇𝐴𝑡) (7-6) 

𝑁𝑅𝑒
𝑡 =

𝐷𝑜 ∙ 𝜌𝑓 ∙ 𝑊𝑆𝑡

𝜇𝑓
 (7-7) 

where 𝐾𝑎  is wind direction factor. 𝜌𝑓  and 𝜇𝑓  are air density and absolute air viscosity, 

respectively. 𝐷𝑜  is the outside diameter of the conductor. As it can be observed from (7-3)-(7-7), 

𝑞𝑐𝑡  is a nonlinear and complicated function of meteorological variables while the relationship 

between 𝑞𝑐𝑡 and 𝐼𝑡 is simple as shown in (7-2). Therefore, considering [𝑞𝑠𝑡−𝑙+1 … 𝑞𝑠𝑡−𝑙] as 

elements of predictor set for forecasting 𝐷𝑇𝐿𝑅𝑡+1 can be beneficial. Moreover, 𝑞𝑟𝑡 in (7-1)-(7-2) 

can be calculated as follows [165]: 
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𝑞𝑟𝑡 = 17.8 ∙ 𝐷𝑜 ∙ 𝜖 ∙ [(
𝑇𝑐𝑜𝑛 + 273

100
)
4

− (
𝑇𝐴𝑡 + 273

100
)
4

] (7-8) 

where 𝜖 is emissivity and has a value of [0.23, 0.91] which increases by conductor age. As can be 

seen from (7-8), like 𝑞𝑐𝑡, 𝑞𝑟𝑡 has relation with the fourth power of 𝑇𝐴𝑡. Consequently, the relation 

between 𝑇𝐴𝑡  and 𝐼𝑡  is intricate; and therefore, considering the simple vector of 

[𝑇𝐴𝑡−𝑙+1 … 𝑇𝐴𝑡] as the elements of the feature set may not be adequate to reflect the im-

portance of ambient temperature and radiative heat loss in DTLR prediction, and it is worthful to 

analyze the influence of considering historical data of radiated heat loss rate in DTLR prediction. 

It is worth noting that for a solar irradiance at time 𝑡, 𝑆𝐼𝑡, the rate of solar heat gain, 𝑞𝑠𝑡, can be 

estimated by a linear function of 𝑆𝐼𝑡 [165]; and therefore, its consideration as a feature cannot be 

informative.  

After calculating [𝐷𝑇𝑅𝑡−𝑙+1 … 𝐷𝑇𝑅𝑡], [𝑞𝑐𝑡−𝑙+1 … 𝑞𝑐𝑡], and [𝑞𝑟𝑡−𝑙+1 … 𝑞𝑟𝑡], all the 

thus far obtained features are used in a feature extraction and feature space reduction stage as 

elucidated below. 

 Feature Reduction and Extraction in Dynamic Thermal Line Rating 

Prediction 

As elaborated in Section 7-2-1, several climatic variables, including wind speed, wind direction, 

wind speed Cartesian components, ambient temperature, and solar irradiance, highly influence 

DTLR value. A tensor, formed by series of lags associated with these variables, contains the 

potential informative predictors for DTLR. Besides, it is clarified that the latent variables (i.e., 

convective cooling and radiated heat loss rate) may also contain valuable information about the 

complex relationship with climatic variables and DTLR. Also, the historical DTLR values could 



 

149 

 

also therefore, nine types of feature candidates and their corresponding lags are considered to form 

the feature pool.  

7-2-2-1 Feature Reduction 

Properly optimizing the input features of the prediction engine by eliminating the non-

informative and redundant features and constructing more features, which can demonstrate the 

DTLR pattern more efficiently, is a principal stage in DTLR prediction. To this end, we first 

employ a feature reduction stage based on minimal-redundancy-maximal-relevance (mRMR) 

[190]. mRMR is a mutual information (𝑀𝐼) based approach which is employed in various power 

system problems [191] for identifying the subset of features, providing the most amount of 

information about the observation (target variable). 𝑀𝐼  is widely used in feature selection 

literature to evaluate the degree of uncertainty which a predictor can alleviate from observation by 

measuring the mutual relevancy of predictor and target variable. For two random variables with 

domains 𝐴 and 𝐵 the 𝑀𝐼 is defined as follows [190]: 

𝑀𝐼(𝐴; 𝐵) = ∑∑𝑃(𝑎, 𝑏) ∙ log (
𝑃(𝑎, 𝑏)

𝑃(𝑎) ∙ 𝑃(𝑏)
)

𝑏∈𝐵𝑎∈𝐴

 (7-9) 

where 𝑃(𝑎, 𝑏) represents the joint probability density function, and 𝑃(𝑎) and 𝑃(𝑏) are individual 

probability density functions of 𝑎 and 𝑏 random variables, which are the discretized format of 

continuous predictor and target variables. Based on (7-9), the iterative mRMR algorithm is carried 

out by the following optimization problem [190]: 



 

150 

 

max
𝒶
𝑗
𝑡−𝑝

∈𝒜−𝛀𝒏−𝟏,

 𝑗={1,…,9},𝑝={0,…,𝑙−1} [
 
 
 
 

𝑀𝐼(𝒶𝑗
𝑡−𝑝; 𝑫𝑻𝑹𝒕+𝟏)

−
1

𝑛 − 1
∑ 𝑀𝐼(𝒶𝑗

𝑡−𝑝; 𝒶𝑖
𝑡−𝑞)

𝒶
𝑖
𝑡−𝑞

∈𝛀𝒏−𝟏

 𝑖={1,…,9},𝑞={0,…,𝑙−1} ]
 
 
 
 

 

(7-10) 

