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A B S T R A C T   

Understanding the usage demand of shared mobility systems in different areas of a city and its determinants is 
crucial for planning, operation and management of the systems. This study leverages an unbiased data-driven 
approach called accumulated effect analysis for examining the complex (nonlinear and interactive) effects of 
correlated built environment factors on the usage of shared mobility. Special research emphasis is given to 
unraveling the complex effects using an unbiased and data-driven approach that can overcome the impacts of 
correlations among built environment factors. Based on empirical analysis of synthetic data and a field dataset 
about dockless bike sharing systems (DLBS), results demonstrate that the method of partial dependency analysis 
prevalent in the relevant literature, will result in biases when investigating the effects of correlated built envi-
ronment factors. In comparison, accumulated local effect analysis can appropriately interpret the effects of 
correlated built environment factors. The main effects of many built environment factors on the usage of DLBS 
present nonlinear and threshold patterns, quantitively revealed by accumulated local analysis. The approach can 
reveal complex interaction effects between different built environment factors (e.g., commercial service and 
education facility, and metro station coverage and living facility) on the usage of DLBS as well. The interactions 
among two built environment factors could even change with the values of the factors rather than invariant. The 
outcomes offer a new approach for revealing complex influences of different built environment factors with 
correlations as well as in-depth empirical understandings regarding the usage of DLBS.   

1. Introduction 

Transport takes up approximately a quarter of global greenhouse gas 
emissions (Edelenbosch et al., 2017; McCollum et al., 2018; Chi et al., 
2022), and addressing this source plays a vital role in realizing net-zero 
emissions. One recognized measure for reducing emissions in the 
transport sector is facilitating sustainable mobility. Shared mobility 
systems, such as bike-sharing, e-scooter sharing, ride-hailing, and car- 
sharing systems, have been rapidly expanded in recent years to pro-
mote sustainable travel behavior (Attard, 2022; Gao et al., 2021c; Li 
et al., 2021a, 2021b; Giuffrida et al., 2023). Besides environmental 
benefits, emerging shared mobility systems could contribute to 
increased transport efficiency, reduced user expense, and urban acces-
sibility (Becker et al., 2020; Gao et al., 2021b; Laporte et al., 2018; Li 
et al., 2022; Arias-Molinares et al., 2021; Roman et al., 2021). One of the 
core measures to ensure the operational efficiency of shared mobility 

systems is accurate usage demand estimation and prediction in spatio-
temporal dimensions (Ortúzar, J.d.D., 2021), which is the most funda-
mental component for planning dispatching, and rebalancing to realize 
supply-demand matchup. Therefore, it is essential for urban planners 
and shared mobility operators to precisely understand the travel de-
mand in different areas of the city and their determinants for operational 
efficiency and scientific planning (Coretti Sanchez et al., 2022). It is 
noted that the built environment factors play important roles in affecting 
travel behavior, usage patterns, and ridership of different transport 
modes (Cheng et al., 2022a; Ding et al., 2019a; Ding et al., 2021; Has-
nine et al., 2020; Hu et al., 2021). Meanwhile, investigating the impacts 
of various built environment factors on travel demand and usage pat-
terns has been one of the focuses of urban and transport planning and 
management. 

The necessity to apprehend the impacts of diverse built environment 
factors on demand motivates many researchers to develop modeling 
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approaches and conduct empirical analysis based on multiple-source 
data. To model and interrogate the influences of various factors on de-
mand for shared mobility systems quantitatively, some previous studies 
employed conventional correlation analysis or regression models with 
linear relationship assumptions (e.g., Ordinary Least Squares regression) 
based on different datasets (e.g., Etminani-Ghasrodashti and Hamidi, 
2019; McKenzie, 2019; Ma et al., 2020; Torrisi et al., 2021; Yang et al., 
2020; Li et al., 2021a, 2021b). For example, Yang et al. (2020) applied a 
semi-parametric geographically weighted regression to investigate the 
influences of different built environment factors on the ridership of 
different users. Li et al. (2021a, 2021b) revealed the spatially varying 
impacts of built environment factors on transit ridership using 
geographically weighted regression with linear model specifications 
based on a dataset in Guangzhou. Liu et al. (2022a, 2022b) used a Global 
Linear Regression model with consideration of temporal heterogeneity 
to understand the divergent effects of land use on bike-sharing usage at 
different hours of the day and different days of the week. However, it is 
argued that linear assumptions are very strong hypotheses and may lead 
to seriously biased results on account that the effects of many factors 
may present nonlinearity and the existence of threshold effects (Du 
et al., 2022; Huang et al., 2021; Tu et al., 2021; Wang et al., 2022; Liu 
et al., 2022a, 2022b). Hence, some studies devote efforts to modeling 
and revealing nonlinear effects or so-called threshold effects. Presuming 
the nonlinear effect of a built environment factor (e.g., exponential or 
power relations) based on expert judgment is one option but not 
preferred by researchers as it is arbitrary to determine the nonlinear 
patterns in advance instead of extracting them from data. For instance, 
Liu et al., 2022a, 2022b analyzed the factors influencing demand for 
ride-hailing using a quantile regression where the non-stationary effects 
of each factor were considered as well. The local estimates at five 
quantiles of each factor were obtained and found to be significantly 
different, indicating nonlinear effects. 

Therefore, some studies utilized semi-parametric statistical ap-
proaches such as generalized additive mixed models considering auto-
correlation and heteroscedasticity (Cheng et al., 2022a; Hu et al., 2021; 
Lin et al., 2020) and quantile regression approaches considering heter-
oscedasticity (Li et al., 2020; Cheng et al., 2022b) for analysis. These 
semi-parametric methods extend the conventional models to consider 
potentially nonlinear effects of different factors by embedding poly-
nomial spline estimators or quantile regression instead of global re-
gressions and present quite good performances compared to 
conventional methods with linear assumptions. For instance, Lin et al. 
(2020) used historical trip data from docked-station bike-sharing sys-
tems in Beijing of 2016 and a log-linear regression to examine the effects 
of different factors on station-level usage demand, including land use 
and transport infrastructure. Cheng et al. (2022b) utilized a quantile 
regression method to investigate the nonlinear effects of factors on the 
transfer ridership between bike-sharing and urban transit systems and 
indicated pretty good performances of using the method. Cheng et al. 
(2023) employed a generalized additive mixed model to explore the 
influences of built environment factors on demand for integration 
station-based bike-share systems and free-floating bike-share systems 
with public transit using data from Nanjing. Their results reported the 
plateau effect of several factors, which were interpreted well by the used 
approaches. Although semi-parametric methods can model nonlinearity 
to some extent, they still need presumed model formulation and equa-
tions to represent nonlinear effects. Therefore, it still has the risk of 
getting biased results due to arbitrary model assumptions. 

