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Abstract

This monograph studies the theory of information through the multiuser secret key

agreement problem. A general notion of mutual dependence is established for the
secrecy capacity, as a natural generalization of Shannon's mutual information to the
multivariate case. Under linear-type source models, this capacity can be achieved
practically by linear network codes. In addition to being an unusual application of
the network coding solution to a secrecy problem, it gives secrecy capacity an inter-
pretation of network information flow and partition connectivity, further confirming
the intuitive meaning of secrecy capacity as mutual dependence. New identities in
submodular function optimization and matroid theory are discovered in proving these
results. A framework is also developed to view matroids as graphs, allowing certain
theory on graphs to generalize to matroids.

In order to study cooperation schemes in a network, a general channel model with
multiple inputs is formulated. Single-letter secrecy capacity upper bounds are derived
using the Shearer-type lemma. Lower bounds are obtained with a new cooperation
scheme called the mixed source emulation. In the same way that mixed strategies
may surpass pure strategies in zero-sum games, mixed source emulation outperforms
the conventional pure source emulation approach in terms of the achievable key rate.
Necessary and sufficient conditions are derived for tightness of these secrecy bounds,
which shows that secrecy capacity can be characterized for a larger class of channels
than the broadcast-type channels considered in previous work. The mixed source
emulation scheme is also shown to be unnecessary for some channels while insufficient
for others. The possibility of a better cooperative scheme becomes apparent, but a
general scheme remains to be found.

Thesis Supervisor: Lizhong Zheng
Title: Associate Professor



4



Acknowledgments

I would like to acknowledge the support of the Research Laboratory of Electronics at

Massachusetts Institute of Technology (MIT), Laboratory of Information and Decision

Systems at MIT, and the Shun Hing Institute of Advanced Engineering at the Chinese

University of Hong Kong (CUHK). In particular, I would like to thank my supervisor,

Professor Lizhong Zheng, and my thesis committee members, Professor Vivek K.

Goyal and Professor Gregory W. Wornell, for their help and valuable comments. I

would like to thank Professor Angela Y. Zhang, Professor Anthony M. So, and my

advisor for giving me an opportunity to work at CUHK, where I had great freedom

to work on problems of my interest that eventually find their ways to this thesis. I

would also like to thank Professor Raymond W. Yeung for the postdoctoral research

opportunity on network coding in the Information Engineering Department of CUHK.

In addition to the generous support of my education, I would like to thank MIT

and the alumni for providing many recreational facilities, such as the ice-skating rink,

the sailing pavillion, the swimming pool and the heavy sandbags, which I often enjoy

much more than my research. To show my gratitude, I am comitting myself to sailing

every non-rainy day starting from my 10-year anniversary at MIT on Aug 17 until

I leave on Aug 28. The ten years of experience here has been transformational. I

have gained many precious memories being with my colleagues, teachers, students,

roommates, host family, classmates and friends. Thank you all for supporting me

while I was lost, putting up with or pointing out my mistakes. I am especially

thankful to my host family for showing me around Boston and New York City, my

friends in San Diego for helping me during my internship at Qualcomm, and my

previous roommate in Ashdown who spended tremedous time and effort helping my

dad fight with liver cancer. Above all, I am most grateful for my family, my parents

and my brother. Your love and care has given me great support.

Chung Chan

Aug 17, 2010 Massachusetts Institute of Technology



6



Contents

1 Secret Key Agreement

1.1 A secret agreement game . . . . . .

1.2 Information-theoretic cryptography

1.2.1 Shannon cipher system . . .

1.2.2 Wiretap channel . . . . . .

1.2.3 Public discussion . . . . . .

1.2.4 Secret key agreement . . . .

1.3 Contributions . . . . . . . . . . . .

I Mutual Dependence of Random Sources

2 Multivariate Correlation

2.1 Mutual Dependence . . . . . . . . . . . . . . . . .

2.2 Slackness of mutual dependence bound . . . . . .

2.3 Other measures of correlation . . . . . . . . . . .

2.4 Duality with source coding . . . . . . . . . . . . .

3 Linear Network Coding

3.1 Finite linear source . . . . . . . . . . . . . . . . .

3.2 Source with dependency hypergraph . . . . . . .

3.3 Potential of multisource network coding . . . . . .

11

. . . . . . . . . . . . . . . . . . . 1 1

. . . . . . . . . . . . . . . . . . . 1 2

. . . . . . . . . . . . . . . . . . . 1 3

. . . . . . . . . . . . . . . . . . . 1 4

. . . . . . . . . . . . . . . . . . . 1 6

..... .... .... ... ... 1 8

.. .. . . . ..... .... .. 2 0

25

27

30

36

40

42

47

48

57

71



II Multiterminal Secret Key Agreement

4 General Multiterminal Network

4.1 Channel m odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Bounds on secrecy capacity . . . . . . . . . . . . . . . . . . . . . . .

4.3 Tightness condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Secret Key Agreement Protocol

5.1 Specialized models . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Asymptotic secrecy requirements . . . . . . . . . . . . . . . . . . . .

6 Secrecy Capacity

6.1 Secrecy upper bound ............

6.1.1 Finite-input-alphabet constraint

6.1.2 Sample Average Constraint . . .

6.2 Secrecy lower bound . . . . . . . . . .

6.2.1 Finitely-valued model . . . . . .

6.2.2 Infinitely-valued model . . . . .

6.2.3 Sample Average Constraint . . .

6.3 Mixed vs pure source emulations . . .

99

. . . . . . . . . 99

. . . . . . . . . 102

. . . . . . . . . 107

.. . .. . 111

. . .. . . . 111

. . . . . . . . . 115

. . . . . . . . . 121

. . . . . . . . . 124

7 Tightness of Secrecy Bounds

7.1 Optimality of single-letter form . . . . . . . . . . . . . . . . . . . .

7.2 Optimality conditions for source emulation . . . . . . . . . . . . . .

7.2.1 Interference-free Channels . . . . . . . . . . . . . . . . . . .

7.2.2 Finite homomorphic network . . . . . . . . . . . . . . . . . .

7.3 Suboptimality of source emulation . . . . . . . . . . . . . . . . . . .

8 Conclusion

75

77

78

79

80

83

92

94

131

131

134

143

150

157

161



Appendices

A Information Theory

A.1 Information measures . . . . . . . . . . . .

A.2 Shearer-type lemma . . . . . . . . . . . . .

A.3 Minimax-type lemma and support lemma.

A.4 Secrecy expressions . . . . . . . . . . . . .

A.5 Proof of duality with source coding . . . .

B Combinatorics of Information Flow

B.1 Submodular function . . . . . . . . . .

B.2 Matroid partitioned by vertices . . . .

B.3 Dependency hypergraph . . . . . . . .

B.4 Fundamentals of information . . . . . .

C Computations

C.1 Coupling channel . . . . . . . . . . . .

C. 1.1 Preliminaries . . . . . . . . . .

C.1.2 Optimal pure source emulation

C.1.3 Optimal mixed source emulation

C.1.4 Secrecy upper bound . . . . . .

C.2 Consensus channel .............

C.2.1 Preliminaries . . . . . . . . . .

C.2.2 Computation of secrecy bounds

C.3 Computer-assisted tightness test . . . .

Bibliography

Index

195

. . . . . . . . . . . . . . . . . 195

. . . . . . . . . . . . . . . . . 200

. . . . . . . . . . . . . . . . . 217

. . . . . . . . . . . . . . . . . 222

223

. . . . . . . . . . . . . . . . . 223

. . . . . . . . . . . . . . . . . 223

. . . . . . . . . . . . . . . . . 226

. . . . . . . . . . . . . . . . . 229

. . . . . . . . . . . . . . . . . 231

. ... .. ... .. .. .... 232

. . . . . . . . . . . . . . . . . 232

. . . . . . . . . . . . . . . . . 234

. . . . . . . . . . . . . . . . . 235

249

254

163

165

. . . 165

. . . 168

. . . 172

. . . 177

. . . 184



10



Chapter 1

Secret Key Agreement

This monograph focuses on a problem called secret key agreement [1, 12, 13, 42]. It

is a study of how a network of users can generate and share a common secret using

some private and public resources. The emphasis here is not on the communication of

a given secret from one user to the others, but rather on the generation of a common

secret that is based on correlated private observations, and agreed upon after public

discussion. Hence, the title of this dissertation is "generating secret in a network".

1.1 A secret agreement game

Let us introduce the topic informally with the following game that is played by a

group of people. One player is selected to be a wiretapper while others are users.

Each player writes something on a piece of paper that they cannot reveal to others.

Rule: The users win iff everyone except the wiretapper writes down the same thing.

In other words, the wiretapper wins if the users cannot agree on a common secret.

To help the users settle on a common secret, they are allowed to discuss publicly with

each other as long as they are clearly heard by everyone including the wiretapper. Is

there a winning strategy for the users?

Although the users are allowed to discuss, they cannot communicate any secret in

..... .......



public. So, is it even possible to obtain a common secret? Suppose the users discuss

and learn that they are all interested in basketball but the wiretapper is not; they

all know the winning team of a recent match but the wiretapper does not. Then, the

users can simply put down the winning team as their common secret. If some users

missed the match, others can help them by naming a few players in the winning team.

Even though the users cannot communicate any secret to the others in public, they

can extract it from their correlated private observations.

If this game is played repeatedly with the same users and wiretapper, the users

will eventually lose by running out of ideas for their common secret. Intuitively, the

closer the users are, the more the secrets they can share. Can we equate the amount

of secrets to the correlation of private observations of the users? If so, is there a

systematic and practical way to consolidate such correlation into secrets? If the

users are given some time to discuss privately without the wiretapper, how can they

cooperate to enhance their correlation? More importantly, what is the significance of

solving this specific problem in cryptography? We will address these questions in the

information-theoretic framework by Shannon [51].

1. Can we equate secrets to the correlation of the users?

2. If so, how to consolidate such correlation into secrets?

3. How can users cooperate to enhance their correlation?

4. What is the significance of secret generation?

1.2 Information-theoretic cryptography

Historically, the idea of secret key agreement by public discussion is a creative solution

to some of the challenges in the development of information-theoretic cryptography.

On the one hand, it is an application of information theory to the study of provably

secure systems; on the other hand, it provides a nice framework to study the nature

and properties of information. In the following, we highlight some of the key advances

and challenges in the theory of information developed under this secrecy framework.



Alice

Figure 1-1: Symmetric key cipher

1.2.1 Shannon cipher system

In [51], Shannon applied the information theory he invented in [52] to study the

symmetric-key cipher in Figure 1-1. Alice and Bob share a secret key K unknown

to Eve. Alice wants to communicate a message M for Bob that is independent of K.

She uses K to encrypt M into a cryptogram C, which is sent to Bob in public. Bob

uses K to decrypt C into the message estimate M1, while Eve tries to learn M from C

without the key. The goal is to have Bob recover the message, i.e. M = M, but Eve

learn nothing about it, i.e. M independent of C.

Shannon showed that this perfect secrecy is possible if and only if the length of

the key is no shorter than the length of the message. Necessity follows easily from

the properties of Shannon's measure: the entropy H and mutual information I.1

H(M) (M H(MC) (MICK) + I(M A KIC) H(K)

The length of the message after compression is the entropy H(M). Since perfect

secrecy requires that C is independent of M, the entropy is not decreased by the

knowledge of C, which gives the equality (a). The randomness H(MIC) conditioned

on C can be decomposed into two parts: H(M ICK), which measures the randomness

independent of K; and I(M A KIC), which measures the randomness correlated with

K. This gives the identity (b). Since Bob has to recover M perfectly, the first part is

0; the second part measures only part of the randomness of K and is therefore upper

bounded by H(K) in (c). Hence, the key K has to be as random as the message M if

it completely resolves the randomness of the message M given the cryptogram C that

is independent of M.

'See [8, 111 or Section A.1 for definitions.

. ..................... .................. .........................................................

Bob
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encoder channel

Eve

Figure 1-2: Wiretap channel

The last inequality (c) can be achieved with equality by the one-time pad,

C:= M e K (encryption)

M := C e K (decryption)

where M and K are uniformly random bits and e is elementwise modulo-2 addition.

It is easy to show that C remains uniformly random given M, and M = M as desired.

The optimistic view of this result is that secrecy can be stored in the form of

a key. If two users can generate one bit of common secret, whether it corresponds

to meaningful data or not, any one of them can use it to encrypt one bit of private

message for the other. The pessimistic view, however, is that the users have to find

a way to share a secret key long enough to encrypt their private message perfectly

securely. The original problem of communicating a private message turns into the

new problem of generating a common secret key.

Lesson: Secrecy can be stored in a key for secure communication.

Challenge: Secure communication of a long message requires a long key.

1.2.2 Wiretap channel

A remedy to the problem of generating a long common secret key was given by Wyner

in [61]. He showed that a secret key is not needed for secure communication when

the wiretapper's observation is degraded by additional channel noise. This result was

extended to the general broadcast-type wiretap channel in Figure 1-2 by Csiszir [10].

Alice encodes uniformly random bits K into a channel input sequence Xn, and sends it



wiretapper's cnannei zlx I Z

Figure 1-3: Prefix DMC

over a discrete memoryless broadcast channel with transition probability Pyzix. Bob

decodes his observation Y" into the estimate K. The wiretapper, Eve, attempts to

learn K from her own observation Z". The objective is to have

Pr{K # K} -+0 (recoverability)
1
-I(K A Z") -+ 0 (secrecy)
n

as n increases to infinity. This ensures that K can be obtained by Bob but not Eve

asymptotically. The notion of asymptotic secrecy can also be strengthened for free

by the technique of privacy amplification [7, 40] such that the leakage of information

I(K A Zn) does not grow with the length of the message. The maximum rate of K,

called the secrecy capacity, has the single-letter characterization

Cw = max [I(V A Y) - I(V A Z)]

where the maximization is over the choice of the virtual input distribution Pv and a

prefix discrete memoryless channel (DMC) Pxiv that Alice artificially introduces to

corrupt the wiretapper's channel more than the main channel as shown in Figure 1-3.

We can think of I(V A Y) and I(V A Z) in (1.1) roughly as the strength of the

main channel and the wiretapper's channel respectively. Thus, if the main channel

is (strictly) more capable [36] than the wiretapper's channel, Alice can communicate

private messages without a key at constant rate C > 0. By choosing a uniformly

random private message, she can use the channel to share a common secret with Bob,

and store this secrecy in the form of a key for later use as described in the previous

section. Unfortunately, this approach fails if the wiretapper's channel is less noisy

[36] than the main channel, i.e. C, = 0. This can happen, for instance, in wireless



communication when the wiretapper intercepts the signal at a point in between the

sender and the intended receiver. The wiretapper has a less noisy channel because he

is closer to the source.

Lesson: A more capable main channel supports secure communication.

Challenge: The approach fails when the wiretapper's channel is less noisy.

1.2.3 Public discussion

Suppose in addition to the use of a wiretap channel, Alice and Bob can publicly

discuss with each other in front of Eve noiselessly. Maurer [41] showed by the following

example that secure communication is possible even if the the wiretapper's channel

is less noisy than the main channel.

Example 1.1 (Binary symmetric wiretap channel) Consider in Figure 1-2

Y:= X D N1  (main channel)

Z:= X e N2  (wiretapper's channel)

where the additive noise N1 ~ Berno.18 and N2 ~ Berno.1 are independent Bernoulli

distributed random variables, equal to 1 with probabilities 0.18 and 0.1 respectively.

If we cascade two wiretapper's channel in series, we have a binary symmetric channel

with crossover probability 2 x (0.1) x (1 - 0.1) = 0.18, which is equivalent to that

of the main channel. Thus, the wiretapper's channel is less noisy than the main

channel, or more precisely, the main channel is a stochastically degraded version of

the wiretapper's channel. Without public discussion, the secrecy capacity (1.1) is 0

by the data processing theorem [8].

Suppose Alice and Bob can discuss at any time in public. Alice first chooses

the input sequence to the wiretap channel as the discrete memoryless source (DMS)

X ~ Berno.5 . This effectively turns the channel into a discrete multiple memoryless

source (DMMS) (X, Y, Z) [11]. Bob then encodes a secret key K into a binary n-



N" Nn Z" = Xn(DNn

Y(n -1 Z
Figure 1-4: Effective wiretap channel P ili

sequence X" and publicly reveals

F" := X" D Y" = X" E X" E N"

after observing the channel n times. Then, Alice attempts to recover K from

Y" := F" e X" = X" D Nn

Since Eve also observes the public message F", she can generate

Z" := F" (D Z" = X" (D N" (D Nn

This is indeed a sufficient statistics [8] for Eve in decoding K. i.e.

0 = I(X" A F"Z"|Z")

( I(X" A F"|Z"Z") + I(X A Z"|Z")

We can see this easily from Figure 1-4. Given Z and Z", the public message Fn is a

redundant observation for Eve since she can recover it by the sum Z ED Z". Thus, the

first mutual information in (a) is 0. Since Xn is uniformly distributed and independent

of (Nn, Nn), we have Z" = X ED Nn uniformly distributed regardless of the realization

of Z and X", and so the second mutual information in (a) is 0.

Effectively, there is a wiretap channel Pgiig from Bob to Alice and Eve but the

wiretapper's channel P21R now becomes a physically degraded version of the main

channel PIk. The secrecy capacity is therefore strictly positive.

In the above scheme, the users turn the wiretap channel into a DMMS, with which

they have some correlation not observable by the wiretapper. Then, public discussion



allows the users to turn this correlation into a secret key, by reorienting the DMMS

into a more favorable wiretap channel. What makes this possible? Suppose instead of

having N1 independent of N2, we have N1 = N2 D N3 for some N3 independent of N2.

Then, the above scheme fails because the main channel is always a physically degraded

version of the wiretapper's channel before or after the reorientation. Any correlation

generated between Alice and Bob can be observed by Eve and so the secrecy capacity

is 0 even with public discussion.

Lesson: Public discussion helps reorient the wiretap channel into a better form.

1.2.4 Secret key agreement

Secret key agreement is basically the idea of using public discussion to extract a

common secret key from the correlation among the users, whether it comes from a

wiretap channel or a DMMS. Maurer [42] and independently Ahlswede and Csiszir

[1] formulated this problem for the source and channel models involving a wiretapper

and two authorized users, one of which is a sender for the channel model. Example 1.1

discussed in the previous section is an example of the channel model. An example of

the source model is as follows.

Example 1.2 Let BO, B1 and J be three independent uniformly random bits. Alice

observes X := (BO, BI); Bob observes Y := (Ba, J); Eve does not have any private

observation, i.e. Z = 0. Alice and Bob cannot choose BO nor B1 as the key since

Bob may not observe it. They cannot choose J as the key either because Alice may

not observe it. It can be proved more formally [22] that the users cannot agree

on any secret without public discussion. With public discussion, however, Bob can

reveal J in public. Then, Alice and Bob can choose Bj as the key because the public

message J allows Alice to recover Bj with her private observation but does not leak

any information to Eve as I(Bi A J) = 0.



The above scheme is indeed optimal since the secrecy capacity without any wire-

tapper's private information is I(X A Y), which is 1 bit in this case. For the general

source model where Alice, Bob and Eve observes the DMS X, Y and Z respectively,

[1] showed that the following secret key rates are achievable.

max [I(V A Y|U) - I(V A ZIU)] (forward secrecy capacity)
U<-+V-+X<->YZ

max [I(V A X|U) - I(V A ZIU)] (backward secrecy capacity)
U<->V<-+Y+--XZ

The maximization is over PU and PIu in accordance with the stated Markov chain.

The forward secrecy capacity is the maximum achievable key rate when only Alice can

speak publicly, while the backward secrecy capacity is the maximum key rate when

only Bob can speak. Since a wiretap channel can be turned into a DMMS, the above

expressions also lower bound the secrecy capacity for the channel model.

Unfortunately, there is no known matching upper bound on the secrecy capacity

for general source and channel model with arbitrary public discussion. [42] and [1]

gave the conditional information upper bounds I(X A Y|Z) and maxP, I(X A Y|Z) for

the source and channel model respectively. They are tight in the special case when

X, Y, and Z forms a Markov chain in any order. The bound for the source model was

improved in [43] to the intrinsic conditional mutual information

I(X AYIZ) := min I(X AY|U)
XY<->Z<->U

Skripsky {54], Renner and Wolf [48] showed that the bound is loose and further

improved the bound to the double intrinsic information

I(X A Y j Z) := min[I(X A Y I ZU) + H(U)]
U

Gohari and Anantharam [23] strictly improves this bound to

min[I(X A Y|U) + I(XY A UIZ)]
U

and the more complicated bounds in [24] for the source and channel models.

...... .. .... ........... .....



Lesson: Public discussion consolidates correlation into a secret key.

Challenge: Secrecy capacity is unknown for the general source or channel model.

1.3 Contributions

We study the secret key agreement problem in a general multiuser setting. The focus

is on how a large group of users can cooperate to generate a common secret key when

the wiretapper has no private observation. This element is missing in the two-user

one-wiretapper model [1, 42] described in the previous section. In the following, we

give an overview of some recent results and our contributions in this direction.

Csiszir and Narayan [12] initiated the study of secret key agreement in the mul-

tiuser setting. Under the source model where every user i E V observes a correlated

discrete memoryless source Zi, a subset A C V of the users, called the active users,

want to share a secret key. The secrecy capacity for the special case without wire-

tapper's side information can be characterized by the linear program (LP),

C, = min H(Zv) - E ABH(ZBIZBC)] (1.2)
B

where ZB denotes the random vector (Zi : i E B), and A = (AB > 0 0 $ B 2 A)

is required to satisfy the linear constraint EBEi AB = 1 for all i E V. The proposed

capacity-achieving scheme in [12] reveals a meaningful duality relationship between

the secret key agreement problem and the source coding problem of communication

for omniscience, i.e. the users publicly discuss until every active user learns the entire

source Zy. It becomes evident that the secrecy capacity captures a fairly general

notion of mutual dependence among the private sources, which appears to be a natural

extension of Shannon's mutual information to the multivariate case.

However, such a conclusion is premature because the LP characterization of the

secrecy capacity is rather unintuitive. Although A in (1.2) carries the meaning of



fractional partition in combinatorics [49], and Lagrangian multipliers in optimiza-

tion theory [5], no clear information-theoretic interpretation is known, except for the

following mutual dependence upper bound derived in [12],

CS < min D Pzy r Pzc (1.3)

where P is a set partition of V into at least two parts such that every part overlaps

with A, and D(-11-) denotes the information divergence.2 Same as Shannon's mutual

information, it is a divergence expression from the joint distribution Pzy to the prod-

uct of the marginal distributions Pzc's. However, this bound is proved to be tight

only up to the three-user case in [12]. There is no obvious reason why it should be

tight in general, nor is there a known counter-example that proves otherwise.

In Chapter 2, we show that the bound is tight when all users are active, i.e. A = V

[6]. Not only does this establish the desired notion of mutual dependence for secret

key agreement, the tightness result generalizes to a new identity for the submodular

function optimization in Section B.1. In section 2.4, we extend the capacity-achieving

scheme in [12] to give a strengthened duality relationship with the source coding

problem when the total public discussion cannot exceed a given rate. This allows us

to see in mathematical terms that a shared secret is the consensus that needs not be

publicly discussed. To put it simply, if the users can agree on 2 bits of information

after 1 bit of public discussion, then the remaining 1 bit is a shared secret. Conversely,

if the users can agree on 1 secret bit after 1 bit of public discussion, they can agree on

2 bits of information since the secret is (nearly) independent of the public messages.

Similar to Shannon's channel coding theorem [52], the capacity-achieving scheme

in [12] for secret key agreement uses a random coding argument that does not guar-

antee any practical code. In Chapter 3, we describe a practical linear network coding

[28] approach to secret key agreement when the source has a general linear depen-

dence structure. In particular, single-source network coding solution is optimal for

the case when all users are active. This optimality is captured by a new and surpris-

2See [81 or Section A.1.



ingly general identity for matroids [50] in Section B.2, extending the work of Frank et

al. [20], and Bang-Jensen and Thomass6 [3]. In addition to being a practical solution,

the network coding approach gives a theoretically interesting interpretation of secrecy

capacity as information flow. It also has the combinatorial interpretation as partition

connectivity in Section 3.2 in the special case when the dependence structure of the

source can be captured by a dependency hypergraph. This extends the work of Ye

and Reznik [62] on pairwise independent network, and Li et al. [37] on undirected

networks.

In the subsequent paper [13], Csiszir and Narayan studied the secret key agree-

ment problem under a multiterminal broadcast-type channel model. The secrecy

capacity is characterized as a minimax problem

Cs = max min H(Zv) - ABH(Z|ZBc) (1.4)
B

where Pz1  - 3(Zi) is an input distribution on support set Z1 for the broadcast

channel PZV\{*}Zi, and A is a fractional partition as in (1.2). The expression looks

almost identical to (1.2) except for the maximization over Pz1 . Indeed, the capacity

is attained by the pure source emulation approach that uses the channel as a source

after sending independent input symbols.3 Compared to the source model, however,

this is less passive in the sense that the correlation among the users is not just given

as it is, but created by sending an input sequence optimized over the choice of the

distribution.

For a large network, however, it is more realistic to expect multiple channels

relating subsets of the users, rather than a single broadcast channel covering all

users. Allowing only one sender in the model is also quite restrictive, for it does not

allow one to study how users can cooperate to enhance their correlation. To capture

this interesting component in the study of networks, we extend the broadcast-type

channel model to a general multiterminal network in Chapter 4. Each user can

simultaneously be a sender and a receiver. The model is formulated in Chapter 5.

3See Example 1.1.



Minimax characterizations of the secrecy capacity, its upper and lower bounds are

derived in Chapter 6. The lower bound is achieved by a new cooperative scheme

called the mixed source emulation. It employs the well-known idea of mixed strategy

[56] by considering the minimax characterization as the payoff of a virtual zero-sum

game. In section 6.3, we give a simple example, called the coupling channel, for which

mixed source emulation strictly outperforms the conventional pure source emulation

approach.

Chapter 7 analyzes the tightness of the secrecy bounds. Although secrecy ca-

pacity is unknown for the multiterminal network, we find that the secrecy bounds

match under some general conditions in Section 7.2. This includes the broadcast-

type channels in [13] and some classes of channels that are not broadcast-type such

as the interference-free channels in Section 7.2.1. In particular, we consider a class

of finite homomorphic channels in Section 7.2.2. Due to the group structure of the

channels, it is optimal to simply have each sender transmit uniformly independent

input symbols. Cooperation turns out to be unnecessary in this case. In Section 7.3,

however, we show that even mixed source emulation is strictly suboptimal for an

example referred to as the consensus channel. It is also clear from the example that

there are adaptive approach to cooperate better than mixed source emulation, and

so the proposed secrecy lower bound can be loose.

We have divide the subject into two parts. In Part I, we focus on the source model,

and establish the notion of mutual dependence for secret key agreement in Chapter 2,

and interpret it as information flow and partition connectivity using the linear network

coding scheme in Chapter 3. The combinatorial framework for the proofs is presented

in Appendix B. In Part II, we introduce the multiterminal network model in Chapter 4

with an concise overview of the main results detailed in the subsequent chapters. We

strongly recommend skipping the technical details of Part II for the first reading.

Part II can also be read before Part I for a more detailed description of the secret key

agreement protocol and the derivation of the secrecy capacity.
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Part I

Mutual Dependence of Random Sources





Chapter 2

Multivariate Correlation

In this part, we focus on the multiterminal source model for secret key agreement by

Csiszir and Narayan [12]. An informal introduction was given in Chapter 1 and a

more general multiterminal channel model will be formulated in Part II.

The source model involves a set V of users/terminals and a wiretapper. As illus-

trated in Figure 2-1, each user i E V, denoted as Ti,

1. randomizes independently by generating a continuous random variable U2 with

the probability density function chosen as Puy = HiEv Pu2,

2. observes n samples of a finitely-valued DMS Z that is distributed according to

some given joint probability mass function Pzy,

3. and then discuss publicly and interactively by broadcasting messages that are

functions of his accumulated knowledge, which includes his randomization, pri-

vate source, and the previous public messages. e.g. if user i broadcasts the j-th

public message Fj, he can set it as a deterministic function of U2 , Z7 and the

previous messages F[j_] := {F 1 , ... , Fj 1}.

A subset A C V of the users, called the active users, want to share a secret key.

Each active user i E A generates an individual key Ki as a function of his accumulated

knowledge so that the keys are almost surely the same, i.e.

Pr{Ei E A, Ki # K} -+ 0 (recoverability)



V (terminals)

Ti T2

U1  U2  U3

Zn Zn Zn

Randomization)

(fPrivate observation

( Public discussion

Key generation)
K1  K2

A (active)

Figure 2-1: Simple source model for secret key agreement

as n -* oc for some finitely-valued random variable K taking values from a finite set

K, the cardinality of which is growing exponentially in n. The common secret key

must remain nearly uniformly distributed to the wiretapper who observes the entire

public discussion F, i.e.

1
- [log|KI - H(KIF)] -* 0
n (secrecy)

The users who are not active, called the helpers, are allowed but not required to learn

the secret key. To understand this secrecy condition, recall that

(a) (b)
log|KI > H(K) > H(KIF)

where (a) is because uniform distribution maximizes entropy [8], and (b) is because

conditioning reduces entropy. The secrecy condition roughly requires both inequalities

to be satisfied with equality in an asymptotical sense so that the key appears to be



uniformly distributed even conditioned on the public messages.

Secrecy capacity is the achievable key rate

1
Cs sup lim inf - logJKJ

Uv,F,KA " n

maximized over the choice of the randomization, public discussion, and key generation

functions. It is characterized by [12] as the following linear program

Cs= min H(Zv) - ABH(ZB IZBc) (2.1)
B

where A is a vector of non-negative weights AB with B C V: 0 # B 2 A and

Z AB= for all Z V
BDi

Note that this expression is even simpler to compute than the channel capacity, which

involves maximization of a non-linear function over the input distribution. However,

A does not have a clear information-theoretic meaning. Although secrecy capacity

intuitively reflects how correlated the privates sources Zi's are as argued informally

in Chapter 1, we cannot see this directly from the LP characterization except for

small networks. In the two-user case where V = A = [2], the expression is simply

Shannon's mutual information between the private sources Z1 and Z2, which can

be regarded roughly as the distance from the joint distribution PiZ 2 to the product

distribution Pz1 Pz2 . In the three-user case, it also simplifies to a minimum divergence

expression from the joint distribution to the product of marginal distributions.1 If this

can be done in general when A = V, we have a heuristically meaningful expression

for the secrecy capacity as the minimum distance from the joint distribution to the

product of marginal distributions, which is a natural generalization of Shannon's

mutual information to the multivariate case. However, it appears to be quite difficult

even in the four-user case, and was posed as an open question in [12].

In Section 2.1, we establish this minimum divergence expression for secret key

'See {121 or the expression in Example 2.1 of the following section.



agreement when all users are active [6]. Section 2.2 considers the general case when

some users are not active. Some alternative definitions of correlations are given in

Section 2.3 as a comparison. In Section 2.4, we strengthen the duality with source

coding in [12] which gives a meaningful interpretation of mutual dependence.

2.1 Mutual Dependence

In information theory, the dependence between any two random variables is captured

by Shannon's mutual information

I(Z1 A Z2) H(Z1 ) + H(Z2 ) - H(Z1 Z2 )

Pz1z2 (Z1, Z2) 1
.Pz (Z1)Pz2(Z2)(

D(Pziz 2 |Pz1Pz2 )

where Pz1z 2 denotes the distribution of Z1 and Z2, D(-||-) is the information diver-

gence, and H(.) is the entropy measure.2 It has various operational meanings spanning

over the source and channel coding theories. A heuristically appealing extension [12]

to the multivariate case with more than two random variables is the following mutual

dependence expression.

Definition 2.1 (Mutual Dependence) For any finitely-valued random vector Zv

(Zi : i E V) with |V| > 2, the mutual dependence of Zv is defined as

I(Zv) min H(Zo) - H(ZV)
-FEr |PI-1

mm E Pz(ZV) (2.3)

min D Pzy i Pze

where Ti is the collection of set partitions P of V into at least 2 non-empty sets.

2See Section A.1 for an introduction.



(2.3) is a natural generalization of (2.2) since both are expressed in terms of the

divergence from the joint distribution to the product distribution of certain marginals.

When there are more than two random variables, there is more than one way to

partition them into groups. We can view (2.3) informally as the minimum distance

from the joint distribution to the product distributions according to the different

partitions. To explain the normalization factor (IPl - 1), consider the simple case

when Zi = Z for all i E V. The divergence D(Pzy |flcer Pze) equals (IPI - 1)H(Z),

which is the amount H(Z) of common randomness in Zc's overcounted by a factor of

(IP I -1) times. Thus, (2.3) roughly measures the minimum randomness shared among

the parts in a partition of Zv. It has a clear operational meaning when IV| < 3.

Example 2.1 Mutual dependence (2.3) reduces to the usual mutual information

when IVI =2. i.e. I(Zfl,2}) = I(Z1 A Z2 ). With V := [3] := {1, 2, 3}, we have

I(Z[3])= min I(Zi A Z2Z3), I(Z2 A Z1Z3), I(Z3 A Z1Z2), H(Zi) - H(Z[3])

It was proved in [12] that this equals the secrecy capacity of the secret key agreement

problem involving three users, i.e. V = A = [3].

Indeed, this operational meaning of secrecy capacity can be established more

generally for any V and DMMS Pzy.

Theorem 2.1 Given a finite ground set V: V > 2, the mutual dependence in (2.3)

satisfies

I(Zv) = H(Zv) - max E ABH(ZBlZB) (2.4)
Bc_3F

where 9 := 2 V \ {V}, A is defined as the collection of fractional partitions A := (AB

B (E c ) of V, i.e. AB> 0 for all B C 9 and BEiCBAB =1 for all i E V.

This establishes the desired operational meaning for the mutual dependence since

the expression on the R.H.S. of (2.4) is the secrecy capacity when A = V. The proof

relies on a simple property of information: mutual information is non-negative. More



precisely, for any subsets B1, B 2 C V, we have

I(ZB, A ZB 2 |ZBinB2 ) 0

or equivalently that entropy is suTbmodular {21], i.e.

H(ZBI) + H(ZB2) > H(ZBinB2) + H(ZBUB2)

If we replace entropy by an arbitrary submodular function, (2.4) can be extended

to the more general identity (B.7) in Section B.1, which equates a combinatorial

optimization problem over set partitions to an LP problem, which is easy to compute.

PROOF (THEOREM 2.1) Define h: 9 - R as

h(B) := H(ZB|ZBc) for all B E F

with the convention h(0) = 0. The submodularity of entropy [21] implies the super-

modularity of h as follows.

Subclaim 2.1A h is supermodular. i.e. for all B 1, B2 E Y : B1 nB 2 , B1 UB 2 E G,

h(B1 ) + h(B 2) < h(B 1 n B 2 ) + h(B 1 U B2) (2.6)

Equivalently, -h is submodular.

PROOF Consider proving the non-trivial case where B1 and B 2 are non-empty. By

the positivity of mutual information I(ZBc A ZB IZBcnBc) > 0, we have

H(ZBg|ZBinB2) > H(ZB-|ZB)

H(ZB) + H(ZBg) > H(ZBeUBc) + H(ZB-nBc)

(2.6) follows since h(B) = H(Zv) - H(ZBc).

(2.5)



By the strong duality theorem [15], the primal LP (2.4) equals its LP dual,

minimize E ri (2.7a)
iGV

ri > h(B)
icB

for all B E F

The supermodularity of h translates to the following property on the tight constraints

of the dual problem.

Subclaim 2.1B For any feasible solution r to the dual linear program (2.7), and

B 1, B 2 (E 9: B1 n B 2, B1 U B2 G F, if B1 and B 2 are tight constraints, i.e.

r = h(Bj)
iE Bj

iEB1UB 2

for j = 1, 2

ri = h(B 1 U B 2 )

(2.8a)

(2.8b)

n.b. B1 n B 2 is also tight but we do not need it for the proof of Theorem 2.1.

PROOF Since B 1 UB 2 C 9, we immediately have EieBUB 2 ri > h(B 1 UB 2) by (2.7b).

The reverse inequality can be proved as follows,

ieB1 iGB 2 icBlnB2

(a)

< h(B 1 ) + h(B 2) - h(B 1 n B 2 )

(b)

< h(B1 U B2 )

(a) is by (2.8a) on B1 and B 2, and (2.7b) on B1 n B 2 E 9; (b) is by Subclaim 2.1A.

With a similar argument, we also have EiEBinB2 ri = h(B1 n B2 ). 4

subject to (2.7b)

then B1 U B 2 is also a tight constraint, i. e.

z
icBlUB 2



Let A* be an optimal solution to the primal LP (2.4).3 Define its support set as

B := {B F ~: A* > 0}

and the corresponding partition of V as

P* :(U{B E B: B i

(2.9)

(2.10)i F V}

Subclaim 2.1C 7P* belongs to 1-. (See Definition 2.1.)

PROOF Define the relation R on V as

for ij E V

where C := (U{B E B : B i})". By definition (2.10), P* = {Ci : i E V}. To show

that P* is a partition of V, it suffices to show that ~R is an equivalence relation on

V as follows,

i ~R j -- i U{B E B : B j}

<-> {B : B B i}{B E B: B j}

<-> {B F 23: i F B} CI{ B E- B: j F B}

i.e. any set in B that contains i also contains j. Using this simplification, it is easy

to see that -R satisfies the defining properties of an equivalence relation:

* Reflexivity: R is reflexive since i E Ci trivially for i E V.

" Transitivity: Suppose i ~R j and J ~- k for some i, j, k E V. Then,

{B E B2: i E B} C{ B E B : j E B} C{ B E 23: k E B}

which implies i ~- k as desired.

3A* exists or equivalently A is non-empty. For example, A{j = 1 for i E V is a fractional partition
in A. For the more general case considered in Theorem B.1, A may be empty.

r"R 1 Ci



* Symmetry: Suppose to the contrary that i ~- j but j 96 i. Then,

{B E B: i E B} C {B E B j E B}

This implies, by definition (2.9) of B that

I
BEj

which is the desired contradiction since both sides equal 1 by the definition of

A in Theorem (2.1).

Finally, to argue that |P*l > 2, note that B # 0 since BEJI A* > 0.

B E F satisfies B f V, we have Cj # V for all i C V as desired.

Since any

Not only is P* a feasible solution in TI for (2.3), but it is also optimal, as a

consequence of the supermodularity of h and the duality theorem.

Subclaim 2.1D For any optimal r* to the dual problem (2.7),

Zr = h(Cc)
iECC

for all C C P*

i.e. every part of P* corresponds to a tight constraint.

PROOF By the complementary slackness theorem [15, Theorem 5.4], EiEBr* = h(B)

for all B C B. By Subclaim 2.1B, we have

S r = h (U{B E B: Bi})
iEU{BEB:B~i}

for all i E V

which gives the desired equality (2.11) under (2.10). 4

The primal/dual optimality criteria [15, Theorem 5.5] implies that the fractional

partition
1{Bc E P*}:

P*I- 1
Bc 9)

(2.11)

E A



is optimal to (2.4). More precisely, for all feasible r to the dual (2.7) and P E Fl,

(a)
H(Zv) - max ABH(ZB|ZBc) < H(Zv) - r, by duality

BEF Bcg iCV

=H(Zv) - Z Zr
CEP iGCC

(b)
< H(Zy) - 1 H(ZcC|Zc) by (2.7b)

CE P

H(Zc) - H(Zv)

When we set r to an optimal solution r*, (a) is satisfied with equality by the strong

duality theorem. When we set P to P*, which is valid by Subclaim 2.1C, (b) is also

satisfied with equality by Subclaim 2.1D. This gives the desired equality (2.4) and

completes the proof of Theorem 2.1.

2.2 Slackness of mutual dependence bound

For the more general case when A C V, [12] gives the following mutual dependence

upper bound on the secrecy capacity Cs with unlimited public discussion

Cs = Amin H(ZV) - ABH(ZBIZBc) (2.12)
AEA(9(A),V) L BE(A)

< min 1 D Pzy fj Pz (2.13)
PeFT(9(A),V) IP - I CP

where 9(A), A(9(A), V) and H(9(A), V) are defined in (B.1a), (B.5), and (B.3)

respectively in Appendix B.1. F(9(A), V), in particular, refers to the set of partitions

of V into at least two parts such that every part intersects A.

In the previous section, we show that this bound is tight when A = V. The bound

was also shown to be tight for |V| < 3 in [12]. However, tightness of this bound was

not known even in the case when |V| = 4. There was no apparent reasons why it

should be tight while no counter-example was found that could suggest otherwise. In



Z1

Z5  Z6

0 

0

Z3  Z4 Z2

Figure 2-2: Finite linear source for Example 2.2

the following, We will show that it is loose by a minimal example with IV = 6 and

|AI = 3. Thus, the bound is tight only for small networks. It does not carry the

operational meaning of secrecy capacity for bigger networks with helpers.

Example 2.2 Let V = [6], A = [3], and Zv be a finite linear source with

Z11
Z2

Z3J

0
=[1

Z4
Z5

Z6

where Z4 , Z5 and Z6 are independent uniformly random bits. The matrix multiplica-

tion is over the binary field F2. This is illustrated in Figure 2-2.

Proposition 2.1 The secrecy capacity (2.12) and mutual dependence upper bound

(2.13) are i and 1 bit respectively for Example 2.2. The bound is therefore slack.

PROOF It is easy to see that H(Zc) = |CI for any C C V such that ICI < 2. When

ICI = 3, H(Zc) can be 2 or 3 depending on the linear dependence of the elements in

Zc. It can be verified that H(Zc) = 2 if C C S := {{1, 5, 6}, {2, 4, 6},{3,4,5},{4,5,6}}.

For instance, ZI = Z5 e Z6 and so H(Z 1 ,5 ,6 1) = 2. When |CI > 3, we have H(Zc) = 3

since there can be at most three mutually independent bits. In summary, we have

H(Zc) = min{|C1, 3} - 1s(C) (2.14)

where 1s(C) is the indicator function equal to 1 if C E S and 0 otherwise.



Solving the LP in (2.12) for the secrecy capacity, we obtain an optimal A with

B , B = {2, 3, 4}, {1, 3, 5}, {1, 2, 6}, {1}c, {2}c, {3}c

0 otherwise

The LP dual [15] of (2.12) is

Cs = H(Zv) - min Sri
ieV

where r := (ri : IE V) is subject to the constraints that

ri > H(ZB|ZBrc) for all B E J(A)

The optimal solution to the dual problem is ri = for i E A and ri for i E Ac.4 2

It can be shown that both the primal (2.12) and the dual (2.15) LP's evaluate to the

same desired value }, which verifies the optimality of the solutions by duality.

