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Abstract. We consider a generalization of the maximum flow problem where instead 
of bounding the amount of flow which passes through an arc, we bound the amount of 
flow passing "near" an arc. Nearness is specified by an extra distance parameter d. When 
d = 0 we get the usual network flow and d = 1 corresponds to bounding the flow through 
the nodes. A polynomial time algorithm is given to solve the max-flow and min-cost non
interfering flow problems for d = 2 and it is shown that the problems become NP-hard 
for d 2':: 3. A polynomial time algorithm is outlined for arbitrary d when the underlying 
network is planar and how a.n integral flow ca.n be obtained from a. fractional one. Finally, 
we describe relationships with induced circuits and perfect graphs, VLSI chip design and 
the Hilbert basis problem. 

1 Introduction 

Historically, network (s, t) flows were studied as a model for the problem of shipping 
commodities through a network from a supply source to a destination where the 
arteries of the network had capacities on the amount of flow which could be shipped 
along them. Thus a solution to the ma#mum ( s, t) flow problem would be interpreted 
in the graph G = (V, E) representing the network as a maximum collection of s - t 
paths such that for each edge, the number of paths containing that edge is no more 
than its capacity. (We presently restrict ourselves to undirected networks but we 
consider later some directed versions of the problem.) Ford and Fulkerson showed 
that it was enough to solve the problem 

(1) maxl·y 

y·M :$ u 

y ~ 0 
where u ~ 0 is an integral vector of capacities on the edges and Mis a matrix whose 
rows are indexed by the set of (s, t) paths paths and whose columns are indexed by 
the edges E. For a path P, its associated row in M is the incidence vector of its 
edge set. A feasible vector y for (1) is called a u-capacitated s - t flow and its value 
is 1 · y. 

The theory of network flows continues to be of interest in particular due to its 
relationship to wiring problems arising in the design of microchips. This imposes new 
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constraints on the problem. In this paper we consider an extension which models the 
phenomenom of interference surrounding a wire, or path. Thus our aim is to solve 
(1) where we bound the amount of flow which passes within a specified distance of 
an edge. To be more precise, for an integer d and S C EU V, the d-environment of 
S, denoted by Ed(S), consists of those elements f3 E EU V \ { s, t} for which there is 
a path P with at most d elements of EU V such that (i) P is not incident with s or 
t and (ii) P connects /3 to an element of S (N.B. we count both edges and nodes in 
the path P). Note that the !-environment of the edge set of an s - t path P consists 
of the edges and internal nodes of that path; the 2-environment is the union of the 
I-environment and the edges "hanging" from internal nodes of P. 

Consider now the LP (1) where the rows of M are the incidence vectors of d
environments of.the edge sets of s - t paths. Let u' be an integral vector of capacities 
on E. An extension u* of u' is a vector of capacities on V where (i) the capacity 
of a node is at least as large as the minimum u' capacity of an edge incident to it 
and (ii) for each edge xy, one of u; or u; is bounded above by u~Y. An integral 
capacity vector of the form u = ( v.', u*) where v.• is an extension of u', is called 
tamed. In the case that we have a tamed capacity vector and M is as described 
above, call the the resulting LP (1) the maximum ( u, d)-capacitated ( s, t) flow (or 
simply maximum (u,d) flow) problem. Denote this problem by MF(G,s,t,u,d), 
or by MF( u, d) when no confusion arises, and let µ( G, s, t, v., d) denote the value 
of a maximum ( u, d) flow. For d = 0, this is just the usual maximum network 
flow problem. Ford= 1, M F(G, s, t, u, d) is equivalent to network flows with node 
capacities. This is because if u* is an arbitrary vector of integral capacities on il, 
then there is an edge capacity vector of which u• is an extension. 