Instead, recent studies have started to leverage new data-driven 
methods based on machine learning to investigate the nonlinear ef-
fects of different factors on demand for different transport modes (Chen 
and Ye, 2021; Ding et al., 2019b; Ding et al., 2018; Pérez-Fernández and 
García-Palomares, 2021; Tu et al., 2021; Wang et al., 2022; Xu et al., 
2021; Wagner et al., 2022). Just to name a few, Ding et al. (2018) 
adopted gradient-boosting decision trees to test the divergent effects of 
built environment factors on driving distance on weekdays and 

weekends. Noticeable nonlinearity in the effects of different features 
was observed, which violated the linear assumptions. Ding et al. (2019b) 
employed gradient-boosting decision trees and Partial Dependence 
Analysis (PDA) to unravel the nonlinear effects of built environment 
factors on the ridership of Metrorail in Washington. Li et al. (2021a, 
2021b) took advantage of the extreme gradient boosting model to 
investigate the non-linear relations of the built environment with the 
demand for using active mobility for working and shopping trips. Xu 
et al. (2021) used a random forest model to depict the association of 
built environment factors with ride splitting adoption rate and identified 
nonlinear effects of the population structure, household income, and 
walking environment. Wang et al. (2022) applied the random forest for 
modeling the influences of various factors on trip volume and utilized 
partial dependence analysis to reveal the nonlinear effects of different 
factors. Zhuang et al. (2022) utilized gradient-boosting decision trees 
and interpretation methods, including relative importance and PDA, for 
analyzing the nonlinear effects of demand for bike sharing at the street 
level. The impacts of several factors such as PM2.5 emissions, street 
greenness view index and sky view index presented nonlinear and effects 
on the demand of using bike sharing at the streets. Based on data from 
Zhongshan of China, Shao et al. (2022) scrutinized the nonlinear and 
interaction effects of built environment on car ownership using gradient 
boosting decision trees. One noteworthy finding was the threshold 
(nonlinear) relationships between built environment and car ownership. 
The typical procedure is using supervised machine learning algorithms 
to fit the relationships between features and demand for a specific 
shared mobility system (e.g., bike sharing, ride-hailing, or e-scooter 
sharing) and use feature importance or PDA to investigate the nonlinear 
effects of built environment factors. This framework generally presents 
superiority in contrast to conventional models with specific 
formulations. 

Notwithstanding, the relevant existing literature regarding interro-
gating the influences of various built environment factors on demand for 
shared mobility has several shortcomings to be tackled. Firstly, the 
prevalently used method PDA has a strong assumption that the 
explanatory variables are perfectly independent when interpreting the 
relationship of an explanatory variable with the dependent variable (e. 
g., demand for bike sharing in a specific area). If the prerequisite is not 
satisfied, the results from PDA will be problematic due to the extrapo-
lation issue of machine learning methods (Molnar, 2020), which has 
never been explicitly addressed in the relevant literature. However, 
different built environment factors naturally have some degree of cor-
relation as different aspects of the built environment interact with each 
other (Brownson et al., 2009; Cervero et al., 2009; Ewing and Cervero, 
2010). For instance, residential areas are generally surrounded by 
commercial services such as restaurants and grocery stores in Chinese 
cities. As a consequence, using PDA for interrogating the complex effects 
of the correlated built environment factors on demand for shared 
mobility has a high risk of obtaining biased and even wrong results. 
Secondly, existing studies hardly decipher the interactive effects of 
different built environment factors on demand for shared mobility and 
mostly presumed independence among various built environment fac-
tors. The arbitrary hypotheses may result in imprecise results about the 
effects of the built environment factors if interaction effects do exist. The 
effects of built environment factors on mobility (Gao et al., 2021a; 
Schüle and Bolte, 2015) may not be independent and could be interac-
tive, which have hardly been quantitatively modeled and investigated 
using data-driven methods in the contexts of shared mobility systems. 
For instance, the influences of land use characteristics (e.g., commercial 
land use) and transport facilities (e.g., accessibility to public transit) on 
demand for shared mobility may not be independent but interactive. 
Meanwhile, such complex (nonlinear and high-dimension) interaction 
effects are hard to be modeled and investigated by conventional 
regression approaches. 

To improve the abovementioned research gaps, this study leverages 
an unbiased data-driven approach for examining the complex (nonlinear 
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and interactive) effects of the correlated built environment factors on 
demand for shared mobility. Machine Learning (ML) models based on 
data-driven mechanisms are utilized to learn the complex relationships 
between built environment factors and demand for shared mobility. ML 
models can appropriately tackle the deficiencies of conventional 
methods by automatically learning the nonlinear and interactive effects 
of different factors. More importantly, a data-driven interpretation 
technique that can eliminate the biases due to correlated features is 
leveraged to explain “black-box” ML and reveal the nonlinear and 
interactive effects unbiasedly. Special research emphasis is given to 
unraveling the complex effects using an unbiased and data-driven 
approach that can overcome the impacts of correlations among built 
environment factors. Synthetic data are firstly utilized to validate the 
reliability and unbiased merits of the used method. Afterward, a case 
study about dockless bike-sharing systems in Shanghai is conducted 
using the proposed method for empirical analysis. The outcomes offer a 
novel approach for revealing complex influences of different built 
environment factors with correlations and in-depth practical un-
derstandings. These are useful inputs for rebalancing, planning, and 
management of shared mobility systems in a cost-effective way. 

The remaining sections are structured as follows. Section 2 elabo-
rates on the technical details of the methodology, followed by empirical 
data and analysis in Section 3. Section 4 presents the results and dis-
cussions, and concluding remarks are provided in the last section. 

2. Methodology 

The methodological framework consists of two stages: 1) a model to 
quantitative depict the effects of different built environment factors on 
the demand for shared mobility; 2) an approach to reveal the relation-
ship of each factor with the demand for shared mobility. For modeling 
the complex impacts of various built environment factors, we make the 
best of data-driven modeling through supervised machine learning. As a 
rule of thumb, different supervised machine learning algorithms in 
different categories are compared to select the best one. The aim is to 
find an appropriate ML model that can well model the relationships 
between different built environment factors and the dependent variable, 
which is the prerequisite for precisely and quantitatively interpreting 
the effect of each factor. Afterward, data-driven interpretation tech-
niques are used to interpret the trained models and reveal the quanti-
tative effects of various built environment factors on demand for shared 
mobility systems. Traditional methods, such as Multiple Linear Regres-
sion, have presumed model specifications and could be interpreted 
intuitively and directly. Nonetheless, the presupposed model specifica-
tions also confine the capacity of such methods to model complicated 
nonlinear and interactive effects. Instead, we utilize a data-driven 
interpretation technique to explain “black-box” ML and decipher the 
nonlinear and interactive effects in an unbiased way. Especially, 
differing from commonly used methods such as PDA, our approach can 
eliminate the adverse impacts and biases due to correlated features. 

