
Behavioural Demand Response for 

Future Smart Homes 

 

Investigation of Demand Response Strategies for 

Future Smart Homes that Account for Consumer 

Comfort, Behaviour and Cybersecurity  

 

Ugonna Richard Anuebunwa 

B.Eng., M.Sc. 

 

Submitted for the Degree of 

Doctor of Philosophy 

 

School of Electrical Engineering and Computer Science  

Faculty of Engineering and Informatics 

University of Bradford 

 

2018



i 
 

Behavioural Demand Response for Future Smart 

Homes 
 

Investigation of Demand Response Strategies for Future Smart 
Homes that account for Consumer Comfort, Behaviour and 

Cybersecurity  
 

Keywords 

Base Loads, Demand Response, Discomfort, Essential Loads, Fuzzy Logic, 

Genetic Algorithm, Load Profiles and Schedules, Optimisation, Smart Homes, 

Smart Metering, User Participation Index. 

 

Abstract 

Smart metering and precise measurement of energy consumption levels have 
brought more detailed information and interest on the actual load profile of a 
house which continues to improve consumer-retailer relationships. Participation 
in demand response (DR) programs is one of these relationships but studies 
have shown that there are considerable impacts resulting to some level of 
discomfort on consumers as they aim to follow a suggested load profile. This 
research therefore investigates the impact on consumers while participating in 
DR programs by evaluating various perspectives that includes:  
 
 Modelling the causes discomfort during participation in DR programs;  
 Evaluation of user participation capabilities in DR programs;  
 Identification of schedulable and non-schedulable loads and opportunities;  
 Application of load scheduling mechanism which caters for specific user 

concerns.  
 Investigation towards ensuring a secure and robust system design. 
 
The key source of information that enhances this work is obtained from data on 
historical user behavior which can be stored within a smart controller installed in 
the home and optimised using genetic algorithm implemented on MATLAB. 
Results show that user participation in DR programs can be improved and 
effectively managed if the challenges facing home owners are adequately 
understood. This is the key contribution of this work whereby load schedules 
created are specifically tailored to meet the need of the users hence minimizing 
the impact of discomfort experienced due to participation in DR programs.  
 
Finally as part of the test for robustness of the system design in order to prevent 
or minimize the impact of any event of a successful cyber-attack on the load or 
price profiles, this work includes means to managing any such attacks thereby 
mitigating the impact of such attacks on users who participate in demand 
response programs. Solutions to these attacks are also proffered with the aim of 
increasing robustness of the grid by being sufficiently proactive.  
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Chapter 1: Introducing the Research 

Problem 

1.1 Introduction 

 

Human behaviour is usually complex to model or manage and one does not 

necessarily need to be a sociologist or an academic researcher to appreciate 

this. Daily interaction with other people clearly exemplifies this complex nature 

of humans whose behaviour at one time may differ remarkably from what was 

previously known or believed to be beyond the bounds of the individual’s 

character, based on their known antecedent behaviour. For instance, a middle-

class citizen who was known over the years for his conservative beliefs and had 

campaigned vigorously towards reduction of CO2 emission as well as improved 

environmental protection, may suddenly be found driving an expensive petrol-

powered car.  

 

Such a drastic reversal in belief may be considered irrational by some people, 

but it obviously shows how complex human behaviour can be which is usually 

based on a variety of variables that may affect the individual at any given 

instant. While most human behaviours can be predicted to a reasonable degree 

of accuracy assuming sufficient historical data about previous behaviours are 

available, spontaneous behaviours are usually non-predictable [2]. This work is 

based on understanding, predicting and investigating behavioural attributes of 

energy consumers who participate in Demand Response (DR) programs with 
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the aim of improving grid performance. DR generally refers to all activities 

initiated by the utility, or from the user which is aimed at improving energy 

management by promoting reduction in energy cost or consumption [3].  The 

problems associated with DR participation are solved by modelling future smart 

homes whereby the users are capable of interacting with the grid effectively 

while also, not compromising their comfort and benefits.  

 

Smart grid can be defined as an intelligent grid network system applied in 

modern electrical grid technology whereby the integration of renewable and 

alternative energy sources to the main-stream grid, utilization of information and 

communications technology (ICT), application of efficient Energy Management 

System (EMS) as well as the integration of storage systems, are of primary 

essence [3] [4]. These four key players interacts with one another such that all 

important data used for this integration are processed through automated 

control in order to obtain, process and manage information about the provision, 

supply and energy consumption by various consumers thereby improving the 

efficiency of the grid network. It also improves the sustainability and reliability of 

power generation, transmission, distribution as well as improved management 

of energy demand, while reducing consumption costs. Provision of sustainable 

energy is usually discussed under two broad areas of research namely: 

 
 Development of Renewable energy resources  

 Development of mechanisms which provide high energy efficiency for             

consumers as well as the utility supplier.  
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Renewable energy resources include all energy sources that are not obtained 

from hydrocarbon or nuclear source which are also inexhaustible and can be 

replenished within a short period of time such as: wind, solar, biomass, tidal and 

hydroelectric energy. Demand for electricity is always on the increase principally 

due to increase in population across the globe and this continuous increase has 

brought about the need to reduce CO2 emission from fossil fuel sources. As a 

result of this, research and investments in renewable sources has been a key 

objective in energy policies of several governments and countries whereby the 

introduction of solar and wind sources are increasingly popular. 

 

Energy efficiency on the other hand, can be defined as the ability to manage 

and restrain the growth in energy consumption by using less energy to provide 

the same or similar services [4]. In other words, it can be described as using 

cheaper energy to achieve the same services. As a result, several contributions 

and applications that aim to improve EMS and techniques is investigated by 

researchers. One of such applications is by encouraging active participation in 

DR programs thereby ensuring a reduction of CO2 emission. Hence, the need to 

apply efficient EMS creates little appetite to building new power plants where 

possible since an efficient re-distribution of energy consumption tends to reduce 

peak demand while upholding consumer satisfaction.  

 

A significant amount of world’s energy consumption can be attributed to 

residential buildings hence policies made to optimise energy utilization naturally 

affects home users [5]. This is the key aspect of this research which aims to 

reduce the strain on energy demand especially during peak demand by 
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encouraging consumers to shift their non-essential loads when it is required to 

other times of the day when demand for energy is reduced. There are usually 

some financial savings available as well as other incentives attached to such 

changes in energy consumption behaviour which is facilitated by the 

implementation of dynamic pricing as observed  in some energy markets such 

as in the US and UK. This therefore implies that determining appropriate energy 

price which changes with time, for a market with dynamic pricing, is not a very 

easy thing to do but if properly done, it will be of increased benefit to the grid. 

 

 

Figure 1.1: Grid Network System in an Unbundled Energy Market [3] 

 

The grid network is traditionally made up of the Generation: which includes 

various renewable and non-renewable sources, Transmission: which includes 

high voltage power line transfer from generation sources to designated 

substations, Distribution: which includes lower voltage power transfer within the 

cities and User which may also be connected with the retail in an unbundled 
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energy market system as shown in Figure 1.1. The area of interest is at user 

locations with the aim to improving EMS, assuming those are Smart Homes.  

 

A smart home is basically a residence whose electrically powered devices can 

be controlled by a means of advanced automation techniques and monitored 

remotely via the internet, using smart phones or computer devices.  Energy 

supplied to such homes can be managed effectively by the means of interaction 

between the consumers and the retailers, owing to the communication network 

established between these two parties, as well as data processing unit 

embedded in the advanced automated controller installed in the home. In this 

way, the consumer is required to have minimal manual involvement in the 

complicated interaction with the retailers but achieve the capacity to obtain the 

most desired energy management routine that takes into account their peculiar 

behavioural attributes and energy consumption choices. Taking behavioural 

attributes into account while designing EMS is important because it reduces the 

dissatisfaction of participants in DR programs and this work is as a result of the 

desire to minimise this dissatisfaction amongst users. 

 

1.2 Aim and Objectives of Research   

 

Although application of DR programs within the smart grid is still not very 

common amongst several energy market in most parts of the world, an 

observation from US energy market shows that several consumers who 

originally signed up to such programs ended up withdrawing [2]. Most of the 

cited reasons as detailed in the literature review chapter are based on 
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dissatisfaction experienced with such schemes, which are cumbersome to 

follow and not to their preferred load scheduling requirements. This therefore 

inspires the aim of the research which is given as: 

 
An investigation of the impact of demand response programs on energy 

consumers which includes evaluation of participation capabilities as well 

as providing means to encouraging change in behaviour for improved 

participation in such programs. 