Note that when dis even, if a path weighting y is infeasible for (1), then there 
is a violated upper bound constraint which corresponds to an edge. This is because 
if some edge is in the 2k-environment for a node v :f. s, t, then it is also in the 
environment of any edge a incident to v. Thus if v's constraint is violated, then so 
too is a's constraint. Similarly, if d is odd-, then infeasibility of a path weighting 
y implies that some node constraint is violated. (N .B. We use here the fact that 
our capacity functions are tame.) Thus for d even (respectively odd) let Md be a 
matrix whose rows are the incidence vectors of the edges (respectively nodes) in the 
d-environments of s - t paths. A vector is called a d-vector if it assigns weights to 
edges or nodes when dis even or odd respectively. Ifwe let u be an integral d-vector, 
then the above remarks together imply that MF( v., d) is equivalent to: 

(2) max l · y 

y·Md :::; u 

y 2:: 0. 

We take this as our standard formulation of MF(u,d). It is interesting to observe 
that this says that the "min-cuts" for (u, d) flows (i.e., dual solutions) will correspond 
to weighted sets of edges or nodes depending on whether d is even or odd. This 
provides a different perspective of the Menger edge and node cut theorems, (i.e., 
that they fit into this larger scheme which is based on some notion of parity). 

In Section 2 we show how to solve MF( u, 2) in polynomial time and show that 
M F(u, d) is NP-hard for d 2: 3. We also consider the problem of computing a 
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minimum cost (u, 2) flow. 
In Section 3 we consider the maximum ( u, d)-capacitated integral (s, t) flow prob

lem were we require an optimal integral solution to (2). We denote this problem by 
MF'(G,s,t,u,d) and its optimal value by µ'(G,s,t,u,d). Note that µ'(G,s,t, l,2) 
is at least two if and only if s, t lie on a common circuit without chords, i.e., an 
induced circuit. The problem of determining whether two nodes lie on an induced 
circuit has been shown to be NP-complete by Fellows [2]. Thus computing integral 
( u, 2) flows (and in fact integral ( u, d) flows for d ~ 2) is NP-hard. On the other 
hand, we describe a polynomial time algorithm given in [9] which solves the inte
gral ( u, d) flow problems for planar networks. This work has several extensions and 
applications which we discuss in Section 4. 

2 Computing ( u, d) Flows 

2.1 Maximum (u, 2) Flows 

Unlike the situations ford= 0,1, we are no longer guaranteed that µ(G,s,t,u,2) 
is an integer. Indeed we will see that the graph of Figure 1 is a graph for which 
µ(I, 2) = ~- We describe two approaches to solving MF(u, 2) in polynomial time. 

s 

Figure 1: 

Consider a directed graph D created from G by directing all edges incident with 
s and t in such a way that they become respectively source and sink. We then take 
two copies of each other edge and orient these in opposite directions. Finally we add 
the extra arc (t, s). We claim that M F(u, 2) is computed by solving: 

(3) max X(t,a) 

A·x=O 

Xa ~ 0 for each arc a, 
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x(6-(u)) S Usv 

x(o+(v)) s; Uvt 

x(o-(x)) + x(8-(y)) - X(x,y) - X(y,x) S Uxy 

for sv EE, 

for vt EE, 

for the remaining edges xy E E. 

Here A is the node-arc incidence matrix of the digraph D and for S c V, s-(S) 
(respectively o+(S)) denotes the set of arcs directed into (respectively out from) S. 
Note that except for the last three sets of bounding constraints this looks like the 
traditional LP formulation of the maximum (s, t) flow problem. Note also that if 
u = l, then these constraints forbid assigning weight greater than ~ to an s - t paths 
with a chord. This is not an issue since such paths can always be short-cutted. We 
must use alternative methods, however, when we consider the directed problem in 
Section 4.1. Since (3) has a linear number of constraints, it can be solved by any 
polynomial algorithm for linear programming in time polynomially bounded by the 
input G, u, d. Moreover, the resulting solution (i.e., weights on the arcs of D) can 
be polynomially transformed to an optimal collection of paths. 

