112 research outputs found

    Optimal Home Energy Management System for Committed Power Exchange Considering Renewable Generations

    Get PDF
    This thesis addresses the complexity of SH operation and local renewable resources optimum sizing. The effect of different criteria and components of SH on the size of renewable resources and cost of electricity is investigated. Operation of SH with the optimum size of renewable resources is evaluated to study SH annual cost. The effectiveness of SH with committed exchange power functionality is studied for minimizing cost while responding to DR programs

    Coordinated Demand Response and Distributed Generation Management in Residential Smart Microgrids

    Get PDF
    Nowadays with the emerging of small-scale integrated energy systems (IESs) in form of residential smart microgrids (SMGs), a large portion of energy can be saved through coordinated scheduling of smart household devices and management of distributed energy resources (DERs). There are significant potentials to increase the functionality of a typical demand-side management (DSM) strategy, and typical implementation of building-level DERs by integrating them into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and an integrated communications architecture to efficiently manage energy and comfort at the end-use location. By the aid of such technologies, residential consumers have also the capability to mitigate their energy costs and satisfy their own requirements paying less attention to the configuration of the energy supply system. Regarding these points, this chapter initially defines an efficient framework for coordinated DSM and DERs management in an integrated building and SMG system. Then a working energy management system (EMS) for applications in residential IESs is described and mathematically modeled. Finally, the effectiveness and applicability of the proposed model is tested and validated in different operating modes compared to the existing models. The findings of this chapter show that by the use of an expert EMS that coordinates supply and demand sides simultaneously, it is very possible not only to reduce energy costs of a residential IES, but also to provide comfortable lifestyle for occupants

    Energy Optimization and Coordination Frameworks for Smart Homes Considering Incentives From Discomfort and Market Analysis

    Get PDF
    The electricity demand is increasing with the growing use of electricity-based appliances in today’s world. The residential sector’s electricity consumption share is also increasing. Demand response (DR) is a typical way to schedule consumers’ energy consumption and help utility to reduce the peak load demand. Residential demand management can contribute to reduce peak electric demand, decrease electricity costs, and maintain grid reliability. Though the demand management has benefits to the utility and the consumers, controlling the consumers electricity consumption provides inconvenience to the consumers. The challenge here is to properly address the customers’ inconvenience to encourage them to participate and meanwhile satisfy the required demand reduction efficiently. In this work, new incentive-based demand management schemes for residential houses are designed and implemented. This work investigates two separate DR frameworks designed with different demand reduction coordination strategies. The first framework design constitutes a utility, several aggregators, and residential houses participating in DR program. Demand response potential (DRP), an indicator of whether an appliance can contribute to the DR, guides the strategic allocation of the demand limit to the aggregators. Each aggregator aggregates the DRP of all the controllable appliances under it and sends to the utility. The utility allocates different demand limits to the aggregators based on their respective DRP ratios. Participating residential customers are benefited with financial compensation with consideration of their inconvenience. Two scenarios are discussed in this approach with DRP. One where the thermostatically controlled loads (TCLs) are controlled. The thermal comfort of residents and rewards are used to evaluate the demand response performance. The other scenario includes the time-shiftable appliances control with the same framework. The second framework is a three-level hierarchical control framework for large-scale residential DR with a novel bidding scheme and market-level analysis. It comprises of several residential communities, local controllers (LCs), a central controller (CC), and the electricity market. A demand reduction bidding strategy is introduced for the coordination among several LCs under a CC in this framework. Incentives are provided to the participating residential consumers, while considering their preferences, using a continuous reward structure. A simulation study on the 6-bus Roy Billinton Test System with 1;200 residential consumers demonstrates the financial benefits to both the electric utility and consumers