 

This is investigated using available historical data applied in order to understand 

user behaviour, thereby identifying what causes the discomfort associated with 

participation in DR programs. This therefore enables a proposal for a novel load 

scheduling technique which considers several aspects of these factors such 

that an efficient EMS what generates optimal load schedule, and also caters for 

the user comfort is achieved. The objectives of the research are as follows:   

 

 To investigate techniques whereby identification of schedulable loads can be 

empirically deduced while differentiating them from non-schedulable loads. 

This therefore enhances the application of appropriate scheduling algorithms 

whose priority is to shift loads from times of the day when the conditions are 

not so favourable to other times when they become better.  

 To investigate the causative to the discomfort experienced by users who 

participate in DR programs. This variable is a measurable and a 

manageable quantity which can only enhance user participation in DR 

programs if properly utilised.  
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 To investigate user participation capabilities within a community that can be 

used to map various participation levels amongst the users. This is capable 

of assisting energy providers to understand the engagement levels of their 

customers thereby helping to improve their participation in DR programs. 

 To develop robust recovery mechanisms from defects as well as from 

possible cyber-attacks within the smart home thereby promoting pre-emptive 

approach and corrective means of securing the system design. 

 

1.3 Assumptions and Limitations of Research  

 

With respect to the proposed testbed activity charts for a smart home system as 

given in Figure 3.5, the following assumptions and limitations are derived: 

Assumptions: 

1. Dynamic pricing used has price data that varies at least on hourly basis. 

However, shorter time intervals are expected to produce better results. 

2. Pricing data are received early enough before the time stipulated for load 

scheduling. This is to avoid issues of speed of optimisation which allows 

GA techniques enough time to complete. This is typically at midnight.  

3. Sufficient data on historical load profile is made available.  

4. Energy measurements of all the household appliances are measurable 

individually with the help of smart plugs, and are collated on the HEMS. 

5. The user accepts the load profiles suggested without overrides such that 

results obtained are directly used for further computations such as 

measurements of discomfort and user participation capabilities.  
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6. At the end of the day when all energy measurements are completed, all 

the necessary input data are instantly updated and computed, while the 

load scheduling is also performed instantaneously.  

Limitations: 

1. This application is not convenient for a real time scenario. Although such 

a scenario is achievable by having to run the algorithm at intervals 

shorter than the hourly time intervals of pricing data coming in, it is 

however not applied in this work.  

2. The computer used in the simulation was not very fast thereby 

discouraged an attempt on real time scenarios. 

3. It is not possible for any computing device to perform scheduling 

instantaneously therefore some error are introduced whose margin 

increases for as long as it takes for the computing device to complete the 

load scheduling process. 

 

1.4 Key Aspects of Smart Home Applications   

 

Four key aspects of a smart home application are identified to play key roles in 

ensuring an overall efficient system performance. These include: The Metering, 

Communication, Control (Decision Making), Metering and Actuator Systems. 

Figure 1.2 shows this outlook and it may also be linked to other external entities 

such as Virtual Power Plants, Distribution Network Operators (DNOs) and 

micro-grid operators, in order to provide for load balancing services, renewable 

energy integration and ultimately financial benefit to the consumer.  
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Figure 1.2: Key aspects of smart grid application within the smart home 

 

The Communication System is key to ensuring information delivery from one 

point to the other which is enhanced by feedback and a two-way communication 

system [6]. Various communication protocols are possible and the availability of 

Wi-Fi communication systems has made it the obvious choice since various 

other associated devices such as the smart meter and smart plugs/sockets are 

usually WIFI enabled.  

 

The Metering System is based on the services provided by the smart meter 

which enables energy measurement within specified intervals of time to be 

obtained and sent to the HEMS for computation. The retailer also receives this 

information for billing purposes using approved communication network.  

The Controller System is the HEMS which also comprises of the algorithm 

installed, and determines the suggested load schedule for each appliance. This 

system is central to all the systems installed and coordinates every activity that 

takes place within the home.  User override capabilities are also part of the 

control system within the home whereby the user has the ability to override any 
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undesired schedule in order to ensure that undesired load schedules are not 

allowed especially at critical times of need. 

 

The Actuator System is the smart sockets which respond to the control signals 

to either switch ON or OFF an appliance as required. Figure 1.2 also shows the 

relationship between these key aspects whereby the eventual aim is to affect 

the load control through the actuator responses by a combination of the effects 

of the metering, control and communication systems. 

 

1.5 Scope of Investigation 

 

In this research, understanding the importance as well as the impact of DR 

programs on consumers requires categorization of the scope of investigation 

under five themes. Each of these is individually investigated while the impact 

associated with each scope identified is evaluated with respect to the overall 

possible consumer experiences which may affect user participation in DR 

programs. The purpose is to present a reasonable analysis of these effects and 

proffer means of improving user engagement in DR programs. The themes 

under consideration are as presented: 

 
 Identification of schedulable and non-schedulable loads within a household 

 Developing appropriate algorithm for load scheduling purposes 

 Analyzing the effect of participation in DR programs on user comfort  

 Evaluation of user participation capabilities in DR programs  

 Analyzing the effect of cyber-attack on the household load and price profile. 
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All experimental procedures undertaken are established under these themes 

which summarizes the scope of the research investigation. They are carefully 

chosen in order to fill the gaps in research as identified in the literature review 

thereby ensuring consumer satisfaction and improved user participation. They 

are also derived from expected needs of the grid as a result of a successful 

implementation of a robust, interactive and reliable DR application for a future 

smart home which serves to the benefit of both the users and the grid. 

 

1.6 Gaps in Research Identified 

 

While acknowledging several previous works done by various researchers 

especially in scheduling of appliances for optimal performance, as well as 

proposals to encourage energy consumers to become active participants in DR 

programs, there still exists gaps in this research area which has affected 

implementation of DR programs in the grid.  

 

Difficulties in Implementing the Virtues of Demand Response Program: 

Active participation in DR programs aims to bring about a more balanced 

energy consumption as well as reductions in peak demands due to shifting of 

demands from peak to off-peak times in the day. This activity has the capacity 

to reduce the need for marginal cost of generation as identified in several 

European grid networks [7]. However, it is nearly impractical to fully implement 

the virtues of DR since the consumers usually do not respond appropriately to 

these schedules [8]. Some of these hindrances are recognised to be as a result 

of inelasticity of demand and low level of customer participation due to 
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asymmetries in information, whereby consumers oftentimes consider demand 

schedule information as complex to monitor and time consuming to apply [3]. 

An example of this scenario was the experience of Real-Time Pricing (RTP) 

program in Chicago whereby, in as much as the price values of energy 

consumption with time of day was made available online and via telephone, 

households rarely actively checked hourly price changes to adjust their load in 

response to these messages [3, 9]. A similar example was experienced in San 

Francisco, US according to the study of The Utility Reform Network (TURN) 

whereby users were not able to pursue their best interests as it applies to real-

time-pricing mainly due to lack of knowledge of how best to respond, or due to 

failure to devote adequate time to study the daily price variations and respond 

appropriately [3, 10]. The inability to integrate this information in an automated 

way for load scheduling applications which should cater for the specific needs of 

each user therefore, acts as a hindrance to an effective DR implementation.  

 

Inadequate Monitoring of User Experiences: User experiences in form of 

feedbacks are usually not monitored in most DR programs which might at some 

point, become discomforting to the users. The need to minimize the effect of 

discomfort experienced by consumers especially when scheduling is performed 

by retailers which usually leads to reduced user participation has usually been 

underestimated or ignored. Retailer-induced load scheduling is usually 

performed as a bulk control of various appliances of customers who signed up 

for scheduling at times of the day as decided by the retailers. The consequence 

of this type of load scheduling program is an increased chance of operating the 

appliances involved at times of the day much outside the preferred comfort 
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zones of the customer [3, 7]. This is one of the gaps in this research area that 

has contributed to diminished participation in DR programs. 

 

Lack of Concise Benefits of Participation: Lastly, financial savings available 

for various choices of scheduling control requires a clearer investigation. It is 

desirable for consumers to be acquainted with estimated savings available in 

any given day to enable them to make informed decision about whether they 

should be interested in participating in DR program or not. This has the capacity 

to motivate customers to engage more actively especially because they will be 

able to observe the benefits of their behavioural changes within the day and 

possibly an estimated financial savings over the month and year.  