The above approach is conceptually simple and varies little from the traditional 
solution to the max-fiow problem. Unfortunately it does not extend to computing 
( u, d) flows in general. We need a different approach to solve the minimum cost 
and directed versions of the ( u, 2) flow problem. We outline this approach first for 
computing µ( u, 2) as it is also a means by which we can show the NP-hardness of 
MF( u, d) for d ?. 3. 

Note that the dual of (2) is: 

(4) mm u · x 

Md · x ?. l 

x ?. 0, 

where x is a d-vector of variables. 
Results of Grotschel, Lovasz and Schrijver [6], [8] imply that in order to solve 

(4) in polynomial time it is enough to have a polynomial time algorithm which 
determines whether a vector x satisfies the constraints of (4) (i.e., a separation 
algorithm). When d == 2, this separation problem can be reduced (in polynomial 
time) to a shortest path problem as follows. Given x ERE it is easy to check that 
x ?. 0. Thus determining whether x is feasible for ( 4) is equivalent to determining 
whether x · xC(P) ~ 1 for each induced (s, t)-path P (where xC(P) denotes the 
incident vector of edges in E2(E(P))). We define weights wx on E as follows: if uv 
is not incident to sort, then 

and 

We have defined w" so that the weight of an induced path P, 'L:creE(P) w~, is simply 

x · XC(P). Thus determining whether x · XC(P) ?. l holds for each path P is equivalent 
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to determining whether a smallest weight path has weight at least 1. Since wx 2: 0 
this latter problem is polynomially solvable. Thus the separation problem and hence 
the LP ( 4) is solvable in polynomial time. In fact, the Ellipsoid algorithm can be 
adapted (see [8]) to output an optimal dual solution in polynomial time. In our case 
this is a solution to the LP (2), i.e., a vector, y", of positive weights, each of which 
is associated with an induced (s, t)-path (in particular y" can be represented in a 
polynomial number of bits). 

One may now easily verify that Figure 1 depicts a graph where µ(G, s, t, 1, 2) = 
~· This is done by exhibiting feasible solutions to (2) and (4). Namely, consider 
directing all edges in the graph "upwards" from s to t. Then assign weight 1/3 to 
each of the 8 directed ( s, t)-paths. Conversely, a feasible solution to ( 4) is obtained 
by setting each of the bold edges to a value ~. 

We close the section with a problem. 
Problem 1: Give a combinatorial algorithm (not based on an algorithm which 

solves general linear programming) to compute µ( u, 2) in general graphs. 

2.2 Minimum Cost ( u, 2) Flows 

For the remainder of this section, c is a vector of non-negative costs on E. We 
define a vector c• on the induced (s,t)-paths P such that c:p = l:aeE(P)c0 • If the 
maximum in (2) is at least k, then the minimum cost (u, d)-capacitated induced (s, t) 
flow of value k problem MC(G, s, t, u, d, c, k), or simply MC(u, d, c, k), is: 

(5) min c" · y 

yM :$ u 

1 . y = k 

y 2: o. 

The dual of (5) is 

(6) max (-u) · x + k/3 
M x + c• 2: /3 · 1 

x 2: o. 
It is straightforward to check that (x,/3) is a feasible solution to (6) if and only if 
the shortest (s, t)-path, with weights (wx + c) on the edges, is at least /3. Hence, we 
may again use the Ellipsoid Algorithm to solve (5). Thus we have that 

Theorem 2.1 MC(u, d, k) can be computed in polynomially bounded time. 

We raise the following question. 
Problem 2: Find a combinatorial algorithm to solve MC(G, s, t, u, d, c, k) for 

general or even for planar graphs. 

2.3 Computing (u, d) Flows is Hard in General 

We consider next the problems M F(u, d) for d > 2 and we argue in a reverse 
manner to the previous section. Namely, if we can solve (2) for d = 3 for an 
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arbitrary integral vector u, then we can solve the separation problem for its dual. 
The latter problem we call the caterpillar problem which is defined as: Given a graph 
G and nonnegative integral weights w on the nodes, find an s - t path P for which 
w(V(P) U N(V(P) - {s, t}) is minimized. We show that the caterpillar problem is 
NP-hard for general graphs and hence so too is M F(u, 3). 