𝒜 = {𝒶1
𝑡−𝑙+1 = 𝑾𝑺𝒕−𝒍+𝟏, … , 𝒶1

𝑡 = 𝑾𝑺𝒕,  
           …,  

            𝒶7
𝑡−𝑙+1 = 𝑫𝑻𝑹𝒕−𝒍+𝟏, … , 𝒶7

𝑡 = 𝑫𝑻𝑹𝒕,  
                …, 

              𝒶9
𝑡−𝑙+1 = 𝒒𝒓𝒕−𝒍+𝟏, … , 𝒶9

𝑡 = 𝒒𝒓𝒕} 

(7-11) 

where 𝛀𝒏−𝟏  is the subset containing selected features at the 𝑛 − 1𝑡ℎ iteration. Bold notations 

represent the random variables of various predictors. 𝒶𝑗
𝑡−𝑝

 is the random variable describing the 

𝑝th lag of 𝑗th feature. 𝒜 is a set consisting of the random variables associated to feature candidates. 

In the first iteration of solving  (7-10), 𝑛 = 1, and 𝛀𝟎 = ∅. In this work, the optimization problem 

in (7-10) is iteratively solved till 𝑀𝐼 of the last component selected from solving (7-10) with 

𝑫𝑻𝑹𝒕+𝟏 is larger than or equal to the one tenth of the 𝑀𝐼 of the first component selected from 

solving (7-10) with 𝑫𝑻𝑹𝒕+𝟏. 

After conducting mRMR, the feature types which are not among the selected features in 𝛀𝒏 or 

constitute negligible portion of  𝛀𝒏 are removed from the feature pool. Therefore, the number of 

feature types will be reduced to less than nine, which is the initial number of feature types. Then, 

the selected features along with their corresponding 𝑙 lags are used to build the tensor input of the 

deep learning-based feature extraction, described in Section 7-2-2-3. 
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7-2-2-2 Long Short-Term Memory 

LSTM is a unit of RNNs in which the temporal dependency among elements of the TS can be 

captured. An LSTM block consists of a memory cell, an input gate, an output gate, and a forgetting 

gate. The memory cell stores values for arbitrary time intervals. In LSTM, the three gates are 

neurons with activation functions. Figure 7-3 represents an LSTM unit. In this figure, 𝑐𝑡−1 and 

ℎ𝑡−1 denote the cell memory state and hidden state at the previous time, respectively. The input 

vector (𝑥𝑡),  𝑐𝑡−1, and ℎ𝑡−1 are used to update the memory state, 𝑐𝑡 , and attain the output, ℎ𝑡 , 

corresponding to 𝑥𝑡. 

7-2-2-3 Recurrent Neural Network-based Stacked Denoising Autoencoder  

AE is a type of neural networks employed for dimensionality reduction in a wide range of 

applications [188]. An autoencoder (AE) is composed of two fragments, the encoder and decoder. 

The input of the encoder is the original feature tensor, which is mapped to different space in the 

output of encoder, while decoder use the mapped features as the input and reconstruct the original 

feature space. Using the encoder output of the trained AE can provide more valuable information 

 

Figure 7-3: An LSTM unit 
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in DTLR prediction problem, which suffers from high dimension feature space even after the 

feature reduction stage, discussed in Section 7-2-2. To make AE more robust to outlier and noisy 

data, DAE is proposed in [188]. In DAE, the original input features are reconstructed from a 

corrupted one, while stacking several DAEs, results in a deep feature extraction. 

At time 𝑡, all features which are remained after the feature reduction stage, described in Section 

7-2-2, are used to construct the input vector of DAE, 𝑥𝑡, a three-dimensional tensor (1 × 𝑙 × 𝑚) 

where 𝑚 is the number of feature variants. To capture the sequential correlation of the TS, LSTM, 

described in Section 0, are used as building blocks of DAEs in this paper. After layer-wise training, 

SDAE is fine-tuned by using adaptive learning rate method in a mini-batch manner [192]. An 

RNN-based DAE can be formulated as follows: 

min
𝜃,𝜃′

(𝐿𝐴𝐸(𝒙, 𝒛)) (7-12) 

𝑥̃~𝑞𝒟(𝑥𝑡) (7-13) 

𝑦𝑡 = 𝑓𝜃(𝑥̃𝑡, 𝑚𝑡−1) (7-14) 

𝑧𝑡 = 𝑔𝜃′(𝑦𝑡,𝑚𝑡−1
′ ) (7-15) 

where  𝐿𝐴𝐸(∙) is the loss function, which needs to be minimized. In this paper, mean-squared-error 

is employed as the loss function. The tensor 𝒙 (𝑛 × 𝑙 × 𝑚) contains all tensors 𝑥𝑡 , 𝑡 = 1, … , 𝑛, 

where 𝑛 is the number of available points in the validation set; while tensor 𝒛 consists of all tensors 

𝑧𝑡, 𝑡 = 1,… , 𝑛, which are the output of a DAE corresponding to input 𝒙. Eq. (7-13) represents the 

stochastic process of destroying some elements of input vector, 𝑥𝑡, to form the corrupted input, 𝑥̃. 

In (7-14) and (7-15), 𝑦𝑡 and 𝑧𝑡 are the output of encoder and decoder blocks, respectively. 𝒎𝑡−1 

and 𝒎𝑡−1
′  are information passed from the calculation of 𝑦𝑡−1 and  𝑧𝑡−1, respectively, as the result 

of recurrent units. As can be observed from Figure 7-3, if LSTM is used in DAE, 𝒎𝑡−1 =
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[𝑐𝑡−1, ℎ𝑡−1]. In (7-14) and (7-15), 𝑓𝜃(∙) and 𝑔𝜃(∙) are the functions associated with encoder and 

decoder  

blocks, respectively.  