 

1.7 Research Contributions 

 

The proposed solutions to the problems already identified can be considered to 

represent the key contributions of this research area. The materials accessed in 

the literature played important roles to understanding the state-of-the-art 

research, thus helped in finding appropriate solutions towards solving the 

problems. These contributions are therefore summarised as thus: 

 

Empirical Deduction from Load Characteristics of availability: One of the 

contributions in this work provides means to identifying schedulable and non-

schedulable loads based on the standard deviation of the historical load 

profiles. Previous research and implementations of demand response are 

based on predication of appliance usage and changing behaviour. In this work, 



  14 
  

identifying opportunities for scheduling and what loads are schedulable based 

on the load profiles is proposed. An example of such a scenario is in the use of 

washing machine which is generally believed to be a schedulable load, but real-

life experiences show that on certain occasions, this might not be the case. For 

instance, a user who goes to work at night might prefer to do laundry at home 

during the day. So, if peak demand falls within the day and the user happens to 

be engaged in group load scheduling initiated from the utility, then such a user 

will be forced to schedule their washing machine to be used at night time when 

they are away working. This has been shown to be a contributing factor to 

withdrawal to DR programs which this research took in consideration by 

preventing such schedule from occurring. Of course, the user would have saved 

more money but if they prefer their convenience more than the financial 

benefits, then such a decision should be respected. Results from this work 

therefore ensures that users are treated according to their preferences because 

any load is capable of being schedulable or non-schedulable depending on the 

user’s behaviour.  

 

Measurement of User Comfort: A key contribution is the measure of 

discomfort variable which is deduced from the relationship between the 

standard deviation of the load profile and the change in energy consumption, as 

it affects every household. This is a unique approach towards measuring the 

impact of load scheduling on consumers and it offers substantive means of 

either increasing the discomfort to yield higher monetary savings or to reducing 

it which invariably produces reduced financial savings. The comfort is 

guaranteed because the user has substantial control over the outcome thereby 



  15 
  

eliminating unexpected or undesirable outcomes. Previous research work has 

focused mainly on monetary or energy savings but a method for evaluating 

performance of DR programmes for the user is provided here for the first time.  

 

Evaluation of User Participation Capabilities: Evaluation of participation 

levels amongst the users is another contribution to this work. This is a unique 

approach in measuring user participation levels because it offers a numeric 

value to this measurement thereby enabling a self-assessment by the user. It 

also gives the retailer an opportunity to critically measure participation levels 

which can help them map a community with regards to their level of 

engagements. This is key as it offers the retailers the ability to see how their 

customers respond to proposed DR programs to be able to evaluate their 

performance. They can therefore reach out to poor participants for increased 

participation levels thereby forestalling chances of sudden withdrawals from 

such programs which may arise due to user dissatisfaction. 

 

Dynamic Load Scheduling Algorithm: Another contribution of this work 

includes the development of the fitness function used to optimise the scheduling 

that includes a number of factors including the comfort factor.  In this work GA 

has been used to do the optimisation. The choice of GA is based on its ability to 

satisfy the basic requirements of searching for optimal results while ensuring 

that the search does not get stuck within a local minima or fail to converge. 

However, the novelty here involves the way the fitness function was formulated 

which provides a means to append variables in such a convenient way that 

makes it easy to execute. Obviously GA just as every other type of optimisation 
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tool have their respective limitations but those limitations did not impede on the 

results. Hence the research focus is not finding the best of optimisation 

methods but to solving some important problems of which GA is a tool.  

 

Cyber-Attack Identification and Attack Mitigation: Evaluation of the modes 

and the impact of cyber-attacks on domestic DR programmes as well as 

devising means to preventing such attacks is important in the smart home. Here 

the contribution is based on identifying the various attacks that could occur, and 

the impact that these attacks can have on the overall demand response within 

proposed market. In this way, any design of such a system should be able to 

incorporate these mechanisms in their original design. 

 

1.8 Research Justification  

 

Certain factors are considered important in this work and they justify the 

essence and the methodology applied towards attaining the goal of the 

research. These are considered not only from the user’s perspective, but from 

the retailer, grid and the environment as well. These factors are therefore 

discussed in this sub-section as thus: 

 

Awareness: Lack of adequate information about the impact of DR programs on 

users despite a widely acknowledged possible interference caused on the way 

of lives of those who participate in such programs, makes this research 

relevant. This is because having information about the cause of an event 

provides means to effectively managing such an event. As a result, critical 
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issues such as discomfort, active participation measurements and a robust load 

schedule, can be achieved thereby improving the HEMS efficiency and provide 

more efficient means of interaction between the grid and the user. 

 

Care for the Environment: This research is primarily based on the need to 

reduce CO2 emissions which causes significant air pollution in cities around the 

world. The popularity of renewable sources is quite commendable which goes a 

long way to enhancing this reduction but more is needed to be done towards 

adequate management of energy use especially peak load reduction to 

minimise waste. Implementing real time pricing of electricity where possible, is 

therefore considered appropriate to enhance an optimal management and 

application of this technique at the consumer locations so that users can be 

able to respond appropriately to DR programs [11].  

 

User Control Capabilities: This research acknowledges the need to carry the 

user along effectively before making decisions to modify their load use. User 

control and override capabilities are included so that users would not feel 

compelled or forced to a scheme that they have little or no control of, thereby 

minimising occasions of withdrawals with time. This is available in form of a 

feedback mechanism whereby the user could see on a display unit, a possible 

load profile for the day. Further measurements such as discomfort and user 

participation levels are computed and made available to the user so that they 

are happy to approve the proposed schedule as well as retaining the capability 

to override any unwanted schedule at any given time.   
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Government Support: Let us consider the energy sector from a business point 

of view whose primary aim is to make profit. This is a reasonable consideration 

since energy demand and supply follow similar rules just as in any other 

business routine.  It is therefore, in the best interest of such businesses to sell 

as much energy as they could, depending on the availability of the resource as 

well as the availability of customers willing to buy. This means that naturally, 

energy retailers may not actually be interested in encouraging energy reduction 

despite the adverse effects on the environment. The government may therefore 

find it necessary to enact laws that compel retailers to move towards effective 

DR provision irrespective of whether they are happy about it or not.  

 

 Automated Load Control: Lastly, assume forecasted Real Time Price (RTP) 

tariff is adopted as the acceptable tariff system then, for customers who wish to 

minimise cost, the problem of scheduling of load will become obvious. This is 

because they should identify at what times of the day when prices are low within 

an acceptable level and then schedule to operate their non-vital loads at those 

times of the day. Different price changes are expected to occur at regular time 

intervals of the day, week, and so on whereby the consumers are expected to 

track these changes and respond accordingly. This can be a very tedious task 

for the customers to follow hence; the need to introduce automated scheduling 

process which is capable of not only following the optimal scheduled load, but 

also recognises discomfort inherent in participating in DR, and therefore apply 

ways to minimizing it so that user participation can be maximized.  

 



  19 
  

1.9 Chapter Summary 

 

This chapter has been a presentation of the problem statement which specifies 

the scope of research, while placing it in context with the state-of-the-art 

research and advancements in smart grid development especially within the 

home. The gap in the study of automated scheduling was also identified which 

is based on identifying the impact on user behaviour as they participate in DR 

programs with the aim of being able to find means to mitigating such impacts. 

Also identified is the need for energy retailers to understand the behaviour of 

their target market to assist in the planning of energy market transactions as 

well as acknowledging the need for a robust scheduling algorithm which can 

coordinate the operations within the home. A need to investigate possible 

security challenges was also introduced and all these aspects of the work 

enhances the ability to present a justification for the research which aims to 

providing a robust EMS for a future smart home.  

 

The next chapter will be a review of relevant literature which has helped to 

structure and understanding the proposed area of research.  It is a summarised 

account of various contributions as well as on-going research from several 

writers, including participations from various governments across the globe.  
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Chapter 2: Research Background 

 

2.1 Introduction 

 

An introduction of the research area as well as the scope of the work was 

presented in previous chapter, whereby the role of each of the key players in 

providing efficient energy system was discussed. This chapter is a review of 

state-of-the-art developments within the smart grid and most importantly, about 

smart home EMS which includes developing scheduling algorithms for efficient 

load consumption optimisation.  Previous related work done by various writers 

within this area of study is thoroughly reviewed as well as reviews of pilot 

projects which are under planning or those already executed by various 

governments in several countries across the world. This is in view of the effect 

of how much advancement in technology is sought for, especially where it is 

economically important and capable of adding value to human life.  