We give a reduction of the node cover problem in general graphs to the caterpillar 
problem. Recall that the node cover problem is for a graph G = (V, E) and integer 
k, to determine whether there is a subset S of size k such that V - Sis a stable set. 
We construct a graph G* as follows. First take IEI cycles of length four each of which 
is identified with an edge e = uv E E by labelling two of its non-adjacent nodes as 
eu and e11 • The cycles are now concatenated on the unlabelled nodes to form a long 
chain. We then label the two extreme (unlabelled) nodes of degree two ass and t. We 
also add a new node n11 for each v E V and join it to e11 for every edge e E E incident 
to v. Each n., is also joined to !El new degree one nodes to ensure that any minimum 
cardinality s - t caterpillar will not use any of the nodes n 11 • So suppose that P is 
an s - t path not using any node n 11 • Let the degree two nodes traversed by P be 

Ep = {s,e 111 ,e.,~, ... ,e.,1El't}. Clearly Np= {v E V: e11 E Ep for some e EE} is a 
node cover of G. Moreover, the cardinality of P's caterpillar is simply IEJ + jNpl. 
Thus finding a minimum cardinality s - t caterpillar in the new graph corresponds 
to finding a minimum size node cover for G. 

s t 

Figure 2: 

The above ideas can be extended for d > 3 and so we have the following. 

Theorem 2.2 M F(u, d) is NP-hard ford~ 3. 

3 Planar Networks and Integral ( u, d) Flows 

3.1 The LP Approach to Integral (u, 2) Flows 

We state the following result from [11]. 
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Theorem 3.1 For graphs G with G - t planar, a (u, 2)-capacitated (s, t) flow y of 
value k can be transformed in polynomial time to an integral flow of value k. In 
particular, µ' ( u, 2) == [_µ( u, 2)J. Furthermore, the integral solution may be chosen to 
only use paths assigned positive weight in some optimal fractional solution. 

The above result is proved by uncrossing the paths assigned positive weights by 
y and then taking an appropriate subset of the resulting collection. Actually the 
latter statement of the theorem would be enough to solve MF'( u, 2) in polynomial 
time since we could repeatedly delete nodes of G until we find a minimal subgraph 
H ~ G such that µ(H,s,t,un,2) 2'. lµ(G,s,t,u,2)J. At this point the graph His 
precisely a collection of induced-disjoint s - t paths. Thus the maximum ( u, 2) flow 
problem can be solved in polynomial time for planar graphs. In particular we have 
the following. 

Corollary 3.2 For graphs G such that G-t is planar, seeing ifs, t lie on an induced 
circuit can be checked in polynomial time. 

This is related to a well-known problem arising in the study of so-called perfect 
graphs. An odd hole is an odd induced circuit of size at least five. The problem 
is to determine the complexity of finding whether a graph contains an odd hole. 
Hsu [7] gives a polynomial algorithm for planar graphs. We propose the following 
generalization of Corollary 3.2 and Hsu's result. 

Problem 3: Give an algorithm to determine whether two nodes in a planar 
graph lie on an odd induced circuit. 

We state another result of [11] showing that minimum cost flows in planar graphs 
can also be transformed into integral flows. 

Theorem 3.3 If G-t is planar and y is an optimal solution to MC(G, s, t, u, d, c, k), 
then a ( u, 2)- capacitated integral flow of value k with the same cost can be found in 
polynomial time. 

Specifically, this and Theorem 2.1 imply: 

Corollary 3.4 For planar graphs G and nonnegative integral costs on the edges, a 
minimum cost induced circuit through two specified nodes can be found in polynomial 
time. 

3.2 A Combinatorial Algorithm 

We now consider a combinatorial approach to finding a maximum (1, d) integral 
flow in a planar network. The method yields a min-max theorem which resembles 
Menger's edge cut theorem. The method also extends to the problem MF( u, 2), i.e., 
with general capacities. We must first introduce some concepts. 