To show that (2.13) is 1, first note that |PI > 3 because JAI = 3 and every C c P

must contain a different element in A by the definition (B.3) of H($(A), V). It

suffices to show that the normalized divergence in (2.13), i.e.

H(Zc) - H(Zv)

is at least 1 for each of the following cases of P:

1. |P| = 2, i.e. ?P= (C1, C2).

(a) |CI > 3 for some C E P. Assume |Ci > 3 for definiteness.

H(Zv) = 3 and H(Z0 2) > 1 by (2.14).

H(Zc 1 ) =

Then, o = H(Z0 i) + H(Zc 2) -

H(Zv) > 3 + 1 - 3 = 1 as desired.

(b) ICil = |C2 | =3. Then, H(Zc.) >2by (2.14) foriE [2]. @>2+2-3=1

as desired.

2. PI = 3, i.e. P = (CI, C2, C3).

(2.15)

iGB



(a) |CI > 3 for some C E P. By (2.14), H(Zc) is at least 3 for some C E P

and 1 for others. & > 3+1+13 - 1

(b) |Cl = 3 for some C E P. Assume ICil =3, |C2 | = 2 and IC3 1 = 1 for

definiteness. By (2.14), H(Zc) is at least 2 for i E [2] and 1 for i = 3.

Thus, & > 2+2+1-3

(c) ICI = 2 for all C E P. Then, H(Zc) = 2 by (2.14) for all C E P.

> 2+2+2-3 = 1.5.2 -

Finally, the minimum value -of 1 for (2.13) is attained by the optimal partition P

({1}, {2}, {1, 2}') since H(Zi) = H(Z 2 ) = 1, H(Z[2]c)= 3 and so ® = 1+1+3-3 - *

With a simple trick, we can also generate similar examples for different values of

|VI and IAI as follows.

Theorem 2.2 There are examples for which the mutual dependence upper bound in

(2.13) is loose when IV| 6 and A1 E {3, ... , V I - 3}.

PROOF By Proposition 2.1, Example 2.2 is the desired example with IV| = 6 and

AI = 3. Other examples can be constructed from this by duplicating active users

and/or helpers. For examples, let 1' be a new active user who observes the same

component source Z1 as user 1. This is the desired example for IVI = 7 and |AI =

4 because both the secrecy capacity and mutual dependence upper bound remain

unchanged under the same DMMS. Alternatively, let 6' be a new helper who observes

the component source Z. This gives the desired example for IVI = 7 and JAI = 3 by

the same argument.

Example 2.2 is indeed minimal in terms of the number of users and active users.

In other words, (2.13) is tight for 2 < JAl <1 VI < 5 or |V| = 6 > 2JAl, regardless

of the choice of Zv. In Appendix C.3, we give in Theorem C.1 a generalization of

the mutual dependence upper bound (2.13) and a tightness test which involves only

a finite number of test cases. A computer program is written to automate the test

and show that the bound is tight for small networks. This result again relies only on

the simple fact that mutual information is non-negative.



2.3 Other measures of correlation

Needless to say, there have been many attempts in generalizing Shannon's mutual

information or understanding it in different settings. We will give a survey of various

measures of correlations, as comparisons to the notion of mutual dependence we

consider here.

The structure of correlation is rather complex in the multivariate case. There

are, for instance, different notions of independence: mutual, pairwise, conditional

and semi-independence [27]. For the set Zv := (Z1,. .. , Zm) of m random variables,

Watanabe's total correlation [57] is defined as

E H(Zi) - H(Zv) = D(Pzv| 11Pz)
i=1 iEV

It has a simple interpretation as the redundancy in expected length when entropy

encoding Zv with respect to the product of the marginal distributions instead of the

joint distribution [8]. McGill's interaction information [44] for three random variables

is defined as

I(Zi A Zj|Zk) - I(Zi A Zj)

which is symmetric for every permutation (i, J, k) of (1, 2, 3). It is interpreted as the

gain (or loss if negative) in correlation with an additional random variable. Jakulin

and Bratko [30] gave a general formula for the rn-way interaction information

- (-1)vi-iAH(ZA)
ACV

which is equal in magnitude to the following co-information [4]

- (-1)AiH(ZA)
ACV

first derived by Yeung [63] by treating shannon's information measure as a measure

over a --field. Treating each random variable as a set, it has the mathematical

interpretation as a quantity commonly possessed by every set. However, it can be



negative unintuitively. To fix this, Han [25] investigated the mathematical structure

connecting the various notions of multivariate correlation. He defined the linear

correlative entropy space as the set of linear functions of entropies equal to zero

when the random variables are mutually independent. Total correlation, interaction

information and co-information are all special cases. He then derived in [26] the

conditions for the correlative functions in the space to be non-negative and symmetric,

just as the total correlation.

The notion of mutual dependence we consider here in (2.3) can also be expressed

as functions of the entropies, and indeed, functions of the partial correlations defined

by Watanabe [57] with an additional normalization factor. It is nonnegative, sym-

metric and correlative but not linear in the entropies, and therefore does not fall into

the linear correlative entropy space. Nonetheless, it can be computed easily as an LP

by Theorem 2.1 and carries the operational meaning from secret key agreement. In

comparison, total/partial correlations are more specific to a particular product of the

marginal distributions. Interaction information focuses more on the change rather

than the total amount of correlation. Co-information assumes a priori that informa-

tion behaves like objects we can normally measure in volume. This rather idealistic

assumption might have lead to the peculiarity that the measure can be negative.

For the simplest case of two random variables, there are also some alternative

correlative measures other than Shannon's mutual information. Wyner's common

information [60]

C(XAY):= inf I(UAXY)
X<-U-->Y

is the minimum rate of common randomness needed for two otherwise independent

simulators to generate outputs that approximate the statistics of a DMMS (X, Y)

arbitrarily closely. Common information is more difficult to compute [59] than mutual

information. It is no smaller than I(X A Y) because the common randomness may

contain a component independent of one of the source it simulates. The remaining

component has rate equal to the mutual information, as pointed out in [14], via the

alternative setting of channel simulation with common randomness.



Gsc and Kdrner's common information [22, 58] is J(X A Y) := H(V) where V is

the maximum common function of X and Y. It is easy to compute using the ergodic

decomposition [22] and is no larger than mutual information because it is indeed the

maximum amount of secret key we can generate without public discussion. With

public discussion, the secret key rate increases to the mutual information.

2.4 Duality with source coding

If the mutual dependence in (2.3) is a natural generalization of Shannon's mutual

information, we should expect to see confirmations from other related problems in

source coding or channel coding. Indeed, Csiszir and Narayan [12] already discovered

a duality between the secret key agreement problem and the source coding problem

of communication for omniscience (CO). To explain this, suppose the users want

to independently compress their observations into public messages such that every

active user can recover the entire source Zv. What is the smallest sum rate of the

messages required? If the active users do not observe any correlated source, then

H(Zv) is needed by the Slepian-Wolf source coding theorem [8]. If the active users

observe some correlated sources, however, they can use them as side information to

recover the entire source. The smallest sum rate Rco, called the smallest rate of

communication for omniscience, can be smaller than H(Zv). The maximum savings

in the source coding rate below H(Zv) turns out to be the secrecy capacity [12].

Cs = H(Zv) - Rco (2.16)

In this section, we extend the result to a general duality between the problem

of secret key agreement and the problem of maximum common randomness (MCR)

under a rate constraint on the public discussion. It has the following information-

theoretic appeal:

1. Maximum common randomness can be attained strongly by first agreeing on a

maximum secret key and vice versa.



2. Secrecy capacity has the interpretation of mutual dependence as the maximum

common randomness that needs not be publicly discussed.

The duality holds in the asymptotic sense. There may not be any polynomial reduc-

tions between the two problems. In other words, a practical solution to one problem

does not guarantee a practical solution to the other. This is unlike the duality be-

tween secret key agreement and network coding to be described in Chapter 3, where

a practical network code gives rise to a practical secret key agreement scheme.

We now define the problems of rate-constrained secret key agreement and maxi-

mum common randomness as follows. For a slightly more general result, we incorpo-

rate a set D C V of untrusted users in the model. They are not active by definition,

i.e. A C DC, and their observations are known to the wiretapper. This means that the

secret key should be asymptotically independent of both the public messages and the

private knowledge of the untrusted users. A more detailed description can be found

in Chapter 5 or [12].

Definition 2.2 (Rate-constrained SKA) Consider the source model where ter-

minal i E V observes finitely-valued memoryless source Zi, and

ACDcCV: JAI >2

where A and D are the sets of active and respectively untrusted users. The secrecy

capacity under public discussion rate R is

1
Cs (R) :=sup lim inf - log|K I (2.17)

n->oo n

by choosing a sequence in n of (K, UDc, F, KA) where

- K is a finitely-valued random variable with support set K,

- Ui for i E D' are continuous-valued random variables independent of Zv with

density function HJEDc Pui,

- for some positive integer r, F := F[ is a vector of F, for j E [r] defined as some

function F (Ui3 , Zn, Z") for some ij E Dc with finite range |F| E [2, oc), and



- Ki for i E A is some function Ki(Ui, Z', Z'D, F) taking values from K,

subject to the constraints that

Pr {i E A, Ki # K} < e7 -+ 0

1
- [log|K| - H(K|Z"DF)] < o -+ 0

lim sup -log|FI - R 0
n-+oo In I

(recoverability)

(secrecy)

(discussion rate)

Cs(R) is said to be strongly achievable if En and 6n decays exponentially to 0. 1

In words, Cs(R) is the maximum rate of secret key K that can be recovered by ter-

minal i E A as Ki after private randomization Ui, observation Zg by terminal i E DC,
public observation ZD and discussion F at a rate below R. Note that randomization

and public discussion are carried out before and respectively after observing the entire

source for n time units. Furthermore, ZD is revealed in public a priori without the

need for additional public discussion.

The problem of maximum common randomness is defined in a similar way except

that the secrecy constraint is replaced by the uniformity constraint.

Definition 2.3 (MCR) Consider the same source as in Definition 2.2 where termi-

nal i E V observes finitely-valued memoryless source Zi, and A C D' C V : |Al > 2.

The maximum common randomness capacity under public discussion rate R is

1
C(R) := supliminf - log|L|

n-oc n (2.19)

subject to the constraints that

Pr {Ei c A, Li # L}

1
- [log|LI - H(L|ZD)]n

< 6 -- + 0

_< 6n -- 0

lim sup 1log|F - R < 0-,, ogIn I

(recoverability)

(uniformity)

(discussion rate)

where the common randomness L is a finitely-valued random variable, the public

(2.18a)

(2.18b)

(2.18c)

(2.20a)

(2.20b)

(2.20c)



discussion F and the private randomizations UDc are as defined before in Definition 2.2,

and Li := Lj(Uj, Z', ZD, F) is the estimate of L by each active user i E A. C(R) is

said to be strongly achievable if en and 6n decays exponentially to 0. E

The common randomness L defined above is the same as the secret key K in

Definition 2.2 except that L needs not be asymptotically independent of F. Both of

them need to be almost surely recoverable by the active users, and nearly uniformly

distributed over their support sets. The component sources ZD of the untrusted users

are also assumed to be publicly known but do not count towards the discussion rate.

Theorem 2.3 (Duality) The rate-constrained secrecy capacity C,(R) and the com-

mon randomness capacity C(R) defined in Definition 2.2 and 2.3 are both strongly

achievable and satisfy the following duality,

C(R) = C,(R) + R for all R > 0 (2.21)

(2.16) is a special case when R = Reo, where C(R) becomes H(Zv). a

This is illustrated in Figure 2-3. Co is the maximum amount of common random-

ness with a negligible amount of public discussion. This is also the secrecy capacity

since the public discussion reveals only a negligible amount of the common random-

ness. At R = r, C(r) = Cs(r) + r increases in r at a rate larger than 1 by the

monotonicity of C,,(r). Eventually, this rate decreases to 1 at some point R = Rs,

where further increasing R does not increase Cs(R). This gives the secrecy capacity

Cs = limR-o Cs(R) with unlimited discussion rate. The smallest rate Rco of commu-

nication for omniscience is when the common randomness is the entire DMMS Zv.

By the result of [12], (Rs, H(Zv)) is a point on the curve to the right of Rs because

the secrecy capacity Cs can be attained through communication for omniscience.

It is not known whether there is a single-letter characterization for the curve over

R C (0, RcO). The smallest rate Rs to attain secrecy capacity Cs is also unknown in

general as mentioned in [121. Nonetheless, we have an intuitive duality between the

rate-constrained SKA and MCR problems, which is evident from the duality between
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Figure 2-3: Duality between rate-constrained SKA and MCR

the SKA and CO problems in [12]. On the one hand, if the active users can agree on

C(R) bits of common randomness using R bits of public discussion, the wiretapper

can learn at most R bits of the common randomness from the public messages. The

remaining C(R) - R bits should remain secret. On the other hand, since the active

users can agree on Cs(R) bits of secret using R bits of public discussion, they can

use both the secret key and the public messages as common randomness. Since the

secret key is nearly uniformly distributed given the public messages, which can also be

compressed to nearly uniformly distributed random variables, the amount of common

randomness is at least Cs(R) + R.

The additional fact that both capacities can be strongly achievable follows from

the technical lemmas below:

1. source coding can be done efficiently with exponentially decaying error proba-

bility by Proposition A.6, which is a result from [11], and

2. the uniformity/ secrecy condition can be satisfied in the strong sense by Lemma A.4,

which is a straight-forward extension of [12, Lemma B.2].

The detailed proof of Theorem 2.3 is given in Section A.5.



Chapter 3

Linear Network Coding

To prove that the LP characterization (1.2) of the secrecy capacity is achievable,

Csiszir and Narayan [12] applied the source coding solution of communication for

omniscience for secrecy key agreement. This duality between the source coding and

secrecy problems was described and extended in Section 2.4. The idea is to have the

users publicly discuss at the smallest rate Rco until every active user recovers the

entire source Zv almost surely, attaining omniscience. Then, by a random coding

argument, the active users can extract the desired secret key as a function of Zv at

rate H(Zv) - Rco. The LP characterization of Rco gives the desired secrecy capacity.

Although the duality with source coding gives a systematic solution to secret key

agreement, it does not guarantee a practical solution. Much like the channel coding

theorem, the random coding argument does not impose any structure to the code. In

the worst case, the public discussion and key functions may be exponentially complex

in the constraint length n, which may have to be very large for the asymptotic recov-

erability and secrecy conditions to be meaningful. There is no polynomial reduction

between the source coding and the secrecy problems, and so a practical solution for

one problem does not necessarily entail a practical solution for the other.

In this chapter, we will prove a duality between the channel coding and the secrecy

problems by giving a practical linear network coding solution to secret key agreement.

Network coding [28] is normally a solution to the channel coding problem over a net-

work with noise-free links but it turns out to apply here as well to the secrecy problem.



We will start with a source model that has a general linear dependence structure and

then strengthen the results for a relatively more specific source, whose dependence

structure can be captured by a hypergraph. Recoverability and secrecy conditions

can be satisfied perfectly for some finite n, and the linear operations involved in the

public discussion and key generation have only polynomial complexity in n.

3.1 Finite linear source

We will illustrate the main ideas with the following example of a private source.

Example 3.1 Let V = [3] and Z3 = 1 e Z2 where Z1 and Z2 are uniformly dis-

tributed independent bits, and G is the XOR operation (or modulo two sum). 0

This is called a finite linear source because the observations are linearly related.

Definition 3.1 (Finite linear source) Zv is a finite linear source if the component

source Zi for user i E V are vectors of random variables that can be expressed as linear

combinations of a common set of independent random variables that are uniformly

distributed over a common finite field. In matrix notation,

z = Hx= H x (3.1)

where x is the vector of independent random variables uniformly distributed over a

finite field Fq of order q, H is a matrix of elements in Fq consisting of the identity

matrix I and submatrix H, and z is the vector of all random variables partitioned into

Zv. Without loss of generality, we assume that the elements in x can be partitioned

into Xv where Xi C Zi for i E V. 1 Xv is called a base of Zv, while H and H are

called a representation and a basic representation of Zv respectively. 1

'To argue this, we can first assume H has full column rank without loss of generality. Then,
there exists an invertible submatrix H of rows from H. Rewriting (3.1) as z = (HH 1 )(Hx) gives
the desired structure.
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Figure 3-1: Turning private source to private channel

For Example 3.1, (Zi, Z2) is a base since we can write

z H x

Z 1 1 0 - -

Z2 =0 1

Z3 1 1 - -2

m_ _j . mj

with II = 1 1Jand the base (X1 , X2) uniformly distributed.

Indeed, with public discussion, we can convert the private source into a private

channel characterized by the transfer matrix H (or simply H). This is illustrated

in Figure 3-1 for Example 3.1. Let X1 and X2 be arbitrary secrets of user 1 and

2 respectively. The users publicly reveal the cryptograms X1 e X1 and X2 EDX2,

which are independent of the secrets by the uniformity of the base.2 User 3 adds the

cryptograms to Z3 and observes effectively the following sum,

Z3 := Z3 e (X1 e X1 ) e (X2 eX 2) = X1 EDX 2

since Z3 = X1 e X2 by definition. This is the desired channel characterized by H. As

user 1 and 2 observe X1 and X2 trivially, we have the effective private channel H.

2 This is the one-time pad [51], which is perfectly secure.

..................................... ........................



Proposition 3.1 (Source to channel) With public discussion, the private finite

linear source Zv in Definition 3.1 can be used as a deterministic linear private channel

characterized by the transfer matrix H in (3.1) with inputs and outputs partitioned

by the users as in Xv and Zv respectively.

PROOF Let R be a random vector in JFq (not necessarily uniformly distributed) inde-

pendent of x in (3.1) but with the same dimension. Define

z :=H(+x) - z

=H(+x) - Hx = Hi

By definition, each element in z can be generated by the user who observes the

corresponding element in z and the vector *+x of cryptograms. Since the cryptograms

are independent of the secrets R by the uniformity of x, revealing them in public

effectively gives a private channel H from inputs in k to outputs in z.

In essence of the above proposition, we can treat Xv and Zv as the inputs and

outputs of a private channel. Users can share a secret key simply by generating it

at a source node and multicasting it to the others through the private channel. In

Example 3.1, user 1 and 3 can share a secret bit K by setting the inputs as Xi <- K

and X2 +- 0. This gives the output Z3 -+ K as desired.

Suppose user 2 also wants to share the key. We can extend the source model to

two time units and let Zit be the observation of user i E [3] at time t C [2]. Let

(X1,(X21,,X12,,X32) := (Z1, Z21, Z12, Z32 ) (3.2)

be the inputs. Then, setting X11 <- K and X21 +- 0 spread the key bit from user

1 to 3 at time 1, while setting X12 <-- K and X32 <- 0 spread the key bit from user

1 to 2 at time 2. The key rate achieved is 0.5 bits. This network coding approach

is summarized in Figure 3-2 and can be generalized as follows for any finite linear

source.



Z31 -+ K X21 - 0 X32 +- 0 Z22 --+ K
(a) Time 1 (b) Time 2

Figure 3-2: Network code for Example 3.1: Xit and Zit denote the input . and respec-
tively output . of user i at time t. The routes of information flow are highlighted.

Definition 3.2 (Single source) Given a finite linear source Zv in Definition 3.1,

the active users in A can share a secret key as follows.

1. Extend the source Zv over n E P time units to Zn>.

2. Pick a source node s E A.

3. Pick a base X", of Zny as the inputs of the effective private channel.3

4. Have the source s generate a secret key K and multicast it to all active users in

A through the private channel using a linear network code [28].

K is chosen to be uniformly distributed and required to be perfectly recoverable by

all users in A. No additional public discussion is performed other than that required

to convert the source to a private channel in Proposition 3.1. 4

For the linear network code in Figure 3-2 for Example 3.1, we have chosen n = 2,

s = 1, Xv1 = (Z11, Z21, 0) and Xv2 = (Z12, 0, Z32). This network coding approach

is indeed optimal because the mutual dependence in (2.3) evaluates to 0.5 bits as

follows,
1

CS ; -D(Pzzuz2 3 PzIPz2 Pz3 )2
1

= - [H(Zi) + H(Z 2) + H(Z3) - H(ZiZ 2 Z3 )]
2
1

= - [1 + 1 + 1 - 2] = 0.5
2

3See the conversion from source to channel in Proposition 3.1.
4Additional channel uses beyond n times may be needed for the linear network code.



In general, when given a finite linear source, what is the key rate achievable by

the single-source linear network coding scheme in Definition 3.2? Does it reach the

secrecy capacity? To answer these questions, we need only characterize the maximum

network throughput and compare it to the secrecy capacity. Intuitively, the larger

the rank of the transfer matrix H is, the larger the correlation between the channel

inputs and outputs, and so the larger the achievable key rate by network coding. We

can characterize the achievable key rate using such rank function in the language of

matroid theory (50].

Definition 3.3 (Linear matroid) Given a finite linear source Zv in Definition 3.1,
let Zy = U2 v Zi be a set of elements that indexes the corresponding random element

in the source Zv = (Zi : i E V), or the rows of H in correspondence to the way Zv

partitions z. 5 Define the rank function r : Zy - N with r(T) for T C Zv being the

rank of the submatrix consisting of the rows of H indexed by the elements in T. The

pair (Zy, r) is called the (linear) matroid for Zv, and we have

r(Zc) = H(Z0 ) for all C C Vlog q

H is called a representation of the linear maroid.' H- is referred to as a basic repre-

sentation of the linear matroid.

We call r(T IU) := r(T U U) - r(U) for T, U C Zv the conditional rank of T given

U. X is defined as the set of bases XV with Xi C Zi disjoint and r(Xv) = r(Zv). It

is easy to see that the elements in a base XV C X indexes the elements in a base Xv

of the finite linear source ZV.

In Example 3.1, the rank of H is r(Zv) = H(Zv) = 2. The set X of bases are

(Z1, Z2), (Z2, Z3) and (Zi, Z3). The achievable key rate can be characterized using r

(and X) as follows. Given the time extension n, channel inputs X and the source

'For example, if Z1 is a vector of two random bits (hfx, hjx), then Zi = (1, 2) is a vector of the
corresponding row indices of H = [hi h 2 ].

6 The convention we use here is that elements of the linear matroid are represented by rows of H
instead of the columns.
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Figure 3-3: Network throughput for Example 3.1: cut values for B = [2]

node s E A, the network throughput has the following min-cut characterization [2],

1
- min r(ZI lXc) (min-cut)
fn BCV:sEB 5A

Figure 3-3 illustrates the computation of the above expression for the linear net-

work code in Figure 3-2. Consider B = [2], which satisfies the constraint s E B ; A

for s = 1 and A = V = [3]. At time 1, r(ZBciaXBci) equals H(ZBclXBci) = 1

because there is one bit of channel output outside B, namely Z31, that is controlled

by some channel inputs inside B, e.g. X11. This quantity, called the cut value, is the

maximum possible information flow from B to BC. At time 2, however, r(Zc 2 XBC2)

equals H(ZBc 2 |XBC2) = 0 because there is no output outside B that is controlled by

any input inside B. i.e. there is no information flow from B to BC. The average

information flow is 0.5 bits, which turns out to be the minimum cut value among all

valid choices of B, namely {1}, {1, 2} and {1, 3}.

Maximizing the min-cut value over all possible choices of the time extension n of

the channel inputs XV give the maximum achievable secret key rate for the single-

source network coding scheme. Using the memorylessness of the channel, we have

the following single-letter characterization, which can be computed numerically for

simple networks.

. ........ ................ ........................... ........ ... A il-..................

H(ZBc1|XBr-1) = 1I



Theorem 3.1 (Single source) Given a finite linear source Zv in Definition 3.1, the

secret key rate CA (log q) bits achievable by the single-source network coding scheme

in Definition 3.2 can be characterized by the matroid (Zv, r) in Definition 3.3 as

CA max min E[r(ZBcIXBc)] (3.3a)
Pg E (X) BCV:sCB;A

= max min ZcpE[r(Zckc)1 (3.3b)
Py cE9:P(X) -P E 1( A)-1

where Xv is a random variable distributed as P over the set X of bases of (Zv, r)

and TT1(A) is defined in (B.4a) as the collection of P = {Ci,... , Ck} C 2V \ {0} such

that k > 2, every C, contains an element in A, and every element in A is contained

in exactly one C2.' n.b. (3.3b) is independent of the choice of s, and so as (3.3a).

Furthermore, the secret key can be perfectly secret and recoverable in the sense

that it can be independent of the public messages and recoverable by the active users

with zero error probability. The rate can approach Cj(log q) bits with a gap in the

order of |V||n.

The single-source network coding approach is optimal if the throughput C (log q)

equals the secrecy capacity. This is indeed the case when all users are active, i.e.

A = V. As we have proven earlier in Theorem 2.1, the secrecy capacity equals the

mutual dependence (2.3) when all users are active. For the finite linear source, it is

easy to simplify the divergence expression to the following form

1
CS = min - r(ZclXc) for any Xv G X

CEP

which has the combinatorial interpretation of partition connectivity [3, 20]. It is in-

variant to the choice of Xv E X, and turns out to equal the min-cut characterization

of the network throughput. Figure 3-4 illustrates the computation of this expression

for Example 3.1. Consider P = ({1}, {2}, {3}) and Xv = (Z1 , Z 2, 0). Each r(ZcIXc)

is the cut value that gives the maximum amount of information that can possibly flow
7 Elements in AC can be in any number (or none) of the parts of P.
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Figure 3-4: Secrecy capacity for Example 3.1: P = ({1}, {2}, {3})

from C' into C E P. Since there is only one output bit, namely Z3, that is controlled

by some input from other users, only one part in P has a cut value of 1 bit. This

turns out to achieve the minimum in the partition connectivity expression, which is

0.5 bits as desired.

Corollary 3.1 C^ is independent of s e A by (3.3b). When all users are active, i.e.

A = V, (3.3b) becomes the secrecy capacity Cv (log q)

C = C = min ZCep r(Zc) - r(Zv) (3.4)snPE s eIP| - 1

where n = 1(V). In other words, the single-source network coding approach to secret

key agreement is optimal when all users are active.

PROOF By the random coding argument in [2], the asymptotic throughput of a mul-

ticast session from source s E A to other active users in A with input Xv chosen for

the input is

min r(ZBc|XBc)
BCV:seB2A

This can be approached in the order of |V|/n with perfect recoverability and secrecy.8

8Perfect secrecy is immediate since no additional public discussion is needed. To argue perfect

..................... ::: ........................................ ..... ...................................... W ,



Maximizing the throughput over the choice of the base X' E X" of the n-extension

Z := (Zvt : t E [n]) gives the rate

1 1
- max min rZ e) = - max mi E r(ZBct|XBct)n XnEX" BCv:sEB2A f X nX" BCV:sEB7A

te[n]

E N (Xvl r(~cI )c= max min Xv r(ZBcXBC)
Xn EXn BCV:sEB2A n

where N(Xv|X') is the number of occurrences of XV in the sequence X'. As n -

00, the above rate approaches (3.3a) as desired in the order of 1/n. (3.3b) follows

from a surprisingly general identity for matroids in Theorem B.2. (3.3b) is trivially

independent of s C A, so as (3.3a). When A = V, the expression in (3.3b) inside the

maximization is independent of P, because

E5 r(ZolXc )= r(Zc) -(a)Xz
CE CEP ( iEc

(b : r(Zc) - r(Zv)
CE-P

where (a) is because Xc C Zc and r(Xi) = IXjl, and (b) is because EcZ0 1 = 1 and

ZEvXji = IXv= r(Xy) = r(Zv) by the definition of a base.

(3.4) for the corollary also follows from the last expression. Since H(Zc) =

r(Zc) log q, the R.H.S. of (b) is the divergence D(Pzv | HCop Pze)/ log q, and so (3.3b)

becomes the secrecy capacity in log q bits as desired from (2.4).

In the other case when A C V, the single-source network coding approach still

applies but its optimality is unknown. For the simple networks we have randomly

generated so far, it is optimal. No counter-example has been found.

recoverability, note that the average error probability in [2] of a random linear code at rate R under
a linear deterministic network is at most 2 nR-(n-IVI)minBCV:,,seBAr(ZBcIXBc). A code makes an
error only if at least one message gives the same observation at a destination node in A as another
message. For linear codes, existence of one such message implies by linearity that all other messages
have this problem, and so the error probability must be at least 1/2. If the average error probability
is less than 1/2, i.e. the error exponent bigger than 1, there must be a linear code that attains zero
error probability as desired.



3.2 Source with dependency hypergraph

In the previous section, we described a single-source network coding approach for the

finite linear source model where the dependency of the private observations can be

captured by a (linear) matroid. By viewing matroids partitioned by vertices as edges

in graphs, we discovered a general identity (B.33) in matroid theory that proves the

optimality of the network coding approach in the case when all users are active.

In this section, we will derive some stronger results in the special case when the

dependency of the source can be captured by a hypergraph. For example, we can

derive a better delay guarantee for communicating the secret key bits by network

coding, and prove that the network coding approach is also optimal when there are

only two active users but an arbitrary number of helpers. When all users are active,

the secrecy capacity corresponds to a more concrete notion of partition connectivity [3]

of the dependency hypergraph. This gives a theoretically appealing confirmation of

secrecy capacity as a measure of mutual dependence described in Chapter 2.

Example 3.1 considered in the previous section is indeed an example of a source

with dependency hypergraph. The precise definition is as follows.

Definition 3.4 (Source with dependency hypergraph) A hypergraph is a tuple

H = (V, E, #) of vertex set V, edge set E, and edge function # : E -* 2' \ {0} with

|#(e)| ;> 2 for all e E E.9 Given two hypergraphs Hi = (V, E1 , #1) and H 2 =

(V, E 2, #2) on the same vertex set, the disjoint union H1 Li H2 is a hypergraph H =

(V,E,#) with E= {(ei) : e Ei} and

#((e, i)) = #i(e) for all (e, i) E E

i.e. we distinguish between the edges from H1 and H2 by the additional index i.

Given the hypergraph H = H1 Li H 2 and finite group G of order |G| = q, define

z(el) = z(e'll for every e E E1 and i E 0i(e) as an independent random variable

uniformly distributed over G, and Z(e, 2) := (Z(e, 2 ) i E # 2(e)) as an independent

9It is possible but not of interest to consider singleton edges here.



random vector uniformly distributed over a subset of G102(e)1 with zero sum,

(e,2) (5
z(e) 0 for all e E E2 (3.5)

Define the source Zv such that Z is the (ordered) set of z(e'j) for e E : i Ee )
and j E [2]. H is referred to as the dependency hypergraph of Zv. a

For Example 3.1, the dependency hypergraph H consists of an empty hypergraph

H1 with no edge, and a hypergraph H 2 having one edge, say e, with #2 (e) = [3].

The random vector z(e,2) is simply (Z1, Z2, -Z3), which satisfies the constraint (3.5)

trivially. Another straightforward example is to have Z1 = Z2 = Z3 be a uniformly

random bit. In this case, the dependency hypergraph consists of an empty hypergraph

H 2 with no edges, and a hypergraph H1 having one edge e with #1 (e) = [3]. The

random variable z(e'l) observed by every node in #1(e) is simply Z1.

We can also combine the previous two sources into one, with Z = (z(e,1), ze'e,2)

Z '(e1) We, 2)\ (e,2 suhta (e/ ~~ 2) ad(e',2)Z2 = z', z 2 ) and Z3 = (z(e'), Ze,) such that z(','), z, andz2 are indepen-

dent uniformly random bits while z(e',2) = (Ze' 2 ) + ze',2 ). Then, the dependency

hypergraph H consists of a hypergraph H1 with the edge e and a hypergraph H 2 with

the edge e' where #1(e) = #2(e') = [3].

A source with dependency hypergraph is a special case of the finite linear source

in Definition 3.1 when G is a field. To see this, define an arbitrary root function

P2 : E2 - V with p2(e) C 0 2 (e) for all e C E2. Then,

x := (Z(e1'l), z (e2,2) : ei E , e2 E E2, i E 0 2 (e2 ) \ {p 2 (e2))

is a vector of independent random variables uniformly distributed over G. By (3.5),

the remaining random variables z(e 2 ) for e E E2 are simply negative sums of subsetsP2 (e)

of elements in x. This satisfies the defining property (3.1) of a finite linear source for

some representation H as desired. In general, regardless of whether G is a field, the

matrix form (3.1) still applies for some matrix I consisting of +1 or 0. Indeed, the

choice of a base Xv for Zv corresponds to the choice of a root for every edge in H.
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Figure 3-5: Dependency hypergraph for Example 3.2

Definition 3.5 (Root function) A star hypergraph [3] H* = (V, E, #, p) consists

of a hypergraph H = (V, E, #) and a root function p : E '-4 V with p(e) E # (e). Let

H* = H* Li H2 be the star hypergraph of the dependency hypergraph in Definition 3.4

with the root functions p: E - V and pi : Ej -+ V for i E [2] such that

p(e) = p((e, i)) for all (e, i) E E

Define XV as follows,

:(z'),z e2, 2) :ei C E, e2 E E2, i = pi(ei), j E 42(e2) \ {p2(e2)}) (3.6)

XV is a base of ZV, and every base can be defined this way for some p. 1

As in Proposition 3.1, the source model can be converted to a private channel H or

simply H with the help of public discussion. In terms of the dependency hypergraph,

we can view each edge as an independent transmission link as illustrated below.

Example 3.2 Let V = [4], A = [2], G = F2 , and Zv be a source with the dependency

hypergraph H = H1 Li H 2 in Definition 3.4 where H1 and H2 contain the 3-edges ei

and e2 respectively with

# 1(e1 ) = {1, 3,4} and #2(e2) = {2, 3, 4}

but no other edges. This is shown in Figure 3-6.



Suppose we choose node 1 and 2 as the roots of ei and e2 respectively, i.e. p1(ei) =

1 and p2(e2) 2. Then, (3.6) gives X1 Z=1, X3 = Z3, X4 = z 2 and X2  0. In

matrix form,
H

el 1 0 0
z e2 I 0 1 0 --3 1 Xze2 1 0 0 1
zl 1 0 0 X

Z3 X4z;1 H 1 0 0 LxJ
e2 0 1 1

Viewing H as a channel, the first column corresponds to a broadcast link from sender

pI(ei) to receivers in #1(e1) \ {p1(ei)}. The last row corresponds to an interference

link from senders in #2 (e2) \ {p 2 (e2)} to the receiver p2 (e2). Other rows and columns

must be unit vectors by independence of the links.

Definition 3.6 (Hyperedges as links) We say that an edge e in a hypergraph

H = (V, E, #) is used as

* an undirected broadcast link in the sense that a sender p(e) E q(e) can be

chosen at each time to send a unit of information noiselessly to all receivers in

$(e) \ {p0e).

e an undirected interference link in the sense that a receiver p(e) E O(e) can be

chosen to observe the sum of inputs from the senders in #(e) \ {p(e)}.

e a selectable link in the sense that a sender and a receiver can be chosen from

#(e) for a point-to-point link.

After converting the edges to independent directed links, the resulting composite

channel is representable by a transfer matrix R of which every non-zero entry equals

1 and is contained in a unit column or row vector.

The usual notion of a network flow can be built upon these various notions of

links. A unit flow of length I is a sequence u1 , e1i, 2 , 2 , .. . , u1+1 with uj's being

distinct vertices in V and ej being an edge with sender selected as ui and receiver

selected as ui+1. An outbranching from s to a set of nodes A \ {s} is a collection of



edges with the choice of a sender and one or more receivers for each edge, such that

there is a unique unit flow from s to every node in A \ {s}. The outcut 6. : 2v - 2E

and incut o.. are defined as

6+.(B) := 6-.(Bc) := {e E E : p(e) E B 2 #(e)} (3.7a)

for B C V. The cut 6 H 2 v - 2 E is defined as

3H(B) := {e E E : B 5 #(e) g Bc} (3.7b)

The values of the cuts are simply their cardinalities.

It follows from Proposition 3.1 that every edge in H1 can be used as an undirected

broadcast link or selectable link, while every edge in H 2 can be used as an undirected

interference link or a selectable link. In Example 3.2, ei can be used as a broadcast

link from sender 1 to receivers in {2, 3}, which can also be viewed trivially as a point-

to-point link from sender 1 to receiver 3. e2 can be used as an interference link from

senders in {3, 4} to receiver 2. If sender 4 transmits 0 over the link, we effectively have

a point-to-point link from sender 3 to receiver 2. Using ei and e2 as selectable links

this way, there is a unit flow of information from user 1 to 3, namely the sequence

1, ei, 3, e2 , 2. This is shown in Figure 3-6. In general, when there are only 2 active

users, we can use both the edges from H1 and H 2 as selectable links and route the

secret key from one active user to the other optimally as follows.

Definition 3.7 (Unicast by routing) Given a source Zv with a dependency hy-

pergraph H = H1 Li H2 in Definition 3.4, two active users, i.e. |AI = 2, can share a

secret key as follows.

1. Pick a source node s C A and a destination t E A \ {s}.

2. Use the edges in H as selectable link in Definition 3.6 by choosing a sender and

a receiver for every edge.

3. Decompose the links into edge-disjoint unit flows from s to t. Have the source s

generate and route independent parts of a secret key K through each unit flow.
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Figure 3-6: Network code for Example 3.2

This is a specialization of the scheme in Definition 3.2 without extension in time nor

coding at any nodes.

Theorem 3.2 Given a source Zv with a dependency hypergraph H = H1 Li H 2 in

Definition 3.4, the routing solution in Definition 3.7 achieves the secret key rate

C'( (log q) bits in (3.3), which equals the secrecy capacity Cs (log q),

CA = CA min |6H(B)| (3.8)
sfl S BCV:sEBot

where A = {s, t}, and 6H is defined in (3.7b). This can be attained non-asymptotically

with no delay, and is independent of the choice of s.

PROOF The fact that (3.8) is the maximum number of edge-disjoint unit flows in H

from s to t follows from Theorem B.3, which is a generalization of Menger's theorem

to hypergraphs. It remains to show that (3.8) is the secrecy capacity. By [12],

C (log q) < min D(Pzy|PzBP Bc)
BCV:sEByt

Consider a star hypergraph H* =. H* L H2 and the corresponding base XV defined in

Definition 3.5.

D(Pzv|PZB PZBrc) = H(ZB) + H(ZBc) - [H(XB) + H(XBC)]

= H(ZBIXB) + H(ZB IXBc)

because H(Zy) = H(Xy) = H(XB) + H(XBc) by the definition of a base. The last

z el Kz1 K -Z12 -* K2



two entropy terms evaluate to the following cut values by (3.6),

H(ZB XB) =|6j -(B) |+|16(B)|

log q 1 2

H(ZB c| XB") =65+ (B)| + 6H (B)
log q 2

By (3.7), the sum of the above gives (3.8) as desired.

|AI = 2 is essential for the proof of optimality. For instance, Example 3.1 with

A = [3] cannot attain the secrecy capacity of 0.5 bits without an extension of n > 2.

Furthermore, coding may sometimes be necessary as shown by the following example.

Example 3.3 Let A = V = [4], G = F 2, and Zv be a source with dependency

hypergraph H = H1, i.e. H2 being empty, in Definition 3.4 where E := {123, 134, 124}

and #(ijk) := {i, j, k} E V. This is illustrated in Figure 3-7.

It is easy to argue that at least 2 edges are needed to give an outbranching that

supports 1 bit of information flow from a source node to all other nodes. Since H has

only 3 edges, there are at most 3 edge-disjoint outbranchings for every 2 time units.

Thus, routing independent secret key over edge-disjoint outbranchings can attain a

maximum rate of 2 bits. With linear network coding, however, the secrecy capacity

of 2 bits is achievable as follows:

1. Choose user 1 as the source.

2. Select user 1 as the sender for all edges in H, and all other users as receivers.

3. Have user 1 generate two independent secret key bits K1 and K2 uniformly

distributed over G, and then send K1, K2 and K1 e K2 respectively over the

broadcast links 123, 134 and 124.

Since every user has access to at least two links, they can recover the key bits perfectly.

This is shown in Figure 3-7.

In general, we can specialize the scheme in Definition 3.2 as follows with convo-

lutional network code, which has a better delay guarantee without diminishing the

achievable secret key rate.
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Figure 3-7: Network code for Example 3.3

Definition 3.8 (Convolutional code) Given a source Zv with a dependency hy-

pergraph H = H1 L H2 in Definition 3.4, the active users in A with 2 < JAI <;1 VI

can share a secret key as follows.

1. Extend the source over n E IP time units.

2. Pick a source node s E A.

3. Let H = (V, E, 45) = |_|[ H be the n-extended hypergraph of H. Use the

edges in H1 as undirected broadcast links and the edges in H 2 as selectable

links defined in Definition 3.6. i.e. choose a sender for each edge in H1 and a

receiver for each edge in H2.

4. Have the source s generate a secret key K and multicast it to all active users in

A using a convolutional network code [34].

If G is not a field, we use the field with maximum order less than q. E

Instead of encoding a long message over a large block of time, convolution code

encodes a data stream continuously in time, allowing mixing of the data in the trans-

mitted and received signals. Although it may not work well with the more general

finite linear source in the previous section, it applies naturally here for the special

source model with dependency hypergraph. The continuous encoding mode has a

better delay guarantee and less demand for buffering. The achievable key rate and

other details of the convolutional network code are given in the following theorem.10

10See [28, 341 for more details on convolutional network codes.



Theorem 3.3 Given a source Zv with a dependency hypergraph H = H1 LI H 2 in

Definition 3.4, the convolutional network coding scheme in Definition 3.8 achieves

asymptotically the secret key rate Cj(log q) bits in (3.3), which simplifies to

CA max mill E [6 (B)l + 16- (B)1 (3.9a)
PH*,PH* BCV:sEB5A 1 2

1 2 -

Ecep E [164 (C)|I+\16H+ (C)\1
= max min - (3.9b)

PH* H -PE(A

where HT and H* are random star hypergraphs of H1 and H 2 respectively with random

root functions. This is independent of the choice of s E A. The maximum delay P is

upper bounded by

y < n3 C JEl logq(IA nCdq) (3.10)

where n is the time-extension in step 1 of Definition 3.8. When all users are active,

i.e. A = V, the secrecy capacity in (3.4) is attained as a consequence of Corollary 3.1,

which is

C ~ ~ e | i C I6H-, (C)|I+|16+ (C)\I
Cv = min6~ji±~~C~

where H* and H2 are arbitrary star hypergraphs of H1 and H2 respectively. Further-

more, n < |V| - 1 by (B.33), which can be substituted in (3.10) to give a bound on

delay.

Cs equals pH defined in (B.51), which has the combinatorial interpretation of par-

tition connectivity for hypergraphs [3]. The optimal partition P also has the intuitive

meaning of highly connected /dependent nodes as described in Proposition B.6.