 Proposed Training Framework for Probabilistic Dynamic Thermal 

Line Rating Prediction 

Training of the proposed DTLR is conducted in several steps according to the scheme presented 

in Figure 7-4. First, the data is divided into three parts of training, validation, and test datasets. The 

training dataset is used to tune the model parameters, while the validation dataset is used to assess 

the performance of the model during training. The test dataset is used to evaluate the trained model. 

The redundant or non-informative features are removed as described in Section 7-2-2-1. Next, 

layer-wise training of the DAE, as explained in Section 7-2-2-3, is performed; then, SDAE is 

formed, and its parameters are fine-tuned by mean-sqaured-error (MSE) loss function. Afterward, 

the autoregressive prediction model, named as Model 1, is trained using a series of DTLR TS lags, 

simultaneously, a many to one prediction model, labeled as Model 2 is tainted using the feature 

tensor obtained from the SDAE output and DTLR TS lags. It is worth mentioning both Models 1 

and 2 are based on RNNs and trained using MSE as the cost function, while the weights of SDAE 

are frozen. Then, an ensemble model which employs the predictions of Models 1 and 2 as the input 

to provide a final prediction of DTLR is trained deterministically using MSE as the cost function. 

The ensemble model is named as Model 3. 
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The thus far developed model is trained prognostically. The cost function, presented in (7-16)–

(7-19), is put forward to fine-tune the overall model such that the DTLR model provides the lower 

 

Figure 7-4: Flowchart of the training the proposed DTLR prediction. 
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bound of DTLR values with specified confidence level (𝐶𝐿) while the sharpness (𝑆), defined as 

the average deviation of predicted DTLR from actual DTLR, is minimized.  

𝐶 (𝐷𝑇𝑅𝑡+1, 𝐷𝑇𝑅𝑡+1) =∑𝑎𝑖(𝑠𝑖𝑔𝑛(𝛿𝑖) + 1) × 𝛿𝑖
2

𝑖=3

𝑖=1

 (7-16) 

𝛿1 = 𝐷𝑇𝑅𝑡+1 − 𝐷𝑇𝑅𝑡+1 (7-17) 

𝛿2 = 𝐷𝑇𝑅𝑡+1 − 𝐷𝑇𝑅𝑡+1 (7-18) 

𝛿3 = 𝐷𝑇𝑅𝑡 − 𝐷𝑇𝑅
𝛼 (7-19) 

where 𝐷𝑇𝑅𝑡+1 is the predicted DTLR value, which is expected to provide a lower bound for the 

actual 𝐷𝑇𝑅𝑡+1. In (7-16), the cost function is composed of three terms, associated to 𝛿𝑖 , 𝑖 = 1, 2,3. 

𝑎𝑖, 𝑖 = 1,2,3 are the hyperparameters, which determine the importance of each term. The term 

related to 𝛿1  penalizes the prediction model when prediction model results in 𝐷𝑇𝑅𝑡+1  values 

above 𝐷𝑇𝑅𝑡+1. When 𝐷𝑇𝑅𝑡+1 < 𝐷𝑇𝑅𝑡+1, the term related to 𝛿1 in the cost function will become 

zero. The term corresponds to 𝛿2  penalizes the prediction model if the prediction model can 

provide a reliable 𝐷𝑇𝑅𝑡+1; in another word, 𝐷𝑇𝑅𝑡+1 < 𝐷𝑇𝑅𝑡+1. While the last term penalizes 

prediction model if 𝐷𝑇𝑅𝑡+1 is lower than the 𝛼th percentile of DTLR (𝐷𝑇𝑅𝛼) in the training 

dataset, where 𝛼 = 1 − 𝐶𝐿. This term is introduced to enhance the sharpness (𝑆) of the prediction 

model defined as follows: 

𝑆 =

1
𝑁
∑ |𝐷𝑇𝑅𝑡+1 − 𝐷𝑇𝑅𝑡+1|
𝑁
𝑡=1

𝑅
 

(7-20) 

where 𝑁 is the number of points in training, validation, or test datasets, and 𝑅 is the range of DTLR 

values. 
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The values of hyperparameters 𝑎𝑖, 𝑖 = 1,2,3 are determinant of the 𝐶𝐿 and 𝑆 as described above. 

Therefore, a grid search is conducted with the maximum iteration 𝑖𝑚𝑎𝑥. The hyperparameter sets 

which meet the 𝐶𝐿 requirement are stored as the set 𝑟𝑗, where 𝑗 is the number of sets stored. After 

running the grid search for 𝑖𝑚𝑎𝑥 iterations, the set 𝑟 which results in the lowest 𝑆 is used to form 

the cost function. 

 Case Studies and Comparisons 

 Data Description 

We performed the analysis based on a 5-year data (Jan. 1, 2010 to Jan 1, 2015), recorded from 

M2 met tower in National Wind Energy Center (NWEC) [31], located in Denver, US. It is assumed 

that the measurements correspond to an OHL constructed from 400 𝑚𝑚2  Drake 26/7 ACSR 

conductor. The elevation of the conductor from sea level is set to 1861 𝑚.  

The specification of this conductor is summarized in Table 7-1 [165], where, STLR is calculated 

based on low-speed perpendicular wind, 0.6 𝑚/𝑠, high ambient temperature, 40°𝐶, and full solar 

heating, 1000 𝑊/𝑚2 [193]. 