2.1. Selecting the ML regressor 

Modeling the effects of built environment factors on demand for 
shared mobility is a typical regression problem and can be tackled by 
various supervised machine learning algorithms. We examine different 
prevalent ML algorithms for comparisons, including ElasticNet, Support 
Vector Regression (SVR), Multi-layer Perceptron (MLP), Random Forest 
(RF), and XGBoost. They are representative models with different 
mechanisms and architectures. A Multiple Linear Regression is used as 
the reference model. More technical details about the algorithms are 
available in Gao et al. (2021a, 2021b, 2021c, 2021d). 

ElasticNet is a regularized regression that integrates the penalties 
from the lasso and ridge techniques by learning from their shortcomings 
to improve the regularization. ElasticNet has been widely used for 
regression problems involving high-dimensional data (De Mol et al., 

2009). SVR is another popular regression algorithm with robust char-
acteristics for outliers (Awad and Khanna, 2015). SVR tries to construct 
a hyperplane that can fit the maximum number of points within a spe-
cific bandwidth. The aim of training an SVR is not to minimize the exact 
value of predictive errors but to cover most points in a hyperplane with 
bandwidth. MLP is an artificial neural network where each perceptron 
connects to all perceptrons in the next layer (Tang et al., 2015). The 
transformations between perceptrons are formulated as equations with 
activation functions and node weights. Key hyperparameters, including 
activation function, the number of hidden layers, learning rate, and the 
number of perceptrons, are well-tuned based on grid search methods. 
Random Forest is a classic tree-based machine-learning model (Breiman, 
2001). The merit of RF is that it utilizes a set of trained decision trees to 
facilitate robustness and generality (Gomes et al., 2017; Zhao et al., 
2020). By randomizing samples and features across many trees, RF has a 
great ability to reduce sensitivity to noisy data and address redundant 
prediction (Breiman, 2001). Three main hyperparameters are critical for 
the performance of RF: the number of decision trees, the tree depth, and 
the feature number in each splitting node. The three hyperparameters 
are well-tuned using grid search methods and cross-validation. XGBoost 
is another popular tree-based algorithm that builds the decision trees in 
a boosting manner. This refers to the fact that in XGBoost trains every 
new tree to improve the deficiencies of the previous trees rather than 
developing each tree independently as that in RF (Chen and Guestrin, 
2016). XGBoost has been widely applied for regression with superior 
performances in many aspects. Key hyperparameters in XGBoost, 
including learning rate, number of trees, the minimum sum of instance 
weight (hessian) needed in a child, maximum depth of a tree, minimum 
loss reduction, Subsample ratio of the training instances, and sub-
sampling parameters are well-tuned by cross-validation. 

Several performance metrics are used to quantify the predictive 
performances of different ML algorithms, including Coefficient of 
determination (R2), Root Mean Square Error (RMSE), and Explained 
Variances (ER). We adopt the average performances during five-folder 
cross-validation as final performance surrogates. The technical details 
of the models are not described herein to avoid repetition and are readily 
available in the cited references. 

2.2. Deciphering nonlinear and interaction effects in a data-driven way 

This section elaborates on the interpretation method to quantify the 
relationship of each factor with the usage demand of shared mobility. 
The emphases are to analyze the nonlinear and interactive effects of 
different built environment factors with correlation in a data-driven 
manner. More specifically, the relationship between a built environ-
ment factor and the usage demand of a shared mobility system (i.e., 
dependent variable), and the interactive effects among different built 
environment factors, are investigated. The most popular method for 
investigating nonlinear effects in the relevant literature is Partial 
Dependence Analysis (Ding et al., 2018; Pérez-Fernández and García- 
Palomares, 2021; Tu et al., 2021; Wang et al., 2022). PDA calculates the 
marginal effect of a feature on the predicted dependent variable based 
on a trained ML model and available sample data. PDA can be mathe-
matically expressed as 

PD(xI) = ExL (f (xI , xL) ) =

∫

f (xI , xL)dР(xI , xL)

X = xI ∪ xL
xI = ∁XxL

(1) 

X is the feature vector of all features in the analysis. The xI is the 
vector of analyzed features on which the partial dependence analysis 
will execute. xL is the complementary feature set of xI and consists of all 
features besides the analyzed features, namely xI = ∁XxL. f( • ) is the 
trained algorithm that models the relationships between features and 
the dependent variable. In the context of this study, f( • ) could be any 
supervised ML algorithm (e.g., Random Forest and XGBoost), as long as 
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the algorithm has good enough predictive performances. To calculate 
the marginal effect of a feature xI on the dependent variable, PDA 
quantifies the predicted values of the dependent variable by the trained 
ML model over the values of other features in xL 

PD(xI)
∼

=
1
K
∑K

k=1
f
(
xI, xL

k) (2)  

where {xL
1,xL

2, …, xL
k,…, xL

K} are the feature values of xL in the used 
data. Given a specific value of xI, the corresponding estimated value of 
the dependent variable is the mean value of enumerating f( • ) over the 
joint values of the given xI and all xL (namely {xL

1,xL
2, …, xL

k,…, xL
K}) 

in the data. By changing the value of the given xI and repeating the same 
process, the continuous or discrete relationship between xI and the 
dependent variable can be estimated. This calculation process could be 
very intensive if the sample size of data is very large. Thanks to the fact 
that the calculation process is based on available data and the trained 
ML model without presumptions, PDA can interpret the effects of xI on 
the dependent variable in a data-driven way, which is the most signifi-
cant merit of PDA compared to conventional methods (Hastie et al., 
2009). 

Note that the PDA in Eq. (1) reflects the effects of xI on the dependent 
variable after considering the average effect of other features in xL 
rather than the independent effects of xI. This leads to biases in 
analyzing correlated features. In PDA, the relationship between features 
xI and the dependent variable is estimated by averaging the predicted 
dependent variable over distributions of features in xL. Namely, the 
features in xI and xL are presumed to be independent during the 
calculation process. If the prerequisite is violated, the results from PDA 
may be biased due to the inherent flaw of lacking extrapolations of ML 
algorithms. For a specific example, investigated features are the popu-
lation density (x1) and accessibility to public transit (x2) in an area, and 
the dependent variable (y) is the morning peak-hour travel demand for 
public transit in the area. In the training data of 20,000 samples, the 
range of x1 and x2 are from 1 to 50,000 people per mi2 and from 0 to 
100, respectively. x1 and x2 are positively related as areas with a large 
population are generally provided with public transit services. In the 
training data, there will not be points that have a very large value of x1 
(e.g., 40,000) and have a small value of x2 (e.g., 1), because such cases 
are unrealistic. However, both the population density and the accessi-
bility to public transit indeed affect the apartment price. Let us assume 
that a multiple-layer perceptron model is fitted for the relationship be-
tween {x1, x2} and y. If the PDA is utilized to interpret the effects of x1 

on y, the ỹ when is x1 = 40000 is calculated by Eq. (3) over the distri-
butions of x2 in the data. 