PROOF The fact that edges in H 2 can be used as selectable links instead of undirected

interference links follows from Corollary B.2 that edges in H 2 can be shrunk to 2-

edges without diminishing the min-cut value in (3.9). The fact that (3.3) evaluates

to (3.9) under (3.6) follows from the fact that

r(ZBe|XBc) - H(ZBe|XBc) -|6+ (B) + 6j (B)| for any B C V
log q



It remains to show that there is a convolutional code that attains the throughput

in (3.9) with a maximum delay of (3.10). After step 3 in Definition 3.9, every edge in

H1 is a directed broadcast link while every edge in 52 is a point-to-point link, which

is just a special kind of broadcast link. Thus, step 4 is essentially a network coding

problem with directed broadcast links. Without loss of generality, we assume H 2 is

empty and construct the desired convolutional code for H = H1 that attains the rate

dR.(A, s) := min l6t (B)| (3.11)
BCV:sCB-A H*

Let t be the time index, D be an indeterminate for time delay, u be the total

number of input processes, and Fqk for some positive integer k E P be the support

set for each sample. Let the generating function of the input process j E [u] be

Xj (D) := Xjt Dt

t>o

where Xit are independent and uniformly random over Fqk. (Xjt : t E P) is the j-th

uniformly random data stream originated from the source s and to be communicated

to every node in A \ {s}. The generating function of the edge process at e E 5 is

defined as
Ye(D) = aee'DYe, (D) + E bejXj(D)

j E[u]:

where aee,, bej C Fqk. This is generated by node p(e) and received by nodes in S(e).

The additional unit delay on the incoming edge processes is sufficient (but not nec-

essary") to avoid cyclic dependency in the information flow when the line graph of

H* contains a cycle. Define the generating function of the output process j E [u] at

node i c A \ {s} as

Zij (D) =cijeYe (D)

eEE:
iE$(e)\P(e)

where cije E ]Fqk. This can be regarded as a summary of the incoming edge processes

"As mentioned in [28], it is sufficient to have one unit delay associated with every cycle in the
line digraph of ft*.



at node i for decoding the input processes. To define the final decoding step, consider

the following matrix notation. Let

a (aee, e, e' E E, p(e) E (e') \ p(e'))

b :=(be:e E, j E [u], p (e) =s)

ci :=(cije :j EU [7) e (E E, # (e) \ p(e) -Di

and A = [Ace,], B = [Bej] and Ci [Cije] be the matrices with row index first such

that the entries Ae,, Bej and Cije equal aee,, bej, and cije respectively if defined and

0 otherwise. Then, with X(D) = (Xj(D)), Y(D) = (Ye(D)) and Zj(D) = (Zij(D))

defined as the vectors of the specified input, edge and output processes, we have the

matrix form of the convolutional code

Y(D) = DAY(D) + BX(D)

Zj(D) = CjY(D) for all i E A \ {s}

Combining these equations, we have

Hi

Zj(D) = Cj(I - DA)- 1 B X(D) for all i E A \ {s (3.12)

The matrix inverse (I - DA)- 1 is well-defined because the system Hi is realizable

in a distributed fashion by construction.12 The determinant |I - DAI is a non-zero

polynomial of D with constant term equal to I - 0A|= 1 and so

1
(I - DA)- 1 = adj(I - DA) (3.13)

|I - D A I

where adj (M) is the adjugate matrix, the entry at row r and column c of which is

(- 1)r+c times the determinant of M with row c and column r removed.

Finally, define the decoding at node i E A \ {s} using the system C2 as

X(D)Di = CiZi(D)

12Every processing step satisfies the causality requirement under the assumption that the nodes
process information independently.



which returns the input processes with delay pi. This is feasible if

is realizable, i.e. H 1 is well-defined and every entry viewed as a rational function of

D has at most pi poles at 0.

We first show that H; 1 is well-defined for all i E A \ {s} if dft (A, s) > u in

(3.11) and k is chosen sufficiently large. Then, we upper bound k and the delay

maxiCA\{s p4. Since Hi 1  adj(Hi)/Hi|, it is well defined iff IHi| is a non-zero

rational function of D. By (3.12) and (3.13),13

Ci adj (I - DA)B (3.14)
|I - DA U

Thus, it suffices to show that

iEA\{s}

is a non-zero polynomial of D for some choice of a, b, c E Fqk and kc P.

By (3.11), dft.(A, s) > u implies that minBcV:seByiJft.(B)| > a for all i E A\ \s,

which implies under Theorem B.3 or the extension [3, Theorem 4.1] of the Menger's

theorem that there exists u edge-disjoint unit flows from s to i. This, in turn, implies

that a, b, c can be chosen for each i such that i is a non-zero polynomial (g(D) of D.

Thus, is a non-zero polynomial ((a, b, c, D). Choose k such that qk is larger than

the maximum degree deg(((a, b, c)) of ( by viewing ( as a polynomial of each of the

variables in a, b, c but D as some constant in Fqk. i.e.

k = [logq(deg ((a, b, c))j + 1 (3.15)

It follows by an inductive argument as in [28, Lemma 2.1] that is a non-zero polyno-

mial of D for some choice of a, b, c. More precisely, arrange the variables (a, b, c, D)

13We have also used the simple fact that |aMI = auoMl for any u-by-u matrix M.



in a sequence (Xi, .. . , I1 = D). The polynomial (X2 , .. . , X1) is non-zero by some

choice of x1 E lFqk since each coefficient is a polynomial of xi with degree strictly

smaller than qk, and therefore cannot have all elements in IFqk as roots. Similarly,

given ((z, ... , xj) is a non-zero polynomial for some choice of X[_1], we have a choice

of xi such that (x+ 1, ... , xj) is a non-zero polynomial. By induction, there is a choice

of a, b, c such that ((D) is a non-zero polynomial, and so H;-1 is well-defined for all

i E A \ {s} as desired.

To upper bound k, we have

deg(((a, b, c)) < (JA| - 1) max deg( 2(a, b, c))
2ev\{s}

=(JA I - 1)u

where the last equality is because the entries of Ci adj(I - DA)B is a degree-1

polynomial in a, b, c, and so its determinant, namely (g(a, b, c), has degree at most

u. It follows from (3.15) that

k _< logq|A~uq (3.16)

To upper bound pi, denote nz,o(M) and ny,o(M) as the maximum numbers of

zeros and respectively poles at 0 over the entries of matrix M, viewed as rational

functions of D. Then,

(a)

ti := np,o(H- 1 ) < nz,o(IHil) + np,o(adj(H))

(b)
= nz,o(ICi adj(I - DA)BI)

< deg((g(D)) u(I k - 1)

(a) is because np,o(adj(H)) < (u - 1)np,o(Hj) (u - 1)nz,o(|I - DA|) = 0 since

|I - DA| is a polynomial of D with no zero;14 (b) is by (3.14); (c) is because every

entry of adj(I - DA) is a polynomial of D with degree at most |El - 1, so as the

14 The factor (u - 1) comes from the definition of adj (Hi) that every entry is a determinant of a
matrix with dimension (u - 1).



entries of the linear combination Ci adj(I - DA)B. " Since | E n|IE|, we have

max Pi < u(n|E| - 1) (3.17)
iEA\{ s}

This completes the proof since we have a convolutional code that achieves (3.11)

asymptotically with a finite field extension (3.16) and delay (3.17). The overall delay

is upper bounded as follows,

max nk(pi + 1) < n2C JE logq |AnC q
icA\{s}

since n extension is needed to convert H to H, an additional factor of k is needed for

the field extension, and a delay of pi + 1 frames of nk time units can guarantee that

the input process can be decoded by every node i E A \ {s}. The R.H.S. is obtained

by (3.16), (3.17) and the inequalities nCA > dft (A, s) > u. 0

When all users are active, and H1 is empty or consists of only 2-edges, we can

have an even better delay guarantee with the following routing solution.

Definition 3.9 (Routing) Given a source Zv with a dependency hypergraph H

H2 in Definition 3.4, i.e. H1 being empty, all users in A = V can share a secret key

as follows.

1. Extend the source over n E IP time units'.

2. Pick a source node s C A.

3. Let H = (V, E, E ) = |_i H be the n-extended hypergraph of H. Use the

edges in H as selectable links.

4. Decompose the links into edge-disjoint outbranchings from s to V \ {s}. Have

the source s generate and route independent parts of a secret key K through

each unit flow to all other active users.

See Definition 3.6 for definitions of links and outbranchings.

1 5 The additional factor u is because of taking the determinant.



Theorem 3.4 Given a source Zv with a dependency hypergraph H = H2 in Def-

inition 3.4 and A = V, the routing solution in Definition 3.9 achieves the secrecy

capacity C 7 (log q) bits with

CV = max min E[ko (B)] (3.18a)
PH* BCV:sB;V

= min Z0 p $(C) (3.18b)
Pen (A) IP - 1

where H* is a random star hypergraph of H with random root functions, while H* is

an arbitrary deterministic star hypergraph. This is independent of s E V and H*,

and is attained with delay (namely the extension n) at most |V| - 1. o

PROOF (3.18) is the maximum number of unit flows by Edmond's branching theo-

rem [3, Theorem 4.2]. The facts that (3.18) is the secrecy capacity and n < |VI - 1

follow from the same argument as in the proof of Theorem 3.3.

3.3 Potential of multisource network coding

In summary, we have shown that the secret key agreement problem has a practical

solution under a linear source model. With the help of public discussion, the private

source can be converted effectively into a private channel by selecting a base for the

channel inputs. One active user can be designated as the source node to generate

a random key, which can then be communicated perfectly secretly to other active

users by a linear network multicast. Compared to the secret key agreement by com-

munication for omniscience in [12], this is more practical since perfect secrecy and

recoverability can be achieved without requiring the constraint length to go to infin-

ity. In addition, all the processing involves only linear operations whose complexity

is polynomial in the constraint length, for any network with constant size.

When some users need not share the secret key, we do not have a proof that the

network coding approach is optimal, nor do we have a counter-example that suggests

otherwise. Further investigation is also needed for a practical solution that scales with



the size of the network. With a linear source model, however, it is quite reasonable

to think that a linear coding scheme suffices. It may require a more complicated

scheme such as the multisource network coding: have multiple sources generate and

communicate independent secret keys to others through multiple multicast sessions.

While further research is needed for a more concrete statement, we will consider

Example 2.2 in Section 2.2 again to conveys the potential of this approach.

Recall that V = [6], A = [3], and Zv is a finite linear source with Z4, Z5 and Z6

independent and uniformly distributed over F2 while Z1= Z5 e Z6, Z2 = Z4 ( DZ and

Z3 =4 ® Z. By Proposition 2.1, the secrecy capacity is bits. This can be attained

by the following multisource network code with a delay of 4 time units, as illustrated

in Figure 3-8.

Time 1: The source is first converted to a channel with inputs (X1, X3, X6) := (Z1, Z3, Z6 ).
Then, have user 1 acts as a source to generate a uniformly random key bit K1.

Assigning the inputs as (X1 , X3 , X6 ) <-- (K1, 0,0), the key bit K1 is then commu-

nicated to all users perfectly secretly except 3 and 6.

Time 2: The inputs are chosen as (X1 , X2, X4) := (Z1, Z2, Z4) and assigned the values

(0, K2 , 0) after user 2 acts as a source to generate a uniformly random key bit

K2 independent of K1. Everyone except 1 and 4 learns K2.

Time 3: The inputs are chosen as (X1 , X2 , X5 ) := (Z1, Z2, Z5) and assigned the values

(K3 , 0, 0) after user 1 generates a uniformly random key bit K3 independent of

(K1, K2 ). Everyone except 2 and 5 learns K3.

Time 4: The inputs are chosen as (X4, X5 , X6) := (Z4, Z5, Z6) and assigned the values

(K1 , K2, K3). User 1 observes K2 E K3 from the channel and recover K2 using his

knowledge of K3. Similarly, user 2 and 3 can recover K3 and K1 respectively.

Since everyuser obtain 3 bits of secret key with 4 uses of the private source, the key

rate is as desired.4

Indeed, the secret key capacity can also be attained by the single-source network

coding with a delay of 8 time units. User 1 is the source node and generates all the

independent key bits K1,... , K6 . The other active users (user 2 and 3) can recover

the key bits after eight channel uses shown in Figure 3-9.
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Figure 3-8: Multisource network code for Example 2.2
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Figure 3-9: Single-source network code for Example 2.2

User 2: K1, K4, K6 , K2 and K5 are recovered at Time 1, 3, 6, 7 and 8 respectively.

K3 can be recovered from K3 @ K5 observed at Time 4.

User 3: K2, K3, K1, K6 and K5 are recovered at Time 2, 4, 5, 6 and 8 respectively.

K4 can be recovered from K4 D K6 observed at Time 4.

Multisource network coding gives more flexibility in optimizing the orientation of

the channel inputs and the choice of the sources for the secret key bits. It is unclear

whether the benefit can go beyond the delay performance to strictly improve the

secret key rate, and whether the key rate reaches the secrecy capacity in the presence

of helpers. Perhaps the secrecy capacity may also help characterize the solution of

the multisource network coding problem in certain special case.
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Part II

Multiterminal Secret Key Agreement





Chapter 4

General Multiterminal Network

Consider the secret agreement game described in Section 1.1. If the users have some

time to whisper quietly to their neighboring users, how can they cooperate to enhance

their correlation so that they can generate as much common secret as possible? The

source model of [12] considered in Part I fails to address this because the correlation

of the users is already given as it is by the private sources. The users do not take

part in generating or enhancing their correlation; they simply turns it into a common

secret.

A less passive model is given by Csiszir and Narayan [13]. They proposed a

broadcast channel model where one user controls the input to a discrete memoryless

private channel (DMC) while others observe from it. The optimal way to correlate

the channel input and outputs turns out to be very simple: have the sender generate

independent and identically distributed (iid) input symbols to turn the private channel

into a DMMS for secret key agreement. The secrecy capacity for the channel model is

simply the secrecy capacity of the source model maximized over the input distribution.

There is essentially no cooperation needed in generating the correlation.

In contrast with the previous work [12, 13], we consider in Part II of this mono-

graph a general private discrete memoryless multiterminal channel (DMMC) in which

every terminal can both transmit and receive. It covers the source model in [12] as

a special case when the terminals may receive but not transmit. It also covers the

broadcast channel model in [13] as a special case when there is at most one transmit-



ting terminal, which is not allowed to receive. The more general DMMC allows us to

address the following new questions:

1. How should the transmitting terminals coordinate their channel inputs to en-

hance the correlation of their private observations?

2. How can the terminals which can both receive and transmit enhance the corre-

lation by adapting their channel inputs to the channel outputs?

The proposed model will also cover continuous channels, which arise in practical

scenarios such as wireless communication. More generally, we allow every channel

input and output symbol to be a mixture of discrete and continuous random vari-

ables [45]. The channel input sequences may also be subject to additional constraints

such as the average power constraint, which applies especially for mobile terminals

with limited power in wireless communication.

4.1 Channel model

We first give an overview of the main ideas through a simplified model. As described

in Chapter 2, there is a set V of users who want to generate and share a common

secret key. They have access to a private channel Pyy lxv instead of a source Pzy. Each

user i E V controls the input Xi and observes the output Yi. They publicly discuss

by broadcasting public messages at any time based on their accumulated knowledge,

which includes their randomization, private observations from the channel, and the

previous public messages. They can choose their channel inputs as functions of their

accumulated knowledge as well. After n channel uses and some public discussion, each

active users i E A C V generates a key Ki that equals almost surely to some common

secret key K, which has to be independent of the public messages asymptotically as

n -+ oc. The secrecy capacity is the maximum achievable key rate as usual.
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4.2 Bounds on secrecy capacity

Recall from (2.1) that the secrecy capacity for the source model ZV is

/3(,Pzv ):=

Cs =min H(Zv) - I ABH(ZB|ZBC)
B .

where A is the fractional partition. If given a channel PyXV instead, the users can

emulate a source by sending iid inputs. The secret key rate achievable with the

resulting DMMS Zv with Zi = (Xi, Yj) for i E V is

Cpse= max min 0(A, Pzv)
Pxv= lievPxi A

= max I(X 1Y1 A X2Y2 ) if V = A = [2]
Pxx 2=PX1PX2

where the last expression is for the two-user case. This gives a lower bound on the

secrecy capacity for the channel model. An upper bound can be obtained using some

general properties of information as follows,

CSU = min max [/(A, Pzv) - (A, Pxv)]
A PxvEP(Xv)

= max [I(X 1 Y1 A X2Y2 ) - I(X1 A X2 )] if V = A = [2]
Px1x2

The maximization in the upper bound is over the simplex Y(Xv) of all input dis-

tributions over the input alphabet set XV. Compared to the lower bound, it has

the additional term -- 3(A, Pxv) instead of the independence condition HEy Px, to

discount the correlation among the inputs. Since the independence condition implies

that the additional term is 0, the upper bound is clearly no smaller than the lower

bound. Furthermore, the order of the maximization and minimization is different for

the upper and lower bounds. This can make the upper bound even larger in the case

with more than two users because the input distribution can be chosen as a function

of A.

The gap between the upper and lower bounds would be reduced if we can show



that the lower bound remains achievable even with the order of the maximization

and minimization reversed. This is indeed possible, borrowing the idea of mixed

strategy from game theory. Consider a virtual zero-sum game where #(A, Pzy) is

the payoff to the player who chooses the action Px, = Hicy Px, and the cost to the

opponent who chooses the action A. With a pure strategy where the player chooses

the best action with probability one, the guaranteed payoff is Cpse. However, just

like the game of paper-scissor-stone, mixing between different actions can potentially

increase the expected payoff. The player can pick a valid action from some finite

set {PxvlQ(.q) : q E Q} randomly according to some distribution PQ. The expected

payoff is
Cmse= max min EQ [/3(A, PzvyQ)]

PQPxviQ=iEV PXiQ A

= min max 3(A, Pzv)
A Pxv=iCvPx,

where the last equality is by the minimax-type lemma in game theory. This is indeed

an achievable key rate because we can have one user generate Qf iid as PQ in public

and have each user i E V generate the channel input Xt iid over time t E [n] as

Px,(.-Qt) based on Q".

4.3 Tightness condition

With some simple algebra, the improved lower bound can be expressed in a form

similar to the upper bound

Cmse= min max a(A, Pzv)
A Pxv=BiHv yPx

CSU = min max a(A, Pzv)
A Pxv9(Xv)

where
a(A, Pzy) :3(A, Pzy) - O(A, Pxv)

= ABH(YBc|XBC) - AB - I H(Yy Xy)
B B



This gives a simple condition for tightness: Cmse = Csu if a(A, Pzy) is maximized

by some product distribution Hev Px, (possibly as a function of A). For example,

the broadcast channel model Pyv\,{Ix, in [13] satisfies this trivially. A wide range of

channels with multiple inputs also satisfies the condition, including the interference

free channel EV PyEVIX, which consists of a set of independent broadcast channels

with inputs from different users, and the finite linear network in which the chan-

nel outputs are linear combinations of the input in some finite field as described in

Section 3.1.

In the subsequent chapters, we will describe the model, the bounds on secrecy

capacity, and the tightness results in greater details. The general model is formulated

in Chapter 5, the upper and lower bounds on the secrecy capacity under various model

assumptions are derived in Chapter 6, and the tightness of the bounds is analyzed in

Chapter 7.
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Chapter 5

Secret Key Agreement Protocol

The model consists of a wiretapper and a set of users/terminals, which are categorized

as active terminals, untrusted terminals and helpers.

Terminals: Let V := [m] be the set of all m terminals, denoted by Ti for i E V.

The terminals are further partitioned into the following disjoint sets.

Active terminals: Let A C V : |AI > 2 denote the set of (at least two) active

terminals who want to share a secret key.

Untrusted terminals: Let D C Ac be a (possibly empty) set of untrusted termi-

nals. They are untrusted in the sense that their knowledge can be revealed to the

wiretapper. They, however, must follow the protocol to help generate secret.

Helpers: the remaining (possibly empty) subset V \ (A U D) of terminals are

called helpers. They are trusted but need not share a secret key.

Wiretapper: it is a malevolent entity who attempts to learn the key from the

public information and any knowledge of the untrusted terminals. However, it is not

allowed to inject any fraudulent messages nor intercept any private observations of

the trusted terminals.

The terminals follow the protocol outlined in Figure 5-1 to generate a secret key

for the active terminals. It is divided into three main phases: 1) randomization,

2) transmission, and 3) key generation. The terminals randomize in the randomiza-

............



A (active)

Ti T2

(helper)

T3

D (untrusted)

T4

-Randomization phase

public randomization

U4 private randomization

ransmission phase

xui X21 X31 X41

Y11 Y21 Y31 Y41

F12

private channel use

(input Xit, output Yjt)

public discussion

(in arbitrary order)

Fij from j = 3 to r.

X12

Y 12

X22 X32

Y32

F21

X42

F22

(Xvt, YVt, Ft[,]) from t = 3 to n.

Key generation phase)

Ki K2 (goal: recover K)

Figure 5-1: Timeline for the multiterminal secrecy protocol: A = [2], D = {4} and
V = [3]. Entries in red are observed directly by the wiretapper.
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tion phase for the purpose of generating random channel input sequences and public

messages later in the transmission phase. In the transmission phase, the terminals

use a private DMMC n times, and publicly discuss after every channel use for an ar-

bitrary finite number r of rounds to decide on the next channel input and to generate

secret keys in the final key generation phase. In the key generation phase, each active

terminal generates an individual secret key based on the accumulated knowledge of

its public and private observations. The goal is to maximize the key rate (bits per

private channel use) under two constraints: 1) the recoverability condition that the

individual keys are the same with high probability, and 2) the secrecy condition that

the keys are close to uniformly random even given the accumulated knowledge of the

wiretapper. In the following, we will describe the precise mathematical formulation

of the protocol first, and then justify it in Section 5.2.

At time t = 0, the terminals randomize by generating continuous random variables

publicly and privately as shown in Figure 5-2.

Randomization phase:

Public randomization: At time t = 0, the terminals publicly randomize by agree-

ing on a public continuous random variable Uo, known also to the wiretapper. For

definiteness, we can have terminal 1 generate Uo without loss of generality.

Private randomization: every terminal i E V then generates privately a con-

tinuous random variable Ui based on the public randomization Uo. Since Ui's are

privately generated, they are unknown to the wiretapper. The catch is that they

have to be conditionally independent, i.e.

Puouv = Puo J7 PZIuo (5.1)
iEV

The transmission phase follows. Each terminal can transmit and receive over the

private DMMC, and then engage in a public discussion. There are n public discussion

sessions interleaving with n private channel uses.

............ ............. . ............... .



U0
PU 0  (u

(public)

U1
PUIU 0  (private to Ti)

U2
PU2 I'O (private to T2)

Um
PUmIUO (private to Tm)

Figure 5-2: Randomization

Ti : U0, U1, Yt- 1, F-

T2 : Uo, U2 ,Y2-1, F"

Tm: UO, U4, Yt- 1, Ft-

X1t

Ylt

X2t

Y2t

Xmt

Ymt

PYvv xy

(DMMC)

Figure 5-3: Private channel use: it is non-interactive in the sense the channel return
the output symbols Yvt only after all the input symbols Xvt are completely specified.
The rounded boxes denote deterministic operation performed by Ti for i E V using
the accumulated knowledge (Uo, Uj, Y-1, Fi).



Transmission phase - private channel use:

1. Terminal i E V chooses at every time t E [n] a valid input Xie as a function,

denoted as Xit(- ), of its accumulated knowledge. i.e.

Xit = Xit(Uo, Ui, Yt-1, Ft-1) E Xi (5.2)

where Yi- 1 := (Yi, : T E [t - 1]) and Ft~- := (F, : T E [t - 1]) are vectors of

accumulated observations and public messages respectively.

2. After the channel input XVt is completely specified, the channel generates Yvt

according to Pyyixv. It then returns Yit privately to each terminal i C V.

The channel input alphabet Xi needs not be finite. It may be infinitely-valued by

having discrete components with unbounded support or continuous components with

absolutely continuous probability measures. It may also be subject to the following

type of constraint on the sample average.

Definition 5.1 (Inequality constraint on sample average) The sample average

constraint is characterized by a finite set of functions #3 : Xi - R' indexed by i E V.

It is satisfied by the channel input sequence X", if for every n,

Pr {i(Xit) < 6n- 1 for all i E V =1 (5.3)

for some on -+ 0, where 1 is a vector of f ones and <.denotes the elementwise inequal-

ity. This specializes to the usual average power constraint if #v gives certain powers

of the real-valued components of the channel input. More precisely, let (ij(Xi) be the

j-th real-valued component of the input symbol Xi. Then, (5.3) can be specialized to

1 1( (Xit)' Cijk + 6n (average power) (5.4)
tE [n]

with probability one for all (j, k) over some given finite set, Sijk 1 and Cijk >! 0. El



Note that the sample average constraint is particularly important for the infinitely-

valued model, since the optimization over input distributions with unbounded support

set may be ill-posed without such constraint.

We call Xit in (5.2) the channel input function.1 It expresses the causal relation

from the accumulated knowledge to the channel input. There is no benefit in further

randomizing the input given the accumulated knowledge. i.e. we can have the channel

input function deterministic rather than stochastic without loss of generality. This

is because any additional randomization, say Uz ~ Pulz(. Z), generated based on the

accumulated knowledge, say Z C Z, can be regarded as a function of a randomization,

namely (U(z) : z E Z), that can be generated without observing Z. 2

Transmission phase - public discussion:

Right after every private channel use, the terminals engage in an interactive authen-

ticated public discussion. Let r be the total number of rounds, and ij be the terminal

that speaks at the j-th round. At the j-th round of time t, terminal ij generates and

broadcasts the following public message noiselessly as a finitely-valued function of its

accumulated knowledge.

Fty : Ftj (Uo,1 Ujj, Y' , F'-', FtD_1) (5.5)

where Ft-1 := (F, : - E [t - 1]) and Ft := Ft[,] is the vector of public messages at time

t after the t-th private channel use.

We call F>t in (5.5) the public discussion function.3 Unlike the private channel

described earlier, public discussion is interactive, noise-free and unlimited in rate. It

is interactive in the sense that Ftj can be a function of the previous messages FtD-1].

'Even though Xt- 1 is part of the accumlated knowledge of terminal i, it needs not be included
in the R.H.S. of (5.2) because it can be derived from the rest of the accumulated knowledge.

2One may think that randomizing at a latter time can allow one to adapt to more observations.
This is unnecessary as argued because such randomization can be expressed as a deterministic

function of the observations and a randomization before the observations. This deterministic function

may not be a bijection however.
3 1t is unnecessary to include X'. since it is completely determined by the rest of the accumulated

knowledge of terminal ij.



T3 T2

Ft3

T4 Ti

T5 Tm

Figure 5-4: Public discussion: the accumulated knowledge of terminal i before the
discussion session is (Uo, U1, X'- 1 , Y- 1). In this specific case, 1) T2 first broadcasts
Fti; 2) T3 observes Fti and broadcasts Ft2 ; 3) T2 observes both Ft, and Ft2 and then
reply with Ft3 ; 4) T4 transmits at the next time; 5) the final message Ft[,. is sent by
Tm. Ti and T5 remain silent during the entire public discussion.

It is authenticated in the sense that every terminal knows the sender of every public

message. The wiretapper cannot inject any fradulent messages. This is illustrated

in Figure 5-4. The public messages are also finitely-valued for both practical and

technical reasons.

Finally, the active terminals attempt to generate a common secret key as much as

possible based on their accumulated knowledge. The key has be recoverable almost

surely and remain nearly uniformly random to the wiretapper.

Key generation phase:

At time n + 1, every active terminal i E A generates a finitely-valued individual key

Ki E K from their accumulated knowledge

Ki := Ki(Uo, Ui, Yn, Fn) E K (5.6)

such that Ki's are asymptotically the same and secure. More precisely, there exists a



random variable K E K satisfying the following conditions:

Pr{Bi E A, Ki # K} en for some Cn - 0 (recoverability) (5.7)

Sdiv < 
6 n for some n- 0 (secrecy) (5.8)

where sdiv is the secret leakage rate defined as

1
Sdiv := -D(PKIFnYnUUO IIUK) (5.9a)

nD
1

= - [log|K| - H(KIF"YnUDUo)] (5.9b)
n

UK denotes the uniform distribution over K, D(-||-) is the information divergence and

H(-|-) is the conditional entropy. (See Section A.1 or [8].)

We can also have different levels of recoverability and secrecy by imposing addi-

tional constraints on the convergence rates of En and on. These conditions are the

same as the ones given in [12] except for a weakening of the secrecy condition by an

additional factor of i/n.4 The motivation will be further elaborated in Section 5.2.

In summary, the complete knowledge of terminal i E V is

(Uo, Ui, Xn, Yn, F", Kj) (Knowledge of Ti)

and the complete knowledge of the wiretapper is

(Uo, UD, X"D Y, F") (Knowledge of wiretapper)

We can remove the channel input X and individual key Ki from the knowledge of Ti

without loss of generality since they can be determined by the causal relations (5.2)

and (5.6).

We can now define the performance metrics in terms of the exponential growth

rate of the key cardinality.

4The secret leakage rate is equal to 1/n times the security index defined in [121.

. .... . ....



Definition 5.2 (Multiterminal secrecy capacity) We use the term secrecy scheme

to refer to the choice of the sequence (in n) of

1. distributions Puo and (Pud1 uo i C D4) for the randomizations,

2. private channel input functions (Xit : i E V, t E [n]),

3. public discussion functions (Ftj : t E [n], j E [r]), including the choice of r and

the order (ij e V j E [r]) of discussion for each session, and

4. key functions (Ki i E A), including the choice of the set K of possible keys.

For notational simplicity, we have made the dependence on the constraint length n

implicit. K for instance is growing exponentially in n for the case of interest. The

key rate is defined as the asymptotic growth rate

1
R := liminf - log|KI

n-oo n

Any non-negative rate R' < R is said to be achievable provided that there exists

a secrecy scheme that achieves the key rate R and satisfies the recoverability (5.7)

and secrecy constraints (5.8). It is said to be strongly achievable if en, n -- 0 expo-

nentially in n. It is said to be perfectly achievable if En, 6n = 0 for sufficiently large

n. The largest achievable key rate is called the secrecy capacity, denoted as Cs or

more explicitly 0 sAJD I P .5 Upper and lower bounds on the secrecy capacity will

be referred to as the secrecy upper and lower bounds respectively.

One may question the need for continuous-valued randomization and public ran-

domization. Intuitively, one thinks that continuous random variable can be well-

approximated by finitely-valued random variables using fine enough quantization.

Furthermore, public randomization is known to the wiretapper, and does not appear

to improve any secrecy. This is indeed true for some special cases where we can give a

capacity-achieving scheme that does not rely on such randomizations. Unfortunately,

we are not able to make such conclusion concrete for the general case. It is unclear

whether a model without continuous randomization suffices.

5 1n [12], this secrecy capacity is also called the private key capacity and secret key capacity in
the respective cases with and without untrusted terminals.



5.1 Specialized models

We will specialize the model in various ways, by imposing additional constraints on

the secrecy scheme or the private DMMC. The motivations are to

1) introduce the different proof techniques involved in a systematic way,

2) study the optimality of different secrecy schemes under different channels, and

3) give some important special cases covered by the current model.

A different proof technique is required for each of the following models.

Finitely-valued model: The channel input and output alphabets are all finitely-

valued. This allows us to use the method of types in [11] directly.

Infinitely-valued source model: The terminals can receive infinitely-valued out-

put but cannot send any channel input. This allows us to focus on the quantization

trick that turns the model to the finitely-valued model.

Channel model with finite-input alphabet only: The channel input alphabets

are all finite but the output alphabets are not necessarily finite. This is general

enough to study the proposed cooperative schemes.

The solutions to these special cases and the finitely-valued source model in [12]

will be used to compose the solution to the general infinitely-valued channel model

with sample average constraint.

The different secrecy schemes we consider here can be categorized as follows.

Source emulation: The channel input sequences are iid generated over time. Since

the channel is memoryless, the DMMC turns into a DMMS effectively.

Public input adaptation: The channel input sequences are generated indepen-

dently over time given the public information, namely, (Uo, Ft-i).

Non-interactive public discussion: Ft is null for t < n and the dependence on

Ft[_1] is removed from the R.H.S. of (5.5) for t = n. In other words, there is only

one public discussion session, in which terminals do not reply to previous messages.



The model also covers the following cases of practical interests, such as fading in

wireless communications.

Simultaneous independent channel: The channel consists of a finite set of in-

dependent channels, which are simultaneous in the sense that the output symbols

are available only after the channel inputs to all component channels are specified.

Channel with publicly controllable channel state: At each time t E [n], the

terminals can decide publicly one out of a given set of channels to use.

Channel with publicly observable channel state: At each time, the channel

randomly realizes into one of a given set of channels. The state of the channel can

be publicly observed before or after transmission. The sequence of channel states in

time can be slowly varying as in slow fading, and ergodic as in fast fading.

If the terminals have access to a finite set {Py,,ix : j E L} of simultaneous

independent channels where Ti controls XLi := (Xi: j E L) and observes YLi, it is

equivalent to having access to the composite channel

Evv~xv Y=vIxI
jEL

where Y2 := YLi and Xi := XLi for all i E V. For example, one component chan-

nel Pysyixv can be a link Py121xll from Ti to T2, and another component channel

PY2 v Ix 2V can be a link Py2 1ix22 from T 2 to T3. The composite channel is PYLVIXLV =

PY12 X11 PY23 |X22 consisting of two independent links.

To consider channel PyvixvQ with publicly controllable state Q, we simply create

a dummy untrusted terminal m + 1 controlling Q. i.e. we consider the channel

Pyg|xy (yfxr) = PYv|XyQ(yv xv, xm+i)

where V [m+1], A = A, b = D U{m+I1} are the modified sets of terminals, active

terminals and untrusted terminals respectively after adding the dummy terminal.6

6We can regard the entire knowledge of the dummy terminal as public. Indeed, it does not loose
optimality to reveal in public the knowledge of any untrusted terminals since it is already known to



To consider channels with ergodic or iid channel states publicly observable before

transmission, we can apply the law of large number to conclude that the resulting se-

crecy capacity is the expectation of the secrecy capacities over all possible realizations

of the channel states. If the channel states are iid observable only after transmission,

we can add a dummy untrusted terminal that observes the state as a channel output

that is independent of the channel inputs. This is analogous to the usual idea of

ergodic capacity in [55].

For slowly-varying channel states, we can define the usual outage event as the

event that the instantaneous secrecy capacity given the channel state goes below the

target key rate.

5.2 Asymptotic secrecy requirements

In this section, we will explain the use of the asymptotic secrecy condition (5.8) as a

measure of security, which is introduced in [12] except for a factor of i/n.7 Readers

can refer to [9, 40, 51, 61] for more discussions on the asymptotic notion of secrecy.

To motivate the definition, we first show that the key is provably secure in the non-

asymptotic case when 6n = 0 in (5.8) for all n sufficiently large.

Perfect secrecy:

Suppose 6n = 0 in (5.8). It follows that

W:=

log|KI = H(K) = H(K| F"Y7nUDUo)

by the additional fact that uniform distribution maximizes entropy under the finite-

alphabet constraint. The first equality implies that the key K is uniformly distributed

and the second equality implies that it is independent of the wiretapper's knowledge

W. The key is therefore perfectly secret in the information-theoretic sense [51].

When 6n is allowed to be positive while converging to zero, (5.8) becomes an

the wiretapper and there is no cost for public discussion.
7The additional factor of 1/n accommodates a weaker notion of secrecy and a stronger converse.



asymptotic notion of perfect secrecy, which has the merit of being more practical

and allowing more interesting behavior. We will show that this convergence in di-

vergence (5.9a) means that the key appears to be almost uniformly random to the

wiretapper with probability converging to 1. To do so, we first relate the convergence

in divergence to the convergence in variational distance.

Convergence in variational distance:

Define the variational distance as

Svar := Ew [|PKIW(-|W) - UK H1] (5.10)

where W := (UO, UD, YD, F") denotes the knowledge of the wiretapper. This is related

to Sdiv by [12, Lemma 1] that

log e  s< div < Svar lo KI (5.11)
2 n var - Svar

For the case of interest that K grows exponentially in n with strictly positive rate, it

follows that
Sdiv 0 ~ Svar 0

Sdiv s-o-- 0 S## Svar o 0

1 1
- lim sup - log si = - lim sup - log svar

n-o n n-*oo n

Thus, the secrecy condition (5.8) remains the same even if we replace Sdiv by svar in

each of the following cases:

6n = 0 (perfect secrecy) (5.12a)

6n 0 (weak secrecy) (5.12b)

6n < 2~-n6 for some 6 > 0 (strong secrecy) (5.12c)

which are the three different notions of secrecy of interest here. We can therefore

consider the secrecy condition (5.8) with the secret leakage rate Sdiv replaced by the

more explicit distance measure Svar in distributions.



Proposition 5.1 Define the secrecy condition in variational distance as

Svar - 6n (5.13)

and the secrecy condition in probability as

1
PKlw(kw) = (1 en) (5.14)|K|

for all w G Wtyp and k c K(w) where

- w is a realization of the knowledge W (U0 , UD, YD, Fn) of the wiretapper in some

typical set Wtyp that has probability

Pr {W E Wyp} > 1- e (5.15a)

- k is a key in some subset K(w) C K of size at least a factor (1 - En) of the total

number |K| of keys. i.e.

K(w)| ;> (1 - en)|K| (5.15b)

Then, we have for n sufficiently large that

1

(A) (5.13) implies (5.14) with e, = 64, and

(B) (5.14) implies (5.13) 'with 6n e .

Corollary 5.1 For each type of secrecy in (5.12), the secrecy condition (5.8) is the

same as (5.14) with en = 6n.

This is the desired conclusion that the key appears nearly uniformly distributed to

the wiretapper over the set of possible keys except for a negligible amount and some

atypical realizations of the knowledge of the wiretapper with negligible probability.

(5.8) is therefore an intuitive notion of asymptotic secrecy.



PROOF (PROOF OF PROPOSITION 5.1 PART A) We first prove the implication from

(5.13) to (5.14) using the Markov inequality for any non-negative random variable Z

and constant a > 0 that

Pr(Z > a) < (5.16)

1

With Z set to ||PKjw(-|W) - UK11i and a set to 6,, we have from (5.13) that E(Z)

Svar _ 5n. Thus,

Pr {||PKiw(-IW) - UK i > f < (5.17)

where the only randomness involved comes from W. We can define the typical set as
1

follows to satisfy (5.15a) with en 6 .

Wty:= w E W: ||PKiw(-|w) - UK1 1 - on (5.18)

Let KU be a dummy random variable uniformly distributed over K. Then, for the

typical case w E Wtyp, we have

EW [ PKIW('W) - ] I PKIW(KuIW) - TLK 11

1

|K|

where the last inequality is by the definition of typicality in (5.18). Applying the

Markov inequality (5.16) again with Z set to IPKiw(-jW)- IK-1 1 and a set to 6n KK-',

we have for all w E Wty, that

Pr {PKiw(KulW) - IK1 >6_ <
JK|

where the only randomness involved comes from the dummy random variable KU.

Since Ku is uniformly distributed, the last inequality says that at least a fraction
1 1

(1 - 64) of the keys satisfy (5.14) with En = 6n, which gives (5.15b) as desired. *



PROOF (PROOF OF PROPOSITION 5.1 PART B) From (5.14), we have for all w c
Wty, that

P) 1 , k c K(w)
PKiw(klw ) - J K|

KJ 12 otherwise

where the last case k 0 K(w) is due to the fact PKiw(klw), lKI- 1 E [0, 1]. Summing

over k E K, we have

PKw(.) { K3En ,WEW

2 otherwise

where the first case uses (5.15b), and the last case w V Wtyp is due to triangle

inequality of 1-norm that

PK1W(-|W) - UK 1 J PKJW('w) 1 KJK1 1 < 2

Finally, averaging over W gives

Svar = 3en(1 -- E2) + 2 = O(e2)

This establishes (5.13) with 6n = E2 for n large enough as desired.

PROOF (PROOF OF COROLLARY 5.1) (5.13) with 6n = 0 implies (5.14) with En = 0

by Proposition 5.1A. The converse is also true by Proposition 5.1B. This establishes

the desired equivalence between (5.8) and (5.14) for perfect secrecy (5.12a) when

on = 0, since (5.13) is equivalent to (5.8) as argued earlier. The equivalence for

weak (5.12b) and strong secrecy (5.12c) can be proved similarly.



Chapter 6

Secrecy Capacity

Under the multiterminal network model formulated in Chapter 4, what is the maxi-

mum achievable secret key rate? We will derive upper and lower bounds on the secrecy

capacity in Section 6.1 and Section 6.2 respectively using tools from information the-

ory in Appendix A. The lower bound is achieved by a new cooperation strategy called

the mixed source emulation, which is shown in Section 6.3 to be superior in to the

conventional pure source emulation approach.

We strongly recommend skipping Section 6.1.2, 6.2.2 and 6.2.3 for the first reading.

The main ideas can be understood by focusing only on the finitely-valued model in

Section 6.1.1 and Section 6.2.1 without the sample average constraint.

6.1 Secrecy upper bound

We first derive single-letter upper bounds on the secrecy capacity Cs in Definition 5.2

using the Shearer-type lemma in Section A.2 and the expressions in Section A.4.

Theorem 6.1 (Finite-input-alphabet constraint) If the channel inputs can be

chosen arbitrarily from some given finite support sets, then

C, < min max a(A, Px,) (6.1)
AEAAID PXVEY(Xv)

where a is defined in (A.17), and A E AAID is defined in (A.9).



Example 6.1 Consider V = [3], A = [2], D = {3}, and the private DMMC PYlx1 x 2 -

The active terminals T1 and T 2 control the finitely-valued channel input X1 and X2

respectively, and the untrusted terminal 3 observes Y. By (6.1), the secrecy upper

bound simplifies to

max [I(X 1 AX2|Y) - I(X1 AX 2 )] (6.2)
Px 1 x2 CG(XixX 2 )

n.b. the minimization in (6.1) is trivial since AAID is a singleton, containing only one

fractional partition A, namely the one with A{1} = A{2} 1.

Consider, in particular, the binary multiple access channel

Y = X1 eX 2

Since I(X 1 A X2 |Y) < H(X1) < 1 in (6.2), the secrecy upper bound is 1 bit with the

optimal distribution Px1,x2(i, X2 ) = Bern 1 (z 1) Bern 1 (X2).

For the more general case when the input can be a mixture of continuous and

discrete random variables as described in Section A.1 subject to the sample aver-

age constraint in (5.3), we will derive a weaker' secrecy upper bound that uses the

following single-letter moment constraint.

