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1. Introduction 

John von Neumann was a versatile scholar, whose path breaking ideas have enriched 
various disciplines. He has also made contributions of great importance to economics, 
although his only paper that was directly concerned with economics was his article on 
balanced economic growth, presented first at a Princeton seminar in 1932.2 We hasten to add 
that his influence on the later development of economics became equally important through 
his ground-breaking work on game theory. He was the first to prove the existence of equilib-
rium for two-person zero-sum games in 1928, and their book (with Oskar Morgenstern) on 
game theory, published in 1944, was path-breaking in that field. Game theory, which studies 
the rules of rational human behaviour, is however an independent methodological discipline 
in itself and its domain is wider than economics. 

Von Neumann’s model of general equilibrium can be linked to some common and critical 
points of departure of different competing schools. Von Neumann’s model was on the one 
hand a brilliant mathematical synthesis of the classical ideas concerned with the proportions 
required by economic equilibrium. It was on the other hand a forerunner of modern mathe-
matical economics, which became fully developed only some decades later, under the influ-
ence of neoclassical economics. Von Neumann generalized and employed for the first time 
Brouwer’s fixed-point theorem in the proof of existence of competitive equilibrium, and used 
an explicit and full duality approach and the linear activity description of technological 
choice.  

Von Neumann’s model addressed very deep economic issues and it is no surprise that it 
can be fitted into most economic schools, into the at times Procrustean bed of neoclassical, 
Marxian or neo-Ricardian theoretical frameworks. And it has often been done so, after a few 
years of a surprisingly chilly reception of his model. (It suffices to refer here to the famous 
dispute between Solow and Kaldor at the 1958 Corfu conference, in which Kaldor strongly 
refuted the claim that the model of von Neumann was the “neo-classical school in a new dis-
guise”. See Lutz and Hague, 1961, pp. 296-297).  

If not for other reasons, but because of the aforementioned merits of the model, one may 
understand R. Weintraub’s enthusiasm when he went as far as stating “von Neumann’s paper 
is, in my view, the single most important article in mathematical economics” (Weintraub, 
1983, p. 13). Weintraub’s judgement is however not shared universally by economists. At a 
1974 conference in Warsaw Koopmans, while praising the many novel methodological 

                                                 
1 A slightly revised version of the paper will be published in Acta Oeconomica in 2004. The author wishes to acknow-
ledge the valuable comments given by P.G. Hare, H. Kurz, J. Móczár, T. Révész, A. Simonovits and J. Varga on earlier 
versions of the paper.  
2 Published in German in 1937, titled as “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des 
Brouwerschen Fixpunktsatzes” (On an economic system of equations and a generalization of Brouwer’s fixpont theorem). 
The title of the English translation became “A Model of General Equilibrium” and was published only in 1945. 
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aspects of the model, added “(t)he tremendous influence of von Neumann’s paper demonstra-
tes that contributions of great importance can be made in a paper that is not very good eco-
nomics” (Koopmans, 1974, p. 3, emphasis added). Samuelson, who also seemed to share 
Koopmans’ dry verdict, in his 1989 paper tried to downgrade the methodological importance 
of von Neumann’s model as well. Nevertheless, he had to acknowledge that: “He darted 
briefly into our domain and it has never been the same since” (Samuelson, 1989, p. 121). 

The appearance of von Neumann’s model coincided with two important developments, 
which left lasting effects on the development of mathematical economics and explains partly 
its controversial reception too. One was the rise of quantitative economics3 as an independent 
sub-discipline in the early 1930s. Another and strongly related development was the gradual 
expansion of the axiomatic, a priori modelling approach that resulted in a shift from ‘ex ante’ 
to ‘ex post’ modelling, to “a philosophy of model-building which was borrowed from 
Hilbert’s metamathematics, to which von Neumann contributed substantially” (Punzo, 1989, 
p. 30). This change has gradually reached economics too, as Weintraub (1983, 1985) 
described very vividly. The number of mathematically trained and oriented economists has 
been steadily growing. They have brought into economics a radically changed perception of 
the subject matter and the methodology of mathematics (‘Bourbakism came to mathematical 
economics’, cf. Weintraub and Mirowski, 1994).  

The adoption of the formal axiomatic approach and mathematical reasoning did accelerate 
the development of mathematical economics, but this progress incurred significant costs too. 
The focus of research had swiftly shifted from the applied (concrete) to the pure (abstract), to 
‘implicit theorising’ (Leontief). The requirements of logical consistency and mathematical 
elegance gained power over empirical relevance. Mathematics, “because of the lack of 
sufficiently secure experimental base” (Debreu, 1991), became increasingly a tool of logical 
calculus, instead of providing means for making quantitative empirical predictions. Beyond 
the traditional ideological and methodological schisms, the economics profession became 
further divided by language (verbal vs. mathematical) and methodology (analytical-formalist 
vs. historical-social) as well. 

Marshall, one of the founders of modern economics, was among the first who warned 
against the extensive and unjustified use of mathematics in economics, because it “might lead 
us astray in pursuit of intellectual toys, imaginary problems” (Pigou, 1925, p. 84, quoted by 
Ekelund and Hébert, 1997). Von Neumann was also very much aware of the dangers in-
volved, not only in sciences dealing with real phenomena, such as economics, but for the 
development of mathematics itself. “As a mathematical discipline travels far from its empi-
rical source, or still more … if it is indirectly inspired by ideas coming from ‘reality’, … it 
becomes more and more purely astheticizing, more and more purely l’art pour l’art” 
(Neumann, 1947, p. 234). 

                                                 
3 It has initially appeared under the name of econometrics, but later it became divided into three somewhat independent 
sub-disciplines: mathematical economics, operations research and econometrics. It is usually connected to the foundation 
of the Econometric Society (1930), and the journal of Econometrica (1933), although its roots can be traced back at least 
as far as to the book of Cournot (1838). 
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Although the model of von Neumann was in many ways a prototype of the a priori (ex 
ante) models in economics, he often cautioned against the misuse of such models. Morgen-
stern (1976) recalls that von Neumann has repeatedly criticized economists for not using 
more appropriate mathematics and emphasized the need for more comprehensive mathema-
tical tools than those borrowed from classical physics. It is perhaps not by accident that von 
Neumann did not continue his research on the abstract models of general equilibrium. Indeed, 
he did not just advocate the need for a new methodology, but, together with Morgenstern, set 
an excellent example for others to follow by their work on game theory, initiating a totally 
new discipline almost from scratch.  

The paper is organised as follows. Section 2 reconstructs the way von Neumann set up his 
model. Section 3 contains notes on some salient aspects of the model and critically reviews 
some important attempts to generalise it. Some issues related to consumption, decompo-
sability and uniqueness will be especially scrutinised. Although it is difficult to add much 
new to the vast literature, the author would like the reader to find some fresh ideas and new 
insights too in this appraisal nevertheless. The remaining sections are devoted to the most 
prominent models of general equilibrium that appeared before or roughly at the same time as 
von Neumann’s paper. The static and stationary models of Walras, Cassel, Schlesinger and 
Wald, and Leontief will be revisited and compared with von Neumann’s. The author hopes to 
demonstrate that none of them had any noticeable influence on von Neumann’s model, which 
is genuinely distinct, ideologically free and methodologically very fresh and forward-looking. 
And that is all true despite the fact that the model can be viewed as a brilliant mathematical 
metaphor of some deep-rooted visions, pertaining to the core issues of commodity 
production. 

2. The von Neumann model of economic equilibrium 

Table 1 illustrates the key components and the basic accounting framework of the model. 
The rows (i = 1, 2,…, n) refer to economic goods, the columns (j = 1, 2,…, m) to economic 
processes. The table contains their lists and the amounts of the goods produced (Yij) and used 
(Xij) in the various processes in some period of time. The last column contains the unit prices 
of the goods and the last row the levels of the processes (activities). The latter refers to the 
intensities of operation of the processes. 