 Analyzing Feature Candidates 

To evaluate the dependency of 𝐷𝑇𝑅 to different feature candidates, a 5-year meteorological data 

are used to generate historical 𝐷𝑇𝑅, 𝑞𝑐, and 𝑞𝑟 TS, using the procedure described in Section II-A. 
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Figure 7-5 represents the dispersion of 𝐷𝑇𝑅 with respect to various feature types in the upper 

triangle. In this figure, 𝑊𝑆𝑋 and 𝑊𝑆𝑌 represent the wind speed decomposed in 𝑋 and 𝑌 axes, 

respectively. Kendall 𝜏 rank coefficient is widely employed as a non-parametric statistical test in 

hypothesis test to identify the statistical dependency between two random variables [194]. The 

detailed explanations on Kendall 𝜏 rank coefficient can be found in [194]. The presented quantities 

in the subplots, forming the upper triangle, represent the Kendall 𝜏 rank coefficient of different 

features vis-à-vis each other and 𝐷𝑇𝑅. Based on the calculated Kendall 𝜏 rank coefficients, which 

represent the relations between 𝐷𝑇𝑅 and other features, and also their associated 𝑝-values, it is 

 

Figure 7-5: Dispersion of DTLR with respect to different feature types and Kendall 𝜏 rank coefficient and 

mutual information of different features and DTLR. 
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Table 7-1: Specifications of The Conductor 

STLR 685 𝐴 

Outside diameter of conductor 28.12 𝑚𝑚 

Minimum conductor temperature 25 𝐶 

Maximum conductor temperature 75 𝐶 

Conductor resistance at minimum temperature 0.07284 Ω/𝑘𝑚 

Conductor resistance at maximum temperature 0.08689 Ω/𝑘𝑚 

Solar absorptivity and emissivity 0.5 
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observed that the null hypothesis at the significance level of (0.05) is rejected; and therefore, 𝐷𝑇𝑅 

possesses relations with other feature species.  

Besides, from this figure one can perceive that 𝑞𝑐  has the most influential factor in 𝐷𝑇𝑅 

compared to all features. This strong relation can be also found from the 𝑀𝐼 values which are 

presented in diagonal subplots and the lower triangle of Figure 7-5. The 𝑀𝐼 values testify the high 

dependency of 𝐷𝑇𝑅  to 𝑞𝑐 . Also, from this figure, one can note that among meteorological 

variables, 𝑊𝑆  demonstrates the strongest correlation with 𝐷𝑇𝑅 , while 𝑀𝐼(𝑊𝑆;𝐷𝑇𝑅)  is 

significantly lower than 𝑀𝐼(𝑞𝑐; 𝐷𝑇𝑅). On the other hand, it is found that there is strong correlation 

between 𝑞𝑟 and 𝐴𝑇; and therefore, for the sake of preventing from curse of dimensionality and 

unnecessary increment of computation burden [195], considering only 𝐴𝑇 could be sufficient.  

Moreover, from 𝑀𝐼(𝐷𝑇𝑅; 𝑆𝐼), it can be recognized that 𝑆𝐼 can provide the minimum information 

in DTLR forecasting. To this end, this feature species is eliminated in the feature reduction stage 

described in Section II-B. It is worth mentioning that the data are discretized with respect to median 

values of different features in order to calculate the 𝑀𝐼 values. This type of discretization is widely 

used in calculating 𝑀𝐼 among continuous variables [195]. 

 Description of Benchmark Models 

Three benchmark models are utilized in this paper, including persistence [135], QR [174], and 

QRF [178] prediction models. The persistence model (PM) is a conventional prediction model 

which is widely used for short-term prediction of meteorological variables [12, 135]. As DTLR is 

also a meteorologically dependent variable, we make use of PM as one of our benchmark models. 

The simplicity of PM can facilitate the comparison of the proposed model with other prediction 

models [135]. QR is recently proposed for non-parametric probabilistic prediction of DTLR, which 
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is the focus of this study. Therefore, comparing the efficacy of the proposed model with QR 

provides some insights about the superiority of the proposed model with respect to other non-

parametric probabilistic DTLR prediction models. As the last benchmark model, the state-of-the-

art QRF-based probabilistic DTLR prediction model [168, 178] is employed. To carry out a fair 

comparison, the proposed model and benchmark models utilize similar input variables, as 

elaborated in Section 7-2. A notable exception is PM, for which the mean and variance of the latest 

wind power observations form a Gaussian distribution representing the uncertainty of upcoming 

samples [135].  

 Evaluation Metrics 

Three evaluation metrics are used to appraise the performance of different DTLR models. 𝐶𝐿 of 

the prediction model is the most imperative evaluation criterion for probabilistic DTLR prediction. 

Any deviation of 𝐶𝐿 from the preferred 𝐶𝐿, 𝐶𝐿∗, can lead to unprecedented issues. 𝑆, defined in 

(7-20), is another metric which is utilized as a supplementary evaluation metric. In a perfect DTLR 

prediction, 𝐶𝐿 = 𝐶𝐿∗ while 𝑆 → 0. Root-mean-squared-error (RMSE) [41], which is a valuable 

measure and signifies large deviations of DTLR prediction from its actual value, is also employed 

as another evaluation metric.     

 Numerical Studies 

A six-month data (Jan. 1, 2010 to Jul. 1, 2010) are used for numerical comparisons. 85% of data 

are used for training and validation, while 15% is employed for testing. In this section, first, the 
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effectiveness of considering latent predictors (i.e., convective cooling and radiated heat loss rate) 

is investigated. Afterwards, the proposed DTLR is compared with the benchmark models for 

different 𝐶𝐿 preferences, using various evaluation metrics.  

7-4-5-1 The Impact of Latent Predictors 

In Section 7-2, it was shown that in comparison to directly observed meteorological variables, 

radiated heat loss rate has more pretentious relation with DTLR. 