1
20000

∑20000

i=1
ỹ
(
x1 = 40000, xi

2

)
(3) 

During the calculation process, there will be implausible points such 
as (x1 = 40000, x2 = 1). This causes severe biases in the estimated ỹ, 
because such points do not exist in the training data and ML algorithms 
such as the multiple-layer perceptron has awful extrapolation ability 
(Gao et al., 2021d; Hooker, 2004). The potential big issue of PDA has 
been heavily overlooked in the literature regarding analyzing the effects 
of built environment factors. However, built environment factors are 
inherently correlated to some extent. When this assumption of feature 
independence does not hold, PDA will have severe biases (Molnar, 
2020). 

To deal with the aforenoted issues, this study introduces a new 
method of interpreting the main and interactive effects of correlated 
built environment factors on demand for shared mobility systems. It can 
overcome the preceding problems of PDA and obtain unbiased results 
when features are correlated. The approach is called Accumulated Local 
Effect (ALE) analysis 

A E∼( xI) =

∫ xI

min(xI )

ExL |xI

[
∂f (xI , xL)

∂xI
| xI = sI

]

dsI − cxI

=

∫ xI

min(xI )

∫ ∂f (xI , xL)

∂sI
Р(xL|sI)dxLdsI − cxI

(4)  

where ∂f(xI ,xL)
∂xI

∣xI = sI denotes the gradient of f( • ) at (sI,xL) and repre-
sents the local effect of xI on f( • ) at the point. cxI is the specific term for 
centralizing the results so that the estimated A E∼(xI) has a zero mean 
over the distributions of xL. In this manner, ALE analysis reflects how the 
value of f( • ) changes with investigated features xI, rather than the 
absolute value of f( • ) on xI, which is the key difference between ALE 
and PDA. The basic idea of ALE is to calculate the local effect 

f
(

∂f(xI ,xL)
∂xI

| xI = sI

)
at (sI,xL), and calculate the average local effect across 

all values of xL with the weight P(xL|sI). By repeating the local effect at 
different values of xI (e.g., in ascending order) and accumulating the 
calculated local effect from min(xI) to xI, the relationship that how f( • )
changes with xI can be estimated. When averaging the local effect at a 
certain point, the conditional density of xL (i.e., P(xL|sI)) rather than the 
marginal density of xL (namely P(xL)) is used. This mechanism solves 
the extrapolation issue of PDA by avoiding unseen points in the calcu-
lation process and leverages the paired difference analysis to eliminate 
the nuisance feature based on statistical settings (Apley and Zhu, 2020; 
Molnar, 2020). This further evades the potential biases due to the 
omitted nuisance features and dependencies among features, namely 
blocking the confounding impacts of other correlated effects. 

We assume f( • ) in Eq. (4) to be differentiable. However, f( • ) may 
be a trained ML model and is not mathematically differentiable. In such 
cases, the below approximation method is used. Let us assume a dataset 
with J features. The range of feature j is S j =

[
xmin,j, xmax,j

]
for 

∀j ∈ {1,2,…, J}. To estimate the effect of feature j on f( • ), we divide S j 

into H intervals with fine granularity. Let 
{
Nj(h) =

(
zh− 1,j, zh,j

]
: h =

1 ,2,…,H
}

be the bounds of each partitioned interval. Generally, we can 
use the hth quantile of feature j in the data as zh. Let mj(h) be the number 
of data points in the interval NJ(h) so that. 

∑H

h=1
mj(h) = M (5) 

where M is the sample size of all data. For a specific value x for the 
feature j, let hj(x) be the index of the interval that x falls in. The main 
effect of feature j on f( • ) is estimated by 

ÂE
(

xj
)
=
∑hj(x)

h=1

1
mj(h)

∑

{i:xi
\j∈Nj(h) }

[
f
(

zh,j, xi
\j

)
− f
(

zh− 1, xi
\j

) ]
− cj (6)  

where x\j represents the features besides feature j. f
(

zh,j, xi
\j

)
means 

replacing all xj in the interval hj(x) with the upper bound value zh,j and 

keep all other features unchanged for all data points. f
(

zh− 1,j, xi
\j

)
means 

replacing all xj with the lower bound value zh− 1,j while all other features 
remain unchanged in the interval hj(x). The local effect of feature j is 

approximated by the discrepancy between f
(

zh,j, xi
\j

)
and f

(
zh− 1,j, xi

\j

)

based on the data. As noted in Eq. (4), the results are centralized by 
subtracting the result by 

cj =
1
M
∑M

m=1

∑

{i:xi
\j∈Nj(h)}

[
f
(

zh,j, xi
\j

)
− f
(

zh− 1, xi
\j

) ]

=
1
M
∑H

h=1

1
mj(h)

∑

{i:xi
\j∈Nj(h)}

[
f
(

zh,j, xi
\j

)
− f
(

zh− 1, xi
\j

) ]
(7) 

The above ALE for one feature can be extended for two features 
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(namely two-dimension analysis), which are two-way interaction effects 
of two features. Note that the obtained result from ALE for one feature 
reflects how the f( • ) changes with the changes in the feature. The re-
sults from ALE for two features are not how the f( • ) changes with the 
changes in the two features but the interactive effects of the two fea-
tures. The overall effect of two features on the dependent variable can be 
expressed as 

O(x1 = v11, x2 = v21) = Mx1 (x1 = v11)+Mx2 (x2 = v21)+ Ix1,x2(x1

= v11, x2 = v21) (8)  

where O denotes the overall effect of x1 and x2. Mx1 and Mx2 are the main 
effect of features x1 and x2, respectively. Ix1,x2 represents the two-way 
interaction effect between x1 and x2. The interaction effect is esti-
mated by two-dimension ALE analysis instead of O(x1 = v11, x2 = v21). If 
the interactive effects among two features do not exist, Ix1,x2(x1 =

v11, x2 = v21) is zero. To estimate the interaction effect of two features 
(xj,xt), we divide the training sample space into a grid of H2 rectangular 
cells. Let (h, p) be the indices of a rectangular cell where j and t corre-
spond to xj and xt, respectively. Let Nj,t(h, p) =

(
zh− 1,j, zh,j

]
×

(
zp− 1,t , zp,t

]
: h, p ϵ(1, 2,…,H)} and mj,t(h, p) be the rectangular cell (h, p)

and the number of sample points in the cell, respectively, to satisfy Eq. 
(9). 