Von Neumann considers an economy, in which production takes place in uniform, 
discrete periods of time, with exchange only at the turn of such intervals. By this assumption, 
the output of a given period can only be used in the next period. Because of the assumption of 
uniform production periods, he has to assume that “processes of longer duration (have) to be 
broken down into single processes of unit duration introducing if necessary intermediate 
products as additional goods”. He has also postulated that “capital goods are to be inserted on 
both sides of (the processes); wear and tear of capital goods is to be described by introducing 
different stages of wear as different goods, using a separate (process) for each of those”. In 
this way, he had actually turned fixed capital into circulating capital and assumed that capital 
circulation took uniformly one period time. He thus did not have to face the problems caused 
by the proper measurement of capital tied up in production. 
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Table 1. The basic accounting framework (goods, activities, inputs and outputs) in the 
von Neumann model 

 Process 1 Process 2 …  Process j …  Process m Prices 

Good 1 Y11 ∨ X11 Y12 ∨ X12 …  Y1j ∨ X1j …  Y1m ∨ X1m p1 

Good 2 Y21 ∨ X21 Y22 ∨ X22  … Y2j ∨ X2j  … Y2m ∨ X2m p2 

    M  M  M   M   M  M  

Good i Yi1 ∨ Xi1 Yi2 ∨ Xi2  … Yij ∨ Xij  … Yim ∨ Xim pi 

    M  M  M   M   M  M  

Good n Yn1 ∨ Xn1 Yn2 ∨ Xn2  … Ynj ∨ Xnj  … Ynm ∨ Xnm pn 

Activity levels x1 x2 … xj … xm  

 

Von Neumann assumes that Xij, the amount of good i consumed in activity j, contains not 
only the direct material inputs of production but also the consumption of labour (and their 
households) engaged in it. For the sake of simplicity he also presumes that the consumption 
of the households consists only of necessities of life, and “all income in excess of necessities 
of life will be reinvested”, moreover, consumption patterns do not change over time and there 
is no technical progress. And a final assumption, “the natural factors of production, including 
labour, can be expanded in unlimited quantities”. The rate of growth depends thus on ‘man-
made’ factors of production only, i.e., on the rate of accumulation of capital goods.  

With these assumptions von Neumann defines an abstract, quasi-stationary economy, in 
which there is no reason for the proportions of the production and prices to change, once a 
state of equilibrium has been reached. The equilibrium of a quasi-stationary economy is a 
steady state, in which every physical quantity (the activity levels, the production and the use 
of various goods) changes by the same constant rate (λ). They increase, stagnate or decrease 
depending on the sign of λ.  

In view of the rather stringent assumptions, von Neumann carefully avoided treating his 
model as a complete description of the working of a real economy, unlike some modern 
followers of general equilibrium theory. Quite to the contrary, he made clear that his model 
was a very abstract metaphor of a real economy, with the help of which one can shed light on 
some specific features of modern commodity production systems. He set out to analyze, first 
and foremost, the mutual dependence (‘remarkable dual symmetry’) of the rules guiding the 
selection of efficient (optimal) technologies on the one hand, and the determination of 
equilibrium prices (which make their use profitable) on the other, resulting from the circular 
nature of reproduction: 
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“In order to be able to discuss (the mentioned properties of the economic system) quite freely 
we shall idealise other elements of the situation … Most of these idealisations are irrelevant, 
but this question will not be discussed here” (ibid. p. 1). 

He was aware that economics is as yet not a well developed scientific discipline and 
therefore the use of stringent abstractions is unavoidable. It is worth quoting him at length on 
this subject: 

“It is frequently said that economics is not penetrable by rigorous scientific analysis, because 
one can not experiment freely. … Experimentation is a convenient tool, but large bodies of 
science have been developed without it. … What seems to be essentially difficult in econo-
mics is the definition of categories. … it is always the conceptual area that the lack of 
exactness lies. … Now all science started like this, and economics, as a science, is only a few 
hundred years old. The natural sciences were more than a millennium old when the first 
really important progress was made. … methods in economic science are not worse than they 
were in other fields. But we will still require a great deal of research to develop the essential 
concepts – the really usable ideas.” (Neumann, 1955, in Bródy, Vámos, 1995, p. 639) 

Let us now formulate, based on the above assumptions, the conditions of balanced supply 
and demand, using equations as his predecessors, following the classical “ex post” modelling 
approach: 

 Yi1 + Yi2 +…+ Yim = (1+λ)·(Xi1 + Xi2 +…+ Xim),   i = 1, 2,…, n. (1) 

The equilibrium prices (pi, i = 1, 2,…, n) of such an economy must yield the same (π) rate 
of return (interest, as von Neumann called it) on capital in every activity used. The prices (as 
a matter of fact, only price ratios) can thus be defined by the following set of equations:  

 p1·Y1j + p2·Y2j +…+ pn·Ynj = (1+π)·(p1·X1j + p2·X2j +…+ pn·Xnj),  j = 1, 2,…, m. (2) 

By dividing each equation by the level of the corresponding activity (xj) and assuming 
constant output (bij = Yij/xj) and input (aij = Xij/xj) coefficients (constant returns to scale), the 
equilibrium conditions can be rewritten into the following symmetric, dual forms:  

 bi1·x1 + bi2·x2 +…+ bim·xm = (1+λ)·(ai1·x1 + ai2·x2 +…+ aim·xm),  i = 1, 2,…, n, (3) 

 p1·b1j + p2·b2j + …+ pn·bnj = (1+π)·(p1·a1j + p2·a2j +…+ pn·anj),  j = 1, 2,…, m.  (4) 

As far as the economic content is concerned, there is nothing novel in the above descrip-
tion of the conditions of equilibrium of an economy, its origins can clearly be traced back to 
the classical economists. Champernowne (1945) first asserted the classical origin of the 
model in his paper accompanying the English publication of von Neumann’s paper. A typical 
example of a similar quasi-stationary economic model is Marx’s scheme of simple and exten-
ded reproduction, which in turn was inspired by the work of Quesnay. Sraffa (1960) has also 
used a similar model to analyse some features of long-term equilibrium prices. He has 
defined a “self-reproducing standard system”, in which production expands at an equi-
proportional rate of growth, but that was not meant to be a model of actual production. (See 
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Kurz and Salvadori, 2001 for a comparison of the models of Sraffa and von Neumann and 
also for further references.) 

This fact may explain the puzzling remark of von Neumann: “(i)t is obvious to what kind 
of theoretical models the above assumptions correspond“ (ibid. p. 2).4 What was novel in von 
Neumann’s approach was the precise mathematical reformulation of the classical concept for 
the case of joint production and choice of techniques, and the proof of existence of an 
equilibrium solution. Namely, unlike in other models of general equilibrium of his time, von 
Neumann took joint production (activities may produce several goods together) and techno-
logical choice (the same commodity may be produced by several activities) explicitly into 
account in his model.  

The above circumstances imply that the equation system (3) and (4) will be irregular 
(they will as a rule have much more variables than equations) and therefore the traditional 
method of counting equations can not be used. One can not assume, in general, that there 
exists a structure of production (x) for which goods are produced (Bx) and used (Ax) in the 
same proportions. Nor can one expect, in general, to find a price system for which the ratios 
of revenues (pB) and costs (pA) will be the same for each process. The systems of equation 
(3) and (4) may thus not have solutions at all. But even if they do, some variables may 
assume negative values, which would normally violate their economic content. To be more 
precise, one can not accept negative values for the activity levels or the prices if one assumes 
the irreversibility of the activities and free disposal. Indeed, von Neumann did implicitly 
adopt these assumptions by restricting the values of the activity levels and prices to be non-
negative. 

In order to solve the problem, von Neumann relaxed the equilibrium conditions. On the 
one hand, he introduced the possibility of excess supply of some goods and on the other hand, 
extra costs for some processes. In order to stay in line with the rule of supply and demand, 
von Neumann had to complement the above assumptions with two rules. Namely, any 
commodity in excess supply will be a free good and hence its price zero (the Rule of Free 
Goods), and the activities that do not yield the maximum rate of return will not be used in 
equilibrium (the Rule of Idle Activities). 

Therefore, equilibrium conditions should be formulated as a complementarity problem 
and use the following system instead of equations (3) and (4):  

 ∑j bij·xj ≥ (1+λ)·∑j aij·xj,  i = 1, 2,…, n. (5a) 

 pi·∑j bij·xj = (1+λ)·pi·∑j aij·xj,  i = 1, 2,…, n, (5c) 

 ∑i pi·bij ≤ (1+π)·∑i pi·aij,  j = 1, 2,…, m.  (6a) 

 xj·∑i pi·bij = (1+π)·xj·∑i pi·aij,  j = 1, 2,…, m, (6c) 

                                                 
4 Von Neumann did not reveal the origins of his model. On the alternative interpretations of the von Neumann model see 
Kurz and Salvadori (1995, esp. pp. 407-414). We will also come back to this issue at the end of this paper.  
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Von Neumann was not the first to use complementary slackness conditions, which has 
become a standard tool in equilibrium models. In a different context Zeuthen (1933) and 
Schlesinger (1935) had also suggested the use of the Rule of Free Goods in order to avoid the 
negative prices in the Cassel model. But Von Neumann was the first to formulate duality and 
complementary slackness conditions in a symmetric, full-fledged manner. 

As can be seen, the equilibrium conditions determine only the relative sizes (proportions) 
of the variables xj and pi. If some values of x and p satisfy the above system, then s·xj and v·pi 
will also satisfy it, as long as s and v are positive scalars. The trivial solutions (no production 
at all, or nothing but free goods) have no economic relevance, so they can be ruled out at the 
outset. One can thus set the activity and price levels in any meaningful way. Von Neumann 
did it by setting their sums equal to one (∑j xj = ∑i pi = 1), that is, restricting their domain to 
the so-called standard (unit) simplex. 