    Topics in Demand Response for Energy Management in Smart Grid

    Get PDF
    Future electricity grids will enable greater and more sophisticated demand side participation, which refers to the inclusion of mechanisms that enable dynamic modification of electricity demand into the operations of the electricity market, known as Demand Response (DR). The underlying information-flow infrastructures provided by the emerging smart grid enhance the interactions between customers and the market, by which DR will improve electricity grids in several aspects, e.g., by reducing peak demand and reducing need for expensive peaker plants, or by enabling demand to follow supply such as those from volatile renewable resources, etc. Many types of appliances provide flexibilities in power usage which can be viewed as demand response resources, and how to exploit such flexibilities to achieve the benefits offered by DR is a central challenge. In this dissertation, we design algorithms and architectures to bridge the gap between scheduling appliances and the benefits that DR can bring to electricity grid by utilizing the smart grid\u27s underlying information infrastructure. First, we focus on demand response within the consumer premise, where an energy management controller (EMC) schedules appliance operation on behalf of customers to save energy cost. We propose an optimization-based control scheme for the EMC in the building that integrates both the operational flexible appliances such as clothes washer/dryer, dish washer and plug-in electric vehicles (PEVs), but also the thermostatically controlled appliances such as HVAC (heating, ventilation, and air conditioning) systems together with the thermal mass of the building. Model predictive control is employed to account for uncertainty in electricity prices and weather information. Under time-varying pricing, scheduling appliances smartly using our scheme can incur notable energy cost saving for customers. As an alternative, we also propose a communication-based control approach which is a joint appliance access and scheduling scheme in which the control algorithms are embedded into the communication protocols used by appliances. The control scheme is based on a threshold maximum power consumption set by the EMC; and we discuss how this threshold can be chosen so that it integrates the availability of local distributed renewable energy resources.Then we investigate demand response in the retail market level which involves interactions between customers and utilities. Pricing-based control and direct load control (DLC) are two types of approaches that are used or envisioned for this level. To address pricing based control methods, we propose real-time pricing (RTP) signals that can be designed to work with customer premise EMCs. The interaction between these EMCs and the pricing-setting utilities is modeled as a Stackelberg game. We demonstrate that our proposed RTP scheme reduces peak load and alleviates rebound peaks that are the typical shortcomings in existing pricing approaches. To address DLC methods, we propose a distributed DLC scheme based on a two-layer communication network infrastructure for large-scale, aggregate DR implementations. In the proposed scheme, average consensus algorithms are employed to distributively allocate control tasks amongst EMCs so that local appliance scheduling within each home will eventually achieve the aggregated control task, i.e., to alleviate mismatch between electricity supply and demand.Finally, we study how demand response affects the wholesale electricity market. As is conventional when studying interactions between electricity generators, we employ the Cournot game model to analyze how DR aggregators may impact wholesale energy markets. To do so, we assume that DR aggregators employ a computationally efficient, centralized scheduling mechanism to manage deferrable load over a large aggregate set of consumers. The load reduction from deferrable load can be seen as `generation\u27 in terms of balancing the market and is compensated as such under current regulatory mandates. Thus, the DR aggregator competes with other generators in a Cournot-Nash manner to make a profit in the wholesale market; and electricity prices are consequently reduced. We provide equilibrium analysis of the wholesale market that includes DR aggregators and demonstrate that under certain conditions the equilibrium exists and is unique

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Intelligent demand response for industrial energy management considering thermostatically controlled loads and EVs

    Get PDF
    In this paper, an intelligent energy management framework with demand response capability was proposed for industrial facilities. The framework consists of multiple components, including industrial processes modeled by the state task network (STN) method, thermostatically controlled loads (TCLs) like the heating, ventilation and air conditioning (HVAC) system with chilled water storage (CWS), renewable generation like photovoltaic (PV) arrays and electric vehicles (EVs). These components were firstly modeled and the operation of them is then optimized in time-of-use (TOU) pricing schemes. Factors that affect several components at the same time, e.g. the number of workers, are considered. The optimization is formulated as a mixed integer linear programming (MILP) problem. A general tire manufacturing facility was investigated as the case study. Simulation results show that the proposed intelligent industrial energy management (IIEM) with DR is able to effectively utilize the flexibility contained in all parts of the facility and reduce the electricity costs as well as the peak demand of the facility, while satisfying all the operating constraints

    Optimization of Islanded Microgrid Operation

    Get PDF
    Presently a lot of effort is being deployed in the area of microgrid development. In this aspect, the work presented here is in the direction of developing and coordinating various operational modules in an isolated microgrid system. The work presented in this report looks at the prospects of incorporating a consumer side load-scheduling algorithm that works in conjunction with the unit commitment and economic load dispatch. The unit commitment and economic load dispatch are run a day in advance to determine generator outputs for the following day. From the microgrid operator point of view, the load side scheduling helps reduce the stress on the system especially during peak hours thereby ensuring system stability and security. From the consumers’ point of view, the dynamic electricity prices within a day, which are a reflection of this time varying stress on the system, encourage them to endorse such a scheme and reduce their bills incurred. Owing to unpredictable weather conditions, running unit commitment and economic load dispatch in advance does not guarantee planned real-time generation in the microgrid scenario. Such variability in forecasted generation must be handled in any microgrid, while accounting for load demand uncertainties. To address this issue a load side energy management system and power balance scheme is proposed in this paper. The objective is to ascertain uninterrupted power to critical loads while managing other non-critical loads based on their priorities
    corecore