∑H

h=1

∑H

p=1
mj,t(h, p) = M (9) 

The local two-way interactive effect between features j and t at the 
rectangular cell (h, p) without centralization is estimated by 

ÂE
(

xj, xt
)
=
∑hj(xj)

h=1

∑ht(xt)

p=1

1
mj,t(h, p)

∑

{i:xi
\j,t∈Nj,t(h,p)}

ΔI
(

H, h, p, xi
\j,t

)
(10)  

Similar to Eq. (6) and (7), the interactive effect is centralized so that 
the main effects of xj and xt both have mean values of zero by Eqs. (12) 
and (13)  

I
(

ÂE
(

xj, xt
) )

= I
(

ÂE
(

xj, xt
) )

−
1
M
∑H

h=1

∑H

t=1
mj,t(h, p)I

(
ÂE
(

xh,j, xp,t
) )

(13) 

The average differences in prediction analysis and the synthetic 

points in calculations of Eqs. (6) and (13) are based on conditional 
distributions of data in each interval Nj(h) rather than marginal distri-
butions. Hence, it can still interpret the effects of each feature even 
though features are correlated (Apley and Zhu, 2020; Molnar, 2020). In 
this regard, ALE analysis can provide theoretically unbiased estimations 
about how the dependent variable changes with the changes in a feature 
or several features. Technically, the interactive effect analysis using ALE 
can be extended to interpret more complex interactions such as three or 
five-dimension interactions. Nonetheless, results over three-dimensional 
are tough for humans to understand. Meanwhile, the interactive effects 
of over two features are not common and generally not substantial in the 
studies regarding the effects of built environments. Hence, we mainly 
explore the nonlinear effects of each built environment factor and two- 
way interactions among different factors. More comprehensive details 
about ALE are available in Apley and Zhu (2020) and Molnar (2020). 

3. Data descriptions 

We utilize two types of datasets in this study: synthetic datasets and a 
field dataset about bike-sharing systems. We do not merely use field 
datasets as there are no known ground truths about the effects of each 
built environment factor in field data. Thus, it is impossible to directly 
compare and validate which interpretation method is more aligned with 
reality. Alternatively, we first generate synthetic data to validate and 
demonstrate the reliability, superiority and unbiased merit of ALE 
compared to PDA for analyzing the effects of correlated built environ-
ment factors. Afterward, an empirical analysis of the impacts of built 
environment factors on demand for bike sharing is conducted. 

3.1. Synthetic datasets 

Two synthetic datasets are generated. The first synthetic dataset in-
cludes two features that are correlated with each other. The dependent 

variable y1 is defined as 

y1 = 5x1 + x2
2 (14)  

where x1 is in the range of 0 to 10. x2 is randomly generated based on x1 

with a Pearson product-moment correlation coefficient of 0.82. The 
synthetic dataset is created to test the ability to interpret the nonlinear 
effects of a feature. One thousand points are simulated, and the relations 
between x1 and x2 are shown in Fig. 1. The second synthetic data in-
cludes six features, and the dependent variable y2 is defined as 

y2 = z1 + z2 + 0.5z3 + z4 + 0.5z5 + 0.3z6 (15) 

ΔI
(

H, h, p, xi
\j,t

)
=
[
f
(

zh,j, zp,t, xi
\j,t

)
− f
(

zh− 1,j, zp,t, xi
\j,t

) ]

−
[
f
(

zh,j, zp− 1,t, xi
\j,t

)
− f
(

zh− 1,j, zp− 1,t, xi
\j,t

) ]

= f
(

zh,j, zp,t, xi
\j,t

)
+ f
(

zh− 1,j, zp− 1,t, xi
\j,t

)
− f
(

zh− 1,j, zp,t, xi
\j,t

)
− f
(

zh,j, zp− 1,t, xi
\j,t

)
(11)   

I
(

ÂE
(

xj, xt
) )

= ÂE
(

xj, xt
)
−
∑hj(xj)

h=1

1
mj(h)

∑H

p=1
mj,t(h, p)

⎧
⎨

⎩

⎛

⎝ÂE
(

zh,j, zp,t
)
− ÂE

(
zh− 1,j, zp,t

)

⎫
⎬

⎭

−
∑ht(xt)

p=1

1
mt(h)

∑H

h=1
mj,t(h, p)

{(

ÂE
(

zh,j, zp,t
)
− ÂE

(
zh,j, zp− 1,t

)
}

(12)   
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where z1 is in the range of 0 to 1. z2 and z3 are generated based on z1. 
The correlation coefficients of z2 and z3 with z1 are 0.8 and 0.7, 
respectively. z4, z5 and z6 are independent features and have no corre-
lations with other features. In this regard, three correlated features and 
another three uncorrelated features exist in the second synthetic data. 
Ten thousand points are created for the second synthetic data. A random 
forest algorithm is tuned and trained to model the relationships between 
explanatory variables and the dependent variable. In five-folder cross- 
validations, the average value of R2 for the first and second synthetic 
datasets are 0.999 and 0.983, respectively. The high values of R2 indi-
cate the trained algorithms can properly fit the relationship between 
features and dependent variables. In the conventional regression, Vari-
ance Inflation Factors (VIFs) are generally calculated to avoid high 
multicollinearity. Therefore, some may argue that the highly correlated 
features may or should be excluded in the regression so that the problem 
due to correlated features can be solved by omitting the feature with a 
high VIF value. In this study, we will show that the criterions based on 
VIF cannot solve the biases due to correlated features in PDA. The VIF 
value of two features in the first synthetic data is 9.2. The VIF values of 
six features in the second synthetic are 8.1, 2.6, 1.6, 3.4, 3.4 and 3.3, 
respectively. The VIF values are all less than the generally used 
threshold (i.e., 10). Therefore, these features will be kept in the con-
ventional regression process. Based on the trained algorithms, PDA and 
ALE are used separately to interpret the effects of each feature on the 
dependent variable. The results using the two different methods are 
compared in terms of alignment with the ground truths in Eqs. (14) and 
(15). 

3.2. Field dataset about dockless bike-sharing systems 

The empirical analysis uses the transaction data of a dockless bike- 
sharing system (DLBS) in Shanghai, China, which is one of the largest 
cities and has a population of over 24 million in an area of over 6300 
km2. The data cover more than 27 million trip transactions of 14 
continuous days (from Aug 26, 2018 to Sep 08, 2018) from over 635,000 
shared bikes. Each transaction represents a trip and has a trip ID, bike ID, 
timestamps, and starting and ending coordinates. Preprocessing is 
executed to filtrate outliers due to technical errors (e.g., connection 
failure) or abnormal user behavior. We divide the study area into a grid 
of 0.01 longitude × 0.01 latitude rectangles, which is around 1 km × 1 
km rectangles. Each rectangle displayed in Fig. 2 is an analysis zone. We 
map the trips into the partitioned grid based on the starting coordinates 
of the trip, on account that the starting point reflects the demand loca-
tion of using DLBS. The dependent variable is the daily demand for DLBS 
in each analysis zone during workdays (i.e., from Monday to Friday). 
Some grids are in special terrains such as rivers, lakes or wetlands, and 
thus have neglectable usage demand. Such areas are not valid for 

analysis. Therefore, we have excluded the zones with a daily usage de-
mand of less than 20 to avoid biases. Finally, 2454 analysis zones are 
obtained for analysis. The spatial distribution of the daily demand for 
DLBS is demonstrated in Fig. 3. The spatial variation in demand for DLBS 
can be clearly observed, implying the effects of the built environment on 
the daily demand for DLBS. It can be easily observed that the data cover 
most of the municipal area of Shanghai and thus different populations in 
Shanghai. The data was from one of the main local operators, Mobike, 
who took over 40% market share of bike-sharing systems in Shanghai in 
2018. These corroborate the representative of the data to represent the 
usage patterns of bike sharing in Shanghai. 