Observe that by multiplying both sides of inequalities (5a) and (6a) with the corres-
ponding (complementing) pi and xj variables, respectively and taking their sum, one can 
derive the following series of inequalities:  

 (1+λ)·∑ij pi·aij·xj ≤ ∑ij pi·bij·xj ≤ (1+π)·∑ij pi·aij·xj.  (7) 

There are two important conclusions that follow from the above inequalities. First, if the 
value of total output (∑ij pi·bij·xj) is positive, as required from any meaningful solution, then λ 
= π, i.e. the equilibrium rate of growth and interest (return on capital) will be equal. Second, 
if in turn λ = π, then the complementary slackness conditions will be automatically met by 
the solutions of (5a) and (6a). Von Neumann postulated that aij, bij ≥ 0 and aij + bij > 0 for all i 
and j, that is, each commodity takes part in every activity either as input and/or output.  

The above assumption guarantees that the value of total output will be positive in the case 
of any feasible (primal) solution and therefore the equilibrium rates of growth and interest 
will be equal and uniquely determined by the coefficients of the model. The same conditions 
imply also, as indicated above, the fulfilment of the complementary slackness conditions. 
One can thus leave equation (5c) and (6c) out of the final form of the model and simplify it 
further by introducing a common factor of growth and interest (α = 1 + λ = 1 + π). 

 x, p ≥ 0, α > 0,  (8a) 

 1x = p1 = 1,  (8b) 

 Bx ≥ αAx,  (8c) 

 pB ≤ αpA,  (8d) 

where (for shorthand we switched to matrix-vector notation) x = (xj), p = (pi), B = (bij), A = 
(aij) and 1 is a (summation) vector, the elements of which are all equal to 1. Von Neumann 
provided a rigorous proof showing the existence of a solution of the above system. 



 

 

8

3. Some notes on the properties and generalizations of the von Neumann model 

3.1. The uniqueness of the equilibrium in terms of the rate of growth and interest was 
crucial for von Neumann for at least two reasons. First, it made the duality of the two 
(quantity and value) sides of the model complete. The common equilibrium rate is the highest 
possible uniform rate of growth, on the one hand, and the smallest possible equilibrium rate 
of interest, on the other. In other words  

 λ* = α – 1 = max { λ : ∃ x ≥ 0, 1x = 1, Bx ≥ (1+λ)Ax },  (9a) 

 π* = α – 1 = min { π : ∃ p ≥ 0, p1 = 1, pB ≤ (1+π)pA }.  (9b) 

Second, this equality established the crucial mathematical link between the existence of 
equilibrium in the model of balanced growth and that of the two-person, zero sum games. 
Von Neumann used the same minimax (saddle point) approach in both cases, based on the 
generalization of Brouwer’s fixed-point theorem.5  

3.2. The equilibrium conditions in the growth model are, as von Neumann pointed out, 
the necessary conditions for a minimax solution (saddle point) of the following function: 

 F(x, p) = F(x1, x2… xm ; p1, p2 ,…, pn) = ∑ij pi·bij·xj / ∑ij pi·aij·xj,   (10) 

where the denominator, the total value of the inputs, is assumed to be positive. Function F 
can be called the profit function, since its value at (x, p) determines the profit factor. 

It is easy to show that (α*, x*, p*) is an equilibrium solution of the von Neumann model 
if and only if F(x*, p) reaches its minimum in p at p*, and F(x, p*) reaches its maximum in x 
at x*, where the value of F(x*, p*) is equal to α*, that is,  

 F(x, p*) ≤ F(x*, p*) ≤ F(x*, p).    (11) 

3.3. Von Neumann has called attention to an interesting formal analogy that exists 
between economic phenomena and thermodynamics. Namely, the role of the profit function 
“appears to be similar to that of thermodynamic potentials”, and he conjectured that “the 
similarity will persist in its full phenomenological generality (independently from our 
restrictive idealisations)” (ibid. p. 1).  

Thermodynamics and physics, in general, have significantly influenced the development 
of the methodology of economics. The founders of modern neoclassical analysis, Hicks 
(1939) and Samuelson (1947) borrowed, for example, the basic tools of their mathematical 
analysis from classical thermodynamics. Georgescu-Roegen (1971) devoted a whole book to 
illustrate similarities between economics and thermodynamics. More recently Bródy (1989) 
has revisited von Neumann’s conjecture and offered a potential explanation of its deeper 
meaning (see also Bródy, Martinás and Sajó, 1985, and Martinás, 2000).  

                                                 
5 Kakutani (1941) had provided later a more general theorem with much shorter proof that became the standard reference 
in the existence proofs of general equilibrium. As a matter of interest, Kakutani did not know von Neumann’s theorem 
when he prepared the first draft of his paper. He consulted nevertheless often with von Neumann as he was finalizing his 
paper for publication at Princeton (cf. Weintraub, 1983). 
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3.4. The uniqueness of the equilibrium rate of growth is of special interest because it 
means that it is the maximal rate of expansion allowed by the input-output coefficients. The 
unique path of steady state growth, called the von Neumann-path, exhibits an interesting 
property that was first pointed out by Dorfman, Samuelson and Solow (1959) and called aptly 
a turnpike (express highway) property. Several turnpike theorems have followed. They prove 
in essence that optimal growth paths, even if they start and terminate outside of the von Neu-
mann-path, will run near to or on the Neumann-path most of the time, provided that the time 
horizon is long enough (see the review article of Koopmans, 1964, for references). 

3.5. The assumption aij + bij > 0 guaranteed for von Neumann the existence and unique-
ness of the common equilibrium rate of growth and interest. It is however a rather strong 
assumption that can not be defended on economic grounds. Kemeny, Morgenstern and 
Thompson (1956) have replaced it by much weaker postulates. At the same time they have 
simplified the existence proof without invoking a fixed-point theorem. The KMT conditions 
are as follows: 

 ∑j bij > 0 for all i and ∑i aij > 0 for all j,    (12) 

which state that each good is reproducible and that each process requires (directly) at least 
one product as input (either in production or in consumption).  

Both postulates are quite natural assumptions. Von Neumann himself, as a matter of fact, 
adopted the first one, when he excluded the natural factors of production from his model. One 
needs the second one for exactly the same reason, to ensure that the rates of growth and 
interest remain finite despite the absence of exogenous resource constraints. (Incidentally, 
allowing for not only direct but indirect requirements too, one can further relax this assump-
tion.) The above assumptions, however, do not guarantee that the total value of production 
will be positive (and the rates of growth and interest equal). As a consequence of this modi-
fication, the positivity of the value of total output (∑ij pi·bij·xj > 0) had to be added to the 
equilibrium conditions, as a special requirement, in order to make the solutions economically 
meaningful and also to secure the equality of the two factors. We will refer to the resulting 
variant of the von Neumann model as the KMT model. 

The same authors have also shown that under the revised conditions the equilibrium 
factor of growth and interest is no longer necessarily unique, that the number of possible 
values of factors is finite and can not exceed the minimum of the number of activities and the 
number of goods. Multiple solutions can exist if the model-economy is decomposable, 
meaning that some groups of activities can be operated without using goods that can be 
produced only by activities not belonging to that group.  

3.6. The above uniqueness, as pointed out earlier, was crucial for von Neumann. He made 
that point clear as he commented on his assumption that aij + bij > 0: “it must be imposed in 
order to assure uniqueness of α, β (1+λ and 1+π in our notation) as otherwise W (the system) 
might break up into disconnected parts” (ibid. p. 3). This quote reveals also that he knew 
exactly that with his assumption he actually ensured the indecomposability of the economy. 
Gale (1960) has therefore suggested relaxing von Neumann’s original assumption by simply 
postulating that all goods must be produced in any solution that fulfils the balance conditions 
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given by (5a). This is however the consequence rather than the proper definition of the in-
decomposability of an economic system given by constant input and output coefficients. 
Móczár (1995) provided a proper structural characterization of (in)decomposability, in terms 
of the input and output coefficient matrices of von Neumann. 

A wide range of literature has been devoted to the consequences of decomposability in 
models of the von Neumann type. The mathematical properties of multiple solutions have 
been fully explored by several authors. The comprehensive characterizations given by Mori-
shima (1971) and Bromek (1974a) deserve special attention. From a mathematical point of 
view the investigations are interesting, but the economic relevance of multiple equilibrium 
solutions, in terms of the rate of growth and interest, is in our opinion, to say the least, 
doubtful (we will come back to this issue later). 

3.7. The only point that brought von Neumann closer to the neoclassical rather than the 
classical terminology is his usage of the term of interest instead of profit. He viewed profit, 
like most neoclassical economists, as an excess income above normal costs (including 
interest on capital), which the classical economists called ‘extra-profit’. This can be distilled 
from the passage in which von Neumann comments on the conditions of equilibrium: “in 
equilibrium no profit can be made on any process … else prices or the rate of interest would 
rise – it is clear how this abstraction is to be understood” (ibid. p. 3). This puzzling remark, 
typical of von Neumann, suggests that he must have assumed that in an economy “without 
monetary complications” the equilibrium rate of interest would be equal to the uniform rate 
of surplus or ‘profit’, using the latter term in its classical meaning. 