For a graph G and d ~ 1, a d-path is a simple path of length at most d - l. 
A collection of s - t paths is pairwise d-separate if there is no d-path in G - { s, t} 
connecting internal nodes of distinct paths in the collection. Note that if d 2'.: 1, then 
an integral (I, d) flow in a graph is precisely a collection of d-separate paths. 

We assume that G is embedded in the 2-sphere S2. Let C be a closed curve in 
S 2 , not traversing s or t. The winding number w( C) of C is, roughly speaking, the 
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number of times that G separates s and t. More precisely, consider any curve p 
from s tot, crossing G only a finite number of times. Let >. be the number of times 
G crosses P from left to right, and let p be the number of times G crosses P from 
o right to left (fixing some orientation of C, and orienting P from s to t). Then 
w(C) =I>.- PI· This number can be seen to be independent of the choice of P. 

We call a closed curve C (with clockwise orientation relative to s) d-alternate if 
C does not traverse sort, and there exists a sequence 

(7) (Co,p1, C1,P2, C2, ... ,pi, C1) 

such that 

(i) P• is a a-path of G \ {s, t} with endpoints s,, t; (i = 1, ... , l); 

(ii) Ci is a (noncrossing) curve of positive length from ti-1 to S; traversing a f; 

of G ( i = 1, ... , l and Co = C1); 

(iii) C traverses the paths and curves given in (7) in the described order. 

Here, by traversing Pi we mean the image of C "follows" p; from one endpoint to 
the other. 

Intuitively it makes sense that if G has a collection of le d-separate s-t paths, then 
any alternate curve C must satisfy I~ kw(C). Since any member of the collection 
must cross C w( C) times and can only cross it on the paths p;. Furthermore, no two 
paths may intersect the same p; since the paths are d-separate, hence the number 
of Pi's is at least kw(C). This argument is fine when d $ 2, the problem for higher 
values of d is that there can exist a path which crosses C w( C) times but does not 
intersect w( C) of the Pi 'a. Fortunately, this can only happen when a maximum 
collection of d-sepa.rated paths is of size one! We now state the min-max theorem. 
A proof may be found in [9). 

Theorem 3.5 For a planar graph G: 

(i) There exists an integral (i, d) ft.ow of value k if and only if l( C) ::'.: k · w( C) for 

each d-alternate closed curve C. 

(ii) A maximum value (I, d) ft.ow from s tot can be found in polynomial time. 

(iii) The curves C in (i) can be restricted to those with w(C) <!VI-

Note that for the cases d = 0, 1 the max-fiow min-cut theorems imply that we may 

restrict ourselves to alternate curves of winding number one. This is not the case for 
d > 1 otherwise MF'( u, d) would always have an integral optimum as we have seen 
is not the case in Figure l. It would be attractive if one could give a better bound 
on the required number of windings of an alternate curve. The proof of Theorem 3 .5 
is by means of a path shifting algorithm which also produces a collection of paths 
which is optimal for (2). This yields the following min-max formula for M F(I, 2) in 
planar graphs. 
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Theorem 3.6 For a planar graph G, 
µ(G, s, t, I, d) = min{l(C)/w(C) : C is ad-alternate curve}. 

These methods can be applied to the case d = 2 with general capacities. In this 
case the capacity of a 2-alternate curve C, denoted by cap(C), is defined as the sum 
of the capacities of the Pi 's and if Pi is a. single node, then it is the minimum capacity 
of a.n edge incident to it. 

Theorem 3. 7 For a planar graph G and vector u of integers on the edges: 

(i) There exists an integral (u, 2) flow of value k if and only if cap(C) ~ k · w(C) 
for each 2-alternate closed curve C. 