For built environment factors in each analysis zone a, we consider 5- 
D built environment factors developed by Cervero et al. (2009). We 
utilize three data resources to measure these built environment factors 
in each analysis zone, including Point of Interest (POI) data from the 
local navigation platform Amap (2022), road network data from 
OpenStreetMap, and local population statistics. The used POI dataset 
covers over 1.12 million POIs in Shanghai. Each POI is represented by 
the element name, address, element types, and coordinates (longitude 

Fig. 2. The study area and analysis zones.  

Fig. 3. Spatial distributions of daily usage demand of DLBS in workdays.  

Fig. 1. Features in the first synthetic data.  
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and latitude). According to the POI type categories from the data pro-
vider, the POIs are categorized into 267 types for different utilization 
purposes. The details of POI categories are available on the website 
(Amap, 2022). We leverage the POI data to quantify the built 

environment factors about land use characteristics in Table 1. Six land- 
use types are finally considered referring to classification standards in 
China. The technical methods of using POIs to quantify the land use 
measurements are available in Gao et al. (2021b) and skipped for 
simplification. The road network data from OpenStreetMap is utilized to 
quantify road-relevant built environment factors in Table 1. The popu-
lation statistics in Shanghai are used to measure population and 
employment density in each analysis zone. Based on the extracted 
workday daily demand and corresponding built environment factors in 
each analysis zone, the methodology in Section 2 is used to model and 
quantitatively interpret the effects of built environment factors on de-
mand for DLBS. 

4. Results and discussions 

4.1. Comparative results based on synthetic data 

The results of PDA and ALE based on the first synthetic data are 
demonstrated in Fig. 4. It can be observed in Fig. 4 (a) and (b) that PDA 
cannot well interpret and reproduce the actual effects of x1 and x2. 
Especially, the interpreted effects of x1 by PDA has obvious biases as 
compared to actual effects. In comparison, the interpreted effects of both 
x1 and x2 by ALE are perfect in line with ground truths as visualized in 
Figs. 4 (c) and (d). The results based on the second synthetic data are 
summarized in Fig. 5. We merely present the results of features that are 
correlated. It should be noted that our synthetic analysis has used VIF 
values to screen out multicollinearity as conventional regressions do. 
Again, the interpreted results by PDA present considerable biases when 
correlations among features exist. Particularly, the biases by PDA are not 
systematical but could be either underestimation or overestimation. In 

Table 1 
The investigated built environment factors.  

Explanatory variables Unit 

Density  
Population density (PD) persons/km2 

Employment density (ED) number/km2 

Diversity  
Commercial land use ratio (CLUR) % 
Living land use ratio (LLUR) % 
Public management and service land use ratio (PLUR) % 
Park and square land use ratio (PSLUS) % 
Industry land use ratio (ILUR) % 
Land use entropy (LUE)  
Design  
Motorway density (MOD) km/km2 

Motorized road density (MRD) km/km2 

Branch road density (BRD) km/km2 

Bicycle lane density (BLD) km/km2 

Destination  
Living facility density (LD) amount/km2 

Commercial service density (CD) amount/km2 

Industrial facility density (ID) amount/km2 

Leisure facility density (LFD) amount/km2 

Education service density (EFD) amount/km2 

Park and square density (PSD) amount/km2 

Parking lot density (PLD) amount/km2 

Distance to transit  
Metro station coverage ratio (MSR) % 
Bus station coverage ratio (BSR) % 

Note: Details of calculating the variables in this table refer to Gao et al. (2021b). 

Fig. 4. Results based on the first synthetic data: (a) and (b) are the PDA results; (c) and (d) are the ALE results.  
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contrast, the interpreted results by ALE in Fig. 5 can well reproduce the 
actual effects of correlated features (z1,z2,z3). The results based on two 
synthetic data corroborate the shortage of PDA for investigating the 
effects of correlated factors and validate the ability of ALE to interpret 
the impact of correlated features. The results imply that the existing 
studies using PDA for investigating the effects of correlated built envi-
ronment factors have a high risk of biased results. Especially, many 
studies do not check and pay attention to the correlations of features as 
correlations of features may not influence the predictive performances 
of many machine learning algorithms. Nevertheless, it is heavily over-
looked that correlated features may not deteriorate the model fitness or 
predictive performances but would likely result in biases in the inter-
preted effects of different built factors, which are the emphasis of many 

empirical studies (rather than prediction). 

4.2. Results of the empirical study of DLBS 

The analysis aim is to interrogate the effects of various built envi-
ronment factors on demand for DLBS during workdays in an analysis 
zone. Following the general feature selection process, we screen out 
features with a variance inflation factor larger than 7.5 to avoid multi-
collinearity. Permutation importance analysis is also used to filtrate 
features with trivial importance. These are targeted to prevent the 
argument that some correlated features should be screened out in 
standard feature selection processing, so that correlated features may 
not be used for final analysis, which to some extent counters the 
meaning and superiority of ALE. Fifteen features are kept for analysis 
after selections, and their spearman correlations are displayed in Fig. 6. 
After standard feature selection is executed, the remaining features still 
present some degrees of correlations. Importantly, it is inherent that 
built environment factors are, to some extent, correlated. For example, 
places with a lot of commercial services are supposed to have high 
employment density; places with a lot of living communities are sup-
posed to be surrounded by daily commercial services in Chinese cities. If 
very strict criteria are used to filtrate correlated features (e.g., very low 
VIF value and correlation coefficients), some features with useful in-
formation would be filtered out. Therefore, it is ubiquitous that we need 
to consider correlated built environment factors in the analysis. 
Different supervised machine learning algorithms are compared to select 
the best candidate. The random forest algorithm has the best perfor-
mance with the R2 of 0.859, root mean squared error of 428.04, and the 
explained variance of 86.4%. Hence, it is selected as the ML model for 
the following interpretation analysis. 