Following von Neumann’s instruction, consumption can be explicitly introduced in the 
model6 by decomposing the inputs A = (aij) into uses in production R = (rij) and in consump-
tion (cij), where aij = rij + cij. The cost of necessary consumption (wj = ∑i pi·cij) can be inter-
preted as the unit wage cost because the cost of consumption enters the definition of prices in 
its place (material cost + cost of consumption + plus interest). What else could it represent 
anyway? Classical economists have also frequently used this simplifying solution, assuming 
that workers spend all their income on consumption. With this in mind, one can rightly 
replace interest with the classical notion of profit, whereby the equilibrium prices become the 
well-known prices of production, used by classical economists.  

3.8. Morishima (1964) related consumption to the amount of labour used. He defined the 
consumption coefficients as cij = ci·mj, where ci is the amount of good i required for the 
reproduction of one hour labour and mj is the number of hours employed in activity j, 
operated at unit level of intensity. With matrix notation: C = c◦m, where symbol ‘a◦b’ 
denotes the outer product of vectors a and b. The hourly wage rate is thus w = pc = ∑i pi·ci, 
the total number of hours employed in the economy as a whole is L = mx = ∑j mj·xj and the 
total wage bill w·L = (pc)(mx) = p(c◦m)x = ∑ij pi·cij·xj. The equilibrium conditions in Mori-
shima’s explication (concretion) of the von Neumann model take thus the following form: 

 x, p ≥ 0, α > 0,  (13a) 

                                                 
6 See the review article of Bauer (1974) on the various possibilities offered in the literature. 
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 1x = p1 = 1,  (13b) 

 Bx ≥ α(R + c◦m)x,  (13c) 

 pB ≤ αp(R + c◦m),  (13d) 

 pBx > 0.  (13e) 

Such a generalization of the von Neumann model (by making its specification more con-
crete) is perfectly legitimate, as long as one assumes that labour power is homogeneous and 
indispensable. This latter assumption means that reproduction can not take place at any 
positive level without using labour power. It can be postulated as follows: ∑j mj·xj > 0, for all 
xj ≥ 0 such that there exists α > 0, at which conditions (5a) are fulfilled in such a way that at 
least one good is produced.  

It has been shown that for certain magnitudes of exogenously given consumption coef-
ficients the KMT model may not have such a solution, in which the price of some ‘necessities 
of life’, that is the wage rate is positive. It has also been shown that some or all consumption 
coefficients could be increased in such cases without decreasing the rate of interest or growth. 
What is perhaps even more important, Bromek (1974b) has shown that the common 
equilibrium rate of growth and interest must be the highest possible rate of expansion, 
whenever a positive wage can be associated with it.  

3.9. This last observation is crucial and must hold for more general models too, if wages 
are defined as the cost of a given basket of wage goods. In such an interpretation and the 
corresponding extensions of the von Neumann model, one can thus re-establish von 
Neumann’s assertion that the equilibrium rates of growth and interest are equal and uniquely 
determined. One can in fact do it using a requirement that is somewhat weaker and more 
plausible than indecomposability. One simply augments the definition of equilibrium with 
requiring the positivity of the total value of consumption, ∑ij pi·cij·xj > 0 instead of the total 
value of production, ∑ij pi·bij·xj > 0 as Kemeny, Morgenstern and Thompson did. Note that 
this latter constraint of ours implies the KMT one, which is not necessarily the case the other 
way around, as noted above. 

Any economist should ab ovo exclude solutions in which the value of consumption is nil. 
In a model of long-term economic equilibrium, in which the consumption coefficients are 
given exogenously, in fact arbitrarily, one can not justify such a situation on sound economic 
grounds. Such a situation could not be sustained for any period of time. They are mathe-
matical artefacts, totally irrelevant from the point of view of an economist. Von Neumann 
was thus completely right in our view to postulate that the common equilibrium rate of 
growth and interest is unique and maximal, although he failed to provide a convincing argu-
ment for that. There is, however, one problem with that assumption. Namely, there is no easy 
way to guarantee that the equilibrium solution will be a saddle-point. This may disappoint 
some followers of von Neumann.  

3.10. Let us now introduce a scalar variable to measure the level of (necessary) consump-
tion and denote it by γ. The simplest way to let the level of consumption vary is to treat its 
structure constant. In such a case the cij (per activity level) consumption coefficients can be 
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determined as cij = γ·sij, where the sij coefficients are appropriately chosen structural cons-
tants, and γ is variable, the level of which is set either exogenously or endogenously.  

One could of course introduce more elaborate demand functions too. That would only 
make the model and the analysis technically more complicated, but hardly change the results. 
For, one should be able to demonstrate a real trade-off between γ and α, i.e., to show that one 
is a strictly decreasing function of the other. Any meaningful demand system should fulfil 
this requirement. From the setup of the model it follows that γ represents both the level of 
consumption and that of the real wage, in the same way indeed as α stands for both the factor 
of growth and profit. The trade-off curve defined by the values of γ and α gives the (optimal) 
consumption-investment as well as the wage-profit frontier, as they are called in the neoclas-
sical theory of growth.  

The classical concept of wage-profit correspondence was reintroduced by Hicks (1939), 
as the factor-price frontier. Bruno (1969) proved and called attention to the duality (coinci-
dence) of the wage-profit and the consumption-investment frontier in the neoclassical model 
of optimal growth. This was not the case in the KMT model because of the possibility of 
multiple equilibrium solutions. Morishima (1971) therefore reinterpreted their concepts and 
their duality for the von Neumann model. He redefined them as the maximal consumption-
investment (primal) and the minimal wage-profit (dual) frontier, using definition (9a) and 
(9b) with a varying level of consumption. The two frontiers will as a rule differ in decom-
posable economies. Morishima has in fact defined several (subordinate) frontiers, each 
corresponding to one of the equilibrium rates of growth (profit) feasible at the given level of 
consumption (real wage).  

Bromek (1974b) on the other hand has proposed to re-establish the coincidence (the strict 
duality) of the two frontiers, by requiring the wage level to be positive in equilibrium, as we 
did before. Burmeister and Kuga (1970) suggested an almost identical solution in a somewhat 
more general intertemporal model allowing for joint production. Bromek has shown that γ is 
a strictly decreasing function of α, but it may be discontinuous at some (singular) points, if 
the system is decomposable. The domain of the inverse function, the consumption-investment 
frontier, will thus be disconnected at the corresponding values. 

3.11. Let us confine the range of equilibrium solutions in Morishima’s explication of the 
von Neumann model by requiring the value of consumption (the wage rate) to be positive (pc 
> 0). We must assume of course, as indicated above, that labour is indispensable (which 
guarantees that mx > 0 in any feasible solution). From the analysis of Morishima and Bromek 
it follows that the conditions of the equilibrium can be rewritten as follows:  

 x, p ≥ 0, α > 0,  (14a) 

 mx = ps = 1,  (14b) 

 Bx ≥ α(Rx + γs),  (14c) 

 pB ≤ α(pR + γm),  (14d) 
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where γ is here the level of per hour consumption and the s = (si) coefficients the amounts  
consumed at unit level of γ. The level of γ is assumed to be given exogenously here, as in the 
case of the original von Neumann model. 

All we have done was to set the levels of the variables differently, using the equations 
given in (14b). They together imply that the total value of consumption will be positive, as 
required for meaningful solutions, so there is no need to add them. Notice that for the same 
reason  

 (R + γs◦m)x = Rx + γs, and p(R + γs◦m) = pR + γm,  (15) 

and this why we could replace inequalities (8c) and (8d), homogeneous in variables x and p, 
respectively, by their inhomogeneous counterparts.  

System (14) provides a complete characterization of equilibrium in the extended von 
Neumann model, with homogenous labour and a parametrically changing level of consump-
tion. It is equivalent to system (13), the conditions of Morishima’s model, except for the last 
one, which was replaced by pCx > 0 or p(s◦m)x > 0 in our case. This characterization of the 
equilibrium is interesting for several reasons. First, it introduces properly the real wage (w = 
γ) into the model by choosing the unit consumption bundle as numeraire (pc = 1). Second, 
this generalised form proved to be useful in comparing the analysis of von Neumann and 
Sraffa (see Kurz and Salvadori, 1995 for more details on this issue). But most of all, it allows 
one to change the exogenous-endogenous role of the growth (profit) factor and the level of 
consumption (real wage). One could do that both for technical advantages and in order to 
change the underlying economic hypothesis. 