To investigate empirically the efficacy of considering a series of lags associated with the 

mentioned latent variables as predictors, in this section a case study is conducted using the 

proposed DTLR prediction with and without the latent predictor. Table 7-2 summarizes the 

conducted case study for 𝐶𝐿∗ = 99%. As can be observed from this table, the experiential results 

are in line with the theoretically expected outcome. From this table, one can notice that considering 

latent variables can reduce 𝑆 and 𝑅𝑀𝑆𝐸, while the 𝐶𝐿 criterion is satisfied. So, it can be surmised 

that radiated heat loss rate information can provide further information about the DTLR pattern, 

and therefore, the prediction can be performed more precisely.  

7-4-5-2 Numerical Comparisons of Different Prediction Models 

The performance evaluations of different prediction models for 𝐶𝐿∗ = 95% and 99%  are 

tabulated in Table 7-3. As can be observed from this table, neither PM and nor QR provide a 

reliable prediction for 𝐶𝐿∗ = 95%. On the other hand, QRF and the proposed model can securely 

Table 7-2: Comparing the Performance of the Proposed Model with and without Latent Variables as Input 

 𝑪𝑳(%) 𝑺(%) 𝑹𝑴𝑺𝑬 

Without latent variable 99.19 24.93 230.53 

With latent variable 99.01 23.67 221.52 
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predict the DTLR for 𝐶𝐿∗ = 95%, but the proposed model results in improvement in sharpness 

(𝑆) and 𝑅𝑀𝑆𝐸. For 𝐶𝐿∗ = 99%, QR and QRF models are unable to meet the reliability level. PM 

provides a reliable prediction by sacrificing the sharpness, while the proposed model can yield a 

sharp and reliable predictions for 𝐶𝐿∗ = 99%, which is one of the requirements stated in the 

literature for implementing a secure DTLR [167]. Thus, from this case study, it can be observed 

that the proposed model can facilitate secure DTLR employment. 

To further investigate the performance of the proposed model compared to benchmark models, 

the bar graph, describing the number of exceedances from the actual DTLR value for different 

levels of deviation as the result of different prediction models in 𝐶𝐿∗ = 95% and 𝐶𝐿∗ = 99%, are 

presented in Figure 7-7. For 𝐶𝐿∗ = 95% QRF and the proposed model provides comparable 

 

Figure 7-6: Exceedance of DTLR values as the result of various prediction models; ; (a) 𝐶𝐿∗ = 95% and 

(b) 𝐶𝐿∗ = 99%. 
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Table 7-3: Performance Evaluation of Different Prediction Models 

 Prediction Models 𝑪𝑳 (%) 𝑺 (%) 𝑹𝑴𝑺𝑬 

𝐶𝐿∗ = 95% 

PM 93.87 21.93 246.52 

QR 91.87 15.99 160.02 

QRF 95.86 20.28 195.73 

Proposed Model 95.10 19.40 186.18 

𝐶𝐿∗ = 99% 

PM 99.08 33.44 329.69 

QR 96.93 20.97 201.01 

QRF 96.63 22.74 214.98 

Proposed Model 99.01 23.67 221.52 
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performance, while the proposed model result in the minimum exceedances in 𝐶𝐿∗ = 99% . 

Therefore, employing the proposed DTLR leads to minimal overheating the OHL conductors.  

Figure 7-6 depicts a sample episode for prediction with the proposed DTLR and 𝐶𝐿∗ = 95%. 

The figure covers the prediction for three successive days to provide the view of the high volatility 

in DTLR values and efficacy of the proposed model to track this volatile pattern.  

 Conclusion 

This paper proposed a deep learning-based probabilistic DTLR prediction model for hour-ahead 

power system operation problems. The latent variants, attained in the process of calculating DTLR 

value, have been considered as new predictors of the proposed model. The large number of feature 

candidates result in high feature space dimension. Therefore, SDAE is employed to reduce the 

feature dimension and extract the meaningful ones. A training strategy is devised to train the DNN, 

and a cost function is put forward to train the prediction model in a probabilistic manner. The 

proposed prediction framework considers no hypothesis about the uncertainty of DTLR. 

 

Figure 7-7: Prediction of DTLR using the proposed model for 𝐶𝐿∗ = 95%. 
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Simulation results confirm the efficacy of the proposed model and its superiority compared to 

benchmark models.  

Further research can be conducted to include the NWP results in the proposed DTLR prediction 

model and form a long-term prediction framework. Also, studies can be carried out to adopt the 

proposed DNN-based probabilistic prediction framework for prediction of other meteorologically 

dependent variables in power systems.   
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 CONCLUSIONS AND FUTURE WORK 

 Conclusion 

In this thesis, I have developed various forecasting tools, which benefit from advanced signal 

processing techniques, machine learning tools, and novel problem formulations. The forecasting 

tools are tailored for short-term prediction of two important large-scale VRESs (i.e., wind and 

tidal) and DTLR. Accurate prediction of large-scale VRESs facilitates enhancing the renewables 

penetration in power systems by lowering the uncertainties in power system operation problems, 

while the DTLR forecast alleviates the need for transmission systems expansion, required for 

delivering the generated power from renewables to load center, by employing the untouched 

additional headroom of existing OHLs. 

The significance of this thesis is its explicit focus on the short-term prediction of 

meteorologically dependent variables of power systems. SOs can employ the developed models 

for daily problems, such as optimal power flow, generation-load balancing, short-term multi-step 

unit commitment, etc. The detailed conclusion of Chapters 0-7- are summarized next. 

