240 research outputs found

    An Overview of Carbon Footprint Mitigation Strategies. Machine Learning for Societal Improvement, Modernization, and Progress

    Get PDF
    Among the most pressing issues in the world today is the impact of globalization and energy consumption on the environment. Despite the growing regulatory framework to prevent ecological degradation, sustainability continues to be a problem. Machine learning can help with the transition toward a net-zero carbon society. Substantial work has been done in this direction. Changing electrical systems, transportation, buildings, industry, and land use are all necessary to reduce greenhouse gas emissions. Considering the carbon footprint aspect of sustainability, this chapter provides a detailed overview of how machine learning can be applied to forge a path to ecological sustainability in each of these areas. The chapter highlights how various machine learning algorithms are used to increase the use of renewable energy, efficient transportation, and waste management systems to reduce the carbon footprint. The authors summarize the findings from the current research literature and conclude by providing a few future directions

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis

    Full text link
    [EN] Road traffic pollution is one of the key factors affecting urban air quality. There is a consensus in the community that the efficient use of public transport is the most effective solution. In that sense, much effort has been made in the data mining discipline to come up with solutions able to anticipate taxi demands in a city. This helps to optimize the trips made by such an important urban means of transport. However, most of the existing solutions in the literature define the taxi demand prediction as a regression problem based on historical taxi records. This causes serious limitations with respect to the required data to operate and the interpretability of the prediction outcome. In this paper, we introduce QUADRIVEN (QUalitative tAxi Demand pRediction based on tIme-Variant onlinE social Network data analysis), a novel approach to deal with the taxi demand prediction problem based on human-generated data widely available on online social networks. The result of the prediction is defined on the basis of categorical labels that allow obtaining a semantically-enriched output. Finally, this proposal was tested with different models in a large urban area, showing quite promising results with an F1 score above 0.8.This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Projects 20813/PI/18 and 20530/PDC/18 and by the Spanish Ministry of Science, Innovation and Universities under Grants TIN2016-78799-P (AEI/FEDER, UE) and RTC-2017-6389-5.Terroso-Saenz, F.; Muñoz-Ortega, A.; Cecilia-Canales, JM. (2019). QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis. Sensors. 19(22):1-22. https://doi.org/10.3390/s19224882S1221922Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., … Schwartz, J. D. (2017). Air Pollution and Mortality in the Medicare Population. New England Journal of Medicine, 376(26), 2513-2522. doi:10.1056/nejmoa1702747Li, B., Cai, Z., Jiang, L., Su, S., & Huang, X. (2019). Exploring urban taxi ridership and local associated factors using GPS data and geographically weighted regression. Cities, 87, 68-86. doi:10.1016/j.cities.2018.12.033Yang, Y., Yuan, Z., Fu, X., Wang, Y., & Sun, D. (2019). Optimization Model of Taxi Fleet Size Based on GPS Tracking Data. Sustainability, 11(3), 731. doi:10.3390/su11030731Smith, A. W., Kun, A. L., & Krumm, J. (2017). Predicting taxi pickups in cities. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. doi:10.1145/3123024.3124416Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., & Lin, L. (2019). Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3875-3887. doi:10.1109/tits.2019.2915525Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. doi:10.1080/15230406.2014.890072James, N. A., Kejariwal, A., & Matteson, D. S. (2016). Leveraging cloud data to mitigate user experience from ‘breaking bad’. 2016 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2016.7841013Kuang, L., Yan, X., Tan, X., Li, S., & Yang, X. (2019). Predicting Taxi Demand Based on 3D Convolutional Neural Network and Multi-task Learning. Remote Sensing, 11(11), 1265. doi:10.3390/rs11111265Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., … Li, L.-J. (2016). YFCC100M. Communications of the ACM, 59(2), 64-73. doi:10.1145/2812802Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11. doi:10.1145/2020408.2020579Estevez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized Mutual Information Feature Selection. IEEE Transactions on Neural Networks, 20(2), 189-201. doi:10.1109/tnn.2008.2005601Zheng, X., Han, J., & Sun, A. (2018). A Survey of Location Prediction on Twitter. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1652-1671. doi:10.1109/tkde.2018.2807840Assam, R., & Seidl, T. (2014). Context-based location clustering and prediction using conditional random fields. Proceedings of the 13th International Conference on Mobile and Ubiquitous Multimedia - MUM ’14. doi:10.1145/2677972.2677989Genuer, R., Poggi, J.-M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random Forests for Big Data. Big Data Research, 9, 28-46. doi:10.1016/j.bdr.2017.07.003Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., … Lv, W. (2017). The Simpler The Better. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi:10.1145/3097983.3098018Markou, I., Rodrigues, F., & Pereira, F. C. (2018). Real-Time Taxi Demand Prediction using data from the web. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). doi:10.1109/itsc.2018.8569015Zhou, Y., Wu, Y., Wu, J., Chen, L., & Li, J. (2018). Refined Taxi Demand Prediction with ST-Vec. 2018 26th International Conference on Geoinformatics. doi:10.1109/geoinformatics.2018.8557158Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting Taxi–Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393-1402. doi:10.1109/tits.2013.2262376Jiang, S., Chen, W., Li, Z., & Yu, H. (2019). Short-Term Demand Prediction Method for Online Car-Hailing Services Based on a Least Squares Support Vector Machine. IEEE Access, 7, 11882-11891. doi:10.1109/access.2019.289182