In the original model of von Neumann the level of consumption was determined exoge-
nously. He did not refer to any mechanism that establishes its level and structure. He might 
have borrowed the concept of necessary consumption from classical economics. Once the 
level of necessary consumption is given, this determines the rate of profit and growth. But 
one could easily turn the causal relationship around: take the rate of growth as given 
exogenously and let the level of consumption become endogenous instead. One can, for in-
stance, assume a steadily growing population and constant per capita consumption needs. 
That will determine the necessary rate of growth, like in some neoclassical models of 
economic growth. (Cassel, as we will see shortly, assumed that all natural factors grew at the 
same constant rate.)  

But, as long as the equilibrium rate of growth and profit is unique, there is a one-to-one 
correspondence between α and γ, that is between the feasible values of the growth factor and 
the level of consumption. From a purely mathematical point of view therefore it does not 
matter which is determined first. Once one of them is given, the level of the other is deter-
mined too. In the analysis of the consumption-investment or the wage-profit function it 
proves to be useful to change the mathematical role of the two potential variables. For, as was 
pointed out, certain levels of consumption may not be associated with an equilibrium rate of 
growth. But this is not the case the other way around.  

It easy to show (see Bromek, 1974b or Zalai, 2002) that the domain of the feasible 
equilibrium factors of growth (profit) is a connected set, H = (0; Λ), which is determined as  
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 H = {α > 0: ∃ x ≥ 0, [(1/α)B − R]x ≥ s},   (16) 

where Λ is, under natural assumptions (i.e., constant capital is indispensable) a finite number 
and H may be closed from above, thus, H = (0; Λ].  

It can also be shown that treating α as parameter (exogenous variable) and γ as (endo-
genous) variable, the equilibrium of the generalised von Neumann model, system (14), can be 
found by solving the following (primal-dual) pair of parametric (α) linear programming prob-
lems: 

   Primal problem Dual problem 

   y ≥ 0, x ≥ 0  w ≥ 0, p ≥ 0 

 [(1/α)B − R]x ≥ ys  p[(1/α)B − R] ≤ wm (17) 

  mx ≤ 1   ps ≥ 1 

   y → max! w → min! 

One can easily see the mathematical equivalence of the solutions of the two systems, by 
taking γ = y = w. This reformulation of the problem allows one to gain further interesting 
results by using the theorems and techniques of linear programming, with which economists 
are usually more familiar than with topology or convex analysis.  

3.12. It is apparent that the equality of the equilibrium rate of growth and interest (profit) 
in the von Neumann model is a direct consequence of his assumption that all income in 
excess of necessary consumption is reinvested. It is also easy to show that the rates of growth 
and profit will as a rule differ if one introduces luxury consumption as well into the model. 
Let us denote the coefficients of luxury consumption by fij. If we add them to the model, the 
coefficients determining total use (dij = aij + fij) and those defining the cost of production (aij) 
will no longer be the same. The basic inequalities of equilibrium in this extended model will 
be as follows:  

 ∑j bij·xj ≥ (1+λ)·∑j (aij + fij)·xj ,   (5b) 

 ∑i pi·bij ≤ (1+π)·∑i pi·aij .   (6a) 

Clearly, the introduction of luxury consumption does not affect the definition of the profit 
rate and the prices. It can immediately be seen also that the above generalization of the von 
Neumann model abolishes its elegant (symmetric) duality.7 In the above extension of the von 
Neumann model the rate of profit sets an upper limit for the potential growth rate (λ ≤ π). 
Under some normal conditions, the growth rate will decrease as the level (some or all coef-
ficients) of luxury consumption increases. It can in fact increase to a level at which there will 
be no growth at all (λ = 0, the case of simple reproduction), whereas the rate of profit remains 
positive. This is again in perfect harmony with the classical analysis of the capitalist mode of 
reproduction.  

                                                 
7 See Morishima (1964) and ≡o∇ and ≡o∇ (1974) for more on this or similar asymmetric extensions of the von Neumann 
model. 
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4. The Walras–Cassel-model and its Schlesinger–Wald variant8 

Let us turn our attention now to other salient models of general economic equilibrium that 
appeared prior to or concurrently with von Neumann’s model. The concept of economic 
equilibrium goes back at least to the classical economists who found a convincing analogy 
between the laws of nature and competitive markets (the famous “invisible hand” of Adam 
Smith). Both sets of laws seemed to be capable of securing long-term harmony, stability and 
efficiency. This ideal state is behind the concept of general economic equilibrium, and not 
just the law of supply and demand. The classical economists did not put that vision or parable 
into formal models. Even Cournot (1838), whom many consider as the first proper mathe-
matical economist, saw the formulation of such model as easy, but completely useless for any 
practical purposes (because of a lack of data, computational methods and facilities).  

Walras (1874) was the first who put aside such practical concerns and, in the spirit of 
pure science, ‘invented’ the first models of general equilibrium. In this sense, he is rightly 
considered to be the father of general equilibrium models. In the various editions of his 
famous book Walras presented a series of general equilibrium models of decreasing level of 
abstraction (pure exchange economy, production economy without and with capital goods). It 
is interesting to note that Marx, a contemporary to Walras, was the other economist who, in 
the words of the Nobel-laureate Arrow (1974), has got much closer to the modern theory and 
models of general equilibrium than any of his predecessors. He meant Marx’s two-sector 
schemes of reproduction and equilibrium prices.  

Despite the priority of Walras, we will start our review with a model of Cassel, a Swedish 
economist. His formal (static) model can be seen as a simplified version of that of Walras (it 
is often referred to as the Walras–Cassel model). Cassel’s influence on later developments 
became more crucial than that of Walras. His model had attracted the attention of one of the 
famous Viennese circles of scholars in the 1920s. They were interested in the formal analysis 
of some concepts of the Austrian neoclassical school of economics. The problem at the focus 
of their attention was the so-called principle of imputation (Zurechnung).  

Carl Menger (1871) divided the economic goods into the groups of final products and 
factors of production (of various orders). The equilibrium prices of the final products, in his 
view, are directly established by the consumers’ preferences, which in turn determine, via 
imputation, the prices of the factors of production (distributing the revenue among their 
suppliers). Once we know the prices (pi) and the input requirements (dki) of the products, the 
prices of the factors of production (wk) can be found, as Wieser (1893) has showed it, by 
solving the following system of equations: 

 w1·d1i + w2·d2i +…+ wm·dmi = pi, i = 1, 2,…, n (18) 

where n is the number of outputs, m is the number of inputs.  

For a mathematician it was clear that the above price formation rule is far from being a 
trivial mathematical problem. What ensures the regularity (n = m) of the system of equation? 

                                                 
8 This section draws heavily on Punzo’s (1989) penetrating analysis of the related issues. 
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Even if it were a regular system, what would guarantee that it has a non-negative solution? 
The examination of this problem made the Viennese scholars interested in the model of 
Cassel, who complemented the price imputation formula (18) with equations:  

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk, k = 1, 2,…, m, (19) 

that require the equality of demand and supply of the of production factors. yi is here the 
production of final good i, determined by a yi(p1, p2,…, pn) demand function and sk the supply 
of the kth factor of production, exogenously given (fixed) in the model. (Cassel fixed the 
level of prices by setting the level of total income to 1, therefore income did not appear in his 
demand functions as a variable. This is sometimes not well understood.) 

The conditions of equilibrium of the Walras–Cassel model constitute thus a regular 
system of equations. This made it possible for Cassel to rely on the classical method of coun-
ting equations. Moreover, the model can be reduced to a simple form as follows. Substitute 
first in the demand functions the product prices with the production factor prices, based on 
the expressions given by (18), and next replace the production level variables in (19) by the 
resulting demand expression. At the end one arrives at a reduced regular form, 

 dk(w1, w2,…, wm) = sk, k = 1, 2,…, m,  (20) 

where the kth equation expresses the equality of supply (sk) and demand (dk) on the market of 
the kth production factor.  

It should be emphasized that Cassel formulated his model according to the ex post 
modelling tradition of classical physics. The values of the variables of his model were 
assumed to be directly observable. Moreover, their observed, naturally positive, longer-term 
average values were assumed to be equilibrium values, which thus had to satisfy the above 
conditions. The solvability of the equation system, i.e., the existence of equilibrium, was 
therefore not a question of mathematical feasibility for Cassel (or for Walras for this matter) 
but an observed (observable) fact of life.  

Also, because the model was a timeless (not static, as is often contended mistakenly) 
expression of a longer period equilibrium position, by assumption only scarce production 
factors, i.e., factors with positive prices appeared in the model. The parameters of the system 
were supposed to be estimated, calibrated in such a way that would guarantee the existence of 
a solution with positive (equilibrium) prices. And if one intends to use the calibrated model 
for comparative static analysis, he should also ensure that the solution is locally unique and 
robust. Robust in the sense that small perturbation of the parameters will result in a system 
which will also have a positive solution. (This condition was emphasized and called local 
stability by Hicks.) 

