44 research outputs found

    Complete Issue 16, 1997

    Get PDF

    Non-interfering network flows

    Get PDF

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    The von Neumann Model and the Early Models of General Equilibrium

    Get PDF
    The paper reconstructs the von Neumann model, comments on its salient features and critically reviews some of its generalisations. The issues related to thetreatment of consumption, decomposability and uniqueness of the rate of growth and interest will be especially scrutinised. The most prominent models of general equilibrium that appeared before or roughly at the same time as von Neumann's model will be also reviewed in the paper and compared with it. It will be demonstrated that none of them had any noticeable influence on von Neumann's model, which is genuinely distinct, ideologically free and methodologically fresh and forward-looking. It will be argued that the model can be viewed as a brilliant mathematical metaphor of some deep-rooted old vision, pertaining to the core issues of commodity production

    Complete Issue 16, 1997

    Get PDF

    Matching

    Get PDF

    Packing and covering in combinatorics

    Get PDF

    The Game of Nim on Graphs

    Get PDF
    The ordinary game of Nim has a long history and is well-known in the area of combinatorial game theory. The solution to the ordinary game of Nim has been known for many years and lends itself to numerous other solutions to combinatorial games. Nim was extended to graphs by taking a fixed graph with a playing piece on a given vertex and assigning positive integer weight to the edges that correspond to a pile of stones in the ordinary game of Nim. Players move alternately from the playing piece across incident edges, removing weight from edges as they move. Few results in this area have been found, leading to its appeal. This dissertation examines broad classes of graphs in relation to the game of Nim to find winning strategies and to solve the problem of finding the winner of a game with both unit weighting assignments and with arbitrary weighting assignments. Such classes of graphs include the complete graph, the Petersen graph, hypercubes, and bipartite graphs. We also include the winning strategy for even cycles

    Generating secret in a network

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 247-253) and index.This monograph studies the theory of information through the multiuser secret key agreement problem. A general notion of mutual dependence is established for the secrecy capacity, as a natural generalization of Shannon's mutual information to the multivariate case. Under linear-type source models, this capacity can be achieved practically by linear network codes. In addition to being an unusual application of the network coding solution to a secrecy problem, it gives secrecy capacity an interpretation of network information flow and partition connectivity, further confirming the intuitive meaning of secrecy capacity as mutual dependence. New identities in submodular function optimization and matroid theory are discovered in proving these results. A framework is also developed to view matroids as graphs, allowing certain theory on graphs to generalize to matroids. In order to study cooperation schemes in a network, a general channel model with multiple inputs is formulated. Single-letter secrecy capacity upper bounds are derived using the Shearer-type lemma. Lower bounds are obtained with a new cooperation scheme called the mixed source emulation. In the same way that mixed strategies may surpass pure strategies in zero-sum games, mixed source emulation outperforms the conventional pure source emulation approach in terms of the achievable key rate. Necessary and sufficient conditions are derived for tightness of these secrecy bounds, which shows that secrecy capacity can be characterized for a larger class of channels than the broadcast-type channels considered in previous work. The mixed source emulation scheme is also shown to be unnecessary for some channels while insufficient for others. The possibility of a better cooperative scheme becomes apparent, but a general scheme remains to be found.by Chung Chan.Ph.D
    corecore