528 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks

    Full text link
    Near real-time building damage mapping is an indispensable prerequisite for governments to make decisions for disaster relief. With high-resolution synthetic aperture radar (SAR) systems, such as TerraSAR-X, the provision of such products in a fast and effective way becomes possible. In this letter, a deep learning-based framework for rapid regional tsunami damage recognition using post-event SAR imagery is proposed. To perform such a rapid damage mapping, a series of tile-based image split analysis is employed to generate the data set. Next, a selection algorithm with the SqueezeNet network is developed to swiftly distinguish between built-up (BU) and nonbuilt-up regions. Finally, a recognition algorithm with a modified wide residual network is developed to classify the BU regions into wash away, collapsed, and slightly damaged regions. Experiments performed on the TerraSAR-X data from the 2011 Tohoku earthquake and tsunami in Japan show a BU region extraction accuracy of 80.4% and a damage-level recognition accuracy of 74.8%, respectively. Our framework takes around 2 h to train on a new region, and only several minutes for prediction.This work was supported in part by JST CREST, Japan, under Grant JPMJCR1411 and in part by the China Scholarship Council. (JPMJCR1411 - JST CREST, Japan; China Scholarship Council

    Comparison of CNNs and Vision Transformers-Based Hybrid Models Using Gradient Profile Loss for Classification of Oil Spills in SAR Images

    Get PDF
    Oil spillage over a sea or ocean surface is a threat to marine and coastal ecosystems. Spaceborne synthetic aperture radar (SAR) data have been used efficiently for the detection of oil spills due to their operational capability in all-day all-weather conditions. The problem is often modeled as a semantic segmentation task. The images need to be segmented into multiple regions of interest such as sea surface, oil spill, lookalikes, ships, and land. Training of a classifier for this task is particularly challenging since there is an inherent class imbalance. In this work, we train a convolutional neural network (CNN) with multiple feature extractors for pixel-wise classification and introduce a new loss function, namely, “gradient profile” (GP) loss, which is in fact the constituent of the more generic spatial profile loss proposed for image translation problems. For the purpose of training, testing, and performance evaluation, we use a publicly available dataset with selected oil spill events verified by the European Maritime Safety Agency (EMSA). The results obtained show that the proposed CNN trained with a combination of GP, Jaccard, and focal loss functions can detect oil spills with an intersection over union (IoU) value of 63.95%. The IoU value for sea surface, lookalikes, ships, and land class is 96.00%, 60.87%, 74.61%, and 96.80%, respectively. The mean intersection over union (mIoU) value for all the classes is 78.45%, which accounts for a 13% improvement over the state of the art for this dataset. Moreover, we provide extensive ablation on different convolutional neural networks (CNNs) and vision transformers (ViTs)-based hybrid models to demonstrate the effectiveness of adding GP loss as an additional loss function for training. Results show that GP loss significantly improves the mIoU and F1_1 scores for CNNs as well as ViTs-based hybrid models. GP loss turns out to be a promising loss function in the context of deep learning with SAR images

    SAR Ship Target Recognition via Selective Feature Discrimination and Multifeature Center Classifier

    Full text link
    Maritime surveillance is not only necessary for every country, such as in maritime safeguarding and fishing controls, but also plays an essential role in international fields, such as in rescue support and illegal immigration control. Most of the existing automatic target recognition (ATR) methods directly send the extracted whole features of SAR ships into one classifier. The classifiers of most methods only assign one feature center to each class. However, the characteristics of SAR ship images, large inner-class variance, and small interclass difference lead to the whole features containing useless partial features and a single feature center for each class in the classifier failing with large inner-class variance. We proposes a SAR ship target recognition method via selective feature discrimination and multifeature center classifier. The selective feature discrimination automatically finds the similar partial features from the most similar interclass image pairs and the dissimilar partial features from the most dissimilar inner-class image pairs. It then provides a loss to enhance these partial features with more interclass separability. Motivated by divide and conquer, the multifeature center classifier assigns multiple learnable feature centers for each ship class. In this way, the multifeature centers divide the large inner-class variance into several smaller variances and conquered by combining all feature centers of one ship class. Finally, the probability distribution over all feature centers is considered comprehensively to achieve an accurate recognition of SAR ship images. The ablation experiments and experimental results on OpenSARShip and FUSAR-Ship datasets show that our method has achieved superior recognition performance under decreasing training SAR ship samples