The Viennese scholars thought that “Cassel’s clever idea” (Punzo, 1989) gave the proper 
solution of the price imputation problem investigated by them. But Schlesinger (1935), 
following the Austrian approach, used inverse, pi(y1, y2,…, yn) demand functions, in which 
prices are determined by the quantity of demand, and not the other way around. This 
seemingly innocent formal change resulted in significant consequences. The Schlesinger’s 
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variant of the Walras–Cassel model can no longer be reduced by Cassel’s method. One can 
only reduce the model to the following form:  

 w1·d1i + w2·d2i +…+ wm·dmi = pi(y1, y2,…, yn), i = 1, 2,…, n, (18a) 

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk, k = 1, 2,…, m. (19) 

Although the resulting system is regular, it still does not solve the mathematical problem 
of factor price imputation. Consider the equation subsystem (19) that determines the 
production possibility set. Suppose (y1, y2,…, yn) satisfies these constraints, and substitute 
them into the demand functions. The equation system (18a) is as a rule not regular, it could 
be under- or over-determined, in the same way as in the original price imputation problem. 
So they were back to the square, Cassel’s clever idea did not help the Viennese scholars at 
all. What would have showed up as a negative factor price in Cassel’s model appeared in the 
form of irregularity in their version of the model (cf. Punzo, 1989). 

In order to overcome the mathematical problem Schlesinger (1935) in the end proposed to 
use inequalities and complementary slackness conditions instead of equations:  

 dk1·y1 + dk2·y2 +…+ dkn·yn ≤ sk, k = 1, 2,…, m, (19a) 

requiring the price to be zero whenever a factor is oversupplied:  

 wk·(dk1·y1 + dk2·y2 +…+ dkn·yn) = wk·sk, k = 1, 2,…, m, (19c) 

 It was with regard to the model given by conditions (18a), (19a) and (19c) that Wald 
(1935) proved, roughly at the same time, but apparently fully independently from von 
Neumann, the existence of general equilibrium.9 As one can clearly see, both their models 
and the mathematical techniques used in their proofs were completely different. 

Punzo (1989) was completely right to point out that Schlesinger and Wald, by the above 
seemingly innocent change, have actually transformed Cassel’s ex post model into an ex ante 
model. The constituents of such a model are no longer observed (or potentially observable) 
economic magnitudes but those of an abstract metamathematical structure. The input 
coefficients are no longer observed long-term averages, assumed to change relatively slowly 
with prices, but fixed technological coefficients. In such an abstract model it is not possible to 
assume ab ovo that a state characterized by the conditions of equilibrium exists at all, and if it 
does, determine in advance which factors will be scarce. Everything depends on the model 
parameters, which could take any value, except for the required sign. 

From this point of view, the von Neumann model and Schlesinger–Wald variant of 
Cassel’s model are similar. Apart from that it is only the use of the complementary slackness 
conditions that establishes similarity between them. Observe however that Schlesinger and 
Wald used these conditions only partially, only for the factors of production, but not for the 

                                                 
9 Von Neumann’s proof was the first by all accounts; it must have been ready sometime in the period of 1928-1932. It 
was, however, not published and known in Vienna, despite his close contact to K. Menger. It was Menger who had 
informed von Neumann about the work of Schlesinger and Wald that prompted him to submit his paper for publication in 
a volume edited, as a matter of fact, by Wald. 
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products or the activities. This was made possible by a stringent assumption adopted by Wald 
for the demand functions. Namely, he had postulated that the price of any given product 
would go to infinity, as its available amount approached to zero. This implies that every 
product is needed for consumption and will be produced (i.e., every activity used in equi-
librium). 

5. Cassel’s model of stationary growth 

One of the apparent differences between the discussed model of Cassel and that of von 
Neumann is the timeless nature of the former. Cassel has only verbally outlined a multi-
period extension of his model. It is very easy to put it into formal terms, which is the probable 
reason for Cassel not to do it by himself. It is also a model of a stationary economy, like von 
Neumann’s, in which the production of the various goods grows at the same rate. As will be 
seen, their models are substantially different nevertheless.  

In outlining his multi-period vision of the conditions of equilibrium Cassel assumed too 
that production took place in uniform, discrete periods of time and exchange only at the end 
of each period. He continued to portray an economy, in which the products served only for 
the purpose of final consumption and were produced from primary factors alone. As a result, 
it is only the availability of the primary (natural) factors (including labour) that can limit the 
level of production and its growth in time. Cassel postulated a stationary economy in which 
the various primary factors as well as the production and consumption of various final goods 
grew at the same (ρ) rate over time. 

From these assumptions it follows that the equilibrium conditions (19), which state the 
equality of demand and supply of the input factors remain the same. (Both sides of the 
equations must be multiplied by the same growth factor from one period to another.) Because 
of the assumed one period lag between purchasing the factors of production and selling the 
final goods produced, the revenue received in equilibrium must cover interest as well. This 
means that we have to multiply the cost side of equations (18) by the factor of interest. Assu-
ming that all income is spent in each period, the expenditure of a given period will be equal 
to the revenue yielded by the production of the previous period. Therefore, the factor of 
interest must be the same as the factor of growth. All these assumptions result in a system of 
equations that is different from the condition of the timeless model only in the exogenously 
given factor of interest, (1+ρ):  

 (1+ρ)·(w1·d1i + w2·d2i +…+ wm·dmi) = pi, i = 1, 2,…, n, (21) 

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk, k = 1, 2,…, m,  (22) 

where yi = yi(p1, p2,…, pn). 

6. Capital goods in the Walrasian model of general equilibrium 

The model of Cassel and von Neumann are thus very different from each other, they are 
rather complements than variants of the same model. Capital shows up in Cassel’s model 
merely in the form of advanced cost, and capital goods and physical capital accumulation is 
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completely missing from it. This is a typical neoclassical feature of the model. In this respect 
Walras was still fairly classical, because he had introduced capital goods in one version of his 
general equilibrium model. We will have a look at that model now.  

We will in fact present a slightly more general version of the original one given by 
Walras. Unlike in his model, in our model final (consumption) goods and capital goods are 
physically not necessarily distinct commodities. The goods that appear in our model will be 
classified into three groups:  

− final products (goods currently produced but not used as material inputs in produc-
tion, including pure capital goods produced in the given period too),  

− capital stocks (accumulated final products, assumed to be physically the same as their 
currently produced counterparts) and  

− primary (non-producible) factors.  
Let us now decompose final use (yi) into consumption (vi) and accumulation (zi). Let ki 

denote the accumulated stock of product i (the supply of capital goods) and sk the supply of 
the kth primary factor of production. Let us denote by kij the input coefficients of the capital 
goods and by dkj the input coefficients of the primary factors, as before. We will introduce qi 
to denote the price (or cost) of the ith capital good defined by Walras as the sum of the cost of 
amortization and the net rate of return on capital (the third element, the cost of risk insurance, 
will be disregarded here). 

The necessary conditions of general equilibrium in a model based on the above assump-
tions can be formulated in the spirit of Walras as follows:  

 qi = (ri + πi)·pi, i = 1, 2,…, n, (23)  

 vi(p, q, w) + zi = yi, i = 1, 2,…, n,  (24) 

 dk1·y1 + dk2·y2 +…+ dkn·yn = sk(p, q, w), k = 1, 2,…, m,  (25) 

 ki1·y1 + ki2·y2 +…+ kin·yn = ki, i = 1, 2,…, n, (26)  

 q1·k1i + q2·k2i +…+ qn·kni + w1·d1i + w2·d2i +…+ wm·dmi = pi, i = 1, 2,…, n,  (27) 

where πi is the net rate of return on good i used in the form of capital, ri is the rate of amor-
tization, vi(p, q, w) is the consumers’ demand function for good i, and sk(p, q, w) is the 
supply function of the kth primary factor of production, and p = (pi), q = (qi) and w = (wk). 

The number of the variables (yi, zi, pi, qi, πi, wk) in the (23)-(27) system of equations is (5n 
+ m), whereas the number of the equations is (4n + m). The system is thus underdetermined 
as yet and there remain n degrees of freedom. At the same time, the demand for goods for the 
purpose of accumulation (or, which is almost the same, the supply of capital stocks) has not 
yet been specified. Neither has the equality of the net rates of return on capital been 
postulated that must hold in a long-run equilibrium. The remaining degrees of freedom can, 
however, be removed by adding only one of the above two missing specifications. 
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Walras was perfectly aware of the fact that the equality of the rates of return requires the 
harmonization of the accumulation of capital stocks with their demand. If he chose to close 
the model by prescribing the equality of the rates of return, i.e., substituting  

 qi = (ri + π)·pi,  i = 1, 2,…, n. (28) 

for equations (23) and getting rid of the variables πi, nothing would ensure the above 
harmony. For, the values of variables zi were determined as residuals by equations (25)-(28) 
(they do not provide any feedback between zi and the other variables). If, on the other hand, 
he specified the investment demand in one way or another then nothing would guarantee the 
uniformity of the rates of return. 