4.2.1. Nonlinear effect of built environment factors 
We first analyze the main effects of each built environment factor 

using one-dimension ALE. The results are summarized in Fig. 7. Living 
facility density, commercial service density, and education service 
density are positively related to the demand for DLBS. These are easily 
understandable as DLBS are convenient tools for short-distance trips for 
various daily activities. A higher density of living facilities, commercial 
services and education services in an area generally means higher 

Fig. 5. Results based on the second synthetic data. The first and second rows are results from PDA and ALE, respectively.  

Fig. 6. Correlations of features.  
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Fig. 7. Main effects of various built environment factors. The unit of Y-axis is the amount of trip per day.  
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demand attraction, and thus more demand for using DLBS to access 
these services. More importantly, the effects of the three built environ-
ment factors all present nonlinear and threshold effects. The nonlinear 
and threshold effects refer to the pattern that the demand for DLBS in-
creases notably with the three factors but reaches a plateau when the 
values of the factors exceed certain thresholds. For instance, the demand 
for DLBS upsurges significantly with commercial service density in Fig. 7 
(b), but would not change obviously when the density of commercial 
service is over 2000 per km2. The nonlinear and threshold effects of built 
environment factors on travel demand of other transport modes have 
also been found in the literature, such as metro ridership (Ding et al., 
2019b) and ride-sourcing (Bi et al., 2022). The thresholds in the effects 
of living area density and education service density are around 200 and 
40 per km2, respectively. The results imply that biased results will be 
acquired if linear effects are assumed for these factors. The results also 
indicate the superiority of data-driven methods in investigating the 
complex effects of built environment factors. For the effect of population 
density in Fig. 7 (d), a similar effect pattern can be observed. The de-
mand for DLBS increases with population density but keeps almost un-
affected when the population density exceeds 43,000 per km2. The 
parking lot density is found to be positively related to the demand for 
DLBS (see Fig. 7(e)). This might be attributed to the fact that many 
designated parking zones or lots were provided for legally parking 
shared bikes in Shanghai. Therefore, analysis zones with many parking 
lots are expected to attract more usage of DLBS. 

For land use ratio factors, the public service land use ratio (see Fig. 7 
(f)) has trivial influences on the demand for DLBS when the value is less 

than 0.25. However, its effect surges sharply until the value of 0.4 and 
tends to be consistently unchanged. An apparent nonlinear threshold 
effect is observed as well. The effect of the living land use ratio in Fig. 7 
(h) shows that it is negatively linked to the demand for DLBS, especially 
when the living land use rate is over 0.4. The potential reason is that 
many residential communities in China are surrounded by protective 
fences for safety reasons, differing from the residential communities in 
Western nations. DLBS are not allowed to enter these residential com-
munities and can merely be parked outside of living areas (e.g., at the 
entrance). The area of the defined analysis zone in this study is around 1 
× 1 km2. If the living land use ratio in an analysis zone is very high, the 
analysis zone is likely to mainly cover the internal area of a residential 
community where DLBS cannot enter, which could result in lower de-
mand in the analysis zone. It should be noted that if one area with a lot of 
residential buildings, its influences on the demand for DLBS should be 
the joint effect of living facility density and living land use ratio, namely 
the main effects of the two features and their interaction effects as shown 
in Eq. (8). Fig. 7 (i)-(l) demonstrate the effects of densities of different 
road types on demand for DLBS. The demand for DLBS is positively 
associated with the density of bicycle lane density, branch road density, 
motorized road density, and motorway density. The finding is in align-
ment with the results in the literature that indicates the increase in road 
density is helpful for the usage of shared micro-mobility (Chen and Ye, 
2021; Huo et al., 2021). Differing from the literature, we distinguish the 
effects of different road types. The effects of bicycle lane density, branch 
road density and motorized road density present nonlinear effects. When 
the density of bicycle lane density, branch road density and motorized 

Fig. 8. Main effects of living land use ratios and motorized road density by ALE ((a) and (b)) and PDA ((c) and (d)).  
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road density are less than 4, 13 and 9 km/km2, respectively, the demand 
for DLBS increases with the density of these roads but hardly varies after 
these thresholds. The metro station coverage ratio has a positive influ-
ence on the demand for DLBS, as shown in Fig. 7 (m). The reason should 
be that DLBS is a convenient transport tool for first- and last-mile access 
to and egress from metro stations, and the finding is corroborated by 
relevant literature (Guo and He, 2020; Huo et al., 2021). It is intriguing 
to find that the effect of the metro station coverage ratio turns more 
substantial when its value exceeds 0.9. The potential reason is that if the 
value of the metro station coverage ratio in an analysis zone is over 0.9, 
it is very likely that there is at least one metro station in the analysis 
zone, which is a demanding area for using DLBS as feeder transport 
modes. In contrast, the bus station coverage ratio has trivial effects when 
its value is less than 0.25 and has positive impacts on the demand for 
DLBS when the value is over 0.25, as shown in Fig. 7 (n). The effects of 
industry facility density and park and square land use ratio are negli-
gible, so they are not discussed in detail herein. 

As per the results, many built environment factors are found to have 
nonlinear and threshold effects on the demand for DLBS, which are hard 
to be identified by conventional methods with presumed model for-
mulations. Even though PDA can also investigate the nonlinear effects, it 
has biases when analyzing correlated built environment factors, as 
demonstrated in Section 4.1. Fig. 8 further displays the differences in the 
impact of the same factors obtained by ALE and PDA. In the effect of the 
living land use ratio in Fig. 8 (a) and (c) from PDA, the results show 
unreasonable patterns with fluctuations that are hard to explain. The 
effect of motorized road density obtained by PDA shows a similar ten-
dency as that obtained by ALE. However, the magnitudes of the impact 
interpreted by ALE and PDA are distinct. The predicted increase in the 
demand for DLBS is around 325 based on ALE but is around 220 based 
on PDA when the motorized road density increases from 0 to 9 km/km2. 
Although the ground truths about the effect in the empirical study are 
impossible to know, ALE should have more credible and reliable results 
when correlated features exist according to the analysis results of syn-
thetic data. 