    Exploring Context Generalizability in Citywide Crowd Mobility Prediction: An Analytic Framework and Benchmark

    Full text link
    Contextual features are important data sources for building citywide crowd mobility prediction models. However, the difficulty of applying context lies in the unknown generalizability of contextual features (e.g., weather, holiday, and points of interests) and context modeling techniques across different scenarios. In this paper, we present a unified analytic framework and a large-scale benchmark for evaluating context generalizability. The benchmark includes crowd mobility data, contextual data, and advanced prediction models. We conduct comprehensive experiments in several crowd mobility prediction tasks such as bike flow, metro passenger flow, and electric vehicle charging demand. Our results reveal several important observations: (1) Using more contextual features may not always result in better prediction with existing context modeling techniques; in particular, the combination of holiday and temporal position can provide more generalizable beneficial information than other contextual feature combinations. (2) In context modeling techniques, using a gated unit to incorporate raw contextual features into the deep prediction model has good generalizability. Besides, we offer several suggestions about incorporating contextual factors for building crowd mobility prediction applications. From our findings, we call for future research efforts devoted to developing new context modeling solutions

    Understanding and Modeling Taxi Demand Using Time Series Models

    Full text link
    The spatio-temporal variations in demand for transportation, particularly taxis, are impacted by various factors such as commuting, weather, road work and closures, disruption in transit services, etc. Identifying the factors that influence taxi demand and understanding its dynamic provide planners with the information necessary to improve the transportation systems and also help drivers to reduce their vacant time. This dissertation focuses on important factors affecting the demand. In the beginning, the impact of price changes on the demand is studied. Chapter One discusses how the seasonal effects and trends are removed from the demand, and then price elasticity for demand is calculated as a measure to quantify the impact of each factor. Furthermore, the first chapter provides elasticity values for the New York City and each of the five boroughs, and studies the relationship between these values and some socio-economic characteristics. The second part of this dissertation studies the demand of taxi and how it is affected by other public transportation modes and weather. This demand modeling technique utilizes a combination of time series and linear regression models. The proposed method is then applied to yellow cab data in New York City. The pick-up points of yellow cab data in April, May, and June of 2014 are considered and aggregated every hour. The results show a significant correlation between taxi demand and demand for other transportation modes, as well as weather conditions. It is shown that combining time series models with linear regression will improve the performance of the model. This study then follows by working on the time series models and considering the spatial variation of the demand. To understand the user demand for taxis through space and time, a generalized spatio-temporal autoregressive (STAR) model is proposed. In order to deal with the high dimensionality of the model, LASSO-type penalized methods are proposed to tackle the parameter estimation. The forecasting performance of the proposed models is measured using the out-of-sample mean squared prediction error (MSPE), and it is found that the proposed models outperform other alternative models such as vector autoregressive (VAR) models. The proposed modeling framework has an easily interpretable parameter structure and can feasibly be applied by taxi operators. The efficiency of the proposed model shows advantages for model estimation in real-time applications. Furthermore, this dissertation studies the demand for e-hailing services which are growing rapidly especially in large cities. Similar to taxi demand, Uber demand is not distributed uniformly, either spatially or temporally, and this study proposes using spatio-temporal models to predict Uber demand as well. Moreover, the prediction performances of several statistical models are compared with each other: a) one temporal model (vector autoregressive (VAR)), b) two proposed spatio-temporal models (spatial-temporal autoregressive (STAR), c) least absolute shrinkage and selection operator applied on STAR (LASSO-STAR)). They are compared in different scenarios (based on the number of time and space lags), and for both peak and off-peak periods (rush hours and non-rush hours). This section additionally proposes different weighting matrices to improve the performance of the model. The results show the need to consider spatial models for e-hailing services and demonstrate significant improvement in the prediction of demand using the two proposed models

    Data-Driven Framework for Understanding & Modeling Ride-Sourcing Transportation Systems