The conditions of the model ensure that the total value of investments (∑i pi·zi) equals 
total savings, which can be determined as ∑i wk·sk(p, q, w) + ∑i pi·ki − ∑i pi·vi(p, q, w).10 This 
convinced Walras that it was possible for investments to adjust in such a way that would 
maintain long-run equilibrium and equalize the rates of return. He has as a matter of fact 
explicitly referred to a sort of tâtonnement process and eventually opted for the first closure 
possibility (Keynes choose the other option later).  

The introduction of equations (28) instead of equations (23) eliminates n – 1 variables, 
and the degrees of freedom will be reduced to one. Assuming, as Walras did, that the demand 
and supply functions are homogeneous of degree zero (depend on relative prices only), one 
can fix the price level and hence close the system. We must see however that any closure of 
the model is only a formal (mathematical) one and leaves the model essentially open ended. 

We close this section with some further remarks. Note, first of all, that the rate of return 
in the model of Walras, unlike in the case of Cassel or von Neumann, has no apparent 
relation with the rate of growth (as noted already above). In this connection it also worth 
pointing out that his model, unlike the models mentioned above, contains only the intra-
temporal, but no intertemporal conditions of a full-fledged multi-period model. It is only 
implicit in the model that accumulation in a given period will increase capital stocks available 
in later periods. But the intertemporal constraints, describing the expansion of the capital 
stocks through time and which could lend a dynamic character to it, are completely missing 
from the model. The Walrasian model with capital goods is essentially a static representation 
of long-term equilibrium. This is exactly the reason why the problem of closure emerges in 
the model.11  

It should thus be no surprise that the Walrasian definition of the rate of return is basically 
the same as the one used by von Neumann. This can not immediately be seen from the 
mathematical formulas. Let us therefore elaborate on this point further. Recall the pricing 
                                                 

10 The decision on consumption and investment is thus imbedded into the demand and supply functions. Their concrete 
form determines how much income will be saved. Also note that nothing guaranties that it will be positive at all. The rate 
of return on capital is interestingly independent of the consumption and investment decision and therefore of the overall 
rate of growth. It is just like in the case of the von Neumann model with luxury consumption. 
11 The issue of macro-closure has been discussed more recently in the literature on applied (computable) general equilib-
rium models. See, for example, Dewatripont and Michel (1987) and Taylor et al. (1979). In static models, in which final 
use is split into consumption and investment, one can choose from among several closure options. They can, in fact, 
express diametrically different (Marxian, neoclassical, Keynesian) theories of distribution or saving/investment, as Taylor 
has rightly pointed it out. 
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equation of von Neumann and place below it a similar equation that can be derived from the 
Walrasian model:  

 p1·b1j + p2·b2j + …+ pn·bnj = (1+π)·(p1·a1j + p2·a2j +…+ pn·anj),   (29) 

 qj = (rj + π)·(q1·k1j + q2·k2j +…+ qn·knj + w1·d1j + w2·d2j +…+ wm·dmj).  (30) 

These forms reveal the similarities and differences, both the formal and substantial ones, 
hidden behind the mathematical formulas. The second factor on the right hand sides represent 
the value of capital advanced in process j in both cases. The expressions on the left hand side 
show the gross revenues (returns) generated by them. (1+π) and (rj + π) are thus the factors of 
gross return in the two models, respectively. 

The differences are perhaps more telling than the similarities. Let us comment on them 
one by one. First, it is interesting to note that the commodity prices (pi) of the von Neumann 
model correspond to the cost of capital (qi) and not to the commodity prices (pi) in the 
Walrasian model. Second, the unit revenue is the renting price of the capital good j in the 
case of Walras, whereas in the case of von Neumann it is the value of the jointly produced 
goods including different vintages of fixed capital too. These are direct consequences of the 
difference in the intratemporal (Walras) and intertemporal (Von Neumann) nature of the 
model constraints.  

Third, capital advance in the case of Walras contains the cost of primary factors, whereas 
it does not appear at all in the model of von Neumann. This is contrary to the assumption 
used by Walras in other contexts (e.g., labour), namely that the owners have to advance the 
cost of the primary factors. Such cost elements should be subtracted from the revenue of the 
capitalist in order to get his return. If we took the cost of the primary factors into account and 
revised the pricing formula of von Neumann, we would arrive at the following equations: 

 p1·b1j + p2·b2j + …+ pn·bnj = (1+π)·(p1·a1j + p2·a2j +…+ pn·anj) +  

 (w1·d1j + w2·d2j +…+ wm·dmj).   (31) 

This form is of special interest, because it is the equivalent of the Ricardo–Sraffa defini-
tion of equilibrium prices, generalized for the case of joint production and several primary 
factors, not just labour. Finally, let us come back to the definitions of the factors of gross 
return, (1+π) and (rj + π), in the two models. They are equivalent only if rj = 1 in the case of 
the von Neumann model. And this is exactly the case, because of the assumption that 
production processes are of one-period duration and exchange takes place instantaneously. 

In fact, it is one of the special advantages of the von Neumann model that it allows 
representing capital goods (fixed assets) used for several periods as a series of different 
vintages of the same good. Depreciation of the capital goods (due to wear and tear) can be 
expressed as the difference between their equilibrium prices, which reflect the differences in 
their efficiency. This is a very different approach from the concept of amortization based on 
replacement needs. The rate of amortization can indeed be taken to be equal to 1 in the von 
Neumann model, since every piece of capital is treated as circular capital, as if they were 
completely used up in the one period. 
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7. The circular nature of production and Leontief’s general equilibrium model 

Let us continue with the observation that the models discussed above, unlike the model of 
von Neumann, did not take the circularity of production into account. Classical economists 
emphasized that commodities are produced essentially by means of commodities themselves, 
as the title of the famous book by Sraffa (1960) stressed that too. It presents itself not only 
through investments (fixed capital goods) in multi-period models, but also in the form of 
intermediate consumption (materials used in production). Intermediate consumption, the use 
of products in production itself, accounts for a significant part of total demand in the modern 
economies as well as the costs of production.  

Even in a static model, such as the Walrasian model discussed above, it is easy to make 
up for this deficiency and introduce the intermediate use of products. Let rij denote their input 
coefficients and xj the total output of the jth product. Let us introduce these changes into the 
system of (24)-(28), and replace yj by xj in equation (25) and (26). (We will use yj to denote 
total final demand, as before, but it will not appear in the definition of the equilibrium 
conditions.) We must therefore rewrite the equilibrium conditions of the product markets as 
follows: 

 ri1·x1 + ri2·x2 +…+ rin·xn + vi(p1, p2,…, pn) + zi = xi, i = 1, 2,…, n,  (24a) 

and the conditions defining equilibrium prices must be modified accordingly too 

 p1·r1i + p2·r2i +…+ pn·rni + q1·k1i + q2·k2i +…+ qn·kni +  

 w1·d1i + w2·d2i +…+ wm·dmi = pi, i = 1, 2,…, n  (27a) 

The conditions of equilibrium will otherwise remain the same.  

The modified system of equations (24a)-(27a) and (28) yields nothing but the framework 
of the well-known input-output model of the Nobel-laureate Leontief (1928, 1941). Leontief 
used a much simpler version of it, because he had primarily designed his model for practical 
use. He avoided the use of demand functions and he did not take into account primary 
resources (labour and capital stocks) as potential capacity constraints. In this regard his model 
is similar to von Neumann’s. Instead, Leontief took the parameters of both final demand and 
value added (the cost of primary resources) as exogenously given in his model. As a result, 
Leontief’s static12 model can be reduced to the following two sets of linear equations: 

 ri1·x1 + ri2·x2 +…+ rin·xn + yi = xi, i = 1, 2,…, n,  (24b) 

 p1·r1i + p2·r2i +…+ pn·rni + hi = pi, i = 1, 2,…, n,  (27b) 

where hi is the coefficient of value-added (which was equal to the price itself in the Walrasian 
model). The duality of the two systems is perfect, but – unlike in the case of the von 
Neumann model – there is no cross-relationship between the definition of the production and 
valuation equilibrium, the two sets of equations and variables fall completely apart. 

                                                 
12 Much later Leontief and others have also developed stationary and dynamic intertemporal versions of the model too. 
For the lack of space they will not be discussed here. 
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Under normal conditions13 the above two systems of equations can be rearranged and 
solved for variables xi and pi. This can be achieved by means of the total (direct and indirect) 
input coefficients, the elements of S = (sij) = (I − R)−1, the so-called Leontief-inverse. As a 
result we get 

 xi = si1·y1 + si2·y2 +…+ sin·yn, i = 1, 2,…, n,  (32) 

 pi = h1·s1i + h2·s2i +…+ hn·sni, i = 1, 2,…, n.  (33) 

Let us return to the beginning of this section, where we have noted that Cassel completely 
and partly Walras too disregarded the circularity of production. The products in their models 
appeared as final goods, which could be produced from primary resources alone. As a result, 
the prices of the products became directly determined by the cost of primary factors. We 
should however be fair to them. One can assume that they have omitted the intermediate use 
of products for the very simple reason discussed above. Namely, because they might have 
realized that in the absence of joint products and technological choice the equilibrium 
conditions could be reduced and defined in terms of final use and value added. 