4.2.2. Interactive effects between built environment factors 
The potential two-way interaction effects between built environment 

factors on demand for DLBS are investigated. The value of two- 
dimension ALE should be zero if no interaction effect exists between 
two factors, as indicated in Eq. (8). We enumerate all pairs of any two 
built environment factors (e.g., 15 × 14÷2 = 105 pairs). Only results 
with considerable interaction effects are discussed herein and are sum-
marized in Fig. 9. Education facility density and commercial density 
have a noticeable interactive impact on demand for DLBS. Particularly, 
the interaction effect changes with the value of the two factors rather 
than invariant, as shown in Fig. 9 (a). When one of the two factors has a 
large value and another has a relatively smaller value, there is a negative 
interaction effect. Nevertheless, a considerable positive interaction is 
observed when both features have large values. The potential reason is 
that DLBS is very prevalent in student groups as a low-budget and 
convenient transport mode for daily activities such as shopping, eating, 
and entertainment, so the demand for DLBS would be higher as 
compared to other analysis zones if one analysis zone has a high density 
of both commercial service and schools/universities. Similar synergistic 
effects can be observed between the metro station coverage ratio and 
commercial service density (see Fig. 9 (b)) and between parking lot 
density and metro station coverage ratio (see Fig. 9 (c)). The results 
indicate that jointly promoting the two built environment factors can 
generate additional effects for improving the usage of DLBS. Fig. 9 (d) 
shows noticeable interactions between commercial service density and 
parking lot density. When the parking lot density is very high, the effect 
of commercial service density is not as notable as when the parking lot 
density is low. In contrast, the effect of parking lot density is more 
substantial when the commercial service density is high. Fig. 9(e) il-
lustrates that the changes in living facility density have a larger influ-
ence on the changes on the demand for DLBS when the metro station 
coverage ratio is high. This may be attributed to the popularity of DLBS 
as a feeder to metro stations in Chinese cities (Guo and He, 2020; Rad-
zimski and Dzięcielski, 2021). When one analysis zone has high acces-
sibility to metro stations, it is expected that there will be much more 

Fig. 9. Two-way interactions among built environment factors.  
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demand of using DLBS to get access and egress to metro stations for 
people in surrounding living areas. A similar interactive effect can be 
found between living facility density and education facility density in 
Fig. 9(f). The changes in living facility density lead to more considerable 
differences in demand for DLBS when education facility density is high. 
Herein, we mainly illustrate the existence of significant interactions 
among different built environment factors and the ability of the pro-
posed method to interpret the complex interactive effects of built 
environment factors. Several other interactions are revealed in the 
analysis and provided in the appendix but are not elaborated on for 
simplification. 

A lot of built environment factors jointly affect the demand for DLBS 
in one area, and their accumulated effects are supposed to be complex 
and interact with each other. Solely changing one of the built environ-
ment factors may result in an increase or decrease in the demand for 
DLBS, but the combined effect of simultaneously changing two built 
environment factors is not necessarily the direct sum of the pure effects 
of the two factors. The complex interaction effects are very tough (if 
possible) to be modeled or investigated in conventional regression 
methods by adding presumed interaction terms (e.g., linearly two-way 
interaction, α×x1×x2). The data-driven ML algorithm and interpreta-
tion techniques like ALE present more powerful abilities for modeling 
and unraveling such interaction effects than conventional models. 

5. Conclusions 

This study leverages an unbiased data-driven approach for exam-
ining the complex (nonlinear and interactive) effects of correlated built 
environment factors on demand for shared mobility. Particular emphasis 
has been given to unraveling the complex effects in an unbiased and 
data-driven way that can block the adverse impacts of correlations 
among built environment factors. Supervised machine learning algo-
rithms are used to model the influences of different built environment 
factors. A data-driven interpretation technique based on the paired 
difference analysis and accumulated local effects to eliminate the 
nuisance feature is leveraged to interpret the nonlinear and interactive 
effects of built environment factors. Synthetic data are first utilized to 
validate the reliability and unbiased nature of the proposed approach. 
Afterward, an empirical case study about bike-sharing systems in 
Shanghai is conducted. The results are analyzed to shed light on the 
effects of built environment factors on demand for DLBS. The main 
contributions include:  

• Accumulated local effect analysis can successfully interpret the 
nonlinear and interactive effects of correlated built environment 
factors on demand for shared mobility, which partial dependency 
analysis fails to do. Partial dependency analysis will result in biases 
when investigating the effects of correlated built environment fac-
tors. The finding is corroborated by synthetic data and implied by 
field data.  

• The main effects of many built environment factors on demand for 
DLBS present nonlinear and threshold patterns that can be success-
fully investigated by accumulated local analysis. Based on the 
empirical analysis, quantitative results about the effects of different 
built environment factors are obtained and discussed. The results 
provide quantitative support (e.g., thresholds in the effect of some 
built environment factors) and tools for planning DLBS and 
improving the built environment to facilitate DLBS. 

• There are complex interaction effects between different built envi-
ronment factors on demand for DLBS. The interactions among two 
built environment factors may change with the values of the two 
factors, which can be investigated using the proposed method. For 
instance, education facility density and commercial density have 
variant interactions. When one of the two factors has a large value, 
and another has a relatively smaller value, there is a negative 
interaction effect. Nevertheless, a considerable positive interaction is 

observed when both factors have large values. Interaction effects of 
other built environments are discussed as well. 

It is worth mentioning that although the proposed methods offer 
data-driven modeling and interpretation of the effects of different built 
environment factors, the interpreted relationships are not necessarily 
causal and, thus, should be explained by combining expertise and 
practical knowledge. This is a common dilemma for almost all statistical 
analysis methods. Another potential limitation of the proposed method 
is that data-driven analysis requires adequate data to attain reliable 
results. If the sample size of data is not enough or there are noticeable 
outliers in the used data, the interpreted results may be biased as data- 
driven methods have a higher risk of overfitting than conventional 
model-based methods. This may not be an issue for share mobility 
analysis as current shared mobility systems naturally produce many 
useful field data, such as transaction data and positioning data. Another 
point worth mentioning is that if several features are highly correlated 
(e.g., the correlation coefficient of 0.95), even ALE is not able to 
distinguish their impacts on the dependent variable as it is not plausible 
in statistics. In such cases, highly correlated features should be com-
bined into one feature using dimension reduction methods. 

The proposed analysis framework is general and can be easily 
transplanted for analyzing the effects of built environment factors on 
other shared mobility systems and even urban mobility in general. An 
exciting direction of further research is to interrogate the potentially 
distinct effects of a built environment factor on different shared mobility 
systems, such as car-sharing, e-scooter sharing, and ride-hailing. 
Furthermore, although this study investigated several different built 
environment factors, many other factors, such as additional built envi-
ronment aspects and weather, are not investigated due to data limita-
tions. In this study, we did not specifically analyze the temporal 
fluctuations of the demand in an analysis zone, which can be further 
extended in the future. Moreover, our analysis does not distinguish the 
demand for different trip purposes as we do not have ground-truth in-
formation on trip purposes in the data. Notwithstanding, the effects of 
the built environment on demand for different trip purposes may be 
divergent. Exploring how the built environment influences demand for 
different trip purposes is a fascinating research direction. A possible 
method is to infer trip purpose based on the destination, points of in-
terest around the destination, and the timestamp of each trip. We focus 
on data-driven and unbiased methods for deciphering nonlinear and 
interaction effects, so the results from our empirical analysis may have 
limitations and may merely reflect the case in Shanghai. Using more 
datasets from different contexts and making comparisons among mul-
tiple cities could be one potential avenue of future work. 
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