Definition 6.1 (Moment constraint) Xy satisfies the moment constraint #j : Xi

R' for i E V if

E [#i(Xi)] 0 for all i E V (6.3)

With (ij, sijk and cijk as defined in (5.4), it specializes to the power constraint,

E [l(, (X,)|Sijk] cij k (power) (6.4)

for all i E V and (j, k) in some given finite sets.

'As described at the end of this section, there are examples for which (6.1) is a tighter bound.
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Theorem 6.2 (Sample average constraint) With the sample average constraint

in (5.3) but not necessarily the finite-input-alphabet constraint, i. e. allowing the input

to be continuous, we have the following secrecy upper bound,

C, < inf sup min ai(A, Px,) (6.5)
AEAAID PxV iEDc

where ai is defined in (A.20) and the input distribution is subject to the moment

constraint in (6.3).

Example 6.2 Consider as in Example 6.1 the case V = [3], A = [2], D = {3}

and the DMMC PYlX1X2, where the active terminals T1 and T 2 control X1 and X2

respectively under the sample average constraint #[2] in (5.3), and the untrusted

terminal 3 observes Y. By (6.5), the secrecy upper bound simplifies to

max min {I(X 1 A Y X2 ), I(X2 A YlX 1)} (6.6)
PX1X2 E 9(X 1 xX 2 )

where Px1x2 is subject to the moment constraint

E(#1(X1)) < 0 and E(# 2 (X2 )) 0

Consider, in particular, the gaussian multiple access channel Y= X1 + X2 + N

where N ~ 4, is a zero-mean unit-variance gaussian channel noise. The input Xi

is subject to the average power constraint #i(xi) = x? - Pi for some given Pi > 0.

The secrecy upper bound becomes log(1 + min{P1, P2}), with the optimal distribution

PX1,X2 = I,P14,P2-

We will break down the proofs of the above theorems as follows. In Section 6.1.1,

we consider the case with only the finite-input-alphabet constraint. The channel

output, however, can be a mixture of continuous and discrete random variables. Then,

we will consider the more general case with infinitely-valued input and the sample

average constraint in Section 6.1.2.
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6.1.1 Finite-input-alphabet constraint

In this section, we will prove the secrecy upper bound (6.1) in Theorem 6.1. From

the secrecy condition (5.8) and expression (5.9b), we have

1 1
- log|K| < -H(K|F"Y UDUo) + 6nn nD

Our goal is to derive the secrecy upper bound by turning the R.H.S. to an expression

that is universal to any secrecy schemes. In particular, we will replace the dependence

on K, F", Uo and UD by the dependence on the channel statistics Py, lx. Let us first

eliminate the dependence on K.

H(K|F"YUDUo)= H(K|F"Y"UvUo) + I(K A YDcUDc F"Y DUDUo)

The first term on the right is negligible (sublinear in n) by the Fano's inequality [8].

Fano's inequality:

Since (Fn, Y , Us, Uo) determines the individual key Ki for every active terminal i C A

by (5.6), and the individual keys equal K almost surely by (5.7), we have

H(K F"YnUU 0 ) < h(en)+ e log|K| Vi e A (6.7)

by the Fano's inequality, where

h(p) := -(1 - p) log(1 - p) - p log p (6.8)

is the binary entropy function.

We now have

H(K|F"YDUDUO) = I(K A YDcUDc|F YDUDUO)+ o(n)

To eliminate the dependence on K in the mutual information term, we apply the
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Shearer-type lemma as follows.

I(K A Yc , UDc lF"Yn UDUo)

= H(UDY"Dc F"Y"DUDUO) - H(UDcY"Dc lKF"YDUDUO)

< H(UDcYnclF"Y"DUDUO) - ABH(UBYnlKF"Y" UBcUO)
BGR-AID

The last inequality is by the weak form of the Shearer-type lower bound (A.10a). We

restrict to 'HAID to ensure that BC in the resulting expression intersects A, which in

turn ensures that the conditions in the conditional entropy expressions determine at

least one individual key by (5.6). As a result, the Fano's inequality (6.7) applies as

follows.

ABH(UBYnlKFYcUBUO)
BC'HAID

AB [H(UBYBFY cUBUO) - I(K A UB YBF"YcUBcUO)
B

EAB[H(UBY| F"YBCUBcUO) - Dc H(KIF"YncUBcUo)
B

To explain the last inequality, note that K is discrete-valued, which implies positivity

of its conditional entropy (A.5). By the constraint (A.9) on fractional partitions that

EBE AB = 1, we have

LAB < ( B =ADI
B icDc BEi

The last entropy term is negligible by the Fano's inequality (6.7). Thus, we have

eliminated the dependence on K as desired. i.e. for some J' - 0,

log|KI n H(UDc - ABH(UB |FYcUBcUo) + 6n

It remains to eliminate the dependence on the randomizations and public mes-

sages. We will do so using the causal relations (5.2) and (5.5) in the model. First of
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all, the last inequality can be rewritten as

Ilog|K| <
1 H(UDYDcFnUO)

- H(UDYD F"|Uo) - AB - 1) H(UVY|Uo)] n

(6.9)

using the expansion that

H(UBYA|F"YBc UBc UO) = H(UvY Uo) - H(UBCYBcF"|U0)

and the same expression with B replaced by D and BC replaced by D. This equation

follows from the chain rule and the fact that

H(UvY F"|Uo) = H(UVYnvU 0)

since (Uo, UV, Yn) completely determines Fn by an inductive argument on (5.5). Fur-

ther simplification is possible with the following causal expansion.

Causal expansion:

H(UcYncF"|Uo) H(UBe| Uo)+ EH(YBct|F'-Y-'-UBcUo) + H(Ft| IF'-YtcUcU 0)
tE [n]

H(UDY F"|Uo) H(UDIUO) +
tE[n]

H(UyY"F"|Uo ) H(UyIUo)

EH(YDt Ft-'Y'UDUO) + H(Ft|F'-Y' UDUo)

+ E [H(Yvt|Ft1'Yt7UvUo)
tE[n]I

(a) by the chain rule expansion in the causal order illustrated in Figure 5-1.

(b) same as (a) with BC replaced by D.

(c) same as (a) with BC replaced by V. We have also used (5.5) that (Uo, Uy, Y)

completely determines F, which implies that H(Ft|Ft-lYy UvUo) = 0.

After applying these causal expansions to (6.9), we can regroup similar terms

together and simplify them using the Shearer-type lemma as follows.
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Applying Shearer-type lemma:

Z ABH(UBclUo) - H(UDIU)- (EBAB - 1) H(UVUo)
B

H(UD UO) -Z ABH(UB UBCU0) 0

B

(C)

ABH(Ft|Ft'lY'c UBeUo)-H(Ft|F'-Y'UDUo) < 0
B

(a) by the conditional independence (5.1) of Uj's given UD-

(b) by the equality case (A.10b) of the Shearer-type lemma.

(c) by the Shearer-type lemma (A.10c) for the causal relation (5.5).

Putting these together, (6.9) becomes

-log|Kj < 1: [H(Yct|F ' - 'Y'-cUBcUo) - H(YDt Ft 1Yt-1 UDUo)
n n

- (EB AB - 1) H(Yvt IF'Y7 UvUo) + 6' (6.10)

To transform the dependence on the randomization and public discussion func-

tions to the dependence on the channel statistics, we insert the channel input as an

additional condition in the entropy terms.

Inserting channel input:

Define DeieQt := (Ft-1, Y -1, D (6.11)

Then, the entropy terms in (6.10) become

(b)

H(YBct I Ft- -Uc Uc ) B H(Yact|XectF t -Y-LUBc Uo) ; H(YBct|XBetQt)

H(YDtIF'- Y'-'UDU0) H(YDtIXDtQt)

H(Yv Ft 'Yt-'UvUo ) H(Yvt|XvtFt'lYt'lUvUo) H(YvtIXvt)

(a) by the causal relation (5.2).

(b) by the fact that conditioning reduces entropy (A.4).
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(c) same as (a) with BC replaced by D.

(d) same as (a) with BC replaced by V.

(e) by the memorylessness assumption of the DMMC.

Substituting these into (6.10), we have

1 1
- log|K| - [H(YBct XBctQt)

tc [n]

- H(YDt XDtQt) - (LB AB - 1) H(Yvt|Xvt)] + 6

Tightening the bound by minimizing over A E AAID and then optimizing over all

achievable schemes, we have

sup 1 log|K| <
nt

sup inf 1 5: H(YBc-t XBctQt) - H(YDtIXDtQt)
V~ te [n]

- (LB AB 1) H(Yvt|Xvt)] + 6n

where in the supremum on the R.H.S., we restrict PXojQn to a collection of valid input

distributions, and relax Qf from (6.11) to any mixture of discrete and continuous

random variables that satisfy the Markov chains

Qt + Xvt - Yvt Vt E [n] (6.12)

These Markov chains come from the memorylessness property of the DMMC with

the original definition (6.11) of Qt. Exchanging the sup and inf can only increase the

bound, and so

1 1
sup - log|K| < inf sup - E [H(YBCt XBctQt) - H(YDt XDtQt)

ft ~Q~X~~f tC [n]

- (EBAB - 1) H(Yvt|Xvt) + 6n

=inf sup E [z[a(A, PxVtIQn (-Qt))] + 6
V tC [n]

by the definition of a in (A.17a) and the Markov property (6.12). It is optimal to

choose Q" deterministic by the trivial fact that the supremum of a over Qf is always

106



no less than any averaging over Qf. In summary, we have

sup I logIK I < inf sup Z a(A, Pxvt) + 6 (6.13)
n x Pn nv tE [n]

We now specialize to the case where the channel input symbols are subject to the

finite-alphabet constraint only.

Specializing to finite-input-alphabet constraint:

1 (a) I
sup- log|K| L inf - sup a(A, Pxyt) + oi

nJ An te[n] PxVt

(b).
= inf sup a(A, Pxv) + n

A P

( min max a(A, Pxv) + 6
A PxVn

(a) We can push the supremum inside the summation in (6.13) because,

- the t-th summand a(A, Pxvt) depends on Px. only through Pxv,, and

- the finite-alphabet constraint on the support of PX. is separable into inde-

pendent finite-alphabet constraints on the support of Px,.

(b) By symmetry, a(A, Pxvt) has the same supremum independent of t.

(c) The infimum and supremum can be replaced by the minimum and maximum

since a is a continuous function over the compact set AAID xY(Xy). See [11]

for a detailed derivation of the continuity of information measures.

Finally, taking limsup, on both sides of (c) gives the desired bound (6.1).

6.1.2 Sample Average Constraint

We now prove the secrecy upper bound (6.5) in Theorem 6.2 for the more general

case with possibly infinitely-valued input subject to the sample average constraint.

We first weaken the bound (6.13) for quasi-concavity, replacing a by a as follows.

a(A, Px,) < min a (A, Pxv) by (A.24b)
iEDc
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Applying this to (6.13) gives,

f (A,Pxn):=

1 ' 1
sup - log|K < inf sup min - E ci(A, Pxvt) +6n (6.14)

n A PX, iEDc n
V tE[n]

f defined above is concave in the input distribution because ci is concave according

to Corollary A. 12 The weaker quasi-concavity will allow us to use a mixing argument

to prove existence of an optimal (f-maximizing) input distribution (as a function A)

with identical marginal distributions Pxvt over time t E [n]. In other words, we can

make every t-th summand ai (A, Pxv,) in f independent of t, giving rise to the desired

single-letter bound.

More precisely, starting with an arbitrary optimal solution P ,3 define the fol-

lowing time-permuted input distribution P9, for every permutation g : [n] -4 [n] in
V

the symmetric group, Sym([n]), of all permutation functions on [n]:

PX9_ (Xvi, ov2, . ,zn) :=P - (Xvg(1), XVg(2), . Xvg(ny ) (6.15)

In other words, if we have X"> distributed as P%1, then Pg, is the statistics of a
V V V

sequence obtained by moving Xvt from time t to g(t).4 Pj,, is also a valid optimal
V

input distribution in maximizing f by the following symmetry arguments:

- Since f (6.14) is symmetric over the marginal distributions for different t, we have

f(A, Pyg) = f(A, P%*) for all g E Sym([n])

- Px, also satisfies the sample average constraint (5.3) since the constraint is sym-

metric over any permutations in t.

2The minimum and average of concave functions are concave [5].
3If the optimal solution does not exist within the valid set of input distributions, we can instead

consider a sequence of valid distributions that asymptotically achieve the supremum.
4There is a minor subtlety that Py, may not belong to a filtered probability space in t due to the

fact that shuffling in time may disrupt causality. Nonetheless, we can relax the causality constraint
for the purpose of obtaining an upper bound.

108



The desired distribution is the average over all time-permutated distribution

Pxn := EG ( n (6.16)

where G is a random variable uniformly distributed over Sym([n]). Pxn is optimal by

the following quasi-concavity and linearity arguments:

- Applying Jensen's inequality [5] on the quasi-concave function f(A, .), we have

f(A, E I P min f (A, Pj,) f (A, PXg )

and so Pxn is optimal.

- Pxn satisfies the sample average constraint because every Pj, satisfies (5.3) with

probability one by the earlier symmetry argument.

It remains to show that Pxn has identical marginal distributions Pxv, that satisfies

the moment constraint (6.3) asymptotically. By the definitions (6.16) and (6.15),

Px(, := £ ( xy= (6.17)
'rE[n]

which is independent of t as desired. To show that PXv satisfies the moment con-

straint (6.3) asymptotically as n -* oc, consider Xi distributed as Px, and X t dis-

tributed as P% for t C [n]. Then, by (6.17),

E [#i(Xi)] = E #(Xit) < 6n -1n
L te[n] J

by the sample average constraint (5.3) as desired. 5 We can now complete the mixing

argument by applying the optimal solution Pxn to (6.14) as follows.

5This should not be confused with the fact that convergence in probability is weaker than con-

vergence in expectation. The sample average constraint requires the average to be upper bounded

with probability one, instead of probability converging to one.
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Mixing argument:

1 .1
sup - log|KI < inf min - a (A, Pxvt) + on

n A iEDc n
te[n]

(a)
=inf min ay (APx )6 by (6.17)

A 2 ~ )+6

(b)
< inf sup min ai (A, Pxv) + 6n

A Pxv *

where Pxv in the last supremum is subject to the moment constraint (6.3).

(a) by (6.17) that the marginal distributions of Pxv, are identical over t.

(b) This is because the marginal distribution Pxy, satisfies the moment con-

traint (6.3) as shown earlier. The supremum is placed between the two mini-

mizations because Pxv is a function of A but not i.

Finally, taking lim supn,, on both sides give the desired bound (6.5). We can also

rewrite the infimum in A as the minimum since suppx mini ai (A, Pxv) is continuous

in A over the compact set AAID. We conclude this section with the following problem

concerning the tightness of this bound.

Problem:

Can the secrecy upper bound for the general case be improved to (6.1) with the input

distribution subject to the moment constraint in (6.3)? n.b. this holds if one could

prove quasi-concavity for a in the input distribution.

The improvement, if possible, is strict since there exists examples for which the

weakening from a to a in the current proof is strict. e.g. consider the DMMC,

Y3 = (X1, X2) E {0,1}2

with active terminals Ti and T2 being the only transmitters, and untrusted terminal

3 being the only receiver. The secrecy upper bound (6.1) gives 0 but (6.5) gives 1.
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6.2 Secrecy lower bound

In this section, we will derive a single-letter lower bound on the secrecy capacity using

a new type of secrecy schemes called the mixed source emulation approach, where

1. we effectively turn the DMMC into a DMMS by generating the channel input

independently over time, and

2. we mix between different DMMS's by publicly randomizing the input distribu-

tions at each time t.

This is motivated partly by the optimality of the pure source emulation approach in

[13], and partly by the idea of mixed strategy [56] in zero-sum games. The pure source

emulation approach is a special case of the mixed source emulation with a fixed input

distribution. It achieves the secrecy capacity for the broadcast-type DMMC in [13],
where only one channel input is allowed. For the more general DMMC with multiple

channel inputs from different terminals, however, we will prove that the mixed source

emulation approach strictly improves over the pure source emulation approach. As

will be illustrated in Section 6.3 with a concrete example, mixing over different input

distributions allows the terminals to coordinate with each other by correlating their

channel inputs through public discussion. This additional coordination gives rise to

a larger secret key rate.

For simplicity, we first consider the finitely-valued model when all the input and

output symbols of the private DMMC are subject to the finite-alphabet constraint

only. We then extend the result to the more general infinitely-valued model with

sample average constraint (5.3) by the usual quantization trick.

6.2.1 Finitely-valued model

Theorem 6.3 (Finitely-valued model) For the finitely-valued case where all chan-

nel inputs and outputs are subject to the finite-alphabet constraint only, we have the
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secrecy lower bound expressed in terms of 1 in (A. 18) as

Cs > max min EQ [#(A, PxVIQ(-Q))1 (6.18a)
PQXV=PQXDX AEAAID

X Hi]Dc ]XIXDQ

min max /3(A, Pxv) (mse) (6.18b)
ACAAID PXV=PXDX

x HiEDC PXiIXD

> max min #(A, Pxv) (pse) (6.18c)
PXV PXDX AEAAID

X HiDc PXIXD

The bound (6.18b) is the largest (strongly) achievable key rate for the mixed source

emulation approach in Definition 6.2 below, and more generally, any public input

adaptation scheme in Definition 6.3. Furthermore, it is admissible to have the alpha-

bet set Q of the auxiliary source component Q satisfy the cardinality bound in (A. 12a).

The weakened bound (6.18c) is the largest (strongly) achievable key rate for the pure

source emulation where Q is chosen to be deterministic.

Example 6.3 Consider the same model defined in Example 6.1 for two transmitting

active users and one receiving untrusted terminal. Assume in addition that Y is

finitely-valued. Then the secrecy lower bound (6.18b) simplifies to

max I(X 1 AX 2 |Y)
D1X2  '1 2

n.b. this is similar to the secrecy upper bound in Example 6.1 except that we require

the input to be independent instead of subtracting I(X1 A X2 ) from the conditional

mutual information expression. For the binary multiple access channel Y = X1 e X2 ,

the optimal input distribution is Px1x2 = Bern, Berni. The secrecy lower bound is

1 bit which matches the upper bound.

We now describe mixed source emulation approach in greater details.

Definition 6.2 (Source emulation for finitely-valued model) The mixed source

emulation approach for the finitely-valued model is the following specialization of the

secrecy scheme in Definition 5.2.
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Mixed source emulation:

Public randomization: Terminal 1 publicly randomizes

uo = (Qn X DnU0 =(Q IXD)

where each symbol (Qt, XDt) is iid as PQ,XD over t C [n]. Q" is called an auxiliary

iid source component, taking values from an arbitrary finite alphabet.

Private randomization: Every trusted terminal i E DC privately generates X' such

that its symbol Xit is iid as PXix,Q( IXDt, Qt) over t E [n].

Private channel use: Xit is sent as the input to the private DMMC at time t E [n]

from terminal i E V.

Since the channel input does not adapt to the accumulated knowledge by definition,

it is unnecessary to perform any public discussion before the last private channel use

at time n. The key generation phase proceeds as usual.

The pure source emulation approach is a special case of the mixed source emulation

approach with Q being deterministic.

This is called the source emulation approach since the channel input is chosen to be

memoryless, which effectively turns the DMMC into a DMMS. The auxiliary random

variable Q acts as a mixing random variable that mixes different conditional input

distributions PxvlQ in time. It can also be regarded as an auxiliary component source

of a dummy untrusted terminal since Q" is known in public. It gives an additional

correlation among the input sequences privately generated by the trusted terminals.

Pxy = EQ,XD PXD JJPXiXD,Q(* ', ) PXD 1 PXiIXD
iGV .iGEV

Definition 6.3 (Public input adaptation) If we allow the channel input to adapt

to any public information, we have the public input adaptation approach.
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Public input adaptation:

Set the private randomization as

U2 := (Uit : t E [n])

such that Uit's are independent over i and t. Then, the input is chosen as

Xit= Xit(Uo, Ujt, Ft-i) (6.19)

Thus, Xit are conditionally independent over i E D' and of the past given the

accumulated public information (Uo, F"i). Mixed source emulation is a special case

of public input adaption without the dependence on Ft-i in (6.19). 0

PROOF (PROOF OF THEOREM 6.3) The mixed source emulation effectively turns

the DMMC into a DMMS where terminal i C V observes the source (Xi, Yj) and a

dummy untrusted terminal observes the auxiliary source Q. By [12], the secrecy ca-

pacity for this specialized model is given by (6.18a), which is also strongly achievable.

This can be used as a lower bound for the secrecy capacity of the general model. Since

/3(A, Px,) is linear and continuous in A over the compact set AA|D, we can apply the

minimax-type Lemma A.2 to obtain the secrecy lower bound

1
sup lim inf - log|K _> min sup 3(A, Pxv)

n->oo n AEAAID PXV PXDX

x HiEDc PXiIXD

Since 3(A, Pxv) is continuous in Pxv over the compact set 4(Xv) due to the finitely-

valued model assumption, we can replace sup by max to obtain (6.18b) as desired.

With the additional fact that Pxv is connected, the range

{#(A, Pxv) : Pxv E P(Xv)}

is also connected, and so by the Support Lemma A.3, it is admissible to bound the
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cardinality of Q as in (A.12).

It remains to show that the lower bound is the maximum key rate achievable

by a public input adaptation scheme. We do so by showing that the secrecy upper

bound (6.1) matches the lower bound under the additional constraint (6.19). First,

note that it does not loose optimality to reveal (X"D y) in public since they are known

to the wiretapper. Thus, we can assume F-i determines (UD, Y"y-), and redefine Qt

in (6.11) as

Qt := (Ft, Uo)

By (6.19), Xit's are conditionally independent given Qt. This allows us to impose the

additional (conditional) independence condition (A.26) in the secrecy upper bound (6.1),

which then matches the lower bound as desired by equivalence relation (a) in Propo-

sition A.4.

6.2.2 Infinitely-valued model

The proof for Theorem 6.3 does not immediately extend to the case when some of

the channel inputs and outputs can be infinitely-valued. This is because the secrecy

capacity for the source model is achieved in [12] by first attaining omniscience at the

active terminals. i.e. the active terminals recover all the source components asymp-

totically losslessly. This cannot be done for the continuous-valued component unless

one uses an appropriate fidelity criteria [521. The method of types [101 arguments for

the strong achievability result also rely on the finite-alphabet constraint. It does not

apply directly to infinitely-valued random variables.

Fortunately, it is not essential to attain omniscience for the purpose of generating

a secret key. We will simply convert the infinitely-valued model to a finitely-valued

model by quantization. Given that the quantization is fine enough, and the entropy

measure is well-defined for the source, we can asymptotically capture the correlation

among the sources needed for generating the secret key. Indeed, we will show that

uniform quantization suffices.

In the sequel, we first extend the secrecy capacity of the finitely-valued source
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model in [12] to the infinitely-valued source model. Then, in the next section, we

derive the secrecy lower bound to the infinitely-valued channel model with sample

average constraint (5.3).

Theorem 6.4 (Infinitely-valued source model) For the source model where the

terminals observe the private DMMS Yv, the secrecy capacity is

CS = min /3(A, Py,) (6.20)
AGAA

1 D

and is strongly achievable, where 13 is defined in (A.19) and Yv can be a mixture of

discrete and continuous random variables as described in Section A. 1 such that the

entropy measure is well-defined (A.2). E

We convert the infinitely-valued model to a finitely-valued model using the fol-

lowing quantizer.

Quantizer:

For b > A > 0 : b \ A E P, define the quantization function fA,b : R - {0,. .. , 2b/A}

as follows,

fab(y) := 0 if y ( [-b, b) (6.21a)
j if y E[-b + (j - 1)A, -b + jA)

The range of the quantizer is finite as desired,

2b
HfA,bjl = I + - < 00 (6.21b)

Figure 6-1 illustrates how the quantization turns a continuous random variable into

a finitely-valued random variable.

We can apply this quantizer to each output symbol of the infinitely-valued compo-

nent of the source,' leading to a finitely-valued component. For notational simplicity,
6 For discrete component with unbounded support, we can assume the support set is the set Z of

integers without loss of generality.
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PY(y)

0 1 2 3 4 0 z E {0} U [2b/A]

Pz(3)>y 

E R

-b A 0 A b

Figure 6-1: Quantization Z fA,b(Y) of a continuous random variable Y. The
boundaries are at {jA E [-b, b] : j E Z} U {-b, b}

we use fA,b(Yv) to denote the output with all infinitely-valued components in Yv

quantized by fA,b but leaving the finitely-valued components intact.

PROOF (PROOF OF THEOREM 6.4) The converse follows immediately from Theo-

rem 6.1 because having the private DMMS Yv is equivalent to having the private

DMMC with Pyvixv = Py, which implies by definitions (A.17) and (A.19) that

a(A, Pxv) = /3(A, Pyv)

Substituting this into (6.1) gives (6.20) as desired.

To show that (6.20) is achievable, consider the specific scheme:

1. Each terminal i E V quantizes its private component source Y by fA,b to

Zi := fA,b(yi)

2. Terminal i E V broadcasts the indicator If{Zi # 0} in public. This is equivalent

to having a dummy untrusted terminal 0 that observes the vector of indicators

Zo := (I1{Zj # 0} : i E V)

Let b -> oc slowly as A -+ 0 slowly as n -* oc such that the cardinality of the output

of the quantizer, i.e. 2b/A from (6.21b), grows sufficiently slowly for the achievability
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scheme in [12] to apply. The resulting strongly achievable key rate is7

min lim lim Ezo [!(A, Pzvlzo (. Zo))]
A b-+oo A-O

> min lim lim Pzo (1) Ezo [0(A, Pzv Izo (. Zo 1))]
A b- o A-te

since 03 is non-negative by (A.l0a) of the Shearer-type lemma. Note that Pz0 (1) --* 1

in the above limit by (A.2).5 It suffices to show that the conditional expectation

converges to 3(A, Pyv ).

Let £(C) for C C V be the number of continuous components in Yc, which satisfies

f(B1) + £(B2) = f(B1 n B2) + f(B1 U B2) for all B1, B2 C V.

The modularity implies the equality case (A.10b) of the Shearer-type lemma

0 = Ae(Bc) - £(D)
B

- ( B A- 1 f (V)

Together with the definition of Q in (A.19), we have

Ezo [/3(A, PzvIzo (-Zo = 1))] AB [H(ZBc Zo = 1) + f(B") log A]
B

- [H(ZDIZO = 1) + f(D) log A]

- (SB AB - 1) [H(ZvZ 0 = 1) + f(V) log A]

By Corollary 6.1 stated below,

lim lim [H(Zc lZo = 1) + f(C) log A] = H(Yc)
b-oo A-*O

(6.22)

Applying (6.22) to the previous expression gives the desired convergence. M

The above proof uses the following technical Lemma, which is analogous to The-

orem 9.3.1 in [8].
7By making n -+ oc fast compared to A -* 0 and b -+ oc, we can approximate the rate by taking

the limit in n, followed by A and b.
8 See the proof of Lemma 6.1 for a detailed derivation.
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Lemma 6.1 (Quantization) Let Y be a real-valued random variable with density

function Py such that

|Py (y) log Py (y)| dy < oo (6.23)

then we have for Z := fA,b(Y) and Zo := 1{Z $ O} that

lim lim [H(Z Zo = 1) + log A] = H(Y) (6.24)
b-+oo A-*oo

where fA,b is a quantizer defined in (6.21).

Corollary 6.1 Given Y = (Yj : i c [f+ 1]) is a mixture of a discrete random variable

Yt+1 and a continuous random vector Y[ ] with f continuous real-valued components,

such that the joint densities Py,+] (-, ye1) for yt+1 c Yt+1 are absolutely continuous

and

PY (yg] ) log P] (y[) dy[g] < o (6.25)
yR+1EYe+1a

We have for Z := fA,b(Y) and. Zo := (1{Zj 0}: i E [f]) that

lim lim [H(Z Zo = 1) + flog A] = H(Y) (6.26)
b-+oo A-*oo

where fA,b is a quantizer defined in (6.21).

PROOF Consider proving Lemma 6.1 first. We first relate the conditional distribu-

tions of Z and Y given Zo = 1 using the mean-value theorem, and then prove the

desired convergence (6.24) under the condition (6.23) for the entropy measure to be

well-defined. From the definition (6.21), we have for all j E [2b/A] such that Pylzo( 1)

is continuous over the interval [-b + (j - 1)A, -b+ jA],

Pz(j) Pylzo (y 1) dy = Pylzo (yjI1) A (6.27)
J -b+(j 1)A

for some tag yj E [-b + (j - 1)A, -b + jIA] by the mean-value theorem. The desired
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convergence can be proved in two stages as follows.

H(ZIZo = 1) + logA = E
jC[2b/A]

PzizO (jl ) log
PZ|ZoU1)

Ib
bPy1zo(yl1) log FYIZ 0(Y1 )dy

(bb H(Y)

(a) This is by (6.23) that Pylz(| 1) log Pyizo(I1) is Riemann-integrable over [-b, b].

More explicitly, we have the convergence that

Jb PYZo (Y 1) log
1 dy

Pyzo(y|1)
= lim

jE[2b/A]

= lim
jE[2b/A]

APzo (y l11)

Pz1zO (j|0) log

log 1

[gPyzo (y3 1)

A
PziZO0 j1)

where the last equality is by (6.27).9

(b) Since (6.23) implies

lim [Py(y) + Py(-y)] dy = 0
b-->oo bo

we have limb>oo Pr(Zo) = 0. Since limzto x In x = 0, we also have PzO (0) log PzO (0)

0 and H(Zo) -- 0 as b -+ oc. By the chain rule,

H(Y) - H(Y|Zo) = H(Zo) - H(ZolY)

< H(Zo) b-oo 0

Thus, R.H.S. of (a) can be expressed as

H(Y|Zo = 1) ~ I [H(Y)
'Pzo(1)

- Pzo(0)H(YlZo = 0)]

with equality in the limit as b -> oc. To show the desired convergence to H(Y),

9 More precisely, the mean value theorem applies almost everywhere as A -+ 0 due to the fact that
a function is Riemann integrable iff it is continuous almost everywhere [32]. Absolute continuity of
the probability measure should not be confused with continuity of the density function.
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it suffices to show that the following term converges to 0.

Pzo(0)H(YlZo = 0) = Pzo (0) P()log P(O dy
(-oo,b]U[b,oo) PZo (0) ogPY(y)

= j -oo,bulb,oo) Py (y) log Py)dyzo 10

= Pz(0) log Pz(0) + Py(y) log dy
(-oo,b]U[b,oo) PY(y)

which goes to zero as b -- oc by (6.23)

This complete the proof of Lemma 6.1. Corollary 6.1 is a straight-forward extension

to the vector case. We again relate the distributions of Z and Y through the mean-

value theorem, with an f-fold integral and a factor of A' instead of A in (6.27). This

gives the flogzA terms in (6.26).

6.2.3 Sample Average Constraint

We now incorporate the sample average constraint (5.3) into the input distribution.

To do so, we consider a modified mixed source emulation approach.

Definition 6.4 The modified mixed source emulation approach for the sample aver-

age constraint is the same as the mixed source emulation approach in Definition 6.2

but with the following modifications.

Modifications to mixed source emulation:

i) Px, (-|q) is chosen to satisfy the moment constraint (6.3) for all q E Q.

ii) Before the transmission phase, if terminal i E V finds that the sample average

constraint is violated for its input sequence X, it declares an outage.

iii) If any terminal declares an outage, they skip the transmission phase entirely. In

this case, the active terminals simply generate the individual keys Ki's for i E A

independently and uniformly randomly.
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Theorem 6.5 (Sample average constraint) With the sample average constraint (5.3)

and the infinitely-valued model, we have the following secrecy lower bound

Cs > sup min EQ[/(A,PxvlQ(-|Q))] (6.28a)
PQxV-PQx x AEAAID

X HiEDC PXiIXDQ

= min sup (A, Pxv) (mse) (6.28b)
AcAAID PXV =PXDX

X HLEDc PXiIXD

> sup min #(A, Pxv) (pse) (6.28c)
XV =XD X AEAAID

XHiEDc PXiIXD

where the input distribution is also subject to the moment constraint (6.3). (6.28b)

is the largest achievable key rate for the modified mixed source emulation approach

in Definition 6.4. It is admissible to have the alphabet set Q of the auxillary source

component satisfy the cardinality bound in (A.12b). (6.28c) is the largest achiev-

able key rate for the corresponding pure source emulation where Q is chosen to be

deterministic.

Example 6.4 Consider the same model defined in Example 6.2 for two transmitting

active users and one receiving untrusted terminal. Then, by (6.28b), the secrecy lower

bound simplifies to
sup I(X1 AX 2|Y)

PxIx2 =X1 PX2

where the input may be subject to certain moment constraint that corresponds to

the sample average constraint.

Consider, in particular, the gaussian multiple access channel Y= X1 +X 2 +N, with

channel noise N ~ A0,1 and average power constraint fi(xi) = - P, for i = 1,2.

We can set the channel input distribution to be gaussian, Px1 x2 = A6,P1,P, which

satisfies the power constraints. This gives the following secrecy lower bound

I(X 1 AX 2 Y) = H(YlX1 ) + H(Y X2 ) - H(Y) - H(YlX 1 X2 )

= H(X2 + N) + H(X1 + N) - H(Y) - H(N)

= log 1 + 2
P 1+P 2 +1
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As P2/Pi or P1/P2 --+ o, this approaches the secrecy upper bound log(1+min{FP1, P2})

derived in Example 6.2

PROOF (THEOREM 6.5) Consider the modifications i, ii and iii in Definition 6.4.

The idea is that imposing the moment constraint in i ensures the sample average

constraint is satisfied with high probability such that the outage event in ii almost

surely does not occur. For the purpose of the proof, the terminals do not take further

action in case of an outage, and simply generate individual random keys in iii that

are independent of everything else, including the wiretapper's knowledge.10 In other

words, the modification does not affect the secrecy condition (5.8) in the sense that

if any scheme satisfies the secrecy condition without modification ii and iii, it must

also satisfy the condition with the modifications.

Next, we will show that the recoverability condition is unaffected and so we can

ignore modifications ii and iii for the purpose of computing the largest achievable key

rate. Let Er and Er be the events that the active terminals fail to agree on the secret

key with and respectively without the modifications. Let Ep and Ep be the outage

event in ii for the case with and respectively without the modifications. Then,

Pr(Sr) > Pr(Sr lSp) Pr(Sp1 ) > Pr(ErI Sp) Pr(Ep') (6.29)

because Pr(Sr|j5,) = Pr(Er|Sp) due to the fact that the modifications are ineffective if

there is no outage, and Pr(Ep) = Pr(Sp) by definition."

Pr(Sr) < Pr(Ep) + Pr(Er n SP) < Pr(Sp) + Pr(Er) by (6.29)

If Pr(S,) -* 0 exponentially for any scheme without the modifications, then Pr(Er)

0 exponentially since Pr(Ep) decays to zero exponentially by the Chernoff bound [8].

Thus, the recoverability condition is unaffected as desired. We can therefore ignore

modifications ii and iii for the purpose of computing the largest achievable key rate.

10In practice, the terminals can regenerate the input repeatedly until the sample average constraint

is satisfied.
"The probability that the outage event occurs is not affected by any action performed after it

occurs.
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Applying Theorem 6.4, the maximum key rate strongly achievable is (6.28b) as de-

sired by maximizing over the input distribution satisfying the corresponding moment

constraint. The admissibility condition on |Q| follows from Lemma A.3.

Problem:

For the gaussian multiple access channel considered in Example 6.4, is the gaussian

input distribution globally optimal for the maximization in (6.28b)? It can be shown

that gaussian is a local maximum. To see this, note that X1 independent of X2 implies

the following after some algebra.

I(X 1 A X2 |Y) = H(X1 |X1 + X2 + N) - H(NIX 1 + N)

= H(X2 |X2 + X1 + N) - H(NIX 2 + N)

From the first equality, it is optimal to have Px2 = 410,p 2 given Px, = Ipl. A similar

statement follows from the second equality, which gives the desired local maximality.

6.3 Mixed vs pure source emulations

We will give an example for which the secrecy lower bound obtained from mixed

source emulation is 1) strictly larger than the secrecy lower bound from pure source

emulation, and 2) strictly smaller than the secrecy upper bound.

To make the first point concrete, we will also describe a variant of the source

emulation scheme that illustrates why the mixed source emulation approach outper-

forms the pure source emulation approach. The public discussion functions and key

functions will be completely specified for this variant scheme, unlike the optimal pure

or mixed source emulation scheme.

The second point implies two possibilities:

1. the secrecy lower bound may be loose, in which case one can somehow improve

the key rate by

Private input adaptation: adapting the channel input to the accumulated

observations over time rather than generating them all at the beginning before
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any private channel use, or

Interactive public discussion: adapting the public message to the previous

public messages in multiple rounds of interactions instead of generating the

public message completely from the private observations.

2. the secrecy upper bound can perhaps be strictly improved by new techniques.

We will follow up on this later with a simpler example in Section 7.3. For now,

consider three terminals consisting of two active terminals and one trusted helper,

i.e. A = [2] C Dc = V = [3], and the DMMC defined below.

Coupling channel:

terminal 1 2 3

input X1 E {, 1} X2 E {O, 1}

output Yi E {0, 1} Y2 E {O, 11 Y3 E {0, 1}

The output bits are defined as follows,

Y3 N3  (6.30a)

N3 ifX 1=X 2 =0 (6.30b)

N1 otherwise

N3 if X1 = X2 =1 (6.30c)

N2 otherwise

where N1, N2, N3 are uniformly independent random bits mutually independent of the

channel input bits X1, X2 . As illustrated in Figure 6-2, the active terminals control

jointly the coupling of the observations:

1. Yi couples withY 3 if the input bits are 0;

2. Y2 couples withY 3 if the input bits are 1;

3. the output bits are all independent if the input bits disagree.

It is beneficial for the active terminals to coordinate their inputs to enhance their

correlation.
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Yi = N1Yi = N,

T3

Y = N9

T2

(a) X1 = X2 = 0 (b) X1 = X2 = 1

Figure 6-2: Coupling channel: each terminal, denoted as Ti, T2, T3, observes one of
the independent random bits N1, N2, N3 depending on the channel input.

Table 6.1: Secret key rates for the coupling channel

key rate (bits)

optimal pure source emulation Cpse ~ 0.41

variant of source emulation Rmse = 0.5

optimal mixed source emulation Cmse ~ 0.54

secrecy upperbound Csu 0.60
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Table 6.1 summarizes the achievable key rates for the following schemes. The

detailed computation can be found in Section C.1.

Optimal pure source emulation:

The active terminals generate the channel input sequence iid according to

Px1x2 (XI, x2) = Bernp(xi) Berni,-(x 2), with p ~ 0.44

i.e. X1 and X2 are independent Bernoulli random variables.

Optimal mixed source emulation:

The auxillary source and channel input sequence are generated iid according to

PQ = Berni

Berno(xi) Bern2 (X2 ) if q = 0,
Pxx2 IQ (XI, z2|g) = 7

Bernn (xi) Berni(x 2) if q = 1

i.e. X1 and X2 are conditionally independent Bernoulli random variables given the

uniformly random bit Q.

The specific choices of the public discussion and key functions are not known even

for this particular example. To help understand more concretely why the optimal

mixed source emulation approach outperforms the pure source emulation approach,

we consider the following variant scheme for which the public discussion and key

functions are completely specified.

Variant scheme:

The active terminals set their channel inputs equal to the parity of the time t, i.e.

0 if t is odd
X1{ = X2t =

1 if t is even
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This can be considered as a trivial public input adaptation approach defined in Defini-

tion 6.3 since the terminals adapt the input only to trivial public information, namely

t. During the public discussion, the helper T3 broadcasts the XOR bits

F =(Y 3 t Y3 (t+l) : t is odd)

The key is set to be

K = (Y3 t : t is odd)

which is uniformly distributed and independent of F as desired. Furthermore, K is

observed by Ti through Yit for odd t, and perfectly recoverable by T2 using the

bitwise XOR operation,

F E (Y2 (t+l) : t is odd) = K

because Y2 (t+1) = Y3(t+1) for odd t. The key rate achieved is therefore 0.5 bits as

shown in Table 6.1.

We now relate this variant scheme to each source emulation approach to show

that mixed source emulation outperforms pure source emulation by the additional co-

ordination through the auxillary component source. Consider the 2-extended coupling

channel defined as

PiVV -<((yvdd ,yven) o"vdd xeven)) -- p (ydd bodd)Pyix(even even

i.e. each channel use corresponds to two simultaneous uses of the original coupling

channel Py ixv. The variant scheme can then be considered as a pure source emulation

scheme with n/2 uses of the 2-extended coupling channel, and the trivial iid input

X = (0, 1) with probability 1. The improvement on the original pure source emulation

approach comes from the additional coordination through this 2-block memory.

The same coordination can come from the auxillary component source instead

X1= X2= Q ~ Berni
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By the large deviation theory, the fraction of time where the input bits are 0 is

arbitrarily close to 1/2 with probability exponentially converging to 1. The same

holds for the condition where the input bits are 1. Let y(q) for q C {0, 1} be vectors

of 1/2 - o, output bits Y3t at disjoint time t, with as many of them satisfying X1t

X2t= q as possible, and o, -* 0 at sufficiently slow rate, say w(1/n).12 T 3 reveals the

following elementwise XOR bits in public,

F = Y(O) G y()

The key is set to be K = Y(O), which is independent of F and Q. By the large deviation

theory, y(q) almost surely consists of bits at time t where Xit =X2t= q. Thus, it is

almost surely observed by terminal 1 through Ylt at time t where X1 =X2t= 0 and

recoverable by terminal 2 from the public message and its private observation Y2t at

time t where Xit =X2t= 0. This mixed source emulation is therefore almost surely

the same as the variant scheme under a reordering of the time index. It achieves the

same coordination that improves the pure source emulation approach, but with the

auxillary component source instead of the 2-block memory in the channel input.

Problem:

Is the maximum key rate achievable by pure source emulation with block memory

the same as that achievable by mixed source emulation?

12 w(1/n) refers to the set of function that dominates 1/n asymptotically. See Bachmann-Lantau

notation for details.
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Chapter 7

Tightness of Secrecy Bounds

If a secrecy upper bound in section 6.1 matches a secrecy lower bound in section 6.2, we

have a single-letter characterization of the secrecy capacity. We will give a necessary

condition for tightness in Section 7.1, some general sufficient conditions for tightness

in Section 7.2, and illustrate how the bounds can be loose in Section 7.3.