 

Researchers are keen on developing new technologies, as well as managing 

the infrastructures and resources that coordinates these improvements for 

better living because the world today thrives on energy generation, distribution, 

utilization and most importantly, conservation and management. Provision of 

improved EMS especially in smart homes is desirable because energy demand 

is always increasing due to growing economies of various countries around the 

world. Apart from growing economies, population growth as well as introduction 

of new loads that relies on electricity for operation such as Electric Vehicles 
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(EVs), are other factors that contribute to increase in energy demand, thereby 

increasing carbon emission especially if the source of energy for their operation 

was obtained from non-renewable sources. This leads to the desire to as much 

as possible, ensure that energy generation matches energy demand always so 

that marginal cost of energy generation can be reduced.  

 

The grid as we know is getting smarter and providing it with intelligence enables 

it to undertake certain essential automated decisions at certain essential times 

to achieve certain goals aimed at energy conservation, efficiency improvement 

and optimisation applications, thereby encouraging researchers to seek means 

to actualizing this objective. An evaluation of various contributions attributable to 

this research area from various research teams is evaluated in this review 

which is based on several research topics that fall within the broader scope in 

developing a sustainable smart grid that cares about the environment by 

encouraging reduction of CO2 emission.  This review therefore reflects the four 

key aspects of smart grid application for smart homes, discussed in section 1.3. 

 

2.2 Feedback as a Prerequisite in Smart Grid Systems  

 

Feedback is important towards developing efficient optimisation techniques for 

energy consumption and scheduling using either manual, semi-automated or 

fully automated technology for DR program implementation [6].  This is in 

addition to its importance in coordinating system performance within the smart 

home by ensuring adequate information sharing amongst the four Key aspects 

of smart home application shown in Fig 1.2. Information can also be shared 
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between the retailers and the users in form of signals via telephone lines, e-mail 

messaging system, cell phone SMS and Advanced metering infrastructure 

(AMI) technology [3, 12]. In this way, the user can be informed about the need 

to either reduce consumption or to use appliances at different times of the day. 

Some typical examples of data required for instant use include energy meter 

readings, pricing information and various types of control signals.  

 

AMI is the aggregation of the grid, the two-way communications infrastructure 

and the supporting information infrastructure with IP address where security 

requirements and implementation guidance is the primary motivation for its 

development [13]. It is a very popular means of actualizing adequate feedback 

communication as it enables a 2-way communication network between the 

utility and consumers, although the major disadvantage of implementing an AMI 

is the problem of latency whereby prolonged response delays in data 

transmission could render it inefficient [14]. To obtain a reliable and readily 

available data, online data accessibility is promoted. Therefore, IP 

communication can be employed to ensure a secured online data transfer 

devoid of interference and interception.  

 

The effect of feedback on electricity consumption offers one of the most 

important techniques and means to actualize an effective domestic or industrial 

energy management. This optimisation is usually aimed around heating, 

refrigerating, cooking and lighting energy requirements. In a research carried 

out in Northern Ireland using data available over a period of 20 years (1990 - 

2009) and assisted by the office of the Northern Ireland Statistics and Research 
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Agency; the publication in 2013 shown in statistical form that the average yearly 

energy consumption was observed to reduce by 17-18% between 2002 and 

2009 when feedback about electricity consumption was made available to the 

consumers as compared to energy consumption between 1990 till 2009 [5].  

 

The viewing of real-time energy consumption levels and corresponding pricing 

details were facilitated using AMIs which includes smart meters and advanced 

meters installed at homes. Automated Meter Readers (AMR) or simply; 

Advanced Meters are a one-way-communication data acquisition, data retention 

and data transmission devices that communicates with the utility at regular 

intervals from the user. This enables the utility to monitor and bill customers 

appropriately and remotely without having to read the meter physically. On the 

other hand, smart meters are more complex in function as they provide a two-

way communication with utility while performing the same functions as already 

stated for advanced meters [15]. The added exclusive feature for the smart 

meter is its ability to convey real-time tariff changes and peak-load information 

from utility to customers at varying times of the day.   The AMRs are replacing 

the traditional analogue meter and enables households to understand their 

energy consumption patterns better. 

 

The implementation of the use of feedback on energy consumption level that 

involves the use of cell phone SMS and e-mail messaging to alert customers 

when usage levels are exceptionally high, can be helpful. A study to this effect, 

as carried out in Denmark, was found to reduce consumption by 3% [12]. A 

similar research shows that in Japan, availability of feedback information on 
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residential energy consumption using a visual display has encouraged 

consumers to manage their energy usage more efficiently such that a reduced 

energy usage of 1% was achieved regardless of the fact that no monetary 

incentive was offered and the display was not connected per appliance but it 

was for the entire household appliances [16] . The display included a graphical 

display of energy consumption levels with time. Although 1% is very minimal, 

with more education and probably with the introduction of various incentive 

schemes, consumers might find DR program more interesting and will improve 

their participation. This can therefore influence the 1% figure to have a 

significant increase. These results show the importance of feedback in 

optimisation of energy consumption, and an attempt to automate DR programs 

can improve cost reduction and improve the efficiency of energy usage. 

 

2.3 Benefits of Energy Management Systems in Smart Homes 

  

Energy management system is a set of computer-based tools or equipment 

which aids the operation of the electric utility to be able to monitor, control and 

enhance the overall performance of the grid. In the smart home for instance, 

automatic meter readers (AMRs) is one of the means which can be used to 

enhance the development of an efficient HEMS. Management of appliance use 

can be enhanced with the assistance of AMRs, by introducing the application of 

standby power on domestic appliances such that these appliances can go into 

standby mode when they are not in active use. This is viewed as a means of 

implementing energy conservation within the home rather than using a 

continuous active power when appliances plugged on power sources are not in 
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active use [17]. Additionally, the benefits of applying energy conservation in the 

home can be further improved by: 

 

 Remote Control Application: This includes the use of applications that are 

controllable from smart phones, laptops and also timers [17].  

 Application of Technical Solution: This involves developing smarter 

energy systems and algorithms that includes optimisation of load profile for 

more efficient energy use. 

 Political Regulation: Here, certain high power consumption devices are 

abolished and energy saving ones are preferred. A typical example is the 

abolition of the use of incandescent lamp in the EU which has been replaced 

by a more favoured energy-saving florescent lamps [18].    

 User Encouragement: Encouraging customers to engage in DR 

applications includes direct marketing strategies from the retailers whereby 

users are made aware of the benefits of participating in load scheduling 

programs, thereby encouraging them to turn certain appliances ON or OFF 

when required. 

 

The first step towards achieving an efficient EMS involves devising a technique 

towards effective load identification methodologies whereby acknowledging 

which load to schedule, or to switch ON or OFF at any given time, must be 

made. Authors in [19] implemented a scheme known as the Grid Responsive 

Energy Efficient Networked home (GREEN HOME) using feedback and load 

identification techniques as a framework for private households. The authors 

suggested the use of smart plugs or any other non-intrusive identification 
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algorithms and devices based on smart meter data, and can be used for the 

load identification and feedback process. Hence, householders could then 

identify and control specific loads as required.  

 

 In [20] the authors elaborated the benefits of developing sustainable EMS 

whereby an appropriate balance between customer satisfaction and reduction 

of electricity costs is established. The paper emphasised that such state of art 

design must be achieved using some form of intelligent automated decision 

making process and actuation because, the dynamics of electricity price 

changes cannot be critically followed manually by anyone since consumers 

often lack a deep understanding of electrical systems as well as having a limited 

time to make energy-related decisions [21]. Such system was expected to 

reduce the burden on consumers to directly control all appliances at all times 

[22].  Finally, the paper mentioned some state-of-the art technologies in EMS 

which included a mobile-based feedback system and a mobile application that 

provides information about energy use that compares with other individuals [20].  

 

2.4 Energy Demand Integration from New Types of Loads 

 

With increasing demand for electricity supply in several countries mainly due to 

population growth and also due to introduction of new loads such as EVs and 

heat pumps, there has been an increasing appetite to satisfy these new 

demands, but from renewable sources. This appetite and preference is mainly 

driven by the desire to reduce carbon footprint in the environment. An 

expensive and therefore very difficult means of satisfying this demand is by 
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constructing very large storage facilities on the grid to be able to satisfy peak 

power demand. The difficulty in implementing this is mainly due to cost and 

technical limitations, although research on storage facilities using battery banks 

and storage capacitors are ongoing [23].  