Chapter 0 presents a short-term multi-step WPP, taking the chaotic nature of wind power TS 

component into account in both decomposition and prediction stages. In the decomposition stage, 

using chaotic TS analysis the chaotic components obtained from EEMD are identified; and then, 

the chaotic components become more predictable by eliminating high-frequency variations that 

are small in amplitude through SSA theory. In the prediction stage, the proposed WPP makes use 

of the localized direct and iterative prediction modules for chaotic and non-chaotic components, 

respectively. The numerical studies confirm that the proposed MSSSA is more capable than 
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EEMD for prediction of chaotic components. This is mainly due to introducing SSA in the 

decomposition wind power TS. Using the SSA enables maintaining the general trend of the chaotic 

components, while omitting the high-frequency, random-looking, and low amplitude sub-

components of chaotic components. Numerical comparisons testify the efficacy of the MSSSA-

LSSVM for predicting aggregated wind power generation of a region, as well as wind power 

generation in different locations for a single wind farm. The proposed model demonstrates superior 

performance compared to widely-used benchmark models, as well as the state-of-the-art models. 

In Chapter 3-, the proposed model of Chapter 0 is adapted for multi-step prediction of TCS and 

TCD which are the determining factor in tidal energy harvesting using tidal stream technology. 

Similar to TS associated with meteorological variables (e.g., wind speed, wind direction, solar 

irradiance, etc.), tidal data also possesses nonlinearity and nonstationarity. To develop the 

proposed model a variant of EMD, named ICEEMDAN, is established and employed as a 

decomposition approach. The EMD suffers from mode mixing problems, which deteriorate the 

capability of the EMD in reducing the non-stationarity of TS. Besides, a variant of EMD, known 

as EEMD, which is developed to address the mode mixing problem, poses new issues, as 

elaborated this chapter. As case studies reveal, the proposed ICEEMDAN-based prediction model 

results in lower prediction error compared to the EEMD-based model. Also, to further enhance the 

prediction accuracy, the aggregation of the predicted components, employed in the proposed 

prediction model in Chapter 0, is further improved by devising an error correction stage, composed 

of a combination of ELMs. The empirical results indicate that considering the combination of 

ELMs for aggregation of predicted components leads to improvement in final prediction accuracy.  
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There are circumstances, in which several wind farms are located in the vicinity of each other. 

In the case that either the wind farm owners might be interested in sharing their wind power 

generation data with each other, or all the wind farms belong to the same owner. Therefore, 

spatiotemporal correlations among wind farms can be considered to enhance the prediction 

accuracy of each individual wind farm. Therefore, the proposed model in Chapter 0 can be adapted 

to benefit from informative features, provided by other wind farms to improve the prediction 

accuracy. To this end, Chapter 4- puts forward time-Frequency-Based spatiotemporal modeling of 

WPP. The proposed WPP benefits from information with different frequency range, provided from 

various wind farms; thus the WPP accuracy is significantly enhanced. Also, it has been observed 

that considering the spatiotemporal correlation might deteriorate the WPP accuracy unless the 

decomposition approaches are employed. 

The proposed models developed in Chapters 2-4- are developed with the aim of enhancing the 

deterministic prediction accuracy, which is of great importance for power system operation 

problems, which are solved by deterministic optimization. However, there are many power system 

operation problems, which make use of interval optimization or robust optimization. PI is of great 

importance for such optimization problems. For this reason, Chapter 5- presents a novel WPPI 

benefiting from a bi-level optimization structure along with a convex and differentiable cost 

function for tuning the unknown parameters of prediction engine. Global tuning of prediction 

engine parameters via classic optimization and alleviating the need for heuristic optimization are 

the main features of the proposed WPPI formulation. In the proposed WPP, hypermeters are found 

based on a multi-objective optimization procedure, which results in a Pareto front with a wide 

range of 𝑃𝐼𝑁𝐴𝑊 and 𝑅𝐿. The comprehensive case studies reveal the consistency in the results of 
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WPPI evaluations for training and testing datasets. Moreover, the case studies verify the 

superiority of the proposed WPPI framework compared to traditional benchmark and state-of-the-

art prediction models. The proposed WPPI model provides sharp and reliable WPPIs in an 

extensive case study. SOs can benefit greatly from the proposed WPPI in a wide range of short-

term power system operation tasks. 

The proposed PI model in Chapter 5- can address the issues, posed by non-differentiability and 

non-convexity of the prevalent PI models, which requires heuristic optimization for tuning a large 

number of prediction engine parameters. However, the proposed cost function is nonlinear. In 

Chapter 6-, an AAQR-based PI model, which benefits from a linear formulation, is developed. The 

proposed model is adapted for uncertainty modeling of a variety of tidal TS, including TCS, TCD, 

and TL. The shortcomings of traditional QR-based NPI, including the error in the prediction engine 

and symmetrical selection of a pair of quantiles probabilities, are discussed and addressed by 

introducing two hyperparameters. Hyperparameters and prediction engine parameters are tuned 

through a bi-level optimization framework. The upper-level optimization problem is solved by a 

hybrid heuristic optimization, while LP is carried out for the lower-level problem. The developed 

model has been successfully tested on a wide range of tidal data; the results obtained, and 

comparisons reported in Chapter 6- show that the proposed approach can be used as a useful tool 

for maximizing tidal energy deployment by providing more accurate uncertainty modeling of the 

most inflectional and uncertain factors. 

In Chapter 7-, a prediction model for DTLR prediction is put forward. In this chapter, the 

importance of considering features, associated with latent variables (e.g., convective cooling rate) 

are discussed. The empirical case studies validate the informativeness of the convective cooling 

rate in DTLR prediction. To address the issue, regarding the high dimension of feature space, 
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SDAE based on LSTM is adapted for feature extraction, and a DNN-based prediction model is 

developed. A training strategy is devised such that the proposed model first deterministically 

trained; and subsequently, a novel differentiable cost function is employed to train the model for 

probabilistic prediction based on the required secure CL utilizing gradient descent approaches.  