7.1 Optimality of single-letter form

Before studying the tightness of the secrecy bounds, we will introduce a weaker notion

of optimality, called the optimality of single-letter form, without which the secrecy

bounds cannot be tight. Roughly speaking, we say that a single-letter bound is

single-letter optimal if multiletterizing it does not improve the bound.

Multiletterization by channel extension:

Given a function f on the DMMC Pyix, and a positive integer k E P, the k-letter

form of f is defined as

f(k)pYV) := 1 (7.1)
f ( vv~x ) kf(Pv~v)y3 -

where Pykix is the k-extension of Pyvix, defined as

YvI (kjk lpYIVYvrX

y v : fyvrxv,) (7.2)
7rE[k]
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with any additional constraints on the input XV such as the moment constraint (6.3)

translated directly to the constraints on Xv[k] .

Definition 7.1 (Single-letter optimality) A function f of DMMC Pyvixv is called

single-letter maximal or a single-letter optimal lower bound (single-letter minimal or

a single-letter optimal upper bound) if f is no smaller (no larger) than its k-letter

form f(k) defined in (7.1) for all k E ]P.

Any of the secrecy expressions a, ), a, and -y defined in Section A.4 maximized

over any set of input distributions is single-letter minimal because the k-letter form

is equal to the single-letter form when we impose an additional memorylessness con-

straint on the k-letter input distribution PXVfk] that

PXv[k = 11 Pxvr (7.3)
TG[k]

Thus, the single-letter secrecy upper bounds characterized in a and a are no larger

than their multiletter form. i.e. the secrecy upper bounds are single-letter optimal,

and are therefore potentially tight.

Theorem 7.1 (Single-letter minimality) The secrecy upper bounds in Theorem 6.1

and 6.2 are single-letter optimal. E

PROOF With the additional memorylessness constraint (7.3) on the k-letter input

distribution, we have for all A C AAJD and i C DC that

1 (a)1
sup -a( A, PXV[k]) max aai(A, Px,)

P xvin Pk rCEk]

b max a (A, Pxv,)
k TE[k] PXV

max -a (A, Pxv)
PxV k

where (a) follows from the definitions (A.20) and (7.2), and (b) follows from the

fact that the moment constraint (6.3) is imposed on each marginal input distribution

132



PxV7,. Taking the infimum on both sides over A and i gives the desired equivalence

of the k-letter form on the left and the single-letter form on the right for the secrecy

upper bound in Theorem 6.2. Applying similar arguments for a instead of ac, the

secrecy upper bound in Theorem 6.1 is also single-letter optimal. 0

Theorem 7.2 (Single-letter maximality) The secrecy lower bounds in Theorem 6.3

and 6.5 are single-letter optimal if the DMMC Pyvlxv satisfies the single-leakage con-

dition (A.27) that PyDxV = PYDIXDU{l for some s E DC.

PROOF The input distribution PxV[k] for the k-letter form (7.1) of the secrecy lower

bounds (6.18b) and (6.28b) satisfies the conditional independence condition (A.26)

PXv[k] = PXD[k ] i ik]
iEDC

Since the k-extension of the DMMC also satisfies the single-leakage condition, we

have, by Proposition A.4, that

1 1
k OJ(A Ixv[k]) p4X7  -y (Al PXV[k]) pk

v lxy YyljXy

(a)1

k Z AA, Px,)
TE[k]

((A, Pxv,)
T7E[k]

where (a) is by Proposition A.5, (b) is again by Proposition A.4. Maximizing over

PXV[k] as a function of A and minimizing over A on both sides give the desired equiv-

alence of the k-letter form on the left and single-letter form on the right, as in the

proof of Theorem 7.1.

Problem:

Construct an example, if any, for which the secrecy lower bounds are not single-letter

optimal.
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7.2 Optimality conditions for source emulation

In this section we will show that the secrecy lower bound by source emulation in Sec-

tion 6.2 matches the upper bound in Section 6.1 for a wide range of channels. In other

words, source emulation is optimal and gives the desired single-letter characterization

of the secrecy capacity. In the following, we will first derive some general sufficient

conditions for tightness of the secrecy bounds. Then, we will study specific classes of

channels that satisfy the conditions.

Theorem 7.3 (Finitely-valued model) For finitely-valued private channel, the se-

crecy lower bound (6.18b) in Theorem 6.3 matches the secrecy upper bound (6.1) in

Theorem 6.1 if the channel Pyvixv satisfies

max a(A, Px,) = max a (A, Pxy) for all A c AAID (7.4)
Pxy PXV=PXDX

x HiEDc PXIXD

i.e. a is maximized by conditionally independent channel inputs given the inputs of

the untrusted terminals. E

PROOF With conditionally independent channel input, a = 3 by Proposition A.4

and so
max a(A, Pxv)= max 3(A, Pxv)

PXV PXDX PXV =PXDX
X HieDe PXIXD X HiEDc PXIXD

After minimizing over A E AAJD, the R.H.S. gives the secrecy lower bound (6.18b),

which equals the secrecy upper bound (6.1) given by the L.H.S. of (7.4).

The following example illustrates the use of the tightness condition.

Example 7.1 (Binary MAC) Consider two active transmitting terminals and one

untrusted receiving terminal who observes Y = X1 E X2 . i.e. A = [2] = DC ; V = [3].

We will show that pure source emulation achieves the secrecy capacity of 1 bit.

First, A = 1 (i.e. A{1} = A{2} = 1) is the only fractional partition in AAID, and so

we have equality for (6.18c). That means pure source emulation is optimal if mixed

134



Next, we prove the sufficient condition (7.4) as follows.

definition (A.17b),

=0

a(1, Px1x2) = H(YlX 1 ) + H(YlX 2) - H(Y) - H(YlX 1 X2 )

= H(YlX 1 ) - I(X 2 /Y) < H(Y) 1

The inequalities are achievable with equalities by independently and uniformly dis-

tributed inputs

Px1x2 = Bern 1 (xi) Bern 1(x2)

By Theorem 7.3, we have the desired optimality of source emulation. Furthermore,

there is a practical way to attain the secrecy capacity non-asymptotically with n = 1:

have terminal 3 reveal Y in pubic and choose X1 as the key. Terminal 2 can perfectly

recover X1 = Y G X2 , which is perfectly secret since it is independent of Y. 1

For the infinitely-valued model with sample average constraints, we have the fol-

lowing sufficient condition instead.

Theorem 7.4 (sample average constraint) The secrecy lower bound (6.28b) matches

the upper bound (6.5) if the channel PyvIxv satisfies

PYDIXV = PYDIXDU{S}

sup Y(A, Pxv)
PXv

for some s E Dc

sup 7 (A, Pxv) for all A E AAID
PXV=PXD HiEDC PXiXD

where the input distribution can be subject to the sample average constraint (5.3). a

PROOF Consider bounding the supremum in the secrecy upper bound (6.5) as follows,

sup min c(
PXv i6D

A, Pxv ) sup y(AP )
P V

sup
PXV PXD HiEDc XiIXD

sup
PXV =PXD HiEDc EXiIXD

/(A, Pxv)

(a) Under the single-leakage condition (7.5a), ai = -y by Proposition A.4.
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(b) This is by condition (7.5b).

(c) With conditionally independent input, -y = ) again by Proposition A.4.

Minimizing over A E AAID gives the secrecy upper bound on the L.H.S. and the lower

bound on the R.H.S. as desired.

Example 7.2 (Gaussian channel) Consider the following two-user gaussian chan-

nel Pyy x, with A = [2] = DC = V,

Y1 = huX1 + h12X2 + N1

Y2= h21X1 + h22X2 + N2

(7.6a)

(7.6b)

where all variables are real-valued, and N1 and N2 are arbitrary zero-mean jointly

gaussian noises normalized to have unit variance. i.e.

PNiN2 (m1, n2) = p (n)
O'[ pl

for all n = E R2
L 2j

where 4 ,E denotes the jointly gaussian distribution [8] with mean y and covariance

matrix E,

A ,(x) := 1 e- 2 ( "-T7 lp)

(27r)Y|E l
(7.8)

In addition, the channel input sequences X" and X2 for T1 and T2 are subject to the

average power constraints,

X P1
te[n]

and X Z 2

te[n]

which translate to the following power constraints on the secrecy bounds in Theo-

rem 6.2 and Theorem 6.5.

E(X2) < P1 and E(X) P2

We will show that pure source emulation is optimal and compute the secrecy capacity.
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Since D = 0, the condition (7.5a) is satisfied trivially. Evaluating (A.21b) with

the only fractional partition A = 1, we have

y(1, PxV) = H(Y1|X1 ) + H(Y2 |X2 ) - H(Y1 Y2 |X1 X2 )

The last entropy term is

H(Y1 Y2 |X1 X2 )= H(N1 N2) = log 27re(1 - p2)

The remaining terms can be bounded as follows,

H(Y1 |X1) = H(h1 2 X2 + N1 |X1)

< H(h12X2 + N1 |X1)
1

< - log 27e(h 2 P2 + 1)
- 2

by the fact that gaussian distribution maximizes entropy for a given variance 181.

Similarly,
1

H(Y2 X2) < - log 27re(h 1P + 1)2

All the inequalities are satisfied with equality by the gaussian input distribution

Px1 x2 (Xi, 2) = 1KP (X>11 0,P2 (X2) V X1, X2 E R

which therefore maximizes 7. Hence, Theorem 7.4 implies that the secrecy capacity

is given by (6.28b),

1 (h 2P2 + 1)(hp 1 + 1)
CGC = -K, ,Pi -+,P2 (1 p 2)2

This is also equal to (6.28c) since the optimal input distribution is independent of A.

Pure source emulation turns out to be optimal.

It is possible to attain this secrecy capacity without public discussion if p = 0. To

argue this, note that the secrecy capacity can be rewritten as a sum of two channel
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capacities as follows,

C2 C1

CGC = n(h 2 P2 + 1) + ln(h21 P1 + 1)

where C1 and C2 are the capacities of the component channels from Ti to T2 and T2

to Ti respectively after removing the interference. Hence, the terminals can directly

transmit independent secret key bits at the capacities of the respective channels.1 [

Note that Theorem 7.4 also applies to the finitely-valued model as a special case

with or without sample average constraints. The sufficient condition is not as general

as that in Theorem 7.3 because (7.5) implies (7.4) but the converse is not true.2 The

additional single-leakage condition (7.5a) essentially turns condition (7.4) to (7.5b)

by the equivalence relation (b) of (A.28) in Proposition A.4. (7.5b) is easier to work

with, however, because of the concavity of -y in the input distribution by Proposi-

tion A.2. For instance, we can use this to derive the following tightness condition for

simultaneous independent channels.

Theorem 7.5 (Simultaneous independent channels) Suppose the channel con-

sists of a finite set L := [f] of simultaneous independent channels in (A.29), i.e.

PYvIxv = R PYivIxjv
jCL

Then, the secrecy lower bound (6.28b) matches the upper bound (6.5) if the channel

PYvixv satisfies

PYDIXV = PYDIXDU{s} for some s E D' (7.11a)

sup -/(A, Pxjv) sup -y(A, Pxjv) for all A E AAID, j E L (7.11b)
Pxsy Px v=PXjDX

x HiEDc PxjilXjD

where the input distribution is subject to the sample average constraint (5.3). Fur-

'This may not belong to the source emulation approach since the channel inputs may not be iid
over time.

2For instance, Example 7.1 does not satisfy the single-leakage condition (7.5a).
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thermore, the secrecy capacity can be achieved by the modified mixed source emulation

in Section 6.2.3 with conditionally independent inputs for different channels given an

auxiliary source. i.e.

(7.12)PxyIQ = 11 PXvloQ
jGEL

where Q is the auxiliary source.

PROOF We first show that it is optimal to have the following independence constraint

(7.13)PxV = 1 PxjV
jEL

for the maximization in the secrecy upper bound (6.5).

(a)
sup min o (A, Pxv) sup -y(A, Pxv)
Pxy 16D p

(b)
sup -/(A, Px v) |p

3GL E-Xjv
jV v

sup -y(A, Pxjv) p
jL PXV= PX DX YjI

exLjv=P jD jvxv

x HiEDc PX3 jiXjD (d_)
J x jvIX3

sup
PXV=PXD HiEDc PXIXD

1 (A, Pxv)

(a) by (b) of (A.28) in Proposition A.4 due to the sufficient condition (7.11a).

(b) by (A.30b) in Proposition A.5. Equality is achievable by independent inputs (7.13).

(c) by the sufficient condition (7.11b).

(d) by (c) of (A.28).

(e) because independent inputs (7.13) achieves

3(A, Pxv) = (A,
j6 L

Pxv)
Yjv IXjv

by the definition (A. 18) of 3. Relaxing this independence gives the upper bound.

Finally, minimizing over A E AAID gives the desired tightness because the L.H.S. of
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(a) and the R.H.S. of (e) become the secrecy upper and lower bounds respectively.

Furthermore, the equality for (e) implies the optimality of (7.13) in maximizing 3. *

Example 7.3 (Noise-free network) Consider the following finitely-valued noise-

free network for three terminals that are all active. i.e. A = V = [3].

terminal 1 2 3

input X1 E X1 X2 E X 2

output Y2 = X1  Y3 = X2

There is a noiseless channel from T1 to T 2, and an independent one from T2 to T3.

D = 0 implies (7.11 a). Since each component channel has only one sender, conditional

independent input trivially maximizes -y for each channel, i.e. (7.11b). Hence, source

emulation is optimal by Theorem 7.5.

By (6.18b), the secrecy capacity is

O mMin max ABH(YB|XBC)
AEAAID PXVPXlPX 2

BE X AID

=min AB log|XBC
AIAD BEH-AID

= min{log X1 i , logX 2 }

Since the optimal input distribution, namely the uniform distribution, is independent

of A, pure source emulation is optimal. There is also a practical scheme to achieve

the capacity by directly transmitting the secret key from terminal 1 to 2 and relaying

it from 2 to 3.3

In general, there is a superadditive gain in secrecy capacity for simultaneous in-

dependent channels, i.e. the secrecy capacity of the composite channel is no less than

that of each component channel. Example 7.3 for instance has 0 secrecy capacity for

each component channel (since at least one terminal is isolated from the others in each

case), but the secrecy capacity for the composite channel is positive. Note that we can
3This does not belong to the source emulation approach since it involves memory in the input

for relaying. However, it is also optimal to first convert it to a source by the result in Section 7.2.2,
and then attain the secrecy capacity by the network coding approach in Chapter 3.
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also combine very different channels together, such as adding the continuous-valued

channel in Example 7.2 to the finitely-valued channel in Example 7.3. We cannot

add the channel from Example 7.1 however since it does not satisfy the single-leakage

condition.

A trivial condition for tightness is when the secrecy upper bound is 0.

Theorem 7.6 (Zero secrecy capacity) The secrecy capacity is zero if the channel

PvvIXv is such that there exists a bipartition {C1, C2} of Dc through A, i.e.

C1 ,C2 2 A, C1 n C2 = 0, C1 u C2 = Dc

PYvIXv = PYCUDiXCIUDPYC 2lXC2UD
(7.14)

In other words, we have the Markov chain, YC1UD XC 1jUD '-* XC2UD C2 regard-

less of the input distribution Pxv.

PROOF Given (7.14) is satisfied, consider some i' E Ci and A' E AAID with

1 if B=C1 or C2
0 o

0otherwise

By (6.5), the secrecy capacity is upper bounded by

CSu = min supminoai(APxy)
AcAAID Px iEDC

< sup aj' (A', PxV)
Pxv

= sup [H(YC 2 |XC2 UDYD) + H(YCUD IXCiUD) - H(YVXV)]
Pxv

where the last equality is by (A.20c). Applying (7.14) to the first two entropy terms,

H(YC 2 |XC 2UDYD) = H(Yc 2 XVYCiUD)

H(YCiUD IXCiUD) = H(YC1 UD XV)
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The sum of the entropies above is H(Yv|Xy), and so the secrecy upper bound is at

most zero as desired.

In the special case when we have a source model instead, i.e. no channel input,

the condition in Theorem 7.6 is also necessary.

Theorem 7.7 (ZSC for source model) For the (possibly infinitely-valued) source

model, secrecy capacity is zero iff the source Pxv is such that there exists a bipartition

{C1,C 2} of D' through A with

PXDcIXD =XCIXD PXC2IXD (7.15)

or equivalently the Markov chain Xc 1 +-+ XD - XC2 -

PROOF Sufficiency follows from Theorem 7.6 by treating Xv as the output of a chan-

nel that does not admit any input. Consider proving the converse. Let A* be the

optimal solution to the minimization in the secrecy capacity (6.20)

Cs = min 3(A, Pxv)
AEAAID

We may assume that there exists a bipartition {CI, C2} of Dc through A such that

A* > 0 because EEA, A* ; 1 by (A.9).

If the secrecy capacity is zero, i.e. #(A, Pxv) = 0, then we have by (A.19) that

H(XDc lXD) AH(X Xc)

B

Note that the L.H.S. is no smaller than the R.H.S. in general by the weak form (A.10a)

of the Shearer-type lemma. From the proof of the lemma, the above equality implies

that, for all B E 'HAID with A* > 0,

H(Xi|X[i_1]XD) = ZH(XlX[i_1nBXBC)
iE B iEB
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This holds in particular for C1 that

E H(XilX[i_1]XD) = 7 H(XjlX[i-]nc 1 XC2 UD)
iEC1 iECi

Without loss of generality, we can re-index the terminals such that C1 = [c] C Dc for

some positive integer c. Then, we have, [i - 1] C C1 for all i E C1, and so the above

equality simplifies to

H(XCi IXD) = H(XC1 XC2 UD)

which gives (7.15) as desired.

Problem:

Give an example, if any, for which pure source emulation is strictly suboptimal even

though one of the tightness conditions described above is satisfied. In particular,

consider the channel given in Proposition 7.3. Is it possible to correlate the noise

such that pure source emulation is suboptimal?

7.2.1 Interference-free Channels

In the following, we show that the secrecy bounds are tight for channels that are

interference-free. We first consider DMMC's that has any number of untrusted senders

but at most one trusted sender. The trusted sender can also receive a channel out-

put as an immediate feedback from the channel. Furthermore, the channel can be

infinitely-valued with sample average constraints on the input. We will show that

pure source emulation achieves the secrecy capacity in this case, which extends the

result of [13].

Proposition 7.1 (Single trusted sender) If the channel has at most one trusted

sender, i.e. for some s E DC,

P = YVIXDU{} (Suylr trustcd sender (7.16)
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then pure source emulation is optimal and the secrecy capacity is given by (6.28c) in

Theorem 6.5.

PROOF This follows immediately from Theorem 7.4 that (6.28b) is the secrecy capac-

ity since the single-trusted-sender condition (7.16) trivially implies both the single-

leakage condition (7.5a) and the optimality of conditionally independent input dis-

tribution (7.5b). To prove the stronger result that pure source emulation is optimal,

i.e. the secrecy capacity is (6.28c), it suffices to consider the finitely-valued model be-

cause the achieving scheme for Theorem 6.5 first convert the infinitely-valued model

to finitely-valued model by quantization (6.21). By the minimax theorem [53],

min max 3(A,PDu ) = max mX u(A, PXDu{S})
AcAA|D PXDU{s} PDU{s} AEAAID

since / (or equivalently -y by Proposition A.4) is concave in the input distribu-

tion PXDUS, by Proposition A.2 and linear in A over convex compact sets.4 The

L.H.S. is the secrecy capacity by Theorem 7.4 while the R.H.S. is the secrecy lower

bound (6.18c) achievable by pure source emulation.

Roughly speaking, we can think of the channel equivalently as a broadcast channel

with immediate feedback to the sender, and with a channel state, namely XD, publicly

controllable by the untrusted terminals. Since coordination is trivial with just one

sender, even pure source emulation achieves the secrecy capacity. By Theorem 7.5, we

can extend the result further to channels that can be decomposed into simultaneous

independent broadcast-type channels as follows.

Proposition 7.2 (Single trusted sender per channel) If every simultaneous in-

dependent channel has one trusted sender (not necessarily the same one), and at most

one channel has output observable by the untrusted terminals, i. e.

Yvlxv = PYlVIXDUIs{} H PYjDcXjDU{} (7.17)
jEL\{1}

4The set of valid input distributions remains convex under the sample average constraints. If
there were more than one trusted sender, however, the set of conditionally independent input would
not be convex.
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with sj E D' for all j C L, then pure source emulation is optimal and achieves the

secrecy capacity (6.28c). n.b. Proposition 7.1 is a special case when |L| = 1.

PROOF This follows immediately from Theorem 7.5 with the same argument as in

the proof of Proposition 7.1. Since each simultaneous independent channel has at

most one trusted sender, conditionally independent input is trivially optimal for each

channel, giving (7.11b). (7.11a) follows from the definition (7.17) that YD = Y1D

which depends on the input Px, only through X,1 . To prove that pure source emula-

tion is optimal, it suffices to consider the finitely-valued model as argued in the proof

of Proposition 7.1. Denote the vector (PxjDusj: j E L) by (PxjDU{s})jEL, and define

f(A, (Px jDU{s})EL) := 3(AX1 lDU{slI})
YJV IX1 DU{s1 }

+ E /3(APXjDU{sg})
jEL\{1} jDc lXj DU{sg}

which is linear in A over the convex compact set AAID and concave in (Px, DU{sj :

j E L) over the convex compact set of vectors of valid input distributions for the

independent channels. By the minimax theorem [53],

min max f (A, (Px Du{s })jEL) = max m f (A, (PxjDu{s})jGL)
AEAA[D PXj DU{}:j DU{s :jcL AEAAID

The L.H.S. is the secrecy capacity by Theorem 7.5, while the R.H.S. is the secrecy

lower bound (6.18c).

Proposition 7.2 can be extended to the following three-user case with correlated

noises for the component channels.

Proposition 7.3 (Three correlated channels) Consider the three-user case where

A C Dc C V = [3]. One of the terminals can be a helper or an untrusted terminal.

i.e. we may have A = [2] and D = 0 or {3}. Suppose the channel Py, Ix, satisfies

Y2 = fi(Xs,, Nj) Vi E V (7.18)
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where, for all i E V, si G V, the channel noise Ni's are independent of Xi's and

recoverable from the corresponding channel input and output in the sense that there

exists functions gi 's with

Ni = gi (Xss, IYi) Vi E V (7.19)

Then, mixed source emulation is optimal and the secrecy capacity is given by (6.28b).

If |YD| > 1, then pure source emulation is optimal. If |YD| < 1 and the channel noises

are independent of each other, then pure source emulation is optimal with input dis-

tribution Px1x2x2 = where P maximizes H(Yi) under the corresponding

moment constraints.

PROOF The single-leakage condition (7.5a) is satisfied trivially if D 0 or |YDJ < 1.

If not, consider for definiteness that D = {3}. By (7.18), Y3 = f 3 (X13 , N3 ) which

is independent of Xv given X, 3 since N3 is independent of Xv. We have the desired

Markov chain for (7.5a) that Y3 +- X13 XV.

To show (7.5b), consider the case D 0 first. Then, by (A.21b),

y(A, Pxv) = Y ABH(YBc XBIc) - H(Yv|Xy)
B

By (7.18) and (7.19), H(YvlXv) = H(NvlXy) = H(Nv) independent of Pxv. Thus,

it suffices to show as follows that H(YBc XBc) is maximized by independent inputs

for every choice of BE 'HAID-

I) Consider the case when BI 2. For definiteness, suppose B = {1, 2}. Ifs 3 = 3,

we have
H(Y3 lX3 ) = H(Y3 , N3 1X3 ) by (7.19)

= H(N 3 |X3 ) by (7.18)

= H(N3) by independence

which is trivially maximized by independent inputs. If 83 E {1, 2} instead, then

H(Y3 X3) - H(Y3)
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with equality if X,, is independent of X3 by the data processing theorem and

the Markov chain Y3 +-+ Xs, +-* X3 from (7.18) that

I(Y3 AX3) < I(XS3 AX3) = 0

Thus, we have
sup H(Y3 IX3 ) < sup H(Y3 )

Pxix2X3 PXs3

since Py3 depends on Px, only through Px, 3. Thus, it is optimal to choose P,

that maximizes H(Y3 ).

II) Consider the case |BI = 1. For definiteness, suppose B {1}.

(a) Suppose S2 = 83 =1, which gives Y2Y3 <-+ X1 <-> X2X3. Then, by the same

argument as before,

sup H(Y2Y 3 |X2X3 ) = sup H(Y2Y3 )
Pxix2X3 PX1

and so it is optimal to have independent inputs.

(b) Suppose S2, S3 E {2, 3} instead. Again by (7.18) and (7.19),

H(Y2Y3 |X2X3) = H(Y2Y3 N2 N3 IX2X3)

= H(N2 N3 lX2X3 )

= H(N2 N3 )

which is trivially maximized by independent inputs.

(c) The remaining case has exactly one of s2 and s3 equal to 1. For definiteness,

suppose S2 E {2, 3} and S3 = 1.

H(Y2Y3lX2X3) = H(Y 2 X2X3) + H(Y 3 X2X3Y2)

= H(N2) + H(Y3 |X2X3 N2 ) (7.20)
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again by (7.18) and (7.19). The second entropy can be bounded as follows,

H(Y3|X2X3N2) < H(Y3|N2) (7.21)

with equality if X1 is independent of (X2, X3). To argue this, note that we

have the Markov chain Y3N2 -+ X1 + X2X3 since (Y3, N2) is a function of

(X1, N2, N3) by (7.18). By the data processing theorem,

I(Y3 A X2X3 |N2) I(Y 3N2 A X2X3)

< I(X1 AX 2 X3 ) = 0

Hence, applying (7.21) to (7.20) and maximizing over the input distribu-

tion, we have

sup H(Y2Y3 |X2X3 ) = H(N2) + sup H(Y 3 N2 )
1x 2x3 Px1

If N3 is independent of N2 in addition, then H(Y3 N2) = H(Y 3) and so it

is optimal to choose PX1 that maximizes H(Y 3).

Thus, by Theorem 7.4, the secrecy capacity is given by (6.28b) and so mixed source

emulation is optimal. If the channel noises are independent, it is optimal to choose

Px1x2x3 = Pi PL P(3 , which is independent of the choice of A. (6.28c) is therefore

satisfied with equality and so pure source emulation is optimal.

Consider proving (7.5b) for the remaining case when |YD I > 1. Assume for def-

initeness that A = [2] and D = {3}. Since the only fractional partition in AAID is

A = 1, we need only consider the following by (A.21b).

Y(1, PxV) = H(Y 1 X1X3Y3) + H(Y2 |X2 X3Y3) - H(Y1 Y2 |X1X2X3Y3 )

By (7.18) and (7.19),

H(Y1 Y2|X1X 2X3Y3) = H(N1 N2 |X1X2X3N3) = H(N1 N2 N3)

148



which is trivially maximized by independent inputs. It suffices to show that H(Y 1 X1X3Y3)

is maximized by independent inputs as follows. The same conclusion will apply to

H(Y2 lX2X3Y3 ) by symmetry.

1. Consider the casesi = S3 = 2. This gives the Markov chain Y1Y3 -* X2 X1X3.

Thus,

H(Y1 |X1X3Y3) < H(Y 1 Y3)

with equality if X2 is independent of (X1 , X3 ).

2. If Si, S3 E {1, 3} instead, then

H(Y1 |X1X3Y3) = H(N1|X 1 X3 N3 ) = H(N1 |N3 )

which is trivially maximized by independent inputs.

3. If si = 2 and s3 E {1, 3} instead, then

H(Y 1 X1X3Y3) = H(Y1 X1X3 N3 ) < H(Y1|N 3)

We have equality by choosing X2 independent of (X1, X3) because of the Markov

chain Y1 N3 - X2 +- XIX 3.

4. If s3 = 2 and si E {1, 3} instead, then

H(Y1 |X1X3Y3 ) = H(N1 X1X3Y3) H(N1 Y3)

We have equality by choosing X2 independent of (X1, X3) because of the Markov

chain Y3N1 - X2 +- X 1X 3 .

Hence, mixed source emulation is optimal by Theorem 7.4. Indeed, pure source

emulation is optimal since AAID is a singleton and so (6.28b) equals (6.28c). 0

For example, consider the channel defined as follows.

Y3= X2+ N3

149



where N1, N2 and N3 are arbitrarily correlated noise independent of the channel inputs.

The channel satisfies (7.18) with (Si, s2, 83) = (3, 1, 2), and (7.19) with gi(x, y) = y -x

for all i E [3]. Thus, by Theorem 7.3, mixed source emulation is optimal. If the

channel noises are independent, pure source emulation is optimal. In the special

case when the channel noises Ni's are correlated and jointly gaussian (7.8), and the

channel inputs Xi's are subject to the power constraints P's, it can be shown that it

is optimal to have independent gaussian input, i.e. Px1 x 2 x3 = o,diag(P1,P 2 ,P3 ). Thus,

pure source emulation is optimal in this case even though the noises are not necessarily

independent.

7.2.2 Finite homomorphic network

In this section, we consider the following type of finitely-valued channels where the

channel outputs are group homomorphisms of the channel inputs and noises. It can

be considered as a generalization of finite linear channels where the outputs are linear

combinations of the inputs. We will show that pure source emulation is optimal

with uniform input distribution, which gives an explicit expression for the secrecy

capacity. For finite linear channels, in particular, Chapter 3 gives a practical way to

attain secrecy capacity using linear network coding.

Definition 7.2 (Finite homomorphic network) The channel output Yv depends

on the input Xv as follows,

Yi = Mi(Xv, No) + Ni for all i E V (7.22)

with the following assumptions. n.b. in the special case when D = 0 and No deter-

ministic, Assumption 2, 4 and 5 below are automatically satisfied. Those assumptions

are technicalities for the case when D f 0.

1. The channel input Xi and output Yi for terminal i E V take values from the

finite abelian group (Xi, +) and (Yi, +) respectively. The individual channel

noise Ni for terminal i E V takes values from Yi.
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2. The common channel noise No is uniformly distributed over the finite abelian

group (No,+). i.e.

1
PNo (no) = N

|No|
for all no E No

3. Mi is a homomorphism for all i E V. i.e. for all xv, x' C XV and no, n' C No,

Mi(xv x'y, no + no) = Mi(xv, no) + Mi(z'y, n'/) (7.24)

4. ND is determined by YD. i.e. for all rD, nD E YD such that nD # n' and

PN(nD),PN(n' >0,

n - rD M(XV, No) {Mi(xv, no) : xy C XV, no E No} (7.25)

In other words, the support of ND has at most one element from each coset of

the subgroup MD(Xv, NO) of YD.

5. There exists a special terminal s C D' such that

PNo,NvXv = PNO PNDc PNDINS (7.26)

Furthermore, uniform Pxv implies

I(YD A XDc\{s} XD) 0 (7.27)

Roughly speaking, uniformly distributed input for terminal s completely jams

the channel from the trusted terminals to the untrusted terminals. 1

Theorem 7.8 For the finite homomorphic network defined above, pure source emu-
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lation with uniform Pxv attains the secrecy capacity

CFHN : =miA D AB [109g |Mc (XB, 0) | + H (SB NXCAAID BCH-AID

- [log Mc (XD, 0) + H(SD-)] - (BA- 1) H(Mv(O, No) + Nv)

where MiB(XB, XBc) Mi V, 0) and SB is a random variable which denotes the coset

of MBc(XB, 0) that contains MBc(O, NO) + NBC -

The proof relies on the group structure that can be captured by the following

simple finite homomorphic channel.

Simple finite homomorphic channel:

We say PyIx is a (single-input single-output) finite homomorphic channel if

Y = M(X) + N (7.28)

for some M and N such that

- X and Y take values from the finite abelian group (X, +) and (Y, +) respectively,

- N E Y is independent of X, and

- M is a homomorphism. i.e.

M(x + X') = M(x) + M(x') Vx, x' E X

We write

- M(X) := {M(x) : x E X} as a subgroup of Y,

- M(X) + n := {M(x) + n : x E X} for n E Y as a coset of M(X) in Y,

- P(M(X)) := {M(X) + n : n C Y} as the partition of Y into cosets of M(X), and

- Null(M) := {x E X: M(x) = 0} as the kernelcoset of M.

Lemma 7.1 For the simple finite homomorphic channel defined above,

H(Y) < log|M(X) + H(S) (7.29)
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where S is the unique coset from P(M(X)) that contains N. i.e.

N C S E P(M(X)) (7.30)

Equality holds for (7.29) if Px is uniform.

PROOF Y c S iff N C S since Y - N C M(X). In other words, S is not only determined

by N, but also by S.5 Thus,

H(Y) = H(Y, S) = H(YlS) + H(S)

< log|S| + H(S)

where (a) is because Y determines S, and (b) is because Y C S. This gives (7.29)

because |S| = |M(X)|.

To show the equality case, suppose Px is uniform. For all n E Y and y E M(X)+n,

(a) Null(M)| (b) 1
PYN (y Xn M(X) (7.31)

where the R.H.S. of (a) is the probability that X - x E Null(M) for some particular

solution x to y = M(x) + n, and (b) is a well-known identity in linear algebra. Hence,

for all y E S,

PYIs(ylS) L 1 PYNIS(y, n S)
nES

(IPNIs(n S)PYN(y n 1
nES y M(X)

where the summation in (a) is over S since N c S by (7.30), (b) is because N deter-

mines S, and (c) follows from (7.31). Thus, H(Y S) = log M(X)I as desired. E

Finite homomorphic channels need not be symmetric in general. Nonetheless,

the lemma says that the output entropy is maximized by uniform input distribution.

The essence of the proof lies in the property that the effective channel Pylxs (-., S)

conditioned on the maximum common function S of Y and N is strongly symmetric [8].
5Indeed, S is the maximum common function defined in [22]. It is the common function of Y and

N with maximum entropy.
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In particular, for all x E X, y c S,

PYlXS(y x, S) = PY1XS(y + M(x' - x)|x', S)

= PYlxS(y'|x + 2(y' - y), S)

VX' E X

Vy' E S

where t2(y'- y) denotes a particular solution A E X to y'- y = M(A). Thus, uniform

input leads to uniform output, which maximizes H(Y|S = S), the only component of

H(Y) that depends on Px. We can now prove Theorem 7.8 using this special structure

of finite homomorphic channels.

PROOF (THEOREM 7.8) ca(A, Pxv) can be expressed as follows by (A.17c).

a(A, Pxv) = E
BDs

AB [H(YBcIXBC) - H(YD XD)1 +
Bos

AB [H(YBc lXBc) - H(YvlXv)]

Using the result from Lemma 7.1, it is straightforward to show that the secrecy

capacity claimed in the theorem is obtained from minCAAID c(A, Pxv) with uniform

PxV. By Theorem 7.3, it suffices to show that uniform Pxv maximizes a (A, Pxv).

We can ignore the last entropy term H(YvlXy) since it is independent of Pxy.

More precisely,

H(Yv lXV) = H(Yv - MV(XV, 0)|Xv) = H(MV(0, No) + Nv)

by (7.22), (7.24) and (7.26).

Given XBC = XBc E XBc, we have from (7.22) that

YBc = MBc(XB, XBc) + MBc(0, NO) + NBC

= MBc (XB, ) + N

with N :=MBc(0, XBC) + MBc(0, No) + NBC. This is a simple homomorphic finite

channel, and so by Lemma 7.1,

H(YBc IXBc = XBc) < log|MBc (XB, 0) + H(SB)
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with equality if Px, is uniform. Thus, uniform Px, achieves the maximum

H(YB IXBc) =1 og|MBc (XB, 0) + H(SB)

The remaining term ( in a (A, Pxv) can be bounded as follows.

0= H(YBc\D XBeYD) - I(YD A XBc\D XD) < H(YCoXBcYD) with C:= Bc \ D

with equality if Px, is uniform by (7.27). It remains to show that uniform Px,

maximizes H(YClXBCYD) where B E 'RAID: s E B and C:= BC \ D.

Indeed, we need only consider the special case without No. More precisely, let

(Xi, No) if i = s
Xi =

Xj otherwise

Then, we have Y2 = M,(Xi) + Ni for some homomorphism Mi by (7.22) and (7.24).

Furthermore,

I(YD A XDc\{s} XD) I(YD A XDc\{s} XD)

which equals 0 by (7.27) if P5,, is uniform (which happens iff Px, is uniform by

(7.23)). Since s ( Bc, we have

H(YclXBcYD)= H(YlXBc, YD)

If uniform Px, maximizes H(YClXB'cYD), uniform Px, also maximizes H(YC XBC, YD).

We can therefore focus on the case without No, i.e.

Yj = Mi(Xv) + Ni Vi E V (7.32)

We now simplify the condition on YD as a condition on XB. Let

- riD(YD) be the value of ND given YD = YD E YD by (7.25),

- SX,(XBc,YD) XB E XB : PYDIXV(YD XV) > 0},
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- SxBcYD (XBC, YD) E XBc X YD : SXB (XBC, YD) $ 0}, and

- zB(XBc, YD) be a particular solution XB E XB to YD MD (xV) + riD(YD) for

(XBc, yD) E SXBcYD.

It follows from (7.32) that

SXB (XBc, YD) =B(XBc, YD) + Null(MD(-, 0))

Furthermore, for (XBc, YD) C SXBcYD,

(a)
H (Yc IXBc= XBC, YD = YD) = H (Yc IXBC XBc, Y =LYD, N D = lD (YD))

=H(YlXBc = XBc, XB E SXB (XBC, YD), ND D (YD))

= H(YC IXBc = XBc, XB E SxB (XBc, YD))

(a) YD YD implies ND = iD(YD)-

(b) Conditioned on (XBc, ND) (XBc, mD(YD)), we have YD = YD iff XB E SXB (XBc, YD)-

(c) (Yo, Xv, Nc) is independent of ND by (7.26).6

It suffices now to show that uniform Px, maximizes H(YC|XBc = XBc, XB E SXB (XBC, YD))

to a constant independent of (XBc, YD) E SXBcYD -

Conditioned on XBC = XBc and XB E SXB(XBc, yD),

Yc = MC(XB, XBc) + Nc = MB(X, 0) + N where

X := XB - XB(XBc, YD)

N := MC(-5B(XB, YD), XBc) + Nc

The condition XB E SXB(XBc, YD) implies X E Null(MD(., 0)). Viewing X and Yo as

an input and output to a simple finite homomorphic channel, we have by Lemma 7.1

that uniform Px, attains the maximum

H(YCIXBC XBc, XB E SxB (XBc, YD)) = log |MB(Null(MB(-, 0)),0)| + H(S)

for some S where H(S) depends only on PNc but not (XBc, LD) as desired. 0
6More precisely, s V C and so (Xv, Nc) is independent of ND. Yc is a function of Xv and No.
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7.3 Suboptimality of source emulation

In this section, we study how source emulation approach can be strictly suboptimal.

In particular, we will construct as follows an example where one can achieve a key

rate strictly larger than the secrecy lower bound in Theorem 6.3.

1. First, we construct a simple DMMC for two active terminals, called the con-

sensus channel, such that the secrecy upper bound is strictly larger than the

secrecy lower bound by source emulation.

2. Then, we construct a DMMS from the optimal input distribution that gives the

secrecy upper bound.

3. Finally, we combine the DMMC and the DMMS as simultaneous independent

components of a composite DMMC, called the augmented consensus channel.

We will show that the secrecy lower bound of the composite channel is strictly smaller

than the upper bound, but one can achieve the secrecy upper bound by having the

active terminal directly feed its last observation from the component DMMS to the

input of the component DMMC. The source emulation approach is strictly suboptimal

because it cannot provide the optimal correlation between the channel input symbols

that are readily available from the component DMMC.

Consensus channel:

Consider two active terminals Ti and T2 . i.e. A = [2] = D = V. The DMMC is a

binary consensus channel defined as follows:

terminal 1 2

input X1 E {O, 1} X2 E {, 1}

output Y E {0, 1} Y

The output bit Y is defined as

X1 if X1 = X2 (7.33)

N otherwise
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where N is a uniformly random bit independent of the channel input bits X1 and X2.

We can think of the channel as a way to reach consensus Y by a random coin flip if

the terminals do not provide identical input bits. More practically, we can think of

Y as a noisy observation that depends on the inputs iff they adds coherently.

By definition (A.8), we have 'HAID = {{1}, {2}}. There is only one possible frac-

tional partition A in AAID, namely the one with A{1 } = A{2} = 1. All the minimization

over fractional partitions in the secrecy bounds become trivial. Furthermore, the

secrecy lower bounds by pure and mixed source emulations are the same.

From the computations in Section C.2, the secrecy lower bound Cse by source

emulation is strictly smaller than the secrecy upper bound Cs,,.

Cse 1.12 < Cs2 d 1.17

Using this, we will prove that private input adaptation strictly outperforms the mixed

source emulation (or any public input adaptation) for the DMMC below.

Augmented consensus channel:

Let Py,,Ix, be the consensus channel defined in (7.33) and PY2v be a DMMS with

PY21Y22(0, 0) PY21Y22(0, 1) 6 3
Pt2V PY2:Y= [ (1, 0) PY21Y22(1, 1)] [ 11

By the computation in Section C.2.2, PY2 v is the optimal input distribution that

gives the secrecy upper bound for the consensus channel. The augmented consensus

channel Pyixv is defined as

PYvIxv = PY1vIxvFY 2v

which corresponds to the simultaneous and independent use of the consensus channel

PyY ixV and the DMMS PY2v -
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By Theorem 6.3, the secrecy lower bound by source emulation is

Cse: min max 3(A, Pxv)
A EA[ 2]1 0 EXv Fx1 Px2

max -y(1, PxV)
Pxv =Px1 Px2

(b)
- max -(1, Pxv)Ip, + 0(1, PY2v)

Pxy-Px Px 2  1vIlXV

=Cse + 0(1,PY2 v) 1 2.04

(a) The minimization is trivial because there is only one possible fractional partition,

namely 1. Furthermore, 3 = y by Proposition A.4 since D 0 satisfies the

single-leakage condition (A.27).

(b) This is by the equality case of (A.30b) and the equalities that

= 13(1, PY2v)
PY2V

which follows from Proposition A.4 and the definition (A.19) of /.

(c) This is by definition of Cse in Section C.2.2.

By Theorem 6.1, the secrecy upper bound is

Csu := min maxa(1, Pxv)
AcA[ 21 0 Pxv

(a)
1max a1(1, Pxv)IP,Pxv 1v)xv

b Csu + /3(1, PY2 v) ~ 2.09

(a) The minimization is trivial because there is only one possible fractional partition.

(a) follows from the equivalence a = ai by Proposition A.4 due to the single-

leakage condition (-.' D = 0), the equality case of (A.30a), and the equalities

= (1,1)PY2v

which follows from Proposition A.4 and the definition (A.19) of /.