 

Vehicle-to-Grid (V2G) Storage Capabilities: These type of storage facilities 

under research are exemplified by utilizing the battery storage in cars to 

facilitate vehicle-to-grid (V2G) storage capabilities. Incidentally, its effect on the 

grid is significant and it is being considered because it is capable of disrupting 

the grid frequency stability [24, 25]. In order to manage this effect appropriately, 

various V2G models are being proposed and developed to model the electric 

distribution system in order to precisely study the behaviour of the network 

where there is high involvement of V2G in the grid as proposed by authors in 

[26]. Here, V2G was modelled to behave as a load (when in charging mode) 

and as a current source component (when discharging/injecting electric power 

to the grid). The paper therefore describes a mathematical formulation for 

incorporating V2G into the distribution network with analysis on the power flow 

analysis. Results shows that V2G causes a decrease in bus voltages when in 

charging mode, while it improves the voltage profile when discharging. 

 

Demand Side Management Interventions: A way of satisfying the increasing 

demand for energy consumption apart from building new power stations or 

storage facilities, is by implementing the virtues of demand side management. 

This can produce enhanced integration of large amount of renewable energy 

sources such as V2G technologies as well as solar panels installed on roof tops 



  28 
  

of energy consumers using adequate load management techniques, thereby 

increasing the participation in demand side response for customers in who may 

also be involved in load scheduling programs [23]. Demand-Side Integration 

(DSI) programs refer to all aspects of electric power system which involves the 

energy generation, energy supply and the end-user load consumption. Although 

not fully developed, it is a potentially important means of providing more reliable 

access to electricity in many countries [23, 27]. Its effective implementation 

must involve integration of advanced Information and Communication 

Technology (ICT) and a good knowledge of system loads. These technologies 

are therefore becoming popular and important aspects of the grid setup which 

enables systematic interruptible load scheduling [3]. This new technological 

approach also involves the use of smart plugs capable of communicating with 

one another and with a central processing unit which is integrated with the 

smart meter. It therefore becomes the window through which a domestic 

algorithm designed to understand localised energy consumption patterns and 

requirements can be developed. This will eventually eliminate the complexity 

associated with the ever-changing load schedule programs hence, will 

contribute immensely to DR success by increasing customer participation and in 

the larger sense, improve elasticity of demand.  

 

2.5 Demand Side Management of Energy Resources  

 

The future of efficient EMS lies in improved demand side management which is 

largely influenced by DR programs. Demand response is envisaged as one of 

the most strategic solutions for the 21st century power system already battered 
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by limited resources, increased environmental threats as well as price-spike 

power demands [28]. According to Federal Energy Regulatory Commission 

(FERC) in the US, it is defined as deliberate modifications of electric usage by 

end-use customers in response to price changes of electricity with time, in order 

to receive associated incentive payments due to reduced energy use during 

high wholesale market prices or during jeopardized system reliability [29]. Due 

to the acknowledgement about how strategic DR is, several governments have 

continued to encourage and support programs and schemes that encourage 

improved and active participation in DR programs. Several writers have also 

contributed in developing methodologies that enhance improved DR programs 

for improved participation by users.  

 

In [30] the authors designed a Dynamic Demand Response Controller (DDRC) 

which was implemented in MATLAB/SIMULINK and connected to EnergyPlus 

model via building controls virtual test bed (BCVTB) so that one can control 

Heating, Ventilation and Air Conditioning (HVAC) loads using RTP information 

and ambient temperature values. The justification for the research was the need 

to participate more actively and more economically to DR programs via RTP 

information rather than relying on dynamic-controlled thermostats supplied by 

Austin Energy in Texas USA, which were capable of switching HVAC loads 

on/off depending on ambient indoor temperature. This DDRC control was 

achieved by designating a customer-specific threshold retail price, which was to 

be compared with the real-time-price of electricity. If the RTP is above the 

threshold, DDRC changes the set-point temperature of the thermostat in line 

with the prevailing price difference. With a hypothetical RTP data estimated 
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every 15 minutes, DDRC result showed a reduction of 12% and 21% in price of 

electricity for heating and cooling, in the months of January and August which 

represented the coldest and warmest months of the year, respectively.  

 

The authors In [31] proposed a methodology for management of Distributed 

Energy Resources (DER) within the Supervisory Control And Data Acquisition 

(SCADA) systems by scheduling of the generation units in order to maximize 

the performance of the energy supply. The optimal operation of the variables 

which are: distributed generation, DR and storage resources, was formulated as 

a Generalized Branch-and-Cut (GBC) Mixed Integer Linear Programming 

(MILP) model and solved in general algebraic modelling systems (GAMS) 

platform using CPLEX optimizer. In a case study presented, the objective 

function of the MILP is the total cost for a given period (T) and was minimized 

[31]. Result showed that using an intelligent and flexible SCADA, existing 

resources are utilized by agents that require them in a robust and efficient way. 

Although the work as presented by the authors focused on distributed 

generation, this thesis is based on effective home energy management systems 

so these methods are not used here. However, it is important to highlight what 

other researchers are doing in this area since some energy consumers are also 

producers hence, information about applications of distributed generation 

becomes relevant.  

 

In [32] the paper discussed the response to electricity spot prices (or RTP) for 

storage-type customers who are capable of participating actively in demand-

side response programs as prosumers. This means that as well as being a 
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consumer, such customers also have the capacity to become energy producers. 

The responses were classified into three categories given as: 

 Curtailment: Switch off when price goes higher than a certain threshold. 

 Substitution: Switch to alternative supply whenever it is cheaper to do so. 

 Storage: Load scheduling to times of the day when energy costs are lower 

and this includes charging energy-storage facilities within such times.  

 

The justification for the research was to establish the advantages of 

implementing spot pricing of electricity with data available 7 days in advance for 

every one hour interval, and finding the optimal times to operate domestic 

appliances in order to achieve optimal energy and cost savings. The cost 

minimization problem was presented as a linear programming formulation, 

written in APL*PLUS/PC programming language on an IBM PC and solved 

using a non-simplex algorithm as proposed by Daryanian [32]. Result from a 

case study showed savings obtained as a result of the difference between the 

avoided costs of using electricity at higher price-hours minus additional cost at 

the substituted lower price- hours. 

 

Interestingly, the authors in [33] argued that the efficiency achievable while 

implementing DR programs is largely affected by the reserve requirement of the 

system with respect to whether curtailment (peak price clipping) is required, or 

whether supply from storage is applied. This is because at lower load levels 

within the load profile, price curtailment is difficult to attain since energy supply 

is at off-peak demand. This is unlike if the supply during this period is from 

storage facilities whereby there is no observed effect in obtaining supply from 
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such storage. Hence the dynamic pricing at any given time will be the factor at 

any given time to determine when best it is to obtain supply from the storage 

and it is up to the participating consumers to either tolerate probable power 

curtailment or to provide actual curtailment for demand reduction. The problem 

was formulated as a Unit Commitment (UC) problem under a mixed integer 

problem framework whereby the objective function is a minimization of system 

total cost which comprised of three components given as: operation cost, 

reserve cost and expected load-not-supplied cost [33]. Results showed that the 

technique which is a function of several parameters like load reliability 

requirements, available DR resource, bidding price of services such as spinning 

reserve as well as peak clipping can enhance reliability of the system and also 

improve its economic value. 

 

Finally, the incentives offered in DR programs are usually the motivation for 

end-user participation and for it to be optimally implemented, adequate 

awareness is required to enable customers understand how to participate. Also 

an appropriate application platform is required such that the end-users can 

easily be integrated into such programs at a minimal cost.  

 

2.6 Government’s Role in Advancing Grid Infrastructure  

 

Oftentimes, governments play major roles in initiating and encouraging CO2 

reduction usually by legislation, offering incentives or by investing in renewable 

sources. Data from UK energy generation sources for instance, indicates that 

the average energy generation from renewable sources stands at 25% of the 
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national electricity generation [34]. But on 8th June 2017 the UK national grid 

reported that at lunchtime and for the first time, energy generation from 

renewable sources surpassed supply from non-renewable sources such that 

power generated from wind, solar, hydro and wood pellet burning supplied 

50.7% of UK energy [35].  This is a major step towards improving green energy 

production for the country. Other countries around the globe have various 

investments in renewable sources. An example of government legislation that 

enforces reduction of CO2 emission include the ban on diesel and petrol-

powered vehicles within the next 13 years by, France Spain, Greece, Mexico, 

UK and several others. Hence, electric and hybrid cars whose energy source is 

obtainable from cleaner and renewable sources are favoured [36].  Therefore 

governments have a role to play towards making substantial investments in 

smart grid infrastructure and smart meters. 