(ii) µ(G, s, t, u, 2) = min{cap(C)/w(C): C is a 2-alternate curve.} 

Actually we do not know a counterexample to the obvious extension of this to 
M F'(G, s, t, u, d) for d > 2. Of course one must change slightly the definition of 
capacity. The capacity of ad-path Pi becomes the minimum capacity of an element 
in its center. (The center of a path P are those element of E(P) U V(P) whose 
d-environment contains both endpoints of P.) Vaguely speaking, the problem for 
higher values of dis that it is no longer obvious whether one can choose a noncrossing 
optimal collection of paths. 

The algorithm can be extended using the techniques of [14] to find a maximum 
collection of 2-separated paths for graphs on a fixed surface. It gives a. theorem 
resembling Menger's theorems. In particular, it states that for a graph embedded 
on a surface S of genus g either there are k 2-separated s-t paths or there exist /(g) 
alternate curves whose existence shows that there is no such collection. Here the 
function f corresponds to an upper bound on the number of homotopic possibilities 
there are for collections of k disjoint s - t curves ·in S (where we identify s and t 
with points on S). Note that in some sense the function f gives focus to why the 
induced circuit problem is computationally difficult in genera.I graphs. 

4 Extensions and Applications 

4.1 Related Computational Problems 

As far as solving for integral solutions, the combinatorial approach is generally prefer
able to the LP approach. The major advantage of the latter, of course is that it 
can be adapted to solve the minimum cost induced cycle problem. This in conjunc
tion with Theorem 5 heightens the interest in resolving Problem 2. The shifting 
algorithms of [9],[10] generalize to solve the maximum (u, d) flow problem in planar 
graphs and can be extended (as we will note) to solve the maximum flow problems in 
directed planar networks. It also, as mentioned, yields a min-max theorem which is 
a closer analogy to the minimum cut conditions of Menger and Ford and Fulkerson. 
We now discuss a few more related computational problems. 

1. Coloured.Paths 
Input: A planar graph G = (V, E) (possibly with multiple edges) 
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whose edges are coloured red and green. Source and sink s, t. 
Output: A maximum collection of green-edge paths such that no 
red path joins internal nodes of distinct paths. 
A similar characterization as to Theorem 3.5 holds for this problem although we 

have to change slightly the definition of an alternate curve: the faces it traverses are 
now faces of the green subgraph and paths Pi are simply red edge paths. 

In this problem the red edges can be thought to represent forbidden or high 
penalty regions in the graph. This phenomenom occurs often in the design of VLSI 
chips where terminals are iteratively connected by wires. As the number of wires 
increases, certain regions of the chips become more congested and efforts should be 
made to avoid routing through these areas. 

2. d-Separated Directed Paths 
Input: A Planar digraph D with source s and sink t and integer d. 
Output: A maximum collection of d-separated s - t dipaths. 
The method of Section 3.2 can also be extended to solve a directed version of the 

problem but we must modify slightly the definitions. (The proof is more involved 
than that of [10] and the details may be found in [9].) A collection of s - t dipaths 
is pairwise d-separate if there is is no directed path of length less than d connecting 
internal nodes of distinct dipaths in the collection. 

Here again, there is a min-max theorem where ad-alternate curve is defined as 
in (7) except that now the curves Ci are not required to only traverse a face: 

(i) Pi is a d-dipath of D \ {s, t} with endpoints Si, ti (i = 1, ... , /); 

(ii) C; is a (noncrossing) curve of positive length from ti-l to s; and these are the 
only vertices of D that Cs intersects (i = 1, ... , land Co= C1); 

(iii) C traverses the paths and curves given in (7) in the described order; 

(iv) each Ci may cross arcs only from right to left (relative to the orientation derived 
from C) and may not cross any arc in any d-path Pi. 

Here, the p/s may be directed from Si to t; or conversely. and C may traverse p; in 
either direction. Note that roughly speaking, condition (iv) requires that the arcs 
of D crossed by the C;'s point back towards s. It is interesting to note that in the 
directed case we do not require the paths in the collection to be induced, i.e., they 
may have backwards arcs. In fact, Fellows and Kratochvil [4] have recently shown 
that the problem of determining whether there is a single induced s - t dipath in a 
planar digraph is NP-complete! 