(b) This is by the definition of Csu in Section C.2.2 and a = ai by Proposition A.4.
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Since Cse < C,, we have Ose < Osa as desired. It remains to show that Osu is

achievable by some other scheme. Consider setting the input Xit from terminal i E V

at time t E [n] to the previous observation Y 2i(tl) from the DMMS at time t - 1. i.e.

Xi <-- Y2i(t 1 ) for all i = 1,2

Asymptotically, it is equivalent to having a DMMS Yv = Y[2]V with PY2vlY1v = PY2 vIx.

It is straightforward to show that Cu is the key rate achievable by Theorem 6.4.Hence,

the private input adaptation scheme is strictly better than the source emulation ap-

proach. The secrecy lower bound in Theorem 6.3 is loose.

Conjecture:

We conjecture that the secrecy upper bound in Theorem 6.1 is loose for a variant of

the consensus channel, called the public consensus channel, where the channel output

is publicly observable. More precisely, we have

A = [2] = Dc CV = [3]

terminal 1 2 3

input Xi CE{O, 1} X2 E {, 1}
output YE {O, 1}

The dummy untrusted terminal 3 observes Y defined in (7.33). This is equivalent

to revealing Y in public, since doing so does not lose optimality. It can be shown

that the secrecy lower bound by source emulation and the upper bound are Cse - 1
and Csu - 1 respectively, with Cse and Cu defined in Section C.2 for the original

consensus channel. It follows that the secrecy bounds do not match. However, with

Y already revealed in public, it does not seem plausible to increase the key rate by

any private input adaptation approach. Thus, we conjecture that the secrecy upper

bound is loose, and the stronger statement that the secrecy lower bound is the secrecy

capacity.
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Chapter 8

Conclusion

Consider the secret agreement game in Section 1.1. The maximum amount of secret

the users can generate corresponds to the secrecy capacity for the secret key agreement

problem. We can now think in mathematical terms that the secrecy capacity is the

mutual dependence of the users, and intuitively the maximum amount of consensus

that needs not be publicly discussed.

Under a special source model when the dependence structure is linear, or can be

modeled by a dependency hypergraph, the secrecy capacity can be interpreted as

network information flow or partition connectivity. There is also a systematic and

practical way to generate the secret by network coding.

When the users are given time to discuss privately, they are indeed given a private

channel to generate secret. We now know that a mixed strategy in choosing the

channel inputs can strictly outperform a pure strategy in some scenario. While such

cooperation scheme is unnecessary for many classes of channels, it may not be enough

for others. In some cases, the users should consider adapting their channel input to

previous private observations.

Through this work, we are beginning to capture the fundamentals of information

in the multiuser setting. Its intimate connection with combinatorics such as graph

theory and matroid theory allows us to discover new identities and generalizations

in those areas. Although the focus here is in the secrecy framework, we attempt to

develop general techniques or insights that may potentially drive new applications.
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Appendix A

Information Theory

In this section, we introduce the mathematical tools for deriving the upper and lower

bounds on the secrecy capacities in Chapter 6. Section A. 1 defines the basic measures

of randomness when dealing with a mixture of continuous and discrete random vari-

ables. Section A.2 is a brief summary of the Shearer-type lemma useful for deriving

the secrecy upper bounds. Section A.3 applies the von Neumann's minimax theorem

[35, 53] and Eggleston-Carath6odory theorem [19] for the construction of the achiev-

ing scheme that gives the secrecy lower bounds. Finally, in Section A.4, we define the

expressions that characterize the secrecy upper and lower bounds, and derive some

useful properties for studying the tightness of the bounds in Chapter 7.

A.1 Information measures

In addition to the basic definitions for entropy, mutual information and divergence,

we will point out certain caveats and technicalities needed when handling a mixture

of discrete and continuous random variables, since the model in Chapter 5 consists

of both discrete and continuous random variables. For example, the randomizations

are continuous-valued while the public messages and secret keys are finitely-valued.

To measure the randomness of purely discrete random variables, we have the
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classical definition of entropy by Shannon [52],

H(X) := E log l = Px(X) log 1
X~Px _ Px(X) xX Px(x)

where Px is the probability mass function of X. For continuous random variable

Y E R with probability measure absolutely continuous with respect to the Lebesgue

measurel, differential entropy is used, i.e.

F 1 if1
H(Y) :=E log I I)=J Py(y) log dy

I Py(Y). Py(y)

For a mixed-pair Z := (X, Y) of discrete and continuous random variables X and

respectively Y, a natural "combination" of the above entropy measures is

H(Z) := E log 1 Pxy(x, y) log dy
S Pxy(X,Y) I X a Px,y(X, y)

where Px,y(x, y) is the probability density function of Pr(X = x, Y ; y) in y. The

classical entropy measures can be considered as special cases.

This is considered formally by Nair et al. [45], where the above definition is also

extended in the same way to the multivariate case as follows. 2

Entropy:

Consider a random vector Z = (Zi : i E [f + 1]) where f E P is a positive integer,

Zf+l is a discrete random variable with possibly unbounded support Zj+ 1 and Zj's

for i E [f] are real-valued continuous random variables with absolutely continuous

probability measure. Let

Pz(z[i+i) = Pz,+l(zf+1)Pz] Iz+ i(z[ | zi+ 1)

for all z[ +1] E Rf x Zf+1 , where Pz, 1 is the probability mass function for Zf+1 and

'Absolute continuity is the technical condition needed in the fundamental theorem of calculus
for the Lebesgue integral [32].

2For generality, [45] shows that the definition also applies to mixed random variables [47], which
is discrete-valued with a probability strictly within (0, 1).

166



Pziz,+1(-|ze+1) is the conditional probability density function for Z[] given Z+ 1 =

z +1 . The entropy is defined as

H(Z) E log
1 Pz(Z)-

(Entropy) (A.1)
Pz(z[+1]) logP 1 dz

zj+1EZ+ 1

The conditional entropy is defined in the usual way,

H(Z|U) = E [-log Pzlu(ZIU)] (Conditional entropy)

For the entropy to be well-defined, the following constraint is imposed [45],

zf+lEZf+l

Pz(z[j+1]) log Pz(z[+1])1 dz ] < o0 (A.2)

We require further that the above holds also for Riemann integral [32], which is a

technicality needed for Lemma 6.1.

The usual properties of the classical entropy measures follow immediately from

these definitions. For X, Y and Z that are mixtures of discrete and continuous random

variables, we have the chain rule expansion

H(XY) = H(X) + H(Y X) = H(Y) + H(XIY) (A.3)

and the fact that successive conditioning reduces entropy (or equivalently positivity

of mutual information),

I(X A YlZ) H(XIZ) - H(X|YZ)

=H(YlZ) - H(YlXZ) > 0
(MX\utual information)

with equality iff X and Y are conditionally independent given Z. For discrete random
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variable X, we have the additional positivity property that

H(X|Y) > 0 (A.5)

with equality iff Y, which may be continuous-valued, completely determines X. This

entropy is also preserved under bijection. For general mixed-pair that has a continuous

component, the entropy need not be positive, just like the differential entropy, nor

does it have to be preserved under bijection. In particular, it is not invariant under

scaling of the random variable. 3

The information divergence between two distributions Pz and Pj is defined as

D(Pz |Pz) : E log P (Divergence) (A.6)
Z~P P (Z)

where the expectation is taken over Z distributed as Pz (not Ps). D(p||q) satisfies the

usiial positivity and convexity in (p, q) by Jensen's inequality [8].

We also consider the following generalization D(f 1g) of the divergence operation

to non-negative but not necessarily stochastic functions f, g : R x Zf+1 - R+ on the

mixture of discrete set Zt+ 1 and finite-dimensional Euclidean space Re.

D(f 11g) :=f (z[e+1]) log f(z dz[] (A.7)
zgz 1 g(z ) +1])

D(f |g) is also convex in (f, g) by the log-sum inequality [8] but may not be positive.

A.2 Shearer-type lemma

In this section, we introduce a set of inequalities, collectively referred to as Shearer-

type lemma, from [38] and [13] that is useful in deriving the secrecy upper bounds in

Section 6.1. They require the following notion of fractional partitions from fractional

graph theory [49].

3It is possible, however, to add a factor involving an invariant measure as in [31] to ensure scale
invariance for the case of continuous random variable.
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Fractional partition:

For finite sets A, D and V satisfying

ACDCV: JAI 2

where Dc := V \ D denotes the complement w.r.t. V, we define the following set

system/hypergraph with no multiple edges,

RAID:= {B C Dc: B # 0 and B; 2A} (A.8)

Each element in RAID is called a hyperedge, which is just a subset of the vertices in

DC. The corresponding set of all fractional (edge) partitions is defined as

AAID:= A (AB: B E AID) :AB 0 and EvAB = 1 Vi E Dc (A.9)
B~i

where EBi is a shorthand notation for .BGHA1DiEB* This is illustrated in Figure A-

1. The name fractional partition comes from the constraint that every vertex in D'

is covered by its incident edges to a total weight of one. Any vertices in D, such as

vertex 4 in Figure A-1, are not covered at all.

We say that a fractional partition is basic if it is not a convex combination of

other fractional partitions. For instance, the fractional partitions in Figure A-1(a),

A-1(b) and A-1(c) are basic but the one in A-1(d) is not. It is straightforward to show

that AAID is a convex set, and in particular, the convex hull of the basic fractional

partitions.

In the derivation of the secrecy upper bound, we use the following specialized

versions of the Shearer-type lemma.

Lemma A.1 (Shearer-type lemma for entropy functions) Consider any frac-

tional partition A E AA|D defined in (A.9) over the hypergraph HAID. For any random

vector Zy that is a mixture of discrete and continuous random variables, we have the
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(a) A(1) =A(' 1
{1 {2,31} (b) A(2) = ,3} =1 (c) A (3 = A 3 3

Figure A-1: Fractional partitions of RAID where A = [2], D = {4} and V = [4],
i.e. RAID = {{1},{2},{3},{1,3},{2,3}}. A(k) for k E [3] defined in (a), (b) and (c)
respectively are all the basic fractional partitions of NAID- (d) is a non-basic fractional
partition with weight 1 over the hyperedges in RAID \ {3}.

weak form of the Shearer-type lower bound that

H(XDc|XD)
BE'NAID

ABH(XBIXBc)

With the conditional independence constraint that PXIXD c|X :iDc PXi|XD, we

have the equality case of the Shearer-type lemma that

H(XDcIXD) = ABH(XBIXBc) (equality) (A.10b)
B

For discrete random variable F[,] that satisfies the casual relation that

Fj := F (XD,7 Xj , Fty_11)

for some i3 G V and all j E [r], we have the Shearer-type lower bound

H(F[,]XD) > 5ABH(F[,]XBc) (causal) (A.10c)
B
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PROOF By the chain rule (A.3) and the constraint (A.9) on fractional partitions that

EBEi AB = 1 for all i E DC, we have

H(XDc lXD)
iGDC Bi

S B 1 H(XilX[il]XD)
BEHRA|D iEB

(a)
(a E AB H(XIlX[ilmBXBc)

BC7'HAID iGB

=I ABH(XBXBCr)
B

where (a) is due to the fact that conditioning reduces entropy (A.4) since BC ;Q D.

This proves the weak form (A.10a). The equality case (A.10b) follows from the fact

that (a) is satisfied with equality if X 's are conditionally independent given XD-

To prove the case with the causal relation, we again apply the expansion by chain

rule and fractional partitioning as follows.

jE[r] B i

B E'H A|D

S/NB
B

(b)5
B

B

AB ) H(Fj|F[j_1]XD)

E
jE[r]:ij EB

E
jE[r]:ijEB

H(Fj|FDl1]XBc)

AB 5 H(Fj I FD-1]XBC)
jE[r]

ABH(F[r] IXBc)

where (a) again follows from the fact that conditional reduces entropy (A.4), and

(b) follows from consequence (A.5) of the given causal relation that ij E BC implies

H(Fj|Ftj_11XBc) = 0. This proves the causal case (A.10c). 0

171

H(F[r] lXD) =

H(Fj FD-1]XD)

AB )H(XilIXci_13XD)



A.3 Minimax-type lemma and support lemma

The secrecy upper and lower bounds are both expressed in terms of some minimax

optimization problems. This type of problems naturally arises in game theory in the

study of two-person zero-sum games [56], where one player maximizes and the other

minimizes some real-valued function of their actions. The important notion of mixed

strategy in such problem indeed apply to the secrecy problem here. In particular, we

describe a mixed strategy for the secrecy scheme in Section 6.2, the secret key rate

of which can be characterized with the help of the following minimax-type lemma

derived from von Neumann's minimax theorem [35, 53]. The proofs will be given at

the end of this section.

Lemma A.2 (Minimax-type lemma) For any function f : A x S H-* R such that

f (A, s) is quasi-convex /53] and continuous in A over a compact convex set A, we have

lim sup min EQ [f (A, g(Q))] = min sup f (A, s) (A.11)
IQI oog:QS, AEA AcA seS

PQ E ,(Q)

as long as the R.H.S. is finite.

In the language of a two-person zero-sum game, f(A, s) is the payoff for Player 1

and the cost for Player 2 when they play s and A respectively. The expectation on

the L.H.S. of (A.11) is the guaranteed payoff when Player 1 plays a mixed strategy

of choosing g(q) E S with probability PQ(q), followed by Player 2 playing the best

response A C A to Player l's strategy. We consider the specific case of interest where

f is equal to a (A.17) or ) (A.18) to be defined in the next section, A =A AID (A.9)

and S is the set of valid input distributions Px,.

The R.H.S. of (A.11) gives us a simpler expression to work with than the L.H.S..

It is still important, however, to solve the L.H.S. of (A.11) directly for the optimal

mixed strategy, i.e. the optimal choice of PQ and g. This can be greatly facilitated

by the following cardinality bound on Q derived from the Eggleston-Caratheodory

theorem [19], as it avoids the complexity of taking the limit as IQ oo
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Lemma A.3 (Support lemma) Consider the function f : AAJD x S - R such that

f (A, s) is linear and continuous in A. Let NA be the number of connected components

of { f(A, s) : s c S}. Then, it is admissible to impose the following constraint on the

L.H.S. of (A.11) without diminishing the optimal value.

\Q| 1 if NX < 1 for all A, and (A.12a)

|Q\ < 1 + 1 otherwise. (A.12b)

where 1 := 2 |v|-|D| - 2 1v|-|DI-A| - V|+ |D is the dimension of AAID plus one. a

For example, if f = and the channel input has the finite-alphabet constraint,

then

{)(A, P H iCDc PO E (XD), Pi E /(Xi), i E D

has only one connected component, i.e. NA = 1, because the map (A, -) is continuous

[11, Lemma 2.7] on a connected compact set for every A E AAID. In this case, (A.12a)

is admissible. If the channel input is infinitely-valued, we may use the slightly larger

bound (A.12b) instead.

PROOF (PROOF OF LEMMA A.2) Consider proving < for (A.11). Indeed, this holds

more generally for any f (A, s) that needs not be continuous nor convex in A as follows.

(a) (b)
supminE[f(Ag(Q))1 < min sup E [f (A, g(Q)) min sup f (A, s)
g,PQ A A g,PQ A sGS

where

(a) because (g, PQ) can be chosen as a function of A on the right but not left.

(b) It is optimal to have g(Q) deterministic since maxqlQ f(A, g(q)) ;> E [f(A, g(Q))].

We now use the convexity and continuity assumption to prove the reverse inequal-

ity. First, we can assume without loss of generality that f(A, s) is finite for all A and

s. If not, we can simply clip the value of f to the finite value on the R.H.S. of (A.11).

Doing so neither increases the value on the L.H.S. nor decreases the value on the

R.H.S.. Fix 6 > 0 arbitrarily small. For A E A, let
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sx E S be a response to A that satisfies

sup f(A, s) - f(A, sA) < 6
sES

fA - R be the continuous function

fx(A') = f(A', sa) for all A' E A

I, C R be the open interval

sup f (A, s) - 6,
sS

sup f(A, s) +
sCS

Since fx is continuous and I\ is open, f -(IA) is open. By (A.13a) and (A.13b),

sup f(A, s) - 6 < fx(A) < sup f(A, s)
s S

which implies that

A E f; (IA)

Thus, {f-- 1(IA) : A E A} is an open cover of A.

finite subcover

{fq-1(Iq) :q Q} with

for some finite set Q C A. Let

qx E Q be a quantization of A such that

A E f 1(Iq )

g* : Q h-> S be the function

g*(q) = Sq for all q E Q
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(A.13b)

(A.13c)

(A.14)

Since A is compact, there exists a

U fq 1(Iq)= A
qGQ

(A.15a)

(A.15b)



By (A.14) and (A.15a), q, and A are both in fgj(Iq,), which implies under (A.13a)

and (A.15b) that

|f(q\, g*(q\)) - f(A, g*(q\))| < 26 for all A E A, and so (A.16)

(a)
sup min E [f (A, g(Q))] sup min max E [f (A, g(Q))]
g,PQ g A PQ

(b)
> min f (A, g*(q\))

A

(c)
> min f (q,, g*(qA)) - 26

A

= min f (q, g*(q)) - 26
qEQ

(d)
> min f(A, s)) - 26

AEA

(e)
> min sup f (A, s) - 36

sA SS

(a) by the Minimax Theorem [53, Theorem 3.41 because the expectation is linear in

PQ and quasi-convex in A over compact convex sets (Q) and A respectively.

(b) by the specific choice of g = g* and Q = qA with probability 1.

(c) by (A.16).

(d) because Q C A.

(e) by (A.13a).

Taking the limit as IQ -*oo gives the result since 6 can be made arbitrarily small.

PROOF (PROOF OF LEMMA A.3) Let be. Since f(A, s) is linear in A, it can be

written in the matrix form

f(A, s) = bTA with A>O and MA=1

where b, is some column vector independent of A, A is the column-vector form of

A, and M is the incidence matrix of the hypergraph 7 A|D. The entry of M at row

i E Dc and column B E 7 AID is MiB := 1B(i). Note that M is an (IV| -| DI)-by-

INAIDI matrix with full row rank since the columns corresponding to the singleton
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edges {i} for i E DC are linearly independent. Thus, solving the above linear equation

gives the following solution space in AAID,

A=5+Nc=[N -K1

A is a particular solution defined as AB := 1{|BI = 1} for BC AID-

N is a |IAID -by-(l-1) matrix, whose columns form the kernel of M, where

1 := ,2|V|-|DI - 21V-IDI-|AI - 1 V| + |D| + 1

PNAID1

c is restricted to the following set to ensure positivity of A

C := {c E R1  : A + Nc > 0}

Thus, for every (A, s), we can write

f(A, s) = b TN ] for some c E C

Then, by the linearity of expectation,

(b) ~ -T
sup min E [f (A, g(Q))] sup min E b [)
g,PQ A g,PQ C-C

Note that @ is a convex cover of the set X := {b : s C S} C R1. By the Eggleston-

Carath6odory theorem [19, p.35], every point in the convex cover is a convex com-

bination of at most I + 1 points in X, and at most 1 points if in addition that X

has at most I components. It follows that restricting |Q| to 1 + 1 and 1 points in the

respective cases does not change the space of possible values for @, and so the overall

optimization gives the same value as desired.4

4 This also relies on the observation that c can be chosen as a function of & instead of (g, PQ)
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A.4 Secrecy expressions

In this section, we derive some important properties of the expressions that charac-

terize the secrecy upper and lower bounds in Chapter 6.

For A E AAID (A.9), distribution Pxy, and DMMC PylixV, we define the following

secrecy expression that characterizes the secrecy upper bound.

a (A, Pxy) = a(A, Px,)Ipy1

H(XDcyDclXDYD) - E ABH(XBYB XBcYBc)
BE'H(AID (A. 17a)

- H(XDclXD) + ABH(XBlXBc)
BERAID

= ABH(YBc XBc) - H(YD XD) - (SB AB - 1) H(YvlXV) (A.17b)
B

= AB [H(YBcjXBc) - H(YDIXD)1 ±5 B [H(YBc lXBc) - H(YvlXv)] (A.17c)
Bai Boi

where i E D' for (A.17c). We provide different forms (A.17a), (A.17b) and (A.17c)

for the same expression because some properties are easier to see in one form than

the other. The equivalence will be proved in a bit.

For the secrecy lower bound, we define

O(A, Pxv) =(A, Px)
V Yv XV

H(XDcYDcIXDYD) - ABH(XBYB XByBC) (A. 18)
B

When given a DMMS Pxv instead of the DMMC Pyvixv, the secrecy lower bound

can be characterized using the following expression,

3(A, Pxv) := H(XDc IXD) - 5ABH(XBXBc) (A. 19)
B

To account for the sample average constraint (5.3) in the input, we define for any

without loss of optimality.
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trusted terminal i C Dc the expression

ai(A, Pxv) = a2 (A, Pxv)

:= H(XDcyDc XDYD)

- H(XDclXDYD) +

-E
B

ABH(XBYB XBcyBc)

(A.20a)

Y ABH(XB IXBc [YD 1B(i)
B

= ABH(YB|XBc) - EABH(YD XBc) - (B AB
B i

= ABH(YBc\D XBcYD) +
Bai

- 1) H(YvlXV)

where [YDIB(i) equals YD if i C B and 0 otherwise.

To derive the tightness conditions under which the secrecy lower bound meets the

upper bound, we define the expression

7(A, Pxv) =(A, Px)Ip

H(XDYDc XDYD) -
B

- H(XDcIXDYD) ±
B

= 5 ABH(YBc\D XBcYD)
B

ABH(XBYB XBcYBc)

ABH(XBlXBcYD)

- (SB AB - 1) H(YDc XVYD)

ABH(YBc\D XBcYD) + 1:AB

Boi

LH(YBc IXBc) - H(Yv|XV) - I(YD A XB XBc)]

(A.21c)

where i E Dc for (A.21c).

Proposition .A.1 (Equivalence) The different forms (A.17a), (A.17b) and (A.17c)

for a are equal, and similarly for a and 'y in (A.20) and (A.21) respectively. o

178

AB [H(YBc lXBc) - H(Yv lXv)]

(A.20b)

(A.20c)

= I:
BDi

(A.21a)
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PROOF (A.17b) can be obtained from (A.17a) using the identity

H(XYB BXBcYBc) - H(XB XBC)

= H(XvYv) - H(XBCYBc) - H(Xv) + H(XBC)

= H(YV X) - H(YBc XBC) (A.22)

and the same identity with B replaced by Dc

H(XDcYDc IXDYD) - H(XDc IXD) = H(YVXv) - H(YD IXD)

Similarly, (A.20b) and (A.21b) can be obtained from (A.20a) and (A.21a) respectively

with the additional identity that

H(XBY BIXBCYBC) - H(XBlXBCYD)

= H(XvYv) - H(XB BRc) - H(XVYD) + H(XBcYD)

= H(YDC IXVYD) - H(YBc\DIXBCYD) (A.23)

and the same identity with B replaced by Dc

H(XDCYDc IXDYD) - H(XDc IXDYD) = H(YDc IXVYD)

Indeed, (A.23) is the same as (A.22) with the additional conditioning on YD.

(A.17b), (A.20b) and (A.21b) can be obtained from (A.17c), (A.20c) and (A.21c)

respectively using the constraint (A.9) for fractional partitions that EBi AB 1.

Alternatively, using

SARB - 1 AB
B Bi

we can derive the equivalence in the other direction.

All the secrecy expressions a, 0, #, a and -y are linear in their first argument

A E AAID, 5 and the marginal PXD of their second argument Px,. In addition, a

5Functions that are affine in A c AAID are also linear in A because any constant term can be
written as a linear function of A by the constraint (A.9) that EBsi AB = 1.
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and y are both concave in the input distribution, while #3 and ) are non-negative by

(A.10a) of the Shearer-type lemma.

Proposition A.2 (Concavity) ai(A, Pxv) and -y(A, Pxv) are concave in Px, for all

A c AAJD-

This implies the following (quasi)-concavity that will be useful in deriving the

secrecy upper bound under the sample average constraint (5.3).

Corollary A.1 miniGDC ai(A, Pxv) is concave (and therefore quasi-concave) in Pxv

for all A G AA|D-

PROOF The corollary follows from the concavity of a and the fact that the minimum

of concave functions is concave.

To prove Proposition A.2, consider each entropy term in (A.20c) and (A.21b).

H(YVXy) and H(YDc XVYD) are both linear in Pxv. The other terms can be ex-

pressed in terms of the generalized divergence in (A.7) as follows.6

H(YBc lXBc) = -D(PXBCYBC PxBc)

H(YBc\DXBcYD) --D(PXBCYBc||PXBCYD)

The entropy terms are concave in Pxv because

- D(f |g) is convex in the pair (f, g) by the log-sum inequality [8], and

- the arguments PXBCYBC, PXBc and PxBcy, are all linear in Pxv with Pyvixv fixed.

Thus, a and -y have the desired concavity since they are positively weighted sums of

concave functions.

Problem:

Is a(A, Pxv) quasi-concave in the input distribution Pxv? An affirmative answer

would strictly improve the secrecy upper bound with sample average constraint in

Theorem 6.2.

6The definition of D(f |g) in (A.7) requires f and g to share the same domain. To do so, we
have implicitly used the trivial extension Pz1 (z1 , z2 )= Pzi (zi) for all z 2. Since this extension is not
stochastic, we use the generalized divergence instead of (A.6).
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The following identities relate the different secrecy expressions.

Proposition A.3 For any A E AAID and PX, E 9(X),

a(A, Pxv) = )(A, Pxv) - 1 (A, Pxv)

=a2 (A, Pxv) --
B3i

ABI(YD A XBC\D IXD)

-y(A, Pxv) = /(A, Pxv) - EYD [(A PxVIyD(-IYD))]

= ae(A, Pxv) -- ABI (YD A XB XBc)
Byi

PROOF (A.24a) follows immediately from (A.17b), (A.18) and (A.19).

(A.24a)

(A.24b)

(A.25a)

(A.25b)

Similarly,

(A.25a) follows from (A.21b), (A.18) and (A.19). (A.24b) follows from (A.17c) and

(A.20c) since

H(YBc\D XBCYD) - [H(YBc IXBc) - H(YDIXD) I(YD A XBc\DIXD)

Similarly, (A.25b) follows from (A.21c) and (A.20c).

From these identities, we can derive sufficient conditions under which the secrecy

expressions are equivalent, implying that the secrecy bounds are tight. In particular,

we consider the following conditions on the channel input distribution Px, and the

channel statistics Pyixv.

Conditional independence condition:

The input distribution Pxv satisfies

PxV = PXD (A.26)II PXilX
iEDc

i.e. Xi's are independent over i E DC given XD-
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Single-leakage condition:

The channel Pyyix, satisfies the single-leakage condition that

-3s c Dc, PYDIXV PYDIXDU{s} (A.27)

which is independent of the input distribution Pxv. Roughly speaking, the channel

output symbols YD of the untrusted terminals are affected by the input symbol X, of

at most one trusted terminal (hence the name single-leakage) and the input symbols

XD of any untrusted terminals. In particular, this is satisfied if D 0 or |YD < 1.

These conditions give the following equivalence relations.

Proposition A.4 (Conditions for equivalence) Consider the following equalities

for all A G AA|D and s E DC that

13(A, Pxv) = c(A, Pxv) ces(A, Pxv) = -(A, Pxv) (A.28)

The conditional independence condition (A.26) on the input distribution implies (a),

while the single-leakage condition (A.27) on the channel statistics implies (b). (c)

holds if |YD| < 1 or if both conditions (A.26) and (A.27) hold.

PROOF To show (a), consider the identity (A.24a). By the conditional independence

condition (A.26) on the channel input Xv, we have 3(A, Pxv) = 0 by the equality

case (A.10b) of the Shearer-type lemma.

To show (b), consider the identity (A.25b). By the single-leakage condition (A.27)

on the channel, we have

0 = I(YD A XDc\{s}XDU{s}) I(YD A XBX Bc) for all B E AID B s

where the last inequality is because BC D D U {s}. This implies (b).

To show (c), consider the identity (A.24b). The case when |YD < 1 is trivial.

Consider the other case where both (A.26) and (A.27) hold. We have for all B E HAID
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such that B -) s that

I(YD A XBc\D XD) I(XSYD A XDC\{s} XD)

= I(X. A XDc\{s} XD) +I(YD A XDc\{s} XDU{s})

(i iOio

where (i) and (ii) follow directly from (A.26) and (A.27) respectively.7 This gives the

desired equality (c).

Suppose the DMMC consists of a set of f simultaneous8 independent channels

defined below.

Simultaneous independent channels:

(A.29)=YIX II PYpji,
jEL

where L := [f] for some positive integer f.

Then, a and -y satisfy the following maximality of independent input distribution,

which is useful in studying the optimality of the secrecy bounds in Chapter 7.

Proposition A.5 (Maximality of independent input) Given Pyix, consists of

a set {fPyjlxjv : j E L} of simultaneous independent channels (A.29), we have

a(,PxLV lPyVX x E iA P-Y YjvlXjv
j(-L

(A.30a)

(A.30b)

with equality if Xjv's are independent over j E L.

'Alternatively, one can show (c) using the identity (A.25a) and the fact that Xi's for i E D' are
conditionally independent given (XD, YD), which follows from both (A.26) and (A.27).

8Simultaneity means no one can observe any channel output symbol until all input symbols are
specified.
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PROOF We will bound each entropy term in (A.20c) and (A.21b) as follows.

H(Yv Xv) = H(YLV XLV) H(Yjv |XLVY[j-1]v)
jE L

- E H(Yjv Xjy)
jCL

where (a) is by the chain rule (A.3) and (b) is by the assumption (A.29) of simultaneity

and independence of the component channels. Similarly,

H(YDc XVYD) = H(YLDc IXLVYLD) E H(YjDe XLVYLDY[j-1]V)

) H(YjDc XjVYjD)

jCL

where (a) and (b) follow from the same reasoning as before. The remaining entropy

terms can be bounded using (A.4) as follows.

H(YBC\DXBcYD)= H(YLBC\D XLBCYLD) H(YjBC\D XLBCYLDY[j-1]BC\D)
jCL

< H(YjBc\DIXjBcYjD)

jEL

H(YBlXBc) = H(YLBc lXLBc) = H(YBc XLBCY[j-1I]Bc)
jEL

< E H(YjBc XjBC)
jEL

Substituting these inequalities into (A.20c) and (A.21b) gives (A.30a) and (A.30b).m

A.5 Proof of duality with source coding

In this section, we detail the proof of the duality in Theorem 2.3 between secret

key agreement and maximum common randomness under public discussion rate con-

straint. The proof relies on the following error exponent from [11] for the source

coding problem and a straight-forward extension of Lemma B.2 in [12].
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Proposition A.6 (Source coding exponent) Given that terminal i G A observes

n samples of the finitely-valued DMS Zi, there exists a decoder #i : F x Z -* for

every i G A \ {1} satisfying the following error bound in expectation when the code

0 : Z' F"-* F is uniformly randomly chosen.

Pr{i E A \ {1}, Z" # #i(0(Z"), Zn)}
s | l~ + 1)3|zal2-n((-!log|FJ-maxiE A\1;H(Z1|Zi)
AI(n + 12 n (A. 31)

where : R R+ is some non-negative function that depends only on PZA but not

n, and satisfies ((A) > 0 for all A > 0. The randomness comes from both the source

Zv and the random code 0. E

This guarantees a deterministic choice of the source code (0, #A\{11) that attains

an exponentially decaying error probability

Pr{]i E A \ {1}, Z" / #5(0(Z"), Zn)} < 2 -"(A)(1 A)

with some rate - log|FI maxiEA\{11 H(Z1 | Zi) +A, provided that |ZAI grows slowly

enough in n.

PROOF Consider the minimum entropy decoder [11],

Oi(f,zi)=arg min H(zi,zi)
zie- 1(f)

where H(zi, zi) is the joint empirical entropy of the sequences (zi, zi). The error

probability is at most

5 Pziz,(zi, zi) Pr{0(zi) = 0(Q1)} (A.32)
iE A\1 zi,zi i E(zi,zi)

where E(zi, zi) is the set of erroneous decodings defined as

E(zi, zi) := {i E Zi" \ { zi} : H(i, zi) < H(zi, zi)}
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The decoder fails to recover the source z 1 only if the encoder fails to distinguish be-

tween z 1 and any sequence i - E(zi, zi). This happens with probability Pr{0(zi) =

O(i)} = |Fl"1 since 0 is uniformly random. In the language of the method of

types [11], The set Zi" x Z7 of sequences (zi, zi) are partitioned by type classes Tzl,z;

for different Pz,z; in the set 9'(Zi, Z) of possible joint types. From [11], we have

Z 1z.(zi, zi) = -n [D(PzIZ' IlPzlzi)+H(Z'Z')]

| n (Z1, Zi) | Tz'z'|
|E(zi, zi)|I <

|Tz |

|Tziz; I < 2nH(Zi'

|Tz;| ; 2 nH(Z') 1

Applying these inequalities to (A.32) gives the desired error upper bound (A.31) with

min
Pz/ z'/ E 9 (Z,Zj),i EA\{ 1}

max{D(Pz zI ||Pziz) + A, 0}

where Y(Z, Z) is the set of probability distributions over Z x Zi.

Lemma A.4 (Extension of [12, Lemma B.2])

ables L', Z' and F', and d > 0 such that

Pr PL' z, (L' Z')> I < e2

Given finitely-valued random vari-

for some 0 <
1

(A.33)

the probability that a uniformly random mapping 0 : L' H-4 K' fails to satisfy

EESkEK' I:0(l)=k
-' 1< 7e

63d

|K'| F'| L'| 21 T 3|K|F I

n.b. [12, Lemma B.2] is a special case when F is a function of L.
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PROOF Let S and S2 be the events defined as

> PZi(Z')
|F'|

'lZ') > ,Z'£2 := Pr

(A.36)

(A.37)PL'IZ' (L

Ei corresponds to the subset of realizations (f, z) e F' x Z' such that PF'Z' (f, z) >

6 Pz'(z). E2 corresponds to the subset of realizations z E

Ez
Z' such that

PZ' (z) E

It follows that the two events are typical as c - 0 in the sense that

Pr(E1) (

f EF',zEZ'

Pr(.E2)

P

TFfjPz'(z) = C

Pr {PLIz'(L'lZ') > j}

Pr PL/lz'(L'lZ') > j E

(c)
<6

where (a) is by (A.36) that every possible realization (F', Z') = (f, z) for S must

satisfy PF'Z'(f, z) < ' Fz'(z); (b) is by the Bayes' rule; and (c) is by (A.33) and

(A.37). Furthermore, given Si n E2, we have

PL'1F/Z1(L |F',Z') :=
PL'Z'F'(L', Z', F')

PZ'F/ (Z', F')

< F' PL'Z'(L', Z')
-- C PZ (Z')

by (A.36) and PF'IL'Z' 1

= F' PL/Iz'(L' Z')

The probability on the left is larger than Fl only if the probability on the right isEd

larger than 1. i.e.

Pr PL'lF'Z'(L'lF',Z') > n E2 < Pr PL'lz'(L'2Z') > S
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where the last inequality is by (A.37). (A.34) can then be upper bounded as follows

since the expression inside the expectation is at most 2.

2 Pr(U Ec) + EPL'lF'Z'(llF,'Z') - 1 i nE2
Lk EK' 1:0(1 )=kI '

This gives the desired result since Pr(S U S) < 2e as argued previously and, by

Lemma B.1 of [12], the conditional expectation above is larger than 3E with probability

upper bounded by (A.35).

We now break down the proof of Theorem 2.3 into two parts, proving < and >

separately for (2.21).

PROOF (THEOREM 2.3, PART 1) We will show that

C(R) < Cs(R) + R

by showing that a secret key rate of C(R) - R is strongly achievable given a solution

that achieves the common randomness capacity C(R) (but not necessarily strongly).

Let (UDc, F, LA, L) in h be an optimal solution to the rate-constrained MCR prob-

lem in Definition 2.3 such that

H(L IZ")
C(R) - A_ < Z (A.38a)

n
log|L|

< < C(R) + Ai (A.38b)n
1
t log|F| < R + Ah (A.38c)

Pr i e A, L # L } e -> 0 (A.38d)

where Aj -> 0 arbitrarily slowly. (A.38a) and (A.38b) follow from the definition of

the capacity in (2.19) and the uniformity constraint in (2.20b). (A.38c) and (A.38d)

follow from the discussion rate constraint in (2.20c) and recoverability constraint in

(2.20a) respectively. Based on this optimal solution to the MCR problem, we want

to construct a solution to the SKA problem that achieves the rate C(R) - R strongly.
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We do so in two steps: first, we use an additional source code in Proposition A.6 to

guarantee that the common randomness is strongly recoverable; we then extract a

secret key from the common randomness using Lemma A.4.

Assume 1 E A without loss of generality, and consider ((Li, Zh) : i e A) as a

DMMS by counting the time in n-blocks. i.e. we group the first n time units into

a frame, and the next n time units into another frame, etc. The coding is then

performed by regarding the samples in each frame as a symbol. By Proposition A.6,

there exists a source code (F, 4A\{11) in ii for the component source L1 with n =

F1/A]|9 such that the error probability decays exponentially as follows, 10

Pr {i E A \ {1}, (P / qs(F(L-, Z"D, Li, ZfD)}

< JI l(R + 1) 3(2)'jA~l1(C(R)+Ai,)+1osi9 l ZD1 -nc"i) < -nn~a(-a (A.39)

while the discussion rate can be made arbitrarily small as follows,

.. log|F5 < - Aa + max H(L1ILiZ"
nn L iGA\{1} D

(a) A.. -h_
< + JA [h. + e(C(R) + Ah)

(b)
< Aft "- iO 0 (A.40)

(a) is by the Fano's inequality [8], (A.38b) and (A.38d). (b) is because we can make

A -+* 0 arbitrarily slowly. Let

. .. .1 _(C(R)+__)L1 if PEIziD (L 1 F,DZ) > L > 2-
L :=

0 otherwise (for some symbol 0 C #1) (A.41)

9As ii increases, n also increases but arbitrarily slowly. Thus, n can be viewed as a constant with
respect to ii.

10The first inequality uses the cardinality bound in (A.38b). For the second inequality, we have

added the constant factor nijA in the exponent, and a factor (1 - Aij) to absorb the remaining terms
that are subexponential in ii since n grows arbitrarily slowly in ii.
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Then, L is determined by (L1 , F, ZD) and

logLil]Pr{E L L1} Ai H(I1 |NZD) < logIL1

implying Pr{L # L 1} < An "~0; 0 (A.42)

To apply Lemma A.4, let

L' , Z =(F,Z") and F' =F

log PL'Z' (L'lZ') can be expanded into a sum of ii independent random variables identi-

cally distributed as the random variable log PqL zt (L#, Z"), which takes values from

the finite interval [min log PE Izn, 0]." By Hoeffding's inequality [29],

Pr{log PL'IZ'(L'lZ') > - log d} < C2

logd := i [H(LI ZhD) - Aij]

- log e := ii

with

(a)

> ii(C(R) - R - Ah)

A2  (b)
min log PE7z -

(A.43a)

(A.43b)

(A.43c)

where (a) follows from the Fano's inequality, (A.38b), (A.43b) and (A.42) that

H(LFZ") >

H(L1 "FZ ;) >

H(Lil#ZD) - H(L1il#Z")

<h(Ah)+AA(C(R)+AA)A

H(L1|Z"D) - H(Nj Z"D

<n(R+Ai,)

H(L1 ZD) > H(L Z") - H(LIL 1 ZD)

and (b) follows from the definition of L in (A.41) that

- minlogPCI z < -minlogP 1 izi <(C(R) + AA)

Pmi n-zog K-i D A

11E Ais non-zero for every possible realization of (L ,Zh)
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and the definition n = [1/An ]. (A.43a) trivially implies (A.33) and so, by Lemma A.4,

there exists K = K' as a function of L' such that (A.34) is satisfied with (A.35) strictly

smaller than 1, say

1 1 6d(.4
-log|KI = A log I d- A1a > C(R) - R- 2 (A.44)
nnf nni F'|

by (A.40), (A.43b) and (A.43c). By (5.11) from [12, Lemma 1] and (A.34),

[log|K - H(KIZn#n5) - log < 7C(R)2-"h" (A.45)

With n := ni, K is a valid secret key that attains the desired rate C(R) - R by (A.44)

strongly with exponentially decaying En and 6n for the recoverability and secrecy

constraints in (2.18) respectively given by (A.39) and (A.45).

PROOF (THEOREM 2.3, PART 2) We will show that

C(R) > Cs(R)+ R

by showing that a common randomness of rate C,(R) + R is strongly achievable given

a solution that achieves the secrecy capacity Cs(R) (but not necessarily strongly).

We will outline the main idea of the proof. Some details are similar to Part 1 of the

proof above, and are therefore omitted.

Let (ODC, , A, k) in f be an optimal solution to the rate-constrained SKA prob-

lem in Definition 2.2 such that, for some A -+ 0 arbitrarily slowly,

H(klZh) logk
Cs (R) - A. < _D < < Cs(R) + Ail

n n

1
-log|F| < R + Ah

Pr {i E A, k # k} I < e -* 0

Assume 1 E A without loss of generality, and consider K1 as a DMMS by counting

the time in ft-blocks. By Proposition A.6, there exists a source code (F, #A\{1}) in ii
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for the sequence K' with n = [l/Au] such that

Pr{Eli E A \ { i}, ( # ((k", Z""), k", Z"")} 2-C(An)(-Ah)

while the discussion rate can be made arbitrarily small,

1
. .. log
nn

|FI < - An
n I

+ max H(k
iGA\{1}

1IkzD)]

A Fh(e.)1< + +|A| + el(Cs(R) + Ah)
n n

The reasoning is analogous to that of (A.40) in the previous proof using Fano's

inequality and the assumption that the individual keys K 's agree with small error

probability is.

To efficiently use the public discussion channel, we further compress the public

messages as follows. Consider F[#] as a DMMS by counting the time in n-blocks. By

Proposition A.6, there exists a source code (F,</y) in ii for every sequence Fg for

j E [?] such that the error probability decays exponentially,

Pr{f ' = (P (#r", Z"), P#-_], Zh")} < -cax-a

and, with F F[ ], the total rate is

1 *. 1
.-. log = - E H(#5#Fj 11 ZD) + Aj1nn n

1
-H(F|ZD) + Ah
n

n.b. the above source code is successive in the sense that the encoding and decoding

of Fn require the decodings of F _

We now modify the public discussion as follows to replace Fn by its compressed

version F.

1. Given F 1] and ZD, the terminal ig c V compresses F maximally to a nearly
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(conditionally) uniformly distributed message Fj by the successive source code

described earlier with exponentially decaying error in 5.