 

The European Commission’s Directive 2009/72/EC in 2009, requires that 

member states should implement intelligent metering systems so that 

consumers can participate actively in electricity and gas supply markets. The 

overall investment target in the EU on smart grid projects by the end of 2030 is 

expected to cost at least €100 billion, while the estimated cost of installing smart 

meters alone is €51 billion [37]. But due to the provision of dynamic pricing, 

peak demand is expected to be reduced thereby reducing the need for building 

and running new expensive peaking power plants hence; an operational 

savings worth between €26 and €41 billion can be provided [38].  
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Figure 2.1 shows the cumulative budget of smart grid and smart metering 

projects in 30 European countries for 2012: which includes 281 smart grid 

projects and about 90 smart metering pilots and rollouts. In December 2009, the 

UK department for Energy and Climate announced its intention to introduce 

‘Smart Meters’ to all UK households by 2020 which should be accompanied by 

free standing real-time displays [6]. This budget has been sustained and by 

2012, it has allocated the highest budget when compared with the rest of EU 

countries as shown in Figure 2.1 [1].   

 

In other parts of the world, similar budget proposals and implementations are 

being applied. The U.S. government in 2009, awarded US$4.5 billion to projects 

aimed at building a smart grid across the country. These projects and programs 

are already underway in 33 states and includes the already financed 54 projects 

by the Department of Energy (DoE) to a cost of US$100 million in American 

Recovery and Reinvestment Act of 2009 (ARRA) [39]. China is also one of the 

big investors in the sector with an expected budget of US$596 billion while 

Japan, Australia and Canada are also involved in active research and 

development programs to achieve a smarter grid [39] [40].  

 

Developing countries are also not left out. With several countries usually 

described as emerging economies such as: Nigeria, India, Brazil, also investing 

and researching ways to improve energy services through the adoption of smart 

grid and are at various stages towards developing the grid in their respective 

countries [40]. With the depth of funds and special allocations to installation of 

Smart meters, as well as intensive research by various governments, it can be 
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implied that the future of a successful optimisation and reduction of peak power 

consumption can be enhanced by providing feedback about usage brought 

about by the communication offered using smart meters; which can thereafter 

act as the foundation to any further development the grid might experience 

towards achieving an effective DR program implementation. 

 

2.7 Optimisation Techniques for Load Scheduling  

 

Several techniques are available which schedules energy consumption to 

maximise profits by reallocating certain loads whose usage can be moved from 

high energy times, to times of the day when energy prices are lower [41-48]. 

Hence, load scheduling is a load management application aimed at balancing 

energy consumption which varies between peaks and crests depending on the 

user, on a daily basis [49]. It is important that a viable producer-consumer 

partnership is established in order to realize the full potentials of DR 

applications for load scheduling. These potentials are in terms of sacrifices 

made to reduce costs at certain times of the day, both by the energy supplier 

and the customer who participates in load scheduling programs. Pricing models 

contribute immensely to user participation capabilities towards engaging in load 

scheduling programs, while acknowledging that the factors that determine 

energy prices at any given time can be complex to evaluate based on various 

variables. This section is a discussion of various load scheduling methods 

implemented by various authors which are usually dependent on the type of 

pricing model adopted, although detailed investigation of pricing models and 

their derivations is out of the scope of this work. 
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Assume you supply your own energy, the reality to schedule your own load 

usage becomes a practical reality. Figure 2.2 shows an example of a 

householder who is able to produce a maximum energy supply of 4kWh at a 

given instant, whereas the total energy consumption at that time is given as 

6kWh. From the figure, it is obvious that such a user is not capable of using all 

the load at the same time otherwise the energy system supply will shut down. 

This illustration shows a realistic requirement to perform load scheduling at an 

individual scale but when extrapolated to cover a community or a micro grid for 

instance, its application as presented in this work becomes more practical. 

Here, users might feel some discomfort if they cannot use all load at same time 

and this aspect of this work is one of the key contributions of this work. 

 

Load scheduling implementation can be automated or manually done. An 

example of a scheme that implements a non-automated scheduling is the 

availability of the dual tariff system in the UK electricity market which provides a 

certain energy price to consumers during the day, and a different but usually 

lower energy price during night time. This is aimed at encouraging consumers 

to manually defer the use of any loads that they can afford to use at night time 

so that energy demand during the day can be reduced. This tariff system is 

known as “economy 7” which simply means that consumers can use energy at 

cheaper rates for a total of 7 hours in a day. This lower tariff times usually occur 

between 10:00 pm and 8:30 am depending on the energy provider as well as 

the geographic location of the customer within the UK [50]. To this end, 

consumers whose lower tariff time starts from 10:00pm will end by 5:00 am next 

day. Every other start and end times lies in-between these stated times.  
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Accordingly, a detailed work as presented by authors in [51] examined the 

implementation of the tariff system by investigating the impact of other different 

tariffs schemes on domestic electricity consumption on the load profile. The 

authors identified certain loads which were considered to be schedulable, and 

their use was implemented at night, during the reduced tariff times, in order to 

evaluate the benefits available. Result showed that when compared with the 

fixed-pricing tariff system, savings of about 13%-15% on energy bill is possible 

when such loads are shifted. Energy price for the fixed-tariff system usually lies 

between the higher and lower energy prices for the economy 7 tariff, and does 

not inspire load scheduling due to unavailability of incentives to participate. 

 

Conversely, automated load scheduling scheme is usually implemented based 

on the execution of some computer programs that runs dedicated algorithms 

which determines the best times to implement specific load usage due to some 

predefined initial settings. This can be adopted using two approaches of load 

control and they include: Individually based scheduling and group scheduling. 

 

2.7.1 Individually-Based Load Scheduling 

 

An individually-based load scheduling is a system that possesses a localised 

decision-making algorithm that controls only the load of a specific domestic load 

and allocates time schedules for appliance use within the household. The 

schedules proposed are solely designed to accommodate the interest of 

household without any interaction or assessment of the impact on the 

comparative load profiles of the community. Such approach is best situated 
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where it is difficult to encourage a community-based load scheduling program 

due to privacy issues, diverging interests amongst various householders within 

the community, or when it is not cost effective to do so.  

An example is based on the work of authors in [52, 53] who analysed the results 

of a pilot scheme that was launched by the end of 2010, to evaluate washing 

machine load potential for integration in smart grid. The aim of this individually-

based scheduling was to encourage certain consumers to schedule their 

laundry only when their photovoltaic panels were supplying electricity for over a 

period of more than 15 weeks. The results showed a possible peak load 

reduction of 5% using a coincidence factor based on average weekly washing 

machine load profiles. Although it was not clear if the reduction was exclusively 

attributed to the washing machine scheduling, the results were encouraging. A 

consequence of the result was pivotal in the design of a new smart grid pilot 

known as ‘Your energy moment’, launched in December 2012 in Netherlands 

and it covered more than 250 households. 

 

In other instances as presented in [41-48, 54-65] where individually-based 

scheduling was applied, the authors discussed the merits of identifying specific 

loads also known as schedulable loads and then engaging them specifically for 

load scheduling purposes. In [41] the authors presented an appliance 

commitment algorithm that schedules thermostatically-controlled loads based 

on price and consumption prediction while prioritising customer comfort. Only 

controllable thermostatically controlled appliances (C-TCAs) such as HVACs 

and water heaters were scheduled using consumer level DR programs. 

Controllable non-thermostatically controlled loads (non-TCAs) such as washing 
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machine and dryers are considered straightforward to schedule, unlike non-

controllable appliances which the authors considered non-schedulable. Result 

shows the generation of day-ahead consumption schedule using forecasted 

day-ahead energy price forecast [41]. Although the algorithm used is fast and 

robust, it did not include analysis using probability of appliance use nor did it 

consider analysis based on historical load profile. A consequence is the non-

availability of intelligent decision making capabilities which helps to reduce user 

involvement in the operations thereby improving user comfort.  