3. k-Star 
Input: Planar graph G, nodes and nodes v1 , .•. , v1c. 
Output: An induced subgraph consisting exactly of node-disjoint paths from s 
to each of the v; 's or proof that no such subgraph exists. 
4. InternaL..Node 
Input: Planar graph G and nodes u, v, w 
Output: An induced u - v path containing w or proof that none exists. 
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The fact that in Theorem 3.1 we need only that G - t is planar implies that the 
above problems are also polynomially solvable. 

5. Minium Weight Environment 
Input: A planar graph G, integer d, prescribed nodes s, t and ad-vector w. 
Output: An s - t path whose d-environment has a minimum w-weight. 
Finally, it would be interesting to extend the techniques of Section 3.5 to solve the 

capacitated version of integral d-separated paths. This would imply (see Section 2.3) 
the existence of polynomial time algorithms to solve the separation problems for the 
duals (4), that is the d-environment problem. In particular, this would imply the 
polynomial solvability of the caterpillar problem in planar graphs. 

4.2 Hilbert Bases and a Polyhedral Description 

Let G be a graph embedded on a cylinder. A path in G is linear if it joins the two 
ends of the cylinder. Let M2 be a matrix whose rows are the incidence vectors of 
2-environments of linear paths in G. Note that solving the resulting LP (2) is then 
equivalent to solving MF( u, 2) where s and t are nodes corresponding to the two 
ends of the cylinder. We have from Theorem 3.1 that an integral optimum to (2) is 
obtained by rounding down the fractional optimum. Systems M2 · :c ~ 1, :c ~ 0 for 
which this holds for each integral u are said to have the integer round-down property 
( cf (13], [1]). Giles and Orlin have shown that this implies that the rows of the 
matrix 

Figure 3: 

M2 1 
I 0 
0 -1 

form a Hilbert basis. Recall that a Hilbert basis is a set of vectors S such that 
each integral vector in the cone {:c : :c · s ~ 0, 'V s E S} can be written as a 
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nonnegative, integral combination of vectors in S. Thus we have the following special 
class of Hilbert bases, which we denote by H2(G, s, t). The Hilbert basis problem is 
to show that any integral vector in a cone( S) can be expressed as the sum of at most 
dim(cone(S)) integral vectors in S. 

Theorem 4.1 For a planar graph G and nodes s, t, the associated Hilbert basis 
H2 ( G, s, t) satisfies the Hilbert basis conjecture. 

Proof: Suppose that (u, 1) is an integral vector in the cone generated by H2 • Then 
there exists Y1, Yo 2: 0 and 1/; 2': 0 such that Yo· M2 + Yt ·I = u and 1 = 1 ·Yo - 'lj,i. 
Thus Theorem 3.1 implies that µ( G, 's, t, u, 2) 2: l l · yoJ and so there exists an 
integral vector zo 2': 0 such that zoM2 s; u and zo · l 2': ll · YoJ 2: f. Thus (u,1) = 
zo · M2 + z1 · I - (O, 0, ... , 0, -1//) for 'If;' = l l · YoJ - 1 and an appropriate integral 
vector z1 • But for planar graphs Theorem 3.1 shows that zo may be chosen so 
that its number of positive components is at most the number of components where 
z0 · M2 = u. Thus (u,1) has a representation with at most IEI + l vectors from H2, 
as desired. D 

We also obtain a polyhedral description for P(G, s, t) = Q+ + conv( {XC(P) : 
P is an s - t path}) for s, t in a planar graph G. Results of Fulkerson [3] imply that 
it is enough to know the structure of the vertices of {x: M2 · x 2': 1, x 2: O}. In fact 
Theorem 3.7 may be strengthened (see [11]) to show that each such vertex is 0 - .! 
valued for some integer p. P 

Theorem 4.2 For a planar graph G with nodes s, t, the polyhedron P(G, s, t) is 
given by the nonegativity constraints and the rank inequalities. 
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