The proposed models developed in Chapters 0-7- have mainly proposed with the aim of 

addressing a variety of barriers in enhancing the prediction accuracy of wind power generation, 

tidal energy, and DTLR. Using several real-world case studies, the proposed models, introduced 

in this thesis, have been tested; and their performance compared to both traditional and state-of-

the-art prediction models. The results reveal the high superiority of the proposed approach in 

forecasting large-scale renewables and DTLR. The prediction models could facilitate the power 

system operation problems under high penetration of large-scale renewables, in which 

considerable of the level of uncertainty is observed.  

 Future Work  

Further possible extensions to this work are as follows: 

1. Chapter 2 could be extended for long-term prediction. This could be realized by developing 

a hybrid model and taking the NWP results and meteorological variables into attention. 

Considering these factors can significantly increase the number of potential predictors, from 

which the suitable predictors need to be selected or extracted. Therefore, it is worth to 

develop FS and feature extraction approaches and adapt the proposed model in Chapter 2 for 

long-term prediction. 

2. The work in Chapter 2 could be used as the input for conditional probabilistic forecasting. 

In the literature, there are several probabilistic wind power forecasting models, in which the 
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deterministic wind power prediction values of upcoming samples are considered as inputs. 

The more accurate the wind power is deterministically predicted; the sharper uncertainty 

model can be realized with the required 𝑅𝐿. As shown in Chapter 2, the proposed model can 

provide more precise prediction compared to different prediction models. Therefore, the 

study presented in Chapter 2 could be extended to conditional probabilistic prediction. 

3. In Chapters 2, 4, and 5, direct WPP tools have been developed. In such prediction models, 

the wind power is directly forecasted without any mapping stage in which prediction of 

meteorological variables are mapped to the wind power values using power curve models. 

As stated earlier, direct WPP benefits from several advantages, namely preventing from the 

erroneous mapping of meteorological variables to wind power due to lack of a precise power 

curve model. But it is also worth mentioning that wind power TS is more prone to outlier 

due to the possibility of wind power curtailment occurrence. Besides, due to cut-off and cut-

in speed thresholds, the wind power TS can be more volatile and irregular in comparison to 

the meteorological variables affecting wind power. In other words, prediction of 

meteorological variables might be more precise. To this end, using the models proposed in 

Chapters 2, 4, and 5 as the foundations, further study could be conducted to predict the 

meteorological variables, while a detailed power curve model needs to be developed to 

prevent from imprecise mapping of meteorological variables to wind power. 

4. Chapters 5-7 put forward efficient uncertainty modeling approaches for short-term horizons. 

The proposed models in Chapters 5-7 could be used as platforms for long-term prediction, 

in which more predictors such as NWP results are taken into consideration. 

5. Chapters 5-7 propose different formulations for probabilistic modeling of uncertainty in 

wind power, tidal energy, and DTLR, respectively. In the developed models, the upper-level 
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optimization problem seems to be capable of taking any custom cost function, which can be 

defined based on the power system operator’s preference. However, in this work, only 𝑅𝐿 

and 𝑃𝐼𝑁𝐴𝑊 are considered as the cost functions in the upper-level optimization problem. 

Therefore, further research could be carried out to understand the efficacy of the proposed 

model in forming optimized PIs based on power system operation problems (e.g., optimal 

power flow, economic dispatch, etc.). 

6. The impacts of enhancement in accuracy of renewable and DTLR prediction as the result of 

the proposed models in power system problems could be conducted in future studies. Mostly, 

in the literature, the power system operation problems are performed using naïve prediction 

models; however, accurate prediction can play a crucial role in those problems. Therefore, 

assessing the proposed prediction tools in power system operation problems could provide 

more depth insight into the benefits of the proposed models. 

7.  The efficiency of the models proposed in Chapters 2-7 can be further improved by adapting 

state-of-the-art prediction engines. Prediction engines are the core components of prediction 

models. As the literature reveals adapting advanced prediction engines improves the 

accuracy of prediction models. There are evermore advances in machine learning, which can 

be beneficial for improving prediction accuracy.  

8. The proposed models can be adapted for other prediction tasks in power systems, e.g., solar 

forecasting. Solar energy is another source of renewables, which can be harvested in both 

large- and small- scales. Solar irradiance is the most influential factor in solar energy 

harvesting. Similar to wind power and tidal data, solar irradiance TS posses non-stationarity 

and non-linearity; and therefore the proposed models in the thesis can be used for initial 
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modeling of solar prediction; however, adaptions is necessary based of understanding the 

unique characteristics of the solar irradiance data.  

9. The models introduced in Chapters 2-7 can be used together as an ensemble prediction tool. 

Every prediction tool may have the best performance compared to other prediction models 

for a specific dataset. Therefore, it is beneficial to integrate the developed models to form a 

generalized model, in which depending on dataset some prediction models become more 

determinant compared to others. 
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Appendix A 

Lyapunov Exponents 

Lyapunov exponents provide qualitative and quantitative descriptions of the dynamic behavior 

in a TS. They evaluate how the value of the next element in a TS is related to the previous values. 

Lyapunov exponents were originally determined for dynamic systems, represented by differential 

equations, but were later extended to the analysis of historical data [67].  

Lyapunov exponents represent the average exponential rates of divergence or convergence of a 

pair of nearby orbits in the reconstructed multi-dimensional space. In a chaotic TS, a pair of nearby 

points that has very similar states in the reconstructed multi-dimensional space can result in 

different future states. Such behavior deteriorates the predictability of the TS. The existence of at 

least one positive Lyapunov exponent can guarantee the chaosity of the time series. Hence, the 

value and sign of the MLE are of great importance.  