 

The authors in [43] scheduled Electrical Water Heater (EWH) using a novel 

Traversal-and-Pruning (TP) algorithm. The problem was presented as a Mixed 

Integer Non-Linear Programming (MINLP) problem which can be solves in a 

variety of ways such as: PSO [44], Genetic Algorithm (GA) [66] and Simulated 

Annealing (SA) [45]. However, the authors resolved that these methods are for 

solving general MINLPs but on a special occasion that requires removal 

(pruning) of unlikely outcomes, the need for TP algorithm for solving specific 

appliance commitment problem becomes important. Results are a solution-tree 

analysis of varying temperature settings whereby branches that deviates from 

ambient temperature specifications were pruned and avoided in subsequent 

iterations. An optimal path was determined which coincides with the cheaper 

heating costs during the day.  

 

The authors in [57] simulated an effective autonomous appliance scheduling for 

households who are both producers as well as consumers of electricity. The 

domestic smart scheduler, embedded in the smart meter, is based on each 
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device’s time of use (TOU) probabilities and RTP of energy. Results showed 

that the schedulable appliances requests were altered by systematically 

switching them on and off avoiding peak or high cost durations of electricity 

during the day. But the methodology did not include re-distributing the 

appliances at other convenient times in the day when such high energy prices 

are encountered. Rather is it only a single on/off mechanism whenever the price 

of energy exceeds a certain predefined threshold.  

 

In [58] the authors demonstrated how coordinated scheduling of residential 

DER could be achieved using PSO [59-65]. The user would first assign values 

such as hourly consumption and discharging times with which the scheduler 

operates. Thereafter, the desired energy services such as: electric vehicle, 

space heater, water heater, pool pump and photo voltaic (PV) system; which 

are considered random particle trajectories, are optimised by the scheduler to 

achieve maximum benefits using PSO. The optimal benefit was obtained by 

increasing repulsion among the particles which added more randomness to the 

particle trajectory, in order to prevent premature convergence.  

 

In summary, individually-based load scheduling pertains to a household’s 

requirements and can be useful when it is difficult to accommodate events on 

the larger community. Since not everyone will be happy to permit sharing of the 

details of their load profiles to a third party, this type of load scheduling will be 

ideal for such customers. But if such data is free from abuse and with increased 

security, group-based load scheduling will be ideal as there are more 

advantages when scheduling is performed based on the events on the larger 
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community than when it is individually-based because the load profile of the 

community will have a more reduced peak load when scheduling is considered 

on a micro-grid scale than when scheduling is considered on individual bases. 

 

2.7.2 Group-Based Load Scheduling: Micro Grids 

 

Group-based scheduling is a method applied when schedulable loads in several 

households within a community are controlled simultaneously based on 

prevailing energy demand and the requirements to shed load usually during 

peak demand. The household would usually receive a request or command to 

suspend the use of such appliances if the grid is under pressure and all 

householders who signed up to such schedule would have any identified load 

for such scheme temporarily disconnected from use. There are incentives to 

encourage users to participate and this section will discuss various applications 

of such methods in load scheduling. 

 

Instances where group-based scheduling was implemented are presented in 

[67-72]. In [67] large groups of electrical loads with similar control 

characteristics can be controlled as a single entity. Thermostatically-controlled 

loads such as air conditioners, fridges and heaters are very good candidates for 

this exercise. According to the paper, the aim was to develop a mathematical 

model based on feedback control strategy whereby the aggregate power 

response of a population of a particular set of loads such as air conditioners, 

were characterised by a simultaneous step change in temperature set points 

and the off-set changes were then broadcast. These approximations are 
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thereafter used to simulate the dynamics of 10,000 air conditioners over a range 

of parameter values and then analysed. Result showed that aggregate power 

output of the loads can be controlled to reduce demand over a period of time.  

 

Group-based load scheduling can also be of practical application within a 

community whose load network operates as a Micro Grid. In [68] the authors 

developed an online adaptive electricity scheduling algorithm for a community 

using Lyapunov optimisation method where residents were able to classify 

electricity demand into basic usage and quality usage, for load scheduling 

purposes. Customers were also allowed to set their load priority and preference 

according to their choices and while basic usage supply is uninterrupted, there 

will be permitted outages of loads classified as quality usage loads [69]. The 

micro grid control centre aimed to minimise operation cost by upholding outage-

probability-of-quality-usage in order to reduce peak demand and evaluate 

savings available. This technique is described as quality-of-service in electricity 

[68]. With localised cluster of distributed renewable energy sources (DRERs) 

provided by the micro grid, the aim is to obtain a balance of electricity demand 

and supply, which is essential in micro grid management [70, 71].  

 

The authors in [46] applied appliance scheduling for home EMS using 

distributed algorithm, whereby each user requires only the knowledge of the 

price of electricity to participate. This price depends on the aggregated loads of 

other users and not the load profiles of individual users. With the knowledge of 

the price of electricity in advance (day-ahead pricing strategy), consumers can 

adjust their load schedule according to the prices with the help of Energy 
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Management Controller (EMC) and Programmable Logic Controller (PLC) [47, 

48, 54-56]. In this scenario, the EMC and PLC are able to identify the times 

when energy costs are lower based on the price forecast, and if the energy 

demand within the community is higher than a chosen threshold, dedicated 

loads as identified by the consumers cannot  be turned ON is they are 

scheduled to be in use. Result showed a convergence with the help of a penalty 

term that penalised large changes in the user schedule between iterations. 

 

Finally, the authors in [72] described the possibility of achieving a joint 

scheduling for home appliances, EVs as well as DERs such as wind turbines 

and photovoltaic cells within in a smart micro grid. They proposed a centralised 

scheduling method to control electricity consumption of all the EVs within the 

community and other household appliances depending on the amount of energy 

available for supply at various times in the day. Addition of storage facilities 

usually helps to sustain the grid especially at night times when the EVs are not 

able to supply energy thereby supporting energy supply from wind turbine. The 

problem was formulated as an MILP problem and the result showed a better 

management of electricity consumption by shifting loads from high demand 

periods to low demand periods thereby maintaining both load consumption and 

energy supply regulation.  

 

In conclusion, several methods of load scheduling have been discussed in this 

section. In some instances, a third party was responsible for initiating a group-

based control signal dissemination which thereafter, affects every appliance 

connected under the scheme designed for scheduling purposes. One obvious 
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disadvantage of group-based scheduling is an increased discomfort to 

consumers because the primary decision making about appliance use and 

scheduling is made by a third party and the timing of the scheduling events may 

not be favourable to all the customers who signed up for this events, at all 

times. This therefore casts a shadow over the long-time application of group-

based scheduling while proposing that the future of scheduling of domestic 

appliances in smart grid is expected to be developed around implementation of 

scheduling programs using localized appliance control per household.  

 

On the other hand, the major advantage of group-based scheduling over 

individually-based control is the relative ease of implementation since the 

burden of decision making lies with an Independent System Operator (ISO) who 

acts as a third party, and can be more easily deployed rather than trusting the 

participation and responses from individual householders. The next section is a 

review of various authors’ contributions on the various algorithms used in 

performing load scheduling for more active participation in DR programs. 

 

2.8 Design Algorithms for Performance Synthesis 

 

This section deals with several algorithms developed by several authors who 

have written papers on how to implement and optimise various problems using 

different algorithmic techniques. Some of these algorithms are based on ways 

to implement effective demand-side management, while others are based on 

similar applications where specific algorithm methods are found to be useful. 

The mathematical analysis applied include: Branch and Bound Algorithm, 
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simplex method, GA, particle swarm optimisation (PSO) and Simulated 

Annealing. These are available for solving various scheduling problems 

designated as an MILP problem in smart grid and these algorithms are 

discussed in more details in this section. 

 

2.8.1 Algorithms Involving Energy Management Systems 

 

Authors in [73] applied GA in demand side management scheme whereby the 

aim was to minimize the peak-to-average ratio of the load profile in order to 

increase the need for the utilization of spinning reserves, thereby increasing the 

efficiency of the smart grid. Residential, commercial and industrial loads were 

considered and result showed that GA can be used to minimize these loads so 

that the use of the spinning reserve was made feasible, which reduces cost.  

 

Similarly, the authors in [74] applied GA in appliance scheduling in order to 

effect an active DR participation. The experiment was conducted based on the 

Nigerian energy market with the aim of obtaining scheduled hourly energy 

consumption values for each load whereby the total energy cost is minimal. In 

order words, loads will be shifted based on the factor of price, whereby more 

loads will be drafted to times of the day when energy costs are minimal. Results 

showed a reduced energy cost for an hourly-based energy price profile.  