2. Terminal ij then publicly reveal Fj instead of F for a more efficient use of

the public discussion channel. Since every terminal can recover F/ from Fj, the

procedure can continue until j = with exponentially decaying error probability

in .12

3. Terminal 1 then reveals publicly a private randomization U1 that is uniformly

distributed at rate R - !H(FJZ"D) and independent of everything else. Thus,

the entire public message is uniformly distributed at rate R.

Since F can be recovered, the terminals can apply the source code F described

earlier to encode Kg. As a result, the active terminals can recover K', which is nearly

uniformly distributed and independent of Fn, and therefore F, which is also nearly

uniformly distributed. Thus, the active terminal attains a common randomness of rate

approaching Cs(R) + R as desired. At this point, however, the uniformity condition

may not be satisfied strongly. To strengthen it, we can again count the time in

5-blocks and apply the above scheme independently to each of the h blocks with

i = [1/A]. Similar to the Proof of Part 1, we can apply another source coding

step to have every active terminal agree on a sequence of independent and nearly

uniformly distributed random variables at rate Cs(R) + R with error probability

decaying exponentially in i. Then, Lemma A.4 can be applied to obtain the desired

common randomness that satisfies the uniformity condition strongly. M

It is clear from the proof that the duality relation holds also for the capacities

defined without private randomizations. It is unknown, however, whether randomiza-

tion strictly improves the common randomness capacity or secrecy capacity. Indeed,

as shown in [12], randomization is unnecessary when the public discussion rate can

be larger than the smallest rate of communication for omniscience. Furthermore, as

shown in [13], the secret key can be purely a function of Zn for any active terminal

i E A. This leads to the following conjecture.

"This is by the union bound and the fact that i is linear in i since 2 nl(R+Aft) > fI2[lFjJ > 2r.
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Conjecture:

The secrecy and common randomness capacities defined in Definition 2.2 and 2.3 can

be attained without private randomization, i.e. with UDc deterministic. Furthermore,

the key can be a function of the component source of an active terminal.
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Appendix B

Combinatorics of Information Flow

This section contains some identities that are essential in the development of the

mutual dependence expression in Chapter 2 and the proof of optimality of the network

coding approach in Chapter 3. We first derive in Section B.1 a general identity in

submodular function optimization using some generalized notions of partitions. We

then introduce a general framework for matroids in Section B.2 that captures the

notion of information flow in the secret key agreement problem. In Section B.3,

we strengthen the results by assuming a specific dependence structure that can be

captured by a dependency hypergraph. In Section B.4, we briefly summarize some

related work in understanding the fundamentals of information.

B.1 Submodular function

In the following, we will introduce an identity in submodular function optimization

that establishes the mutual dependence expression in Section 2.1. To do so, we need

the following generalized notion of partitions.

Definition B.1 Given a finite set V, consider subsets A C V: JAI > 2. Define

9(A) :{B C V : B A} (B.1a)

F (V) = 2v \ {V} (B.1b)
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Define ID(A) as the collection of families F C 2V \ {V} that satisfy

VB c F, B 2 A and (B.2a)

(B.2b)VB' c F, B u B' 2 A =- B n B', B u B' E F

We say that F is an A-co-intersecting family.1 It follows that 4b(A) C 4)(A') for all

A C A'. In particular, '(A') E ID(A') \ D(A) and F E 4D (V).

Denote the complement of a family F as F {B : B C F}. Define H(F, U) for

F E D(V) and U C V as the collection of all families P such that {C n U : C E P} is

a set-partition of U into at least 2 non-empty disjoint sets in F, i.e. P C F : |P| > 2

such that

VC c P,CnU $ 0 and Vi C U, E!C E P : i C C

We say that P is a partition of U with respect to F.

H(F, U') for all U C U'. For convenience, we write

H := 1(F, V)

(B.3)

It follows that H(F, U) D

(B.4a)

(B.4b)

T is the set of all set-partitions of V into at least 2 non-empty disjoint subsets of V.

Define A(F, U) as the set of A := (AB : B C F) satisfying

VB E F, AB > 0 and Vi E U, AB=1
BEF:icB

We say that A is a fractional partition of U w.r.t. F. 2

A(F, U') for all U C U'.

(B.5)

It follows that A(F, U) 2

'See also the related definitions of intersecting family in [3] and crossing family in [50, p.838].
2See the related definition of fractional edge partition in (A.9) and [49].
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We say that a function h : F -* R is supermodular if

h(B1 ) + h(B 2) > h(B 1 U B 2 ) + h(B 1 n B 2 ) (B.6)

for all B 1, B 2, B1 U B 2, B 1 n B 2 C F. -h is called a submodular function.

Theorem B.1 Given a finite set V : |V| > 2, we have for all A C V : |A| > 2,

F E (b(A), and supermodular function h :F -* R that

max. 5 ABh(B) =
AEA(.F,A) BEF

(B.7)max. 1 h(Cc)
-PETT(F7,A) - Ce

with the convention that max. over an empty set is -00.3

PROOF By the strong duality theorem [15, Table 5.21, the maximization in (B.7) is

equal to its linear programming dual

minimize ri
icA

subject to ri 2  h(B)
ie-B

ri < 0

for all B E F

for all i c Ac

(B.8a)

(B.8b)

(B.8c)

The supermodularity property of h translates to the following property on the tight

relations of the dual problem.

Subclaim B.1A For any feasible solution r to the dual linear program (B.8), and

B 1, B 2 E F: B1 n B 2 , B1 U B2 C F, if B1 and B 2 are tight constraints, i.e.

r = h(B) for j=

3This gives as a corollary that A(F, A) = 0 iff TT(F, A) = 0.

1,2 (B.9a)
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then B1 U B 2 and B1 n B2 are also a tight constraint,

(B.9b)S ri = h(Bi U B2)
iEB1UB 2

n.b. we need only the tightness of the union B1 U B 2 for the proof of Theorem B.1. <

PROOF Since B1UB2 E Y, we immediately have EicBUB2 ri > h(B 1 UB2) by (B.8b).

The reverse inequality can be proved as follows.

icB 1UB 2

ri ri + ri- Ti
ieB 1  iEB 2  ieBinB 2

(a)

< h(B 1 ) + h(B 2) - h(B 1 n B 2 )
(b)

< h(B1 U B 2)

where (a) is by (B.9a) and (B.8b) on B1 n B2 E F, and (b) is by the supermodularity

of h. With a similar argument, we also have EiBinB2 ri = h(B1 n B 2).4  .4

For any P c V(F, A), we can construct A E A(F, A) with AB = . Thus,

A(F, A) = 0 implies TI(F, A) 0, in which case both sides of (B.7) are -oo by

convention. Consider the non-trivial case when A(F, A) is non-empty. Let A* be an

optimal solution to the maximization in (B.7). Define its support set as

B:= {B E T: A* > 0} (B.10)

and the corresponding partition of A as

{(U{B E B:B i}) i E A} (B.11)

Subclaim B.1B 'P* in (B.11) belongs to (FT, A).

4It is valid to have h(0) < 0. In that case, by Subclaim B.1A, we have B 1, B 2 E F being tight
constraints implies either B1 U B2 = V or B1 n B 2 # 0. Otherwise, it would lead to the contradiction
that 0 = h(0) by the tightness of B1 n B 2.
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PROOF Define the relation R on A as

-~ i E Cj for i, j E A

where Ci := (U{B E B: B i})C. By definition (B.11), P* = {Ci :i E A}. To show

that P* partitions A, it suffices to show that ~R is an equivalence relation on A as

follows.
z ~R 3 <-> {B E B: B i} D{ B C B: B 0 j}

-{B E B : i E B} C{ B E B : j E B}

i.e. any set in B that contains i also contains j. Using this simplification, it is easy

to see that -R satisfies the defining properties of an equivalence relation:

* Reflexivity: R is reflexive since i C Ci trivially for i C A.

* Transitivity: Suppose i ~R j and j ~R k for some i, j, k E A. Then,

{B E B : i E B} C{ B E B : j E B} C{ B E B: k E B}

which implies i ~R k as desired.

" Symmetry: suppose to the contrary that i ~R j but j 96 i for some i, j E A.

Then,

{B c B: i E B} ; {B C B : j E B}

This implies, by definition (B.10) of B that

BEj

which is the desired contradiction since both sides equal 1 by the definition of

A(F, A).

Finally, to argue that |P*l > 2, note that B # 0 as ZBcY A*B> 0. Since any

B E F E <b(A) satisfies B 2 A, we have Ci 2 A for all i E A as desired.

The supermodularity of h implies the following property on every part of ;P*.
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Subclaim B.1C For any optimal r* tothe dual problem (B.8),

i
zccc

h(Cc) for all C E P* (B.12)

PROOF By the complementary slackness theorem [15, Theorem 5.4], EgEB r* = h(B)

for all B E B. By Subclaim B.1A, for all i E A, we have

r* = h
ieU{BeB:Byi}

(U{B E B: B 0 i}

which gives the desired equality (B.12) under (B.11).

It follows that

= 1 S h(Cc)
icA CEP*

which completes the proof since the primal/dual optimality criteria [15, Theorem 5.5]

implies that (1{Bc E P*}/(IP*| - 1) : B E F) is an optimal solution in A(F, A). *

B.2 Matroid partitioned by vertices

In this section, we will give a general identity for matroids that prove the optimality

of the single-source network coding approach to secret key agreement in Section 3.1.

We first give some preliminaries on matroid theory [50].

Definition B.2 (Matroid) A matroid is characterized by a finite ground set S and

a rank function r : 2 -* N with

T C U ==> r(T) < r(U) < |UI

r(T) + r(U) > r(T U U) + r(Tn U)

(B.13a)

(B.13b)

for all T, U CS. The conditional rank of T C S given U C S is defined as

r(TIU) := r(T U U) - r(U)
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and the span of T C S with respect to r is defined as

(T) := {e E S : r({e}|T) = 0}

I C S is called independent if Il = r(I). It is called a base if in addition that

III = r(I) = r(S). We will use I and X to denote the sets of independent sets and

bases respectively.

It can be shown that every independent set is a subset of a base. i.e. I = {I C X :

X C X}. Indeed, there are various alternative ways of describing and understanding

what a matroid is, using properties of its span function, independent sets or bases.

The following is an equivalent characterization of matroids in terms of their span

functions. Other characterizations can be found in [50].

Proposition B.1 () : 2 S 4 2s is the span function of a matroid iff for all T, U C S

and e, f e S \ T, we have

T C U TC (T) C (U) (B.14a)

e E (T U {f}) \(T) > f E(T U {e})\(T) (B.14b)

A convenient necessary condition is

e E (T) = (T) = (T U{e}) (B.15)

which is a simple consequence of (B.14).

PROOF While we need only the necessity part for the subsequent results, we also

include the proof of the sufficiency part for completeness.

Necessity: r(TIT) = 0 implies T G (T). Suppose f E (T) and e C S. By (B.13b),

r(T U {e, f}) < r(T U {e}) + r(T U {f}) - r(T)

=r(T U {e})
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Figure B-1: Venn diagram for the proof Proposition B.1

The reverse inequality holds by (B.13a) and so f c (T U {e}). It follows that (T) C

(T U {e}), which establishes (B.14a).

Assume the premise of (B.14b), i.e.

(a) (b) (c)
r(T) < r(T U {e}) < r(T U {e, f}) =r(T U {f})

where (a) is by the premise that e 0 (T); (b) is by (B.13a); and (c) is by the premise

that e E (T U {f}). The inequality r(T) < r(T U {f}) implies f 0 (T). By (B.13),

r(T U {e}) < r(T) + r({e}) < r(T) + 1, which are satisfied with equalities under (a).

(b) is also satisfied with equality due to (c), implying f E (T U {e}) as desired.

To prove (B.15), suppose to the contrary that there exists e C (T) and f E

(T U {e}) \ (T). This contradicts (B.14b).5

Sufficiency: Given the span function, define the rank as

r(T) := min{Il : I C T, (I) = (T)} with T G S

It follows immediately that r(U) < |UI. For T C U C S, we have (I) = (U) imply

(I) D (T) by (B.14a). Thus r(T) < r(U), which gives (B.13a).

To prove (B.13b), consider for T, U C S, a minimal subset I of T n U with

(I) = (T n U), a minimal set J with I C J C T U U and (J) = (T U U). It follows

5 This contradicts the reverse implication of (B.14b) by symmetry.
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that r(I) = Il because otherwise e E (I \ {e}) n I implies that (I \ {e}) = (I) under

(B.15), contradicting the minimality of I.

We now argue that r(J) = IJI as well. Suppose to the contrary that there exists

e C (J \ {e}) n J. Then, e C I by the minimality of J. Let Q be a minimal subset

of J \ {e} with e E (Q). Then, there exists f E Q \ I by the minimality of I because

otherwise Q C I \ {e} implies the contradiction e e (I \ {e}) n I by (B.14a) and

the fact that e E (Q) n I. This is illustrated in Figure B-1. By (B.14b) and the

minimality of Q that e E (Q) \( Q \ {f}), we have f E (Q U {e} \ {f}). This implies

f c (J\{f})nJ by (B.14a) and the fact QU{e} C J. This contradicts the minimality

of J as desired.

Indeed, given r(J) = IJI, any subset J' of J also satisfies r(J') = |J' because

otherwise e E (J' \ {e}) n J' implies the contradiction e C (J \ {e}) n J as argued

before. We can now obtain (B.13b) as follows,

(a)
r(T) +r(U) > r(Jn T) +r(Jn U)

IJnTl +|JnUI

Jon (TUU)|+ iJn (TnU)|

(d)

Ii +|I

(e)
> r(T U U) + r(T n U)

where (a) is by (B.13a); (b) is because r(J') = IJ'l for all J' G J; (c) is by modularity

of the cardinality function; (d) is because J C T U U and I C J n (T n U); and (e) is

by the definitions of I and J that (I) and (J) equals (T n U) and (T U U) respectively.

n.b. the fact that independent sets are subsets of bases follows easily from the

above arguments. Let I be an independent set, which satisfies Il = r(I). With

T = I and U = S, J defined above satisfies J D I and |JI = r(J) = r(S). Thus, I is

a subset of a base, namely J. Subsets of bases are independent since J' C J satisfies

I = r(J'). 0
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In the following, we will introduce a framework to view matroids as a generaliza-

tion of edges in graphs.

Definition B.3 (Vertex-partitioned matroid) A matroid partitioned by a vertex

set V is denoted by the pair (Zv, r) of finite set Zv U{Zi : I E V} and rank

r : Zv * N satisfying (B.13). X is the set of bases Xv U{Xi C Zi : i E V} with

|Xv| = r(Xv) = r(Zv) and Xi n X= 0 for all i j V

i.e. Xv has disjoint Xi's and maximum rank r(Zv).

The dependence structure of the matroid relates the nodes in V like edges in a

graph, but in a more general way. We think of a base of the matroid as an orientation

of a graph in a way that we can define graph-theoretic notion such as directed paths or

flows. To do so, we first consider the following simple property of the span function.

Proposition B.2 For any matroid (S, r), T U U being independent implies that

(T) n (U) C (T n U)

The reverse inclusion holds more generally for arbitrary subsets T, U of S. a

PROOF Suppose to the contrary that there exists e E (T) n (U) \ (T n U) with

r(T U U) = IT U U1. Then,

(a) (b)(c
r(T U {e}) = r(T) > r(T U U) - r(U \ T) | T|

where (a) is by e E (T); (b) is by (B.13b) and r(0) - 0; and (c) is by r(U\T) < IU\TI
in (B.13a). It follows that r(T U {e}) = |T|. Similarly, we have r(U U {e}) = |U| and

r(T U U U {e}) = IT U U1. Now, e 0 (T n U) implies that

r((T n U) U {e}) > IT n Ul = |U|+|TI -1 T U UI

= r(U U {e}) + r(T U {e}) - r(T U U U {e})

which contradicts (B.13b).
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Definition B.4 (Directed vertex-partitioned matroid) Given a matroid M =

(ZV, r) partitioned by V and a base XV E X in Definition B.3, we say (M, Xv) is a

directed (vertex-partitioned) matroid.6 Define the support function

supp(e, XV) := min{I G Xv : e E (I)} with e c ZvXv c X

as the inclusionwise minimum subset of Xv that spans e. It is well-defined by Propo-

sition B.2 that each element is in the span of a unique minimal subset of every base.7

In a directed matroid (M, Xv), incut 6- : 2' - N and outcut 6+ are defined as

6-(C) = 6+(C):= U supp(f, Xv) n Xcc (B.16)
f EZc

for C C V. The value of a cut is simply its cardinality

|6-(C)|=16+(Cc) = r(Zc Xc) = r(Zc U Xc) - r(Xc)

= r(Zc) -|Xc|

which is a submodular function in C C V.

A (unit) antiflow is a sequence

Ui, (ei, /2), U2, (e2, 3), . -- ,U1+i (B.17)

where 1 E N is the length, uj's are distinct nodes from V, and (e1 , fi+1)'s are directed

edges in Xu, x Zu, that satisfy

ei E supp(fi+1 , XV) for all i E [] (B.18a)

ej V supp(fi+1, Xv) for all j E [i - 1] (B.18b)

or equivalently fi+1 E (Xv \ {eg : j E [i - 1]}) \ (Xv \ {ej}) for all i C [1].

6 This is not the same as the oriented matroid described in [50].
7Suppose to the contrary that there exists two distinct minimal sets T, U C Xv such that

e C (T) n (U). Then, e c (T n U) by Proposition B.2 since T U U is independent, contradicting the

minimality of T and U.
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A (unit) flow is a sequence in (B.17) defined like an antiflow except that (B.18)

is replaced by

ei E supp(fi1, Xv) for all i E [1] (B.19a)

ej V supp(fi+1, Xv) for all j > i (B.19b)

or equivalently fi+1 E (Xv \ {ey j > i}) \ (Xv \ {ei}) for all i E [1]. Antiflows and

flows are collectively called (directed) paths.

Given a graph G = (V, E, 0) with vertex set V, edge set E and edge function

0 : E h* ), we can define the corresponding vertex-partitioned matroid (Zy, r) by

setting e C Zi for e c E and i C 0(e), and setting r(T) = |T| for all T C E. A base

Xv corresponds to the choice of a root node p(e) E V for every edge e c E under the

mapping e E Xi -> p(e) = i. A directed matroid (Zv, r, Xv) therefore corresponds

to a digraph (V F, E<, p). Flows or antiflows in the directed matroid correspond to

directed paths in the digraph.

Directed matroid captures more general notion of digraphs such as the star hy-

pergraphs in [3]. In its full generality, a flow can be different from an antiflow. For

example, consider the linear matroid (Zy, r) partitioned by three nodes as follows,

Z1 {e1} Z2 := {1, f 2} Z3  {f3}
ei (0, 1) e2 := (1, 0)

f2 :=(0, 1) f3 :=(1, 1)

where ei and e2 are binary vectors, and r is the corresponding rank function in

F2. Choosing X1 := {e1},X 2 := {e2},X 3  0 as the base Xv, the sequence

1, (ei, f2), 2, (e2, f3), 3 is a flow since f2 = ei and f3 = e1 + e2. i.e. ei C supp(f2 , Xv)

and e2 E supp(f 3, Xv) \ supp(f 2, Xv), satisfying (B.19). However, this is not an

antiflow since ei E supp(f 3, Xy) violates (B.18b).

Despite their difference, antiflows and flows are closely related. Indeed, it is easy

to see that the reverse sequence 3, (f3, e2 ), 2, (f2, e1), 1 is an antiflow in the directed

matroid with X 1 := 0, X 2 := {f2}, X 3 := {f3} chosen as the base. More generally,

antiflows and flows are related by the following reversal operation.
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Definition B.5 Given a directed path (flow or antiflow) u1, (ei, f2), .-..- , u 11 in a

directed matroid (M, Xv), we say that Xv is obtained by reversing the path if

XU \ {e2}

X =Xu U {fi} \{eg}

Xu, U {fi}

(B.20)

i=l+1

U1+1, (f1+1, e1), - - , ui is the reverse of the path.

Proposition B.3 The reverse of an antiflow in a directed matroid (M, Xv) is a flow

in (M, Xv) with Xv obtained by reversing the antiflow according to (B.20). Thus,

r(Zci-XC) - r(ZclXc) = JC(U1) - lc(ui+1 ) (B.21)

for all C C V. Similarly, the reverse of a flow gives an antiflow.

PROOF Consider an antiflow denoted as (B.17). For k E [l], let X> be obtained

by reversing the antiflow from Uk to u1+1 as in (B.20). Xk+ 1 and X differ by the

elements ek and fk+1 as shown below.

I... Zuk_ Zuk ZUk+ Zuk+2 - -

Xv = X1,+1XV+1

4±+1

... ek ek -1k+ ek+2

... e-k-1 ek fk+2

... e 1 fk+1 fk+2

... fk-1 fk fk+1 fk+2

It will be helpful to refer to this for the subsequent arguments.
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Let S(k) be the statement that

X E X (B.22a)

ekE (XC \{ey :jE [k - 1]}) (B.22b)

ek 0 (Xy \ {fk+1}) (B.22c)

It suffices to prove that S(k) is true for k E [l] by induction because (B.22c) with k = 1

implies Xv E X, while (B.22b) and (B.22c) imply (B.18b) and (B.18a) respectively

for the reverse path.

Assume as an inductive hypothesis that S(k + 1),.. , S(l) are true. By (B.18b),

f E (Xv\ {ek}) for allj > k + 2. By (B.15),

(Xv \ {ek) = (Xy U {f1 : j > k + 2} \ {ek})
(a)

2(X+1 \ {ek})

)(Xk \ {fk+1)

where (a) is by (B.14a) and (b) is by the fact that

Xe*1 \ {ek}= Xk \ {fk+1}

By (B.18a), fk+1 0 (Xv \ {ek}). With (a) and (b) above,

fk+1 (Xy \{ek}) = fk+1 0 (X \ {fk+1})

-=4 X? C X

by the hypothesis that Xh+1 E X, which gives (B.22a).

Consider proving (B.22b). By the inductive hypothesis,

eki C (Xk \ {e :j E [k' - 1]})

xv+ \{e:j(E[k]}

for all k' > k
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where (c) follows directly from the definition of Xk+1. Thus, by (B.15), 8

(Xv \ {e: j[k - 1]}) C (X+ 1 \{e :jE [k - 1]})

Since fk+1 is contained by the L.H.S., it is also contained by the R.H.S.. i.e.

fk+1 C (Xk+ 1 \{e :j [k - 1]}) (B.24)

We also have

fk+1 V (Xk+ 1 \{ey : j E [k]}) (B.25)

because otherwise fk+1 E (X \ {fk+1}), contradicting (B.22a) that Xk E X argued

previously. By (B.14b), we have (B.24) and (B.25) imply (B.22b).

Finally, suppose to the contrary that (B.22c) does not hold. i.e.

ek E (Xy \ {fk+1}) (B.26)

By Proposition B.2,

ek C (Xk+ \ {e :j [k]})

because the argument of the span function above is the intersection of those in (B.26)

and (B.22b) proved earlier. This contradicts the hypothesis that Xk+ 1 E X as desired.

To complete the induction, the base case with k = 1 can be proved by repeating

the above arguments with the hypothesis Xk+ 1 C X replaced by X1+1 := Xv E X.

To prove (B.21), note that Xv,Xv C X implies

r(ZcXc) - r(Zc|Xc)= |Xc| -| XCl

= (Xi i -I -ki|
in C

8 ek' for k' > k present in XV but not Xkj 1 is indeed in the span of the R.H.S. by (B.23).
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The desired result follows then from the fact that

|Xd| --| Xi| = 1i=U1+1

0 otherwise

which is an immediate consequence of (B.20).

Antiflows originating from a node can be constructed as follows.9

Proposition B.4 Given a matroid M := (Zv, r), a base Xv G X and t C V, con-

struct T C V by adding a sequence v1 , v2,... of distinct nodes with v1 = t, and vi for

i > 1 chosen as any node in V \ {v : j < i} that satisfies

r(Zvg|Xv\{fv:j<}i) > 0 (B.27)

Then, for all v C T \ {t}, there is an antiflow from t to v in the directed matroid

(M, Xv). We say that T is the set of nodes reachable from t by antiflows.

PROOF Let p(vi) = i be the order that node vi is added to T. We first construct

a sequence ui, . . . , u1+1 starting from u1+1 = v E T \ {t} backwards until ui = t as

follows: for i > 1, define ui as the node Vk with the smallest k < p(ui+1) such that

r(Z+1 XV\{vj:j<;k) > 0 (B.28a)

Such k exists by (B.27). The minimality of k implies that

r(Zi+1 1 XV\,vj:j<k}) = 0 (B.28b)

It follows that p(zi) decreases strictly as i decreases, and so we must eventually have

ui = t for an appropriate choice of I E IP. Furthermore, it follows from (B.28b) that

9 By Proposition B.3, flows ending in a node can also be constructed similarly.
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any choice of ej E Xsi, fi+1 C Z.2 +1 for i E [i - 1] must satisfy

r(fj+1 |Xv \ {ey j < i}) = 0 (B.29)

because {e: j < i} C Xvjj<p(ui)}. We now argue that we can choose el's and fi+1's

in such a way that

r(fj±i+Xv \ {ej}) > 0 for all i C [l - 1]

This will complete the proof since u1 , (ei, f2) ... , u+ is the desired antiflow from t

to v as (B.29) trivially implies (B.18b) while (B.30) implies (B.18a). Suppose to the

contrary that there exists i C [i - 1] such that f E (Xv \ {e}) for all f E Zu,, and

e E Xs,. Then,

Z - n (X\{e})

c KO{Xy \ {e} : e (E x}) = (Xv\u})

where (a) is by Proposition B.2. This contradicts (B.28a) as ui E {v: j < p(ui)}. n

We can now prove the following identity for matroids that establishes the opti-

mality of the single-source network coding approach in Theorem 3.1.

Theorem B.2 For s C A C V : |A| > 2, matroid M = (Zy, r) partitioned by V in

Definition B.3, and base XV E X of M, define

dm (A, s, Xv) := min r(ZBc IcXBc)
BCV:sGB-A

PM(A,Xv):= min 1 1 r(Zc lXc)
Pczn( A) |P% - 1 CGaP

(B.31)

(B.32)

where T(A) is defined in (B.4a). Then, we have

max dM(A, s, XV)
XyEX

max pM(A , XV)
xvE Ix
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independent of s G A. When A = V, PM(V, XV) becomes

Pin) 1 [(r(Z)) - r(Zv) (B.34)

independent of Xv c X. i.e. the maximization on the R.H.S. of (B.33) is trivial

when A =V.

PROOF (B.34) can be obtained by rewriting the summation

Z r(Zc|Xc) = ( r( Zc) -Z Xi
C EP C EP iGC

= E r(Zc) - Z(XI|
CEP iv C~i

The last term equals IXv I = r(Zv) when A = V because there is a unique part C E P

that contains each element i E V.

To prove (B.33), let R(A, Xv) be the set of bases obtained by reversing one or

more antiflows in the directed matroid (M, Xv) in Definition B.4 between distinct

nodes in A. 10 We will argue that

dM(A, s, Xv) pM(A, Xv) (B.35a)

VXV E R(A, Xv), pm (A, Xv) pM(A, Xv) (B.35b)

EXv R (A, Xv), dm (A, s, Xv) L p(A, Xv)J (B.35c)

(B.33) follows immediately from the last equality.

Let d := dM(A, s, Xv) for convenience. Then, (B.35a) follows from the fact that

r(ZolXc) > d for every C E P E TT(A) such that s 0 C, and there are |PI - 1 such

distinct C for every P.

To prove (B.35b), it suffices to show it for an arbitrary Xv obtained by reversing

an antiflow from t to v for arbitrary nodes t, v E A. Consider summing both sides

of (B.21) over C E P with ui = t and u1i = v. The sum on the R.H.S. equals 0
10i.e. every antiflow being reversed must begin and end at distinct nodes in A, while the interme-

diate nodes can be outside A.
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regardless of whether t and v are contained in the same part or not.11 Thus, the sum

on the L.H.S. is also 0, which gives (B.35b) as desired.

We now prove (B.35c) by generalizing the proof in [3, Theorem 5.1]. By (B.35a)

and (B.35b), it suffices to show that

dM (A, s, Xv) > [pm (A, XV) (B.36)

for some Zv E Z(A, Xv) with the additional constraint that there is no antiflow

from any t E A \ {s} to s in (M, Xv). The additional constraint is admissible because

if the optimal Zv has an antiflow from t to s, we can reverse the antiflow without

diminishing dM(A, s, Xv). Reversing such antiflow strictly increases r(XS) < r(ZS)

and so doing so repeatedly eventually gives the desired Xv without any such antiflow.

Define the operation of adding a new element e to M over {s, t} for some t e A\{s}

as follows
Zl- Z, U {e} for i C {s, t}

r(Z U {e})- r(Z) + 1 for Z C Zv

It is easy to see that by adding new elements repeatedly this way for any choices of

t, the L.H.S. of (B.36) is bound to increase. Thus, to prove (B.36) by contradiction,

suppose that at least one edge e needs to be added for some t E A \ {s} to obtain a

matroid M (Zv, r) with minimum 1Zv l such that

de (A, s, Xv) 2 LPM(A, Xv)J (B.37)

for a base Xv E C of MI such that Xv n Zv C R(A, Xv) and there is no antiflow

from t to s in (M, Xv). To come up with the desired contradiction, we will construct

P C TI(A) such that 3C E P, t E C y s and

1 I r (ZcIc) = [PM(A, Xv)] (B.38)
Ce?

"By the definition of T C TT(A) in (B.4a), t and v are each contained in exactly one part of P.

Thus, they contribute to a +1 and -1 to the sum, which cancels out.
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Since e contributes to the L.H.S., we have

1 1_ r(Zclxc n Zv) < LpM(A, Xv)] (B.39)
CE'P

which contradicts the equality (B.35b) by the assumption that Xv n Zv E R(A, Xv).

We now construct the desired P. For convenience, define

p := LpM(AXv)] and W(A) := {W C V: s E W -3 A}

Call any set C E W(A) tight if r(Zc|Xc) = p. Let T C V be the set of nodes

reachable from t in (M, Xv) as defined in Proposition B.4. Define P := (C1, ... , Ck)

where (C1, . . , Ck_1) is the collection of distinct maximal tight sets that overlap both

T and A, and Ck:= Tc. Thus,

r(Zc|Xci) ={ P , [k -- 1] (B.40)
0 ,ik

This gives (B.38) as desired. It remains to show that P E R(A).

First, we argue that Cf' E 9(A) for all i c [k]. This is true for i C [k - 1] because

C n T n A # 0 by definition. Ck = T E J(A) follows from the fact that s §' T

because there is no antiflow from t to s by assumption. i.e. Ck n A D {s}.
Next, we argue that every node in A is contained by at most one part in P. By

the submodularity of r, we have for all i, j E [k] that

r(Zc Xci) + r(ZcQ IXc,) ;> r(Zcinc,|Acincj) + r(Zciuc|Aci ucj) (B.41)

Suppose A n Ci n Cj / 0 for some i / j E [k - 1]. Then, C n Cj, Ci U Cj E W(A) and

so the R.H.S. of (B.41) is at least 2p by (B.37). Since the L.H.S. equals 2p by (B.40),

Ci U Cj is a tight set that overlaps with T and A, which contradicts the maximality

of Ci and Cj. Suppose An C2 n Cj # 0 for some i C [k - 1] and j = k. Then,

C n Cj E W(A) and so the first term on the R.H.S. of (B.41) is at least p by (B.37).
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Since the L.H.S. of (B.41) is p by (B.40), equality must hold for (B.41), and the

first and second terms on the R.H.S. must equal p and 0 respectively. In particular,

the second term equal to 0 implies that t E Ci. Otherwise, it contradicts the fact

that any v E A n Ci \ Ci is reachable by an antiflow from t.12 With t E Ci \ Ci and

s e Cj\Ci, the inequality (B.41) must be strict because removing e reduces the L.H.S.

but not the R.H.S., while the inequality must remain to hold after this removal by

the submodularity of r. This contradicts the earlier conclusion that (B.41) is satisfied

with equality.

It remains to show that every node in A is contained by at least one part in 'P. In

particular, since Ck = Tc, we need only prove that every node in T n A is contained

in a tight set. Suppose to the contrary that. there exists v E T n A with

r(Zc c) ;> p + for all C C V : v C C, s V C (B.42)

Let IV be a base obtained by reversing an antiflow from t to v. By (B.21) in

Proposition B.3,

r(Zc|Xc)+1 ,tGC v

r(Zc|Xc)= r(Zc0 Xc)-1 ,vCCyt

r(ZclXc) otherwise

It follows from (B.42) and (B.37) that

p+1 ,tB
r(ZBc 1XBc) {

p otherwise

for all B C V : s C B 2 A. However, this contradicts the minimality of Zv since

XBC n Zv E R(A, Xv) and e can be removed without violating (B.37) with Xv as

the base. This completes the proof. 0

12More precisely, suppose t V Ci, and that there is an antiflow from ui t to some u1i := v E

A n C \ C3 = A n C, n T, which is non-empty by the definition of Ci for i E [k - 1]. By (B.21), the

second term on the R.H.S. of (B.41) is positive by (B.27).
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Corollary B.1 Given s C A C V : |A| ;> 2 and a matroid M = (Zv,r), let Xv be

a base randomly chosen from X according to the distribution P< E 3(X).

corollary to Theorem B.2, we have

max min E [r(ZBc XBc)] (E
P v6E(X) BCV:sEB; A

As a

.43a)

= max min 1
P -PETT(A) - 1 (B.43b)E[r(Zcoc)]

CEP

As a corollary to Theorem B.1, the above can be expressed as

= max min AB EB[r(ZBC XBc)]

= min max
AEA((A),A) XvEX

AE (F A)v)Beg(A)

ABr(ZBc lXBc)

Z7Bc|XBc)

where the last expression is independent of Xv E X.13

PROOF Consider the n-extension M' := (Z , r) defined as the union of n replica

(Z{), r) for i E [n] of the matroid (Zv, r). It follows from Theorem B.2 that

1 1I~ fl
- max dmn (A I, X) - max pMn(A, Xv)n XCXn nXn Xn

It is straightforward to show that the L.H.S. and R.H.S. equal (B.43a) and (B.43b)

respectively in the limit as n -+ oc. (B.43c) follows from Theorem B.1 with F =

9(A) E Ch(A) because E[r(Zc|Xc)] is submodular in C C V. (B.43d) follows from the

minimax theorem [56]. (B.43e) follows from the fact that A(9(A), A) D A(9(A), V)

"It can be shown easily that (B.43e) is the secrecy capacity in [12] for the finite linear source in
Definition 3.1. It is unclear if the bound is tight except for the case A = V by Theorem B.1.
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and that (B.43e) is independent of Xv shown below.

ABr(ZBC|XBC) rB r(ZBC - Xi
BE9(A) BE9(A) _iBc j

=E ABr(ZBC -5 ABIXi|
BE9(A) iGV Byi

For A E A(9(A), V), ZBi AB = 1 for all i E B. Thus, the last term is

YE B|X =I: AB - 1 1: \Xi|
iGV Bi B / ieV

which equals (EB AB - I r(ZV), independent of Xv.

B.3 Dependency hypergraph

While the notions of flows and cuts for directed matroids generalizes the correspond-

ing notions for star hypergraphs in Definition 3.6, hypergraphs have more structure

that leads to stronger results. For example, the following theorem extends Bang-

Jensen and Thomass6's generalization of Menger's theorem from star hypergraphs to

hypergraphs.

Theorem B.3 Any hypergraph H = (V, E, $) can be shrunk to a graph G = (V, E, 0)such

that 0(e) C d(e) : |0(e)| = 2 for all e C E and

min |6H(B)| = min 3oG(B)|
BCV:sCByt BCV:sGByt

Applying Menger's theorem to G, the above min-cut value is the maximum number of

edge-disjoint unit flows in H as defined in Definition 3.6.

PROOF Consider the greedy approach of constructing G by sequentially removing

nodes v E d(e) from edges e E E with I#(e) ;> 3. Suppose to the contrary that this

cannot be done without diminishing the min-cut value. Then, there exists an edge e
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containing distinct vertices vI, v2, v3 c V such that removing any vi from e reduces

the min-cut value.

Consider the first case that there exists B1 , B 2 C V :s Bi 0 t that attains the

min-cut value, say k, with

4(e) \ {vi} C B1 vi and 4(e) \ {v 2 } C B 2 0 v 2

The assumption that vi's are distinct implies that v1 E B 2 \ B 1, v2 E B1 \ B 2 and

V3 E B1 n B2 . By submodularity of 6H, we have

|6H(B1)| + 6H(Bl) 6H(B1 nB 2)1 + 1H(B1 U B2)| (B.45)

The L.H.S. is 2k by the optimality of B2 's, and the R.H.S. is at least 2k since BinB 2 ,

B1 U B 2 both contain s but not t. Thus, (B.45) should be tight, i.e. satisfied with

equality. However, by (B.44),

e G 6H(B1) n 6 H(B 2 ) n 6H(B1nB 2 )\ 6H(B1 U B 2 ) (B.46)

and so the (B.45) should be strict since the inequality must hold even with e re-

moved from H but doing so reduces the L.H.S. of (B.45) more than the R.H.S. by

(B.46). This contradicts the earlier conclusion that (B.45) should be tight. The same

argument applies to the cases with vi's permuted in (B.44) by symmetry.

Consider the other case with

4(e) \ {v1} C Bc 0 vi and 4(e) \ {v 2 } C Bc v 2

instead of (B.44). The assumption that vi's are distinct implies that v1 E B1 \ B 2,

V 2 E B 2 \ B1 and v3 E (B 1 U B 2)c. Similar to the previous argument, (B.45) should be

tight by the optimality of Bi's, while it should be strict because (B.47) implies that

e G 6H(B1) n 6 H(B2) n 6H(B1 U B 2 )\ 6H(B1 n B 2)
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This is the desired contradiction. The same argument applies to the remaining cases

with vi's permuted in (B.47), which completes the proof by contradiction. 0

Since the above proof mainly uses the submodularity of cut values, the result can

be generalized further as follow.

Proposition B.5 For any star hypergraph H* = (V E, E, p), co-intersecting family

F E (b(V) (see Definition B.1) and submodular function f : F - R, we can shrink

H* greedily while preserving minBEF [16* (B) + f(B)] in the sense that for any e E

E : \#(e)| > 3, there exists i, c $(e) \ {p(e)} such that

(B.48)Min (|6H. (B)| + f (B)]
BE-Fmin |-.(B)| + f (B)]

BE.F $

where the shrunk star hypergraph N* = (V, E, , p) has 0 5 except for e where

#()= #(e) \ {'b}.

Corollary B.2 Given star hypergraph H* = H* LI H* as defined in Definition 3.4,

we can shrink H2* to G* = (V22, 0, P2) such that

min |6[.(B)|+\ 6(B)|]
BE9(A) .2

= min |6. (B)I+ .(B)
BEF(A) L H

and 0 satisfies p2 (e) G 0(e) C 02 (e) and |0(e)| = 2. #(A) is defined in (B.la).

PROOF The corollary follows from an inductive argument using the proposition with

F = &(A) and f(B) =|6+ (B)|.

To prove the proposition, suppose to the contrary that H* cannot be shrunk as

stated. This means that there exists E E E: 1e > 3 that cannot be shrunk. i.e. for

any v E 0(e) \ {p(e)}, there is B, E F with p(e) E B, Bv n #(e) = {v} and

l6H (Bv)I + f (Bv) = min [IH* (B)I + f (B)]
BE.F

(B.50)
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Consider distinct v1, v2 E #(e) \ {p(e)}. We have

S S.(B,) > |65. (BvI n Bo2 )| + |6H.(Bv1 U B|2 |
iC{1,2}

by the submodularity of 6... The strict inequality follows from the additional fact e
contributes 1 to each term on the L.H.S. but only 1 to the last term on the R.H.S..

This is because Bvi n #(e) = {vi} for i = 1, 2 implies that v1 , v 2 V Bvl n BV2 .By the

submodularity of f, we have

(6-. (Bv,)|I+ f ( Bv,)] > |6-. (BvI n Bos) + f(By n Bus5~~ ~ V V ~B 1 oB 2 ~f 1 oB 2)
iC{1,2}

+ |6H.(Bv, U B V2 ) + f (Bv, U BV2)

The fact that p(e) V Bv, U BV2 implies Bv1 n Bv2, BV1 U BV2 E F by the definition

in (B.2). Thus, the R.H.S. is at least 2 minBer [ln. (B)| + f(B)], which equals the

L.H.S.. This contradicts (B.50) as desired.

The secrecy capacity under the source model in Definition 3.4 with dependence

structure captured by a dependency hypergraph gives a concrete operational meaning

to the following notion of partition connectivity for hypergraphs from [3].

Definition B.6 (Partition connectivity) Given a dependency hypergraph H =

H1 u H 2, define

PH : n [P; 1( + P± F 2 (P)] (B.51)

where

_ {C n (e) : C E P, eE 1 } \}-EI (B.52a)

_c - 6i ( )I(B .52b)

_ {e E E2 : VC P, C (e)(B.52c)

2 ( (B.52d)
H*a -1

H* and H2* are arbitrary star hypergraphs of H, and H2 respectively.
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Equalities (B.52b) and (B.52d) follows easily from the double counting principle,

CeP
SS 1{C 1(e)}

eEE1 Cypi(e)

= E [I{Cn(c): CE P}\{0}| -1]
ecE

CGP
E E

eCE2 CDP2(e-)

The minimizing partition P has the intuitive meaning of groups of highly con-

nected nodes by the following Proposition.

Proposition B.6 If there exists e E E such that removing e does not change PH in

(B.51), then

e g 6H(P) := {e E H: VC E P,C #(e}

for all minimizing P E TT that attains PH in (B.51).

PROOF Suppose to the contrary that there exists a minimizing P such that e E

6H(P). Then, there exists C C P such that O 2 #(e) g Oc. Let H* = (V, E, #, p) be

a star hypergraph of H with p(e) E C if e is an edge in H 2 while p(e) E c otherwise.

This implies that

e E O (O) U R (O)

Let H = (V, E \ {e}, #) be the hypergraph H with e removed. Then,

(a) (b)
PH =PH

CCP

1
P-iSCE

[1H- ()± 16H+*(C) ]

[16ti(c)i - (d)
+ 6 C)|I > pgt

where (a) is by assumption, (b) is by (B.51) and the optimality of P, (c) is by (B.53)

and the definition that e is absent in H, and (d) is by (B.51). This completes the

proof by contradiction.
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B.4 Fundamentals of information

The framework described above captures the behavior of information through the

submodularity of entropy. It was first pointed out by Fujishige in [21], and can be

regarded as one of the many structural properties of joint distributions summarized

in [38]. Yeung [64] developed a software that can verify any information inequal-

ities derived from the submodularity of entropy, and collectively refer to them as

Shannon-type inequalities. Zhang and Yeung [65] later discovered a non-Shannon-

type inequality, which proves [66] that there are additional structure to the entropy

function for a set of four or more random variables. Using this, Dougherty, Freil-

ing and Zeger [18] showed that Shannon-type inequality is insufficient to compute

network coding capacities. Although more and more non-Shannon-type inequalities

have been discovered in [33, 39], a complete characterization of the structure of the

entropy remains open.
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Appendix C

Computations

C.1 Coupling channel

In this section, we will give the detailed computation for the key rates in Table 6.1

for the coupling channel defined in Section 6.3.