For a nonlinear TS {𝑥𝑖}𝑖=1
𝑁  which is mapped into multi-dimensional space, by employing MOD, 

the process of finding the Lyapunov exponent is briefly illustrated in the following. For a point in 

the multi-dimensional space, the nearest neighbor is detected, and the Euclidean distance between 

these two points is denoted by 𝐷(𝑡0). With time, these two points evolve in different orbits. Hence, 

at the next sample time, the Euclidean distance will change to 𝐷′(𝑡1). The Lyapunov exponent can 

be calculated as follows: 

𝜆 =
1

𝑀𝜏
∑log2

𝐷′(𝑡𝑘)

𝐷(𝑡𝑘−1)

𝑀

𝑖=1

 (A-1) 

where 𝜏 is the sample time and M is the number of evolutions. 
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Appendix B  

DETERMINING THE EMBEDDING DIMENSION 

The appropriate embedding dimension, or number of lags in the trajectory matrix, can help us to 

find the pattern of a nonlinear TS. Cao’s method, proposed in [68], is a widely used embedding 

dimension selection approach. Let us assume d is an adequate number of lags and construct the 

trajectory matrix based on MOD with d elements in each row. Then, represent each row as a point 

in d-dimensional space. If a suitable number for d is chosen, the point that is the nearest neighbor 

for another will remain the nearest point in (d+1)-dimensional space as well.  

For a TS {𝑥𝑗}𝑖=1
𝑁

 with a trial dimension of d, the trajectory matrix of 𝑿, which is (𝑁 − 𝑑 + 1) by 

d, can be constructed. Two parameters (𝐸(𝑑),𝐸∗(𝑑)) corresponding to d are defined as follows: 

𝐸(𝑑) =
1

𝑁 − 𝑑
∑

‖𝑋𝑖
𝑑+1 − 𝑋𝑛(𝑖,𝑑)

𝑑+1 ‖

‖𝑋𝑖
𝑑 − 𝑋𝑛(𝑖,𝑑)

𝑑 ‖

𝑁−𝑑

𝑖=1

 

𝐸∗ =
1

𝑁 − 𝑑
∑|𝑋𝑖+1

𝑑 (𝑑) − 𝑋𝑖+1(𝑖,𝑑)
𝑑 (𝑑)|

𝑁−𝑑

𝑖=1

 

 (B- 1) 

where 𝑋𝑖
𝑑+1 = [𝑋𝑖

𝑑 , 𝑋𝑖
𝑑(𝑑)], 𝑋𝑛(𝑖,𝑑)

𝑑+1 = [𝑋𝑛(𝑖,𝑑)
𝑑 , 𝑋𝑛(𝑖,𝑑)+1

𝑑 ]. In Eq.  (B- 1), 𝑋𝑖
𝑑 is the ith row vector 

of 𝑿 with 𝑑 elements and 𝑋𝑛(𝑖,𝑑)
𝑑  is its nearest neighbor, and 𝑋𝑖+1

𝑑 (𝑑) is dth element of i+1th row 

vector. If the rate of changes in 𝐸(𝑑) and 𝐸∗(𝑑) for two successive embedding dimensions of d 

and (𝑑 + 1) are negligible, d can be considered as the appropriate embedding dimension.  
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Appendix C 

CONVEXITY AND DIFFERENTIABILITY OF COST FUNCTION 

The function 𝐶(∙) in  (5-10) is convex with respect to 𝜃 if for all 𝜃1, 𝜃2 ∈ ℝ𝜃 and 0 < 𝛾 < 1, the 

following equality is satisfied [196]: 

 

𝐶(𝜔, 𝛾 ∙ 𝜃1 + (1 − 𝛾) ∙ 𝜃2, 𝒂) ≤ 𝛾 ∙ 𝐶(𝜔, 𝜃1, 𝒂) + (1 − 𝛾) ∙ 𝐶(𝜔, 𝜃2, 𝒂)  (C- 1) 

As elucidated in [196], Eq. (C- 1) graphically means that for any 𝜃1 , 𝜃2 ∈ ℝ𝜃 , all points 

(𝜃3, 𝐶(𝜔, 𝜃3, 𝒂)) , where {𝜃3 = 𝛾 ∙ 𝜃1 + (1 − 𝛾) ∙ 𝜃2: 0 ≤ 𝛾 ≤ 1} , are below or on the line 

connecting (𝜃1, 𝐶(𝜔, 𝛾 ∙ 𝜃1 + (1 − 𝛾) ∙ 𝜃1, 𝒂) ) and (𝜃2, 𝐶(𝜔, 𝛾 ∙ 𝜃2 + (1 − 𝛾) ∙ 𝜃1, 𝒂)). Figure C-

1 depicts 𝐶(𝜔, 𝜃, 𝒂) for arbitrary 𝜔. As can be seen, 𝐶(∙) is convex with respect to 𝜃. Moreover, 

as one of the important properties of a convex function, 𝐶(∙) is also convex with respect to an 

affine map of 𝜃 [196]. From (5-1), (5-2), (5-6), and (5-7), 𝜃 has a linear relationship to 𝜷 and 𝜷; 

therefore, cost functions in (5-16), (5-17), and subsequently (5-19) are convex. 

Furthermore, as 𝐶(∙) is continuous and has derivatives for all 𝜃 ∈ ℝ𝜃, as shown in (2-13), 𝐶(∙) 

is also differentiable [197]. Then, due to the linear relationships of 𝜃 with 𝜷 and 𝜷, the lower-level 

cost function in (5-19) is also differentiable. 
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Figure C-1: Graph of convex function 𝐶(𝜔, 𝜃, 𝒂). 
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