It is however only one thing that products may serve as intermediate (flow) inputs in 
production, and thus contribute to its cost (material cost plus amortization). It is equally 
important that some stocks of produced goods are tied up in production for shorter or longer 
periods of time as real capital. The producers have to advance their cost in the form of money 
capital. The occasional sales of the products and services return the advanced money, 
increased in value, if it was profitably invested. Their annual average value is what classical 
economists called circulating and fixed capital, depending on the velocity of their turnover. 
The classical economists were preoccupied with the phenomenon of the circulation of capital, 
which has not received enough attention in the neoclassical mainstream. 

It is difficult to represent the physical (real) form of capital, because it changes con-
stantly. It takes the form of inventories of materials, semi-finished and finished products, 
including investment goods, machinery and buildings and other constituent parts of fixed 
assets. They determine the value of the capital advanced, which should in theory yield the 
same rate of return in the long-run in every sector of production. On the other hand, in the 
short run, the stocks of products accumulated in the form of circulating or fixed capital 
constrain the production capacity in the same way as the primary factors of production. Their 
returns can thus be viewed as prices (rents) determined by relative scarcity. 

These features of capital turnover and their impact on the determination of equilibrium 
prices can not be dealt with, in their full complexity, in the static or stationary models of 
general equilibrium. The models of von Neumann, Leontief (especially his dynamic input-
output model) and Sraffa provide alternative frameworks, in which the above issues can be 
analyzed, albeit in a rather simplified manner only. These analyses nevertheless reveal that 
the input-output and capital coefficients set, under normal conditions, a finite upper limit for 

                                                 
13 They are usually referred to as the Simon–Hawkins or productivity conditions. See Zalai (1989 and 1997) for their 
review and some generalizations. 
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the rate of profit, which in turn is a constraint for the general rate of growth. And this is the 
message of von Neumann’s model as well. 

8. Comparisons and concluding remarks 

Instead of presenting a full discussion of the differences and similarities among the 
various models we shall list only some salient features. Almost all of them will point in 
favour of von Neumann’s model and show his invaluable contribution to many future results. 

• The full mathematical duality of the production and price decisions in his model anticipated 
the duality (complementary slackness) theorems of linear programming. 

• Von Neumann was the first to use a general linear activity analysis model to describe the 
technology by allowing for joint production and technological choice. With that he also 
paved the way for the production set approach. 

• He was also the first to recognise and formalise the dual symmetry of the conditions 
characterising the choice of efficient (optimal) activities and the determination of such a 
(equilibrium, efficiency or shadow) price system that sustains the technological choice under 
the conditions of a competitive market. 

• He used for the first time a fixed-point theorem in the proof of existence of equilibrium that 
became part of a standard (almost unavoidable) tool in general equilibrium analysis. (Wald 
used the traditional methods exploiting the specific feature of his model). 

• Neumann was also the first to demonstrate the close relationship that exists between the 
concept of equilibrium in economic systems and games. 

• By taking into account the circularity of production von Neumann reintroduced real capital 
into general equilibrium analysis. He showed that the stocks of various kinds of capital 
goods were endogenously determined and could potentially create bottle-necks (‘scarce’ 
production factors) that allowed for a deeper analysis of the nature of capital and profit.  

• The factors of growth and profit (interest) are endogenously determined in his model by the 
productivity of the system of reproduction (and not exogenously given as in Cassel’s model). 

• The above factors are equal in his model only because of the assumption that surplus is fully 
reinvested. (In Cassel’s model they always coincide by assumption.) 
These are important differences that distinguish the model of von Neumann from the 

models of his predecessors and contemporaries. As mentioned earlier, von Neumann did not 
reveal much of the origins of his paper and his puzzling remark, “it is obvious to what kind of 
theoretical models the above assumptions correspond“, gave rise to an extensive series of 
speculations and debates (cf. Punzo 1989, Kurz and Salvadori, 1995).  

His close relationship with K. Menger and his stay in Germany between 1926 and 1932 
make it likely that von Neumann found the economic interpretation of his model in the 
German language literature, either directly or indirectly (through seminars and discussions). 
It seems also probable that he was at that time more interested in finding an economic inter-
pretation for his minimax theorem developed originally for game theory, than in economics 
as such. In the spirit of Hilbert that could increase the value of his metamatematical model 
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(cf. Punzo, 1989). The original German title of his paper seems to confirm his prime interest 
in methodology. 

We do not think that he would have noticed or cared much for the nuances, which distin-
guish the various schools of economics from each other. He addressed such profound and 
universal economic issues that could be placed into the theory of almost any economic 
school. The model could be given interpretations pertaining to different modes of commodity 
production. It could be a simple (small owners’) commodity production system (discussed at 
length by Smith and Marx), a full-fledged capitalist economy (in the way studied by the 
classical economists) or a centrally planned, market socialist system (decentralised in the way 
envisaged by Barone, Lange and their latter followers).  

At the heart of von Neumann’s model lie the old ideas of just and efficient prices and the 
requirements of balanced, equilibrated proportions of reproduction. He has portrayed the 
economy in its many aspects as classical economists did before him (see Kurz and Salvadori, 
2003 for more details on this relationship). It consists of independent departments that are not 
only production units, but cater also for their part of the population. They produce goods 
mainly for others, making use of their comparative advantages. Goods are produced thus as 
commodities and are exchanged on the markets. The quest is for such institutions and mecha-
nisms that harmonise the interests of the independent units, enforce efficient decisions as well 
as sustain a high level of growth on the longer run.  

Von Neumann’s model is in our view a brilliant abstract mathematical metaphor of this 
almost ancient idea. The conditions of equilibrium establish not only the short-term (period 
by period) harmony of supply and demand, but they secure the conditions of a long-term 
proportional growth as well. The ‘exchange values’ are just in the sense that they cover the 
costs of replacement of the destroyed means of production, the living cost of those engaged in 
production, and in addition, the cost of investments that allow each unit to grow at the same 
rate. The accumulation in fact makes it possible for an expanding population to enjoy the 
same living standard in every period. For what other purpose would the accumulation serve if 
the per capita consumption remains constant over time? 

Coming back to the comparison of the models surveyed, we would like to call attention 
again to the significant difference in ex post and ex ante approach (cf. Punzo, 1991). By the 
age of von Neumann and Wald the axiomatic and mathematical approach started to gain 
wider acceptance also in economics. They have been brought up in the latter philosophy, 
whereas his forerunners had still used the approach of classical physics. For them, unlike for 
Walras or Cassel, the existence of equilibrium in a model was no longer an empirical matter, 
but a feature of the model that had to be proven.  

Due to the spread of the axiomatic and mathematical approach, the mathematically in-
clined and trained economists, whose number was steadily growing, had radically changed 
their perception of the subject matter and methodology of economics. In its early years the 
main objective set for quantitative economics was to develop the methodology and practice 
of empirical research (cf. Weintraub, 1983, 1985). There was in fact an explicit aversion 
against abstract mathematical economic theories (‘Bourbakism came to mathematical econo-
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mics’, cf. Weintraub and Mirowski, 1994). Circumstances have however led quantitative 
economic research somewhat astray, first in the USA and later world-wide too.  

The focus of research had drastically shifted from the applied to the pure. The logical 
consistency and mathematical elegance of the model became more important than its 
empirical relevance. The prolonged expansion upon the (otherwise outstanding) works of 
Arrow and Debreu (1954), McKenzie (1954) and others, the pioneers of modern general 
equilibrium theory, clearly exemplifies that development.14  

Because of the serious limits that impede empirical experiments and tests, the profession 
became seriously divided on the issue of the usefulness of the axiomatic methodology and 
mathematical language in economics. It is perhaps not by accident that neither von Neumann 
nor Wald continued their research on the abstract models of general equilibrium, despite the 
fact that they both immigrated to the US before the Second World War and became closely 
associated with the circles of quantitative economics there. Had von Neumann perceived that 
research on general equilibrium had ‘travelled far from its empirical source’ and started to 
show “the signs of becoming baroque”, and hence the danger of “degeneration signalled up”? 
– quoting von Neumann, 1947. We just do not know. Science in general and economics has 
certainly gained by his choice. 

 

                                                 
14 The perception of general equilibrium models has somewhat changed with the spread of computable (CGE) models in 
the 1970s and 1980s. In the early 1950s the necessary statistical databases, the mathematical algorithms and 
computational techniques were not yet available for their empirical applications. 
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