C. 1.1 Preliminaries

We first carry out some preliminary calculations. With V = [3], A = [2] and D = 0,

the hypergraph 'AID in (A.1) is

-[2]1 = {{1}, {2}, {3}, {1, 3}, {2, 3}}

A[2]0 in (A.9) is the convex hull of the following basic fractional partitions.'

A\(k) A(k) \(k) N(k)
{1} {2} /{3} {2,3}

A(k)
{1,3}

A ) (1, 0, 0, 1, 0)

A(2 (0, 1, 0, 0, 1)

() (1, 1, 1, 0, 0)

(C.1)

'This is the same as the fractional partitions illustrated in Figure A-1 since the two hypergraphs

have the same set of edges.
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Consider an arbitrary joint distribution for the channel input

Px1x2 (0, 0)
Px1x2 =0

LPxIx2 (1, 0)

Px1x 2 (0, 1)1

Px1x2(1, 1)1

where (a, b, c, d) is stochastic, i.e.

a, b, c, d E [0, 1] : a + b + c + d 1

From the definition (6.30) of the coupling channel, we can compute the entropies

H(YBrcIXBc) for B E 'HAID U {0}. The results are summarized in Table C.1. We will

show the computation for the case B {1} as an example. With h defined as the

binary entropy function in (6.8),

H(Y2Y 3|X2) = H(N3|X2) + H(Y2 X2, N3)
=1 =H(N2)=1

= H(N3) + H(Y 2 X 2 = 0, N3)(a + c) + [H(Y2 |X2 =1, N3 ) + H(Y2 |X2 = 1, N3 = 1)] 2
b

2(b+d)

1+ a + c + [h(PX1 N21X2N3 (0,1 1, 0)) +~- h(PX1N2|X2N3 (0, 0 1, 1
b

2(b+d)

which is the desired expression for B = {1} in Table C.1.

Using the result in Table C.1, we evaluate a for each of the basic fractional par-

titions in (C.1) as follows.

a(AP , Pxv) = H(Y 23 X 2 ) + H(Y1 Xi) - H(Y1 23 |X12 )

= a - b + (b + d)h ((b
2(b + d )

(C.3a)

a(A, Px') = H(Yi 3 Xi) + H(Y2|X2)

= d - b + (a + b)h ( b
2(a + b)
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Table C.1: Entropy terms for the coupling channel with
correlated inputs (C.2)

B H(Y BC XBc)

0 H(Y 1 23 |X12 )t = 2 + b + c

{1} H(Y 23 IX 2 ) = 1 + a + c + (b + d)h 2(b+d)

{2} H(Y 13 |X1 ) = 1 + c + d + (a + b)h b

{3} H(Y1 2 |X12 ) = 2

{1, 3} H(Y2 |X2 ) = 1

{2, 3} H(Y lX1 ) = 1

t Y123 is short for (Y1 , Y2, Y3 ) and similarly for others.

a(A( 3), Pxv) = H(Y 23 |X 2 ) + H(Y 13 Xi) + H(Y 1 2 |X12 ) - 2H(Yi 23 |X 12)

= a+d- 2b+ (b+d)h ( b d) +(a+b)h 2(ab+b))
From these, we can observe the equality that

a (A(3) p (a), Px) + c( 2 ,PxV) (C.4)

Consider the independence constraint on the input distribution that for some

P1,P2 E [0,1],

Px1 = Bernp1

Px2 = Bernp2

Px1x2 = Px1Px2

(C.5a)

(C.5b)

(C.5c)

With the independence constraint, the entropy terms in Table C.1 become those

in Table C.2, obtained by the following substitution

(1-pi)( -p2) (P1i)P21

Pi(I - P2) PiP2 j
(C.6)

225

(C.3c)



Entropy terms for the coupling channel
with independent input (C.5)

B H(YBC XBC)

0 H(Y1 23 |X12 ) = 2+P1(1- p 2 ) +P 2 (1 -PI)

{1} H(Y 23 |X2 ) = 2 -p 2 +p 2 h (1)

{2} H(Y 13 X1 ) - 1 + pi + (1 - p1)h (Q)
{3} H(Y1 2|X1 2 ) = 2

{1, 3} H(Y 2 |X2 ) = 1

{2, 3} H(Y1 |X1 ) = 1

With independent input, a is equal to 3 by the equivalence relation (a) of Propo-

sition A.4. Thus, we have from (C.3) and (C.4) that

)(A I, Px) = (1 -P)(I - 2 P2) + p 2h 1 P

)(A, Pxv) = P2( 2P1 - 1) + (1 - p1)h (2)
(A (3), Pxv) = )(A( , Pxy) + 1 (A, PxV)

(C.7a)

(C.7b)

(C.7c)

C.1.2 Optimal pure source emulation

In the pure source emulation approach, T1 and T 2 transmit independent inputs iid

over time, i.e.

Px-x (XIIX2) = 11 Px1(Xit)Px2(X2t)
tE[ri]

Then, each terminal i E [3] broadcasts a public message at rate ri such that Ti and

T2 can recover the entire channel input and output sequences (XI, Xg, Yn , Y , Y3)- By

minimizing the sum rate Zi,[3] ri, we maximizes the asymptotic rate of the extractible
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Table C.3: Optimal public message rates for the coupling
channel

terminal (i) optimal public message ratet (ri)

p2 + h(p) + (l - p) 2 - p - h 2
1,2-

~ 1.578

3 p + (1 - p)h() ~0.919

t p ~ 0.44 is the optimal solution to (e) in (C.8).

key independent of the public messages [12]. The maximum key rate is

Cpse a) max min (APx1x 2 )
EPX1X2 = X 1 PX2 AEA[ 2]10

(b)
max min 3(A(') Px1x2 )

PX 1 X2 =PX1 FX2 kE[2]

- max min{g(pi,p 2),g(1-p2,1-pi)}(
Pi,P2C[0,1] (C.8)

g(p,1-p)

(d) ___

- max (1- p)(p- 1)+1I-lp)h
pE[0,1]

(e)
,0.41

where

g(pI, p2) := (1 - p1)(I - 2 P2) + p2h 2 P

(a) The equality follows from (6.18c) with Q deterministic.

(b) Since minx )(A, Px1x2 ) is a linear program, the optimal value is achieved at some

basic fractional partition in (C.1). We can exclude the basic fractional partition

A)3 since it cannot achieve a smaller value than ACP) (or A(2)) by (C.7c) and the

positivity of # by (A.10a) of the Shearer-type lemma.

(c) This is by (C.7a) and (C.7b) under (C.5).

(d) The maximum is achieved at pi = 1 - P2 as shown in Figure C-1(a).

(e) The maximum is achieved at p 0.44 as shown in Figure C-1(b).
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0.3 - 0.3 -
0.2
0.1 0.2 -
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0.2 0.1-0.4

P10.6 0608
0.8 . .

. '0 0.2 0.4 0.6 0.8 1

P

(a) min{g(pi, p2), g(1- P2, 1 - pi)} (b) g(p,1 - p)

Figure C-1: Optimal input distribution for the pure source emulation scheme:

Px 1x 2 (X1, X2) = Bernp,(xi) BernP2 (x2) where pi = 1 - P2 = p ~ 0.44.

Although we do not know the optimal choice of the key and public discussion

functions, we can compute the optimal choice of the public message rates r := (ri :

i E [3]), which are given in Table C.3. We will explain briefly how the optimal rates

can be obtained from the optimal fractional partitions. By the strong duality theorem

[15] for linear programming,

min 3(A, Pxv) = H(X[2]Y[3])- min ri (C.9)
Ar

iE[3]

where for all B E H[2]10,

E ri > H(XBYBIXBCYBC) = H(Y[3]|X[ 2] ) - H(YBCIXBc) + H(XB) (C.10)
iGB

By the equality (d) in (C.8), W) and A(2) are both optimal solutions to the L.H.S. of

(C.9). Applying the complementary slackness theorem [151, we have for any optimal

solution r that A) > 0 or A > 0 implies equality in (C.10) for the particular

B E R[2]|0. This gives a set of equations, from which we can solve for the optimal

rates as given in Table C.3.
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C.1.3 Optimal mixed source emulation

The computation for the mixed source emulation approach proceeds in the same way

as the pure source emulation approach described in the previous section except that

T1 and T2 transmit conditionally independent inputs for a chosen public auxiliary

component source Q, i.e.

PQn,Xn,Xn(q", x" x2 ) = 1 PQ(qt)Px1Q(xit qt)Px2 |Q(x2t qt)

t e[n]

The maximum key rate is

Cmse L max min E L(A, Px1,X2 |Q(-IQ))
PQ,X1 ,X2  AEA[2]1

-

=PQPX1|QPx2|Q

max min(A('), PQX1,X2)
PQ,X1 ,X2 kE[2]

max min {9 /(o, 10p ,P20, P11, P21), (C.11)

Po,PiqE[0,1]:

iE[2],qE0,1 , 1 - P20, 1 - , 1 - P21, 1 - P22)}

- (log 17 - 3) ~05
2

where

9'(Po, 1 - P20, 1 - P10, 1 - P21, 1 - P22) 0 )9(0P20) + p09(1p1,P21)

(a) The equality follows from (6.18c).

(b) same reason as (b) of (C.8).

(c) This is by (C.7a) and (C.7b), averaged over a binary auxiliary component source

with the following conditional input distributions.

PQ Berno

PXIQ(-|q) := Bernp, for i E [2], q E {0, 1}

By the Support Lemma A.3, it does not lose optimality to choose Q binary as

there are only two choices for the basic fractional partitions in (b).
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(d) The maximum is achieved at

Po = I, (Plo, P20) (0,

It can be obtained using a global maximization algorithm. We computed this

using the shuffled complex evolution implemented by [17].

We can arrive at the same answer using the alternative form of Cmse from (6.18b).

Cmse = min max
AEA[ 2110 PX1 ,X2 PPX PX2

)(A, Px 1 ,x2 )

(a)m max

min maxPL PX1 ,X2

(b) m a

min maxPL PX1 ,X2

min max
6L PX1 ,X2

(d) m a
mi6 a

13(E(A(), Px1 ,x 2) with L E [3]

E [3(A , Pxx 2)]

[(PL(1) + PL(3))/(A, PX1 ,X2 )
(C.12)

+ (PL (2) + PL ,(3)))(A PX1,X2)]

[(1 - )3(A(), Px1 ,x 2 ) + 0)(A , Px1 ,x 2 )]

Smin max g"(0,p1,P2)
OE [0,1] P1,P2E [0,1]

(e) 1 1.54
=-(log 17 - 3) ~~ .5

where

g"(0, p, P2) := 0g(p1, P2) + (1 - 0)g(1 - p2, 1 - P1 )

(a) because any A C AAID can be written as a convex combination E(A(L)) of the

basic fractional partitions in (C.1).

(b) by the linearity of expectation and 3(A, Px1x2 ) in A.

(c) by (C.7c).

(d) Since # is non-negative, it is optimal to choose PL(3) = 0.

(e) With the help of a global optimization algorithm, it can be shown that the

maximum is achieved by choosing 6 = 1. The corresponding optimal choice of

(P1, P2) for 0 = is (0, ) or (1, 1).

Unlike the previous optimization, the optimal input distribution for the mixed
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source emulation is not immediately available from the optimal solutions in the current

optimization. This is because the operational meanings of the optimal solutions are

changed when we apply the minimax-type lemma to obtain the current optimization

from the previous one. While the current optimization involves two less parameters

than the previous case, it is a minimax problem rather than a pure maximization

problem.

C.1.4 Secrecy upper bound

By (6.1), the secrecy upper bound for the coupling channel is

CSU = min max a(A, Px1x2 )
AEA[ 210 F(iX

2

a11mi max c(E(A()), Px 1x2 )
PL PXIX 2

min max E [a(A I, Px1 x2)]
PL PXiX2

(min max [(PL(1) + PL(3))f (a, b, c, d) + (PL(2) + PL(3))f (d, ca)]
PL a,b,c,dE[0,1]:

a+b+c+d=1

(d) 1
- log 7 - 2 ~ 0.60
2

where

f(a,b,c, d):=a-b+(b+d)h( b
2(b + d)

(a) same reason as (a) in (C.12).

(b) by the linearity of expectation and a(A, Px1x 2) in A.

(c) by (C.3) and (C.4), setting x 1 x 2 = [" b].

(d) Using [17], we find that f(a, b, c, d) is maximized at

31 3
(a, b, c, d) = 0, -) (C.13)

7' 7' 7

under the constraint that (a, b, c, d) is stochastic. Since a d in this case, we

have f (d, b, c, a) = f(a, b, c, d), which is also maximized. Thus, (C.13) is indeed

the optimal solution for every choice of PL. The optimal choice of PL must
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have PL(3) = 0. However, PL(1) and PL(2) can be arbitrary since f(d, b, c, a) =

f (a, b, c, d) optimally.

Alternatively as before, we can turn the minimax problem into a maximization

problem by applying the minimax-type lemma,

Csu= max min E [a(A, Px1x2IQ(.Q))]
PQ,X 1 ,X2 AEAAID

max
paobocodoal,b1 ,c1 ,d 1 :

aq+bq+Cq+dq=1,VqE{O,1}

min {(1 - p)f (ao, bo, co, do) + pf (ai, bi, ci, di),

(1 -p)f(dobocoao) +pf(dibiciai)}

where we have set

PQ = Bern, and Px1x21Q(.q) =
aq
cq

bq

dq
for all q E {0, 1}

Solving this with [17] gives the same upper bound.

C.2 Consensus channel

In this section, we will give the detailed computation for the secret key rates of the

consensus channel considered in Section 7.3.

C.2.1 Preliminaries

Let the input distribution be

Px1x2 (0, 0)
Px1x2 :=

Px1x2(1, 0)

Px1x2 (0, 1)

Px1x2(1, 1)

a
C

(C.14)

with the constraint that

a, b, c, d E [0, 1] : a + b+ c + d = 1
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For the consensus channel Plx1x2 defined in (7.33), we have

H(YlX 1 X2) = H(YlX 1 X211{X1 = X2})
=0

Pr{X = X2}H(YlX1 X2 , X1 = X2)

+ Pr{X1 # X2},H(YlX1 X2, X1 / X2)
=H(N)=1

= b + c

Z Px1(xi)H(Y X1 = x1)
Xi E{0,1}

Q (a + b)h ( 2 (a+b) + (c + d)h 2(c+d)

f(a,b,c,d)

(i) This follows from the definition (7.33) of Y.

(ii) Given X1 = 0, we have Y = 1 iff X2 = N = 1 by (7.33),

probability

which occurs with

Px2|x1(1|0)PN(1) 2 +

by independence. Thus,

H(YlX 1 = 0) = h(6 2 /2)

Similarly, we have

H(Y X1 = 1) = h((1 - 62)/2)

(iii) This is by the symmetry of the consensus channel between the two input sym-

bols. i.e. PYlx 1x 2 (YlX 1 , x2) = PylX1 X2 (Y2, 11)-

Suppose we have Xi independent of X2 instead, with

Px1 = Bern, and
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Px2 = BernJ2

H(YlX 1 ) =

(C.15a)

(C.15b)

(C.15c)

(C.16)

H(YlXL-2) f (a, c, b, d)



Then, it follows that

H(Y X1 X2 ) = 61(1 - 62) + 62(1 - 61)

H(YlX 1) =

C.2.2 Computation of secrecy bounds

By Theorem 6.3, we have the following secrecy lower bound by the source emulation

approach,

Cse := min max /(A, Px 1x 2 )AEA[2]10 Pxix 2 PX1 PX2

(a)
max [H(Y|X 1 ) + H(Y|X 2 ) - H(YlX 1 X2 )]
Pxi x2

(b)
=max [g(6i, 62) + g(62, 61) - 61(1 - 62) - 62(1 - 61
61,2E [0,1)

- - -log3 ~ 1.12
2 2

where

g(61, 62) := (1 - 61)h (2)+ 61h (12 62

(a) This is because there is only one possible fractional partition.

(b) Let X1 and X2 be independent random variables distributed as in (C.16). Then,

(b) follows from (C.17).

(c) The maximum is uniquely achieved at 61 = 62 =

n.b. pure and mixed source emulations achieve the same maximum key rate, primarily

because the minimization over the fractional partition is trivial with only one possible

fractional partition.

234

H(Y X2) = g(62, 61)

(C.17a)

(C.17b)(1 - 6)h ()+ 61h 1 262

9(61,62)

(C.17c)



By Theorem 6.1, the secrecy upper bound is

C. := min max a (A,Px1 x 2 )
AEA[2]1 PXiX 2

(a)
max [H(Yl
1xi x2

X1 ) + H(YlX 2) - H(YlX1 X2)]

max [f(a, b,
a,b,c,dE[0,1]:
a+b+c+d=1

c, d) + f (a, c, b, d) - (b + c)]

2 log 3 - 2 ~ 1.17

where

f(a, b, c, d) := (a + b)h ( + (c+d)h cd)

(a) This is because there is only one possible fractional partition.

(b) Let X1 and X2 be distributed as in (C.14). Then, (b) follows from (C.15).

(c) The maximum is achieved at a = d = 1 and b = c = .63

C.3 Computer-assisted tightness test

In this section, we present a computer-assisted test of tightness for the following

bound, which is a generalization of the mutual dependence upper bound in (2.13)

from entropy function to any supermodular function.

Theorem C.1 Given any supermodular function h : F -* R in (B.6) on F E CD(A),

where 4(A), A(F, V) and T(F, V) are defined in Definition B.1, we have

max. ABh(B) > max.
AeA(YF,V) I:Y -PCl(.F,V)

ECEp h(CC) (C.18)

This bound is loose for h(B) := H(ZB|ZBc) in Example 2.2, which is a minimal

example in the lexicographical order of (V|,| AI).

PROOF The R.H.S. of (C.18) can be obtained from the L.H.S. with the additional

constraint on A that

1
AB := 1lp(BC)

PI-1
for all B C F
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for some P E H(.F, V). In Example 2.2, the L.H.S. is H(Zv) - Cs = 2 by Proposi-

tion 2.1 while the R.H.S. is 3 - 1 = 2 because the mutual dependence upper bound

is 1. Thus, the bound is loose.

To prove minimality, we will show that the additional condition (C.19) for A is

admissible for all the cases of (IVI, JA|) smaller (6, 3). We will derive a sufficient

condition for tightness using the supermodularity assumption of h and test it case-

by-case with the help of a computer program.

Note that A(F, V) = 0 only if H(F, V) = 0 by (C.19). Both sides of (C.18) are

-oc by convention and so the bound is trivially tight. Thus, we can focus on the

non-trivial case where A(F, V) # 0.
Consider the linear programming dual of the L.H.S. of (C.18).

minimize Y ri (C.20a)
icV

subject to Zri > h(B) for all BE F (C.20b)
ieB

This is the same as (B.8) with A replaced by V. Let F* be the set of optimal solutions

r := (r : i E V), and T be the set of tight constraints where

T := B E F: Vr F*, Zri = h(B) (C.21)
iE B

Subclaim C.1A The bound (C.18) is tight if there exists P G H(F, V) such that

C E T for all C E P.

PROOF Suppose the required P exists. For any optimal solution r E F*,

(a) (b)
1 h(C')

iev iEV CEP:iZC CEP iCCe

where (a) is because P is a set partition, and (b) is because Cc E T corresponds to a

tight constraint. The L.H.S. of the above equals that of (C.18) by the strong duality
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theorem while the R.H.S. of the above equals that of (C.18) as desired.

Let A* C A(F, V) be the set of optimal solutions to the primal in (C.18), and

supp(A) := {B E F: AB > 0} for A e A(F, V)

be the support of A. Then, for any A E A*, AB > 0 implies B E T by the comple-

mentary slackness theorem [16]. Define T(S) for S C F as follows,

BES 

B, B' E T(S) and BU B' 2 A -

B E T(S)

BnB',BU B' E T(S)

Using T(S), we have the following sufficient condition for tightness.

Subclaim C.1B The bound (C.18) is tight

such that Cc E T(supp(A)) for all C E P.

if there exists A C A* and P G T(F, V)

PROOF By the definition (B.2) of F E <b(A), we have B, B' E F: BUB' 2 A implies

B n B', B U B' E F. Thus, by Subclaim B.1A in the proof of Theorem B.1, we have

T(supp(A)) C T for all A E A*. Since Cc E T(supp(A)) for all C E P implies Cc E T

for all C E P, the tightness condition here implies that in Subclaim C.1A. .4

It is impossible to test the condition for every A E A* because A* is not finite.

Furthermore, A* depends on the choice of the supermodular function h, which is again

impossible to enumerate. We want to further weaken the condition such that it only

has a finite number of test cases independent of h. This is possible from the following

observation.

Subclaim C.1C A* must contain some A that satisfies |supp(A)| <1 V1.2

2We can impose the additional constraint that A is extremal [16], i.e. A is not a strict convex

combination of distinct elements in A(.F, V). Although this implies the stronger condition that the
incidence matrix of supp(A) has full column rank, the weaker condition suffices here.
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PROOF Suppose to the contrary that every A E A* has |supp(A)| > |V|. By (B.5),

SAB=l for all i E V
BEsupp(A)

which is a set of IV| linear equations with more than |V variables (AB B E supp(A)).

Thus, there exists a real vector (eB : B E supp(A)) =- 0 satisfying

ZEC = 0 for all i E V
Bcsupp(A)

This implies that

(AB + eeB)1 for all i E V
BEsupp(A)

for any choice of c E R. Not only can we guarantee A' > 0 for small enough e, but we

can also choose c such that supp(A') C supp(A) by continuity. It suffices to argue that

A' defined this way is in A*. This indeed follows immediately from the primal/dual

optimality criteria in [16] since

A' > 0 =-> AB > 0 ri = h(B)
icB

for all B E T and r E F*.

Using this, we can remove the dependence on A* and therefore h from the tightness

condition.

Subclaim C.1D The bound (C.18) is tight if, for all A C A(F, V) : |supp(A)| < |VJ,

there exists P E H(F, V) such that Cc E T(supp(A)) for all C C P.

PROOF Suppose this condition is satisfied. The desired P for the tightness condi-

tion in Subclaim C.1B also exists for some A E A* since at least one must satisfy

|supp(A)| <1 VI by Subclaim C.1C. 4

Instead of enumerating the infinitely-valued A, we can enumerate the finitely-

valued supp(A). Define M(supp(A)) as the boolean matrix whose entry at row B E

supp(A) and column i C V is J1i(B). It must satisfy the following property.
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Subclaim C.1E Columns of M(supp(A)) indicate sets that are not proper subsets

of each other. We denote this by M(supp(A)) G NPS and call the matrix NPS. <

PROOF Suppose to the contrary that there exists i, j E V with

{B c supp(A) : i e B} C {B e supp(A): j e B}

Then, by (B.5),

1= AB ZAB1B(i) < AB B = ZAB -1
BDi B B B~j

which is a contradiction.

We call an NPS matrix M basic, denoted as M c BNPS, if M is not NPS after

removing any row. Using this property, we have the following tightness condition.

Subclaim C.1F The bound (C.18) is tight if, for all S C F(A) in (B.la) satisfying

|S| < |V| and M(S) E BNPS, there existsP G EH(9(A), V) such that CC E T(S) for

all C E P.

PROOF Suppose the condition is satisfied. This implies the same condition with

the term "BNPS" replaced by "NPS" since every NPS matrix contains a basic NPS

submatrix.3 Consider any F E <1(A) and A E A(F, V) : Isupp(A)| <1 V1. Since

we have supp(A) C F C %(A) from their definitions4 and M(supp(A)) e NPS

by Subclaim C.1E, the tightness condition here implies the tightness condition in

Subclaim C.1D. More precisely, the condition implies existence of P E H(9(A), V)

with Cc e T(supp(A)) for all C E P. Since T(supp(A)) C F by the definitions (C.22)

and (B.2), we also have P E TT(F, V) by the definition (B.3). .4

This tightness condition can be tested by enumerating BNPS matrices, which is

finitely-valued for a given finite dimension, and independent of the choice of h and

3If a matrix is NPS but not BNPS, there is a row one can remove without loosing the NPS

property. Repeating this eventually gives a BNPS submatrix.
4J(A) contains all subsets of V that are not supersets of A. Thus, F C 9(A) because it does

not contain supersets of A by (B.2).
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F. It is implemented as follows using the IT++ library [46] and tested for the cases

of (|V|, JAI) equal to (3,2), (4,2), (4,3), (5,2), (5,3) and (6,2). The remaining cases

(3, 3), (4, 4) and (5, 5) with A = V follows from Theorem B.1.

sklib.h:

#ifndef SKLIBH

#define SKLIBH

#endif

#include <itpp/itbase .h>

using namespace itpp;

namespace sk {
bool NPS(bmat A);

bvec bitget(int x,ivec b);

bmat SWM(int m, int a);

void newBNPS(bmat A, ivec S, Array<ivec >~ C,

ivec& newS,Array<ivec>& newC);

Array<ivec> genBNPS(bmat A);

typedef Array<Array<ivec> > Dstruct;

bvec Union(bmat A);

bool TC(int a, bmat tA, Dstruct D);

void TMD(int a, bmat A,Array<ivec> C,

Array<Dstruct> & Ds, ivec& P);

}

sklib.cpp:

#include "sklib.h"

using namespace itpp; using namespace std;

namespace sk {

* enumerate 9(A).

* @paran m is the number of terminals. V:=[m]

* @param a is the number of active users. A:=[a]

* @return the incidence matrix M(F(A)\{0}).

bmat SWM(int m,int a) {
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int i; bmat A1,A2;

// enumerate proper subsets of A.

for ( i =0; i<pow2(a) -1; i++)

A1. appendrow (dec2bin (a, i ));

if (nK=a)

// the empty set is not needed for the test.

return A1. get _ rows(1 ,A1. rows() -1);

// enumerate subsets of helpers AC.

for(i=O;i<pow2(m-a); i++)

A2.appendrow(dec2bin(n-a, i));

return concat _horizontal (kron (A1,ones_b(A2. rows() ,1))

kron (ones_b (A1. rows() ,1) , A2))

get _ rows (1 ,A1. rows ()*A2. rows() -1);

}

/** test a matrix the NPS property.

* @param tA is an incidence matrix.

* @return true if tA is NPS.

bool NPS(bmat tA) {

for(int i=O;i<tA. cols (; i++)

for(int j=i+1;j<tA.cols(;jj++) {

ivec cmp=toivec(tA.getcol(i))

-to ivec(tA.get _col(j ));

// NPS implies that non-zero differences of any

// two columns cannot share the same sign.

if ((bool) sum(toivec(cmp==l))

(bool) sum(to_ ivec(cmp==-1))) return false;

}
return true;

}

* find new BNPS submatrices using NPS(.

* @param A is an incidence matrix.

* Oparam S is a vector of (increasing) row indices of A

* previously selected for the submatrices.

* @param C is an array of row selections for the

* previously tested NPS submatrices.

* Oparam newS will be assigned a vector of newly selected

* rows needed for further testing.

* Oparam newC will be assigned an array of row selections

* for the newly tested NPS submatrices.
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void newBNPS(bmat A, ivec S, Array<ivec> C,

ivec& newS, Array<ivec>& newC) {
newS. set _length (0);newC. set _length (0); ivec I=concat(S,-1);

for(int s-S(S. length()-1)+1; s<A.rowso;s++) {
// add a new row from A and test if the resulting matrix

// contains any NPS submatrix.

I(S.length())=s; int pos=O;

while (pos<C. length ()){

int i=O,j=O; bool submatrix=true;

while (submatrix && i<C(pos). length () && j<I . length ()

if(I(j)==-C(pos)(i)) { i++; j++; I
else if(I(j)<C(pos)(i) && j<I.length(-1) j++;

else submatrix=false;

if(submatrix && i===C(pos). length () break;

else pos++;

}
// BNPS matrix is NPS but without any NPS submatrix.

if(pos-4C.length()) {

if(NPS(A.getrows(I))) newC= concat(newC,I);

else newS= concat(newS,s);

/**

* enumerate BNPS submatrices using newBNPS().

* @param A is an incidence matrix.

* @return an array of row selections of A that

* correspond to BNPS submatrices.

Array<ivec> genBNPS(bmat A) {

imat SM("O: "+to-str(A. rows() -1)); Array<ivec> C;

while(SM. cols ()) {

// any column of SM, if exists, requires further testing for BNPS.

imat newSM; Array<ivec> newC;

for (int i=0; i<SM. colso(; i++) {

Array<ivec> newCl; ivec newS;

newBNPS(A,SM. get_ col ( i ) ,C, newS , newC1);

// no need to enumerate BNPS with more that m rows.

if(SM.rowsO<A.cols(-1 && newS.length()) {

// enumerate new submatrices for further testing.

imat tmp=repmat(SM.getcol( i ) ,1,newS. length());

tmp. append _row (newS);

newSM-newSM. c o Is () ?

concat -horizontal(newSM,tmp):tmp;

}
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if (newC1. length() newC-concat(newC,newC1);

I
C=concat (C,newC); SM=newSM;

// report the number of BNPS submatrices found and

// the number of cases for further testing.

cout << "%genBNPSuLevel:" << SM.rows(+1

<< "\t#BNPS:" << C. length()

<< "\t#testsunext:
1 << SM. cols() << endl;

}
return C;

}

* carry out the union operation.

* Oparam sA is an incidence matrix.

* @return the elementwise 'or' of rows of sA.

bvec Union(bmat sA) {

bvec out; out.setlength(sA.cols ();

for(int i=0;i<sA.cols(;i++)

out ( i)=bin2dec (sA. get _col ( i )) >0;

return out;

}

* Test the tightness condition for a given choice of P

* and S.

* Oparam a is the number of active users.

* @param tA is the incidence matrix M(S).

* Oparam D defines P. It has type Dstruct defined as

typedef Array<Array<ivec> > Dstruct;

* Ce for CE1P are specified as unions and

* intersections of rows of tA that are in T(S).

* e.g. D="{{[0 1] [1 2]} {[2 3]}}" means taking

* unions of first two and second two rows,

* and the intersection of the next two rows.

* n.b. 0 indices the first row.

bool TC(int a, bmat tA, Dstruct D) {

bmat B;

// take the unions specified in D

for(int i=0;i<D(O). length(); i++) {

if (!D(0)(i ).length ()1 max(D()( i))>=tA. rows()

min(D(O)(i))<O) return false; // invalid row selection
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bvec tmp=Union(tA.getrows(D(0)(i)));

if(prod(tmp. left (a))) return false; // not in 5(A)

B. append _row (tmp);

}
// take the intersections specified in D

for(int i=O;i<D(). length(); i++) {
if (!D(1)(i ). length ()1 max(D(1)( i))>=tA. rows ()1

min(D(1)(i))<O) return false;

// make sure the union is in q(A)

bvec tmp=Union (tA. get_ rows (D(1) ( i)));

if (prod (tmp. left (a))) return false; //notin Q(A)

tmp=prod(tA.getrows(D(1)(i)),1);

if(! bin2dec(tmp)) return false; // empty set ignored

B. append _ row (tmp);

}
// requires 2 < |P| < |AI.
if(B.rowso>aIIB.rowso<2) return false;
// P must be a partition of V. i.e. every column of B has one 0.

return prod (B. rows() -sum(to_ imat (B) ,1))==1;

}

/**

* test for tightness using TO.

* @param a is the number of active users.

* @param A is an incidence matrix.

* Oparam C is the set of BNPS submatrices sufficient

* @param Ds is an array of candidates of D for TC(.

* @param P is a vector of the choices of D in Ds that

* satisfy TCO for the corresponding C.

void 'IMD(int a, bmat A,

Array<ivec> C, Array<Dstruct > & Ds, ivec& P) {

P. set _length (C. length ());

for(int i=O;i<C. length(); i++) {

bmat tA = A. get _ rows (C( i ));

int j=0; while(j <Ds. length() && !TC(a,tA,Ds(j))) j++;

if(j<Ds. length ()) P(i)=j ;

else { // ask when no specified D satisfies TCO.

Dstruct tmp; char Input [100];

cout << tA << endl << C. length(-i << "uleft.uD=?";

do {
cin . getline (Input ,100);

if(*Input- \0 ){cout<<Ds<<endl<<"D=?"; continue;}

tmp-Input,; if(TC(a,tA,tmp)) break;
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cout << "Invalid.uD=?"

} while (true);

P(i)=Ds. length(); Ds--concat(Ds,tmp);

}}}
}

main.cpp:

#include <itpp/itcomm.h>

#include "sklib.h"

#include <stdio.h>

using namespace sk;

using namespace itpp; using namespace std;

* Run the tightness test.

* The first two command line arguments are the numbers of

* terminals and active users respectively. The third

* argument is the result filename (default: "results.it").

* e.g. the following command test the tightness for |VI=3,

* IAI=2 and record the result in results.it

* ./main 3 2 results. it

* Successful termination implies tightness.

* The file contains details that can be loaded into Matlab

* with itload .m from the IT++ library.

int main(int argc, char *argv []) {
int m,a;
if (argc<3) {

cerr << "Missinguarguments:umandua" << endl; return 1;

}
r=atoi(argv[1]); a=atoi(argv[2]);

if(mKa) {

cerr << "m<a" << endl; return 1;

}
string fn="results. it"

if (argc>3 && *argv[3]!='\0) fn=argv[3];

string s=to str(m)+"_."+to_str(a);

bmat A; Array<ivec> C; ivec P; Array<Dstruct> Ds;

it file ff(fn);

// read the SW matrix and the set of NPS submatrices for testing

if ( f f . seek ("A"+s)) f f >> Name("A"+s) >> A;
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else A=SVvM(m, a);

if(ff.seek("C"+s)) ff >> Name("C"+s) >> C;

else C=genBNPS(A);

cout << "A"+s+"=" << A << endl << "C"+s+"=" << C << endl;

ff << Name("A"+s) << A; ff << Nane("C"+s) << C;

if (ff . seek ("Ds"+s)) { //load Ds from file if available

string tmp; ff >> Name("Ds"+s) >> tmp; set _ array (Ds,tmp);

}
'ID(a,A, C, Ds, P); // run the test

ff << Name("Ds"+s) << to_str(Ds); ff << Name("P "+s) << P;

ff.flush (); ff.close( ;

cout << "Ds"+s+"=" << Ds << endl << "P"+s+"=" << P << endl;

cout << "XLuMDuupperubounduisutightoforu" << m <<

"uterminalsuwithu" << a << "uactiveausers." << endl;

return 0;

}

initD.cpp:

#include <itpp/itcomm.h>

using namespace itpp;

using std string

* Initialize Ds for the tightness test .

* The argument is the result filename (default "results .it ").

* Run this before the main program by the command

* ./ initD results . it

int main(int argc, char *argv[]) {

string fn="results . it";

if (argc>1 && *argv[1]!='\0') {

fn=argv [1];

}

it _file ff(fn);

ff << Name("Ds3_2")

<< string ( "{{{ [0] u [1]}u{}}u{{ [0] [2]}{}}} ") ;

ff << Name("Ds4_2")

<< string ("{{{[0] u [1]}u{}}u{{ [Ou]u [2]}u{}}u{{ [1] u [0u2]}u{}}u{{ [0] u [2u3]}u{}}"

"u{{[001l2]u [3]}u{}}}" );

ff << Name("Ds4_3")

<< string ("{{{ [0] u [1] }u{}}u{{ [1] u [0u2] }u{}}u{{ [0] u [1 u [2] }u{}}"
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fluf f Ell u [Ou2l u [Ou3l luf Iluf f [11 u [Ou2l u [31 luf Iluf f [01 u [lu2l luf 11"

fluff[OluElu3lluflluff[Oullu[2]u[3]luflluff[Olu[lu2lu[3]lufll"

fluf f [Oulu2l u [31 luf 111"

ff << Name("Ds5-2")

<< string(Ilfff 10l,[lljufjjuff [Oullu[2ljufjjuff [l1u[Ou2lIuMuff [Olu[2u3lIuf)-)-"

ituff[2u3lluf[Oulllluff[Olu[2u3u4llufllul [llu[2u3llu ll'I

fluff[Oulu2lu[3]lu llufl(Oulu2u3lu[411uflluff[Oulu2lluf[3u4llll");

ff << Name("Ds5_3")

<< string("fff [Olu[llluMu f [Oul]Lj[2]luflluf [Olu[llu[2]lufll'I

fluff[llu[Ou2lu[Ou3lluflluff[l]u[Ou2lu[31lufllu f[llu[2u3llufll"

ituff[ll,[2]u[Ou3lluflluff[Olu[2u3llufllu f[OluElu3llufll'I

ituff[llu[Ou2lluflluff[Oullu[2]u[3]luflluff[lu3llu (Ou2lll'I

ituff[2u3lluf[OulIllulf[l]u[Ou2u3lu[Ou4lluflluff[Olu[lu2u4llufll'I

fou f[Olu[lu4lluflluff[Olu[3u4lluflluff[Ou3lu[lllu lluff[4]luf[OulllllI

louff[Oulllu [2u4llluff[llu[2]u[3u4]lufllu f[Olu[2]u[3u4llufll'I

fluf [Olu[Ilu[3u4llulllu [Olu[lu2lu[311uflluff[Oullu[3]u[4]lufll'I

ituff(Oullu[3]u[2u4lluflluff[Oullu[2]u[3u4llufll'I

ituff[llu[Ou2lu[3u4lluflluff[Oullu[2u3]u[4]luflluff[Oulu2lu[3]lufll'I

ituff[Oulu2u3lu[4]luflluff[2luEOulu3lu[Oulu4lluflilI

ltuff[Oulu2lu[Oulu3lu[4]luflluff[Oulu2lu[3]u[Oul,411,flll-

iluff[Oulu2lluf[3u4Illuff[Oulu2lu[3]u[4]luflluff[Oulu2lu[3]u[Ou4lluflilI

ituff[llu[3]u[Ou4lluflluff[llu[2]u[Ou4lluflluff[Oullluf[2u3lll'I

ituff[Olu[2u3lu[411uflluff[Oullu[2]u(4]luflluff[Olluf[lu2llll");

ff << Name( "Dr5-4")

<< string ('Ifff[Ol Lj [lljufjjuff [Ou2lu[Iljuf)-Tuff [Olu[llu[2lIuf)-)-"

fluff(llu[Ou2lu[Ou3lluflluff[Ilu[Ou2lu[3]luflluff[Olu[lu2u3llufll'I

flu f(Olu[lu3lluflluff[2]lu([Oulllluff[Olu[llu[2]u[3]lufll'I

fluff[Oullluf[2u3Illuff[llu[Ou2l,[Ou3]u[Ou4llufll'I

fluff(l]u[Ou2lu[Ou3lu[411uflluff[llu[Ou2lu[3]u[4]lufll'I

ltuff[Olu[lu2lluflluff[Olu[lu4lluflluff[lu2lluf[Ou3lll'I

ltuff[Oullu[Ou2lu[3]u[4]luflluff[Oullu[2]u[3]u[4]luflluff[4]luf[Ou2lll'I

iluff[2]luf[lu3llluf [4]luf[Oulljlulf[llu[2]u[3uO]u[4]lufll'I

ituff[Olu[2]u[3ullu[4ul1luflluff[Olluf[lu3Illuff[Olluf[lu2lll'I

Pluff[Olu[2]u[3ullu[4]luflluff[Oullu[Ou2lu[3]luflluff[Oullu[2]u[3]lufll'I

ttuff[Oullu[2]u[1,3]luflluff[Oullu[3]u[4]luflluff[Olu[2]u[3]u[lu4llufll'I

ltuff[Olu[llu[2,3]u[4]luflluff[Oulu2l,[3]luflluff[Oulu2u3lu[41lufll'I

ituff[Oulu2lu[Oulu3lu[4]luflluff[llu[2u3lluflluff[llu[2]u[Ou3lluflllI

ltuff[Olw[2u3lluflluf [Olu[lu3lluflluff[llu[Ou2llufll'I

lluff[Oullu[2]u[3]luflluff[lu3lluf[Ou2llluff[2u3lluf[Oulljl'I

iluff[llu[Ou2u3lu[Ou4lluflluff(Olu[lu2u4lluflluff[Olu[lu4llufll'I

iluff[O]u[3Lj4lluflluff[Ou3lu[lllufllff[4]luf[Oulllluff[Oullluf[2u4lll'I

fluff[llu[2]u[3u4lluflluff[Olu[2]u[3u4lluflluff[Olulllu[3u4llufll'I

itf([Olu[lu2lu[3]luflluff[Oullu[3]u[4]luflluff[Oullu[3]u[2u4lluflilI

louff[Oullu[2]u[3u4lluflluff[ilu[Ou2lu[3u4llufll'I
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it uf f [Oullu [2u31 u [41 IuMuf f [Ou1u21 u [3] 1 uMuff [Oulu2u3l u [41Tuf 111,
ituf [21u[Oulu3lu[Oulu4llu(Iluff(0,1,21,[Oulu3lu[411,fll"

ituff[Oulu2lu[3]u[Oulu4llufllu f(Oulu2lluf[3u4lll'-

fluff[Oulu2lu[31u[411uflluff[Oulu2lu[3]u[Ou4llufll"

fluff[llu[3]u[Ou4lluflluff[llu[2]u[Ou4lluflluff[Ouilluf[2u3lll"

ituff[Olu[2u3lu[4]luflluff[Oullu[2]u[4]luflluff[Olluf[lu2llll");

ff << Name("Ds6-2")

<< string(Ilfff [01u[111uMuff [OulluE211uMuff [11u[2u31IuMuff [O1u[2u31IuM"
ituff(2u3llu([Oulllluff[l]u[Ou2lluflluf([Olu[2u3u4llufll"

fluff[2u3u4lluf[OulIlluff[Oulu2lu[3]luflluff[Oulu2u3lu[4]lufll'-

ltuff[2]u[Ou3u4lluflluff[ilu[Ou3u4lluflluff[llu[3u4llufll"

ituff[lu2lu[3]luflluff[Oulu2lluf[3u4llluff[Oulu2u3u4lu[5]lufll"

ituff(Oulu2u3lluf[4u5llluff[Oulu2lluf[3u4u5llluff[Oullluf[2u3lll'-

fluff [Oull luf[2u3u4l 111"

ff flush (); ff.closeo;

return 0;
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