    Get PDF
    Ride-sourcing transportation services offered by transportation network companies (TNCs) like Uber and Lyft are disrupting the transportation landscape. The growing demand on these services, along with their potential short and long-term impacts on the environment, society, and infrastructure emphasize the need to further understand the ride-sourcing system. There were no sufficient data to fully understand the system and integrate it within regional multimodal transportation frameworks. This can be attributed to commercial and competition reasons, given the technology-enabled and innovative nature of the system. Recently, in 2019, the City of Chicago the released an extensive and complete ride-sourcing trip-level data for all trips made within the city since November 1, 2018. The data comprises the trip ends (pick-up and drop-off locations), trip timestamps, trip length and duration, fare including tipping amounts, and whether the trip was authorized to be shared (pooled) with another passenger or not. Therefore, the main goal of this dissertation is to develop a comprehensive data-driven framework to understand and model the system using this data from Chicago, in a reproducible and transferable fashion. Using data fusion approach, sociodemographic, economic, parking supply, transit availability and accessibility, built environment and crime data are collected from open sources to develop this framework. The framework is predicated on three pillars of analytics: (1) explorative and descriptive analytics, (2) diagnostic analytics, and (3) predictive analytics. The dissertation research framework also provides a guide on the key spatial and behavioral explanatory variables shaping the utility of the mode, driving the demand, and governing the interdependencies between the demand’s willingness to share and surge price. Thus, the key findings can be readily challenged, verified, and utilized in different geographies. In the explorative and descriptive analytics, the ride-sourcing system’s spatial and temporal dimensions of the system are analyzed to achieve two objectives: (1) explore, reveal, and assess the significance of spatial effects, i.e., spatial dependence and heterogeneity, in the system behavior, and (2) develop a behavioral market segmentation and trend mining of the willingness to share. This is linked to the diagnostic analytics layer, as the revealed spatial effects motivates the adoption of spatial econometric models to analytically identify the ride-sourcing system determinants. Multiple linear regression (MLR) is used as a benchmark model against spatial error model (SEM), spatially lagged X (SLX) model, and geographically weighted regression (GWR) model. Two innovative modeling constructs are introduced deal with the ride-sourcing system’s spatial effects and multicollinearity: (1) Calibrated Spatially Lagged X Ridge Model (CSLXR) and Calibrated Geographically Weighted Ridge Regression (CGWRR) in the diagnostic analytics layer. The identified determinants in the diagnostic analytics layer are then fed into the predictive analytics one to develop an interpretable machine learning (ML) modeling framework. The system’s annual average weekday origin-destination (AAWD OD) flow is modeled using the following state-of-the-art ML models: (1) Multilayer Perceptron (MLP) Regression, (2) Support Vector Machines Regression (SVR), and (3) Tree-based ensemble learning methods, i.e., Random Forest Regression (RFR) and Extreme Gradient Boosting (XGBoost). The innovative modeling construct of CGWRR developed in the diagnostic analytics is then validated in a predictive context and is found to outperform the state-of-the-art ML models in terms of testing score of 0.914, in comparison to 0.906 for XGBoost, 0.84 for RFR, 0.89 for SVR, and 0.86 for MLP. The CGWRR exhibits outperformance as well in terms of the root mean squared error (RMSE) and mean average error (MAE). The findings of this dissertation partially bridge the gap between the practice and the research on ride-sourcing transportation systems understanding and integration. The empirical findings made in the descriptive and explorative analytics can be further utilized by regional agencies to fill practice and policymaking gaps on regulating ride-sourcing services using corridor or cordon toll, optimally allocating standing areas to minimize deadheading, especially during off-peak periods, and promoting the ride-share willingness in disadvantage communities. The CGWRR provides a reliable modeling and simulation tool to researchers and practitioners to integrate the ride-sourcing system in multimodal transportation modeling frameworks, simulation testbed for testing long-range impacts of policies on ride-sourcing, like improved transit supply, congestions pricing, or increased parking rates, and to plan ahead for similar futuristic transportation modes, like the shared autonomous vehicles

    Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility

    Get PDF
    Understanding the usage demand of shared mobility systems in different areas of a city and its determinants is crucial for planning, operation and management of the systems. This study leverages an unbiased data-driven approach called accumulated effect analysis for examining the complex (nonlinear and interactive) effects of correlated built environment factors on the usage of shared mobility. Special research emphasis is given to unraveling the complex effects using an unbiased and data-driven approach that can overcome the impacts of correlations among built environment factors. Based on empirical analysis of synthetic data and a field dataset about dockless bike sharing systems (DLBS), results demonstrate that the method of partial dependency analysis prevalent in the relevant literature, will result in biases when investigating the effects of correlated built environment factors. In comparison, accumulated local effect analysis can appropriately interpret the effects of correlated built environment factors. The main effects of many built environment factors on the usage of DLBS present nonlinear and threshold patterns, quantitively revealed by accumulated local analysis. The approach can reveal complex interaction effects between different built environment factors (e.g., commercial service and education facility, and metro station coverage and living facility) on the usage of DLBS as well. The interactions among two built environment factors could even change with the values of the factors rather than invariant. The outcomes offer a new approach for revealing complex influences of different built environment factors with correlations as well as in-depth empirical understandings regarding the usage of DLBS
    • …
    corecore