    Domain Adaptive Transfer Attack (DATA)-based Segmentation Networks for Building Extraction from Aerial Images

    Full text link
    Semantic segmentation models based on convolutional neural networks (CNNs) have gained much attention in relation to remote sensing and have achieved remarkable performance for the extraction of buildings from high-resolution aerial images. However, the issue of limited generalization for unseen images remains. When there is a domain gap between the training and test datasets, CNN-based segmentation models trained by a training dataset fail to segment buildings for the test dataset. In this paper, we propose segmentation networks based on a domain adaptive transfer attack (DATA) scheme for building extraction from aerial images. The proposed system combines the domain transfer and adversarial attack concepts. Based on the DATA scheme, the distribution of the input images can be shifted to that of the target images while turning images into adversarial examples against a target network. Defending adversarial examples adapted to the target domain can overcome the performance degradation due to the domain gap and increase the robustness of the segmentation model. Cross-dataset experiments and the ablation study are conducted for the three different datasets: the Inria aerial image labeling dataset, the Massachusetts building dataset, and the WHU East Asia dataset. Compared to the performance of the segmentation network without the DATA scheme, the proposed method shows improvements in the overall IoU. Moreover, it is verified that the proposed method outperforms even when compared to feature adaptation (FA) and output space adaptation (OSA).Comment: 11pages, 12 figure

    SAR Ship Target Recognition Via Multi-Scale Feature Attention and Adaptive-Weighed Classifier

    Full text link
    Maritime surveillance is indispensable for civilian fields, including national maritime safeguarding, channel monitoring, and so on, in which synthetic aperture radar (SAR) ship target recognition is a crucial research field. The core problem to realizing accurate SAR ship target recognition is the large inner-class variance and inter-class overlap of SAR ship features, which limits the recognition performance. Most existing methods plainly extract multi-scale features of the network and utilize equally each feature scale in the classification stage. However, the shallow multi-scale features are not discriminative enough, and each scale feature is not equally effective for recognition. These factors lead to the limitation of recognition performance. Therefore, we proposed a SAR ship recognition method via multi-scale feature attention and adaptive-weighted classifier to enhance features in each scale, and adaptively choose the effective feature scale for accurate recognition. We first construct an in-network feature pyramid to extract multi-scale features from SAR ship images. Then, the multi-scale feature attention can extract and enhance the principal components from the multi-scale features with more inner-class compactness and inter-class separability. Finally, the adaptive weighted classifier chooses the effective feature scales in the feature pyramid to achieve the final precise recognition. Through experiments and comparisons under OpenSARship data set, the proposed method is validated to achieve state-of-the-art performance for SAR ship recognition

    Crucial Feature Capture and Discrimination for Limited Training Data SAR ATR

    Full text link
    Although deep learning-based methods have achieved excellent performance on SAR ATR, the fact that it is difficult to acquire and label a lot of SAR images makes these methods, which originally performed well, perform weakly. This may be because most of them consider the whole target images as input, but the researches find that, under limited training data, the deep learning model can't capture discriminative image regions in the whole images, rather focus on more useless even harmful image regions for recognition. Therefore, the results are not satisfactory. In this paper, we design a SAR ATR framework under limited training samples, which mainly consists of two branches and two modules, global assisted branch and local enhanced branch, feature capture module and feature discrimination module. In every training process, the global assisted branch first finishes the initial recognition based on the whole image. Based on the initial recognition results, the feature capture module automatically searches and locks the crucial image regions for correct recognition, which we named as the golden key of image. Then the local extract the local features from the captured crucial image regions. Finally, the overall features and local features are input into the classifier and dynamically weighted using the learnable voting parameters to collaboratively complete the final recognition under limited training samples. The model soundness experiments demonstrate the effectiveness of our method through the improvement of feature distribution and recognition probability. The experimental results and comparisons on MSTAR and OPENSAR show that our method has achieved superior recognition performance
    corecore