The authors in [75] implemented a hybrid algorithm for energy management in 

smart grid using a combination of GA and PSO. A need for this hybrid is to 

enable the scheduler to harness the positive attributes of both methods of load 

scheduling such as: not having to worry much about explicit definitions or 
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getting stuck in local optima for GA, and ease of implementation and 

convergence for PSO. The result is an enhanced performance which showed 

reduced energy consumption as well as reduced energy cost. A major 

drawback in using GA and several other optimisation techniques in search 

problems is speed. This is why it may not be the best methods to use in real 

time applications. However, apart from the work done by the authors in [76], the 

authors in [77] also demonstrated how a unit commitment (UC) problem can be 

solved using fuzzy logic which improved the speed of convergence.  

 

The authors in [76] simulated a multi-criteria scheduling in the grid, based on 

Accelerated GA. The need to improve and accelerate the computational and 

convergence speed of GA optimisation was the aim in order to be able to solve 

large search space problems such as job scheduling in the grid. Due to the 

improved speed of convergence, such search problems can be implemented 

online. This was achieved by pruning the initial search space such that only 

realistic solutions were included at the initial random population. This pruning 

was achieved by adding heuristic algorithms to form chromosomes of the initial 

population and as the phase starts, a Minimum-Minimum, Maximum–Minimum 

and a Shortest Queue chromosome are created. Result obtained showed that 

convergence was faster while using Accelerated GA than conventional GA. 

 

In [78], the authors implemented hourly peak load shaving for domestic 

application using linear programming technique. An Energy storage device was 

utilized to offset peak demand at certain times of the day to reduce peak load at 

those times. Result showed a reduction of the hourly peak load by 38%. 



  49 
  

In [79], [80] the authors investigated the impact of MINLP and Artificial Neural 

Network (ANN) on ancillary services such as regulation up, regulation down, 

spin reserve and non-spin reserve in a grid with competitive electricity markets. 

This is towards ensuring power system security and reliability enhanced by 

extra energy generation in order to cater for any contingencies. These services 

are provided by energy producers, with the aim of maximizing profits but 

managed by ISO with the aim of minimizing costs. The use of decision-

supporting tools such as MASCEM, a multi-agent based electricity market 

simulator, was utilized to solve ancillary services dispatch where the energy 

producers bid in order to remain active participants. A comparison of results 

obtained when the method was implemented in view of: (1) without complex 

bids (linear programming problem) and (2) with complex bids (MINLP problem) 

showed that an informed decision can be made using this method, as 

demonstrated in a case study with real data from California ISO. 

 

The authors in [77] demonstrated how a UC problem can be solved using fuzzy 

logic. The paper described a unit UC as an optimisation problem for determining 

the ON/OFF states of generating units that minimize the operating costs, 

subject to a set of constraints hence; it is commonly formulated as a MINLP 

optimisation problem. The most important feature of this method is in 

computational speed whereby results from dynamic programming techniques 

such as: GA and several other types of Evolutionary Programming, Tabu 

Search as well as Simulated Annealing are considered to take longer 

computational time, as well as in situations where the mathematical model is 

not explicitly known. The result from a case study in a four-generating unit 
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thermal power plant based in Turkey showed the provision of a valid and a 

feasible solution to the UC problem which satisfied all constraints represented in 

membership functions, while minimizing the cost of production.  

 

2.8.2 Algorithms not Involving Energy Management Systems 

 

This section is a discussion about other applications of various design 

algorithms which are not directly implemented in energy management systems, 

but are used in other feasible applications. They are considered important so 

that the mathematical applications of these algorithms can enhance further 

understanding of the various algorithms available. Two common terminologies 

used in this section are Convex Functions and Nonconvex Functions. Convex 

functions or convex optimization problems refer to problems with only one 

optimal solution which is globally optimal such as a quadratic function. On the 

other hand, nonconvex functions have more than one optimal solution and a 

typical example is a sine function. 

 

In [81], the authors described an improved branch and bound algorithm for a 

ZERO-to-ONE MINLP optimisation with convex objective functions and 

constraints. The two novelties of the design included:  

 Deriving a method for obtaining lower bounds of a non-linear programming 

sub-problem without solving it to optimality.  

 Obtaining an early branching procedure thereby avoiding to solving sub-

problems to optimality in some cases.  
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Computed results showed that these improvements effectively reduced 

processing time needed to solve MINLPs although for relatively small problems, 

no significant time change was recorded hence, the technique is best for 

computing increasing number of Sequential Quadratic Programming iterations.  

In [82], the authors proposed a generalised branch and cut (GBC) framework 

for solving MINLP optimisation problems which acts as a unifying framework for 

comparing branch and bound (BB) algorithms and decomposition algorithms. 

According to the authors, BB is the primary deterministic approach that can be 

used to successfully solve MINLP problems in which the participating functions 

are nonconvex. But with recent availability of decomposition algorithm in solving 

nonconvex MINLP problems, the authors proposed GBC as a means of 

comparing both methods for evaluation purposes. They came to a conclusion 

that BB and decomposition algorithms are the two classes of deterministic 

exponential time algorithms available to solve MINLPs in which the participating 

functions are non-convex, whereas deterministic polynomial algorithms were 

not known to solve MINLPs [83].  

 

T. Yokota et.al in [66] were able to identify the shortcomings of the BB method 

which is the most widely used algorithm for solving Integer Programming (IP) 

problems, while proposing solving MINLP problems using GA and its 

applications. The major drawback as suggested by Taha is the inability of the 

BB in solving non-linear IP problem, mainly because the validity of the 

branching rules; as originally proposed in Land-Doig method, was based on an 

assumption of linearity [66]. There has been several modification of the original 

design with the aim of overcoming the deficiencies prevalent in it and one of 
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such was Dakin’s modification. This modification ensured that the branching 

rule is interdependent of the linearity condition. It was also observed that when 

the objective function and each constraint function with respect to decision 

variables are concave and convex respectively, a local optimum results to a 

global optimum. Further modification as proposed in the paper includes the use 

of GA for solving MINLP problems. It begins by selecting an initial set of random 

potential solutions and uses a process similar to biological evolution to improve 

upon them. It uses a special penalty multiplier of the evaluation function to 

modify infeasible solutions (chromosomes) in order to search the best solution 

more efficiently. Results showed that better solutions are available only within a 

constrained region, but due to the penalty multiplier involved, the population is 

forced to converge to the feasible region.  

 

The authors in [84] described Simulated Annealing as a controlled-

randomization process whereby the objective function to be minimized is 

gradually lowered by a series of improving moves to achieve optimal solution. 

This is analogous to annealing process involving gradual temperature reduction 

of a molten material in order to ensure better binding of the molecules. The 

authors aimed to develop optimal synthesis of a distillation column with 

intermediate heat exchangers using Simulated Annealing as the appropriate 

algorithm. Events in each column is scheduled and used as a learning strategy 

necessary for the development of artificial intelligence (AI) whereby probabilities 

were assigned to various decision rules at certain stages of the solution 

process. This causes the generation of various solutions to a particular problem 

and the best solution would be adopted depending on the quality of the results.  
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Furthermore in [85], the process of Simulated Annealing was used in the 

optimal synthesis of multi-component distillation systems aimed at minimizing 

cost for best investment results. Simulated Annealing was a preferred 

algorithmic process because the authors cited two reasons based on: 

 
 The difficulty of solving the non-convexity of the non-linear (MINLP) 

formulation. 

 The difficulty in solving problems with large size due to the combinatorial 

feature of such problems.  

 

Branch and bound method could not be used on this instant because it is only 

very useful for solving small or moderate size problems [86]. Results showed 

the ability of the method in solving larger-scale MINLP optimisation problem 

without eliminating non-convexities and decompositions of the original problem 

into sub-problem, thereby improving efficiency.  

 
 
Finally, the authors in [87] reviewed the future paths for integer programming 

(IP) whereby the contribution of BB approaches in the development of IP was 

considered more useful in practical applications due to the presence of integer 

variable constraints to satisfy the upper and lower bound conditions. The paper 

also discussed the futuristic impact of IP in solution strategies for diverse areas 

such as: Number Theory, Logics, Group Theory, Non-linear Functions, Convex 

Analysis, and Matroid Theory. Integer programming is also found to have links 

to Artificial Intelligence and as a result, the ability to solve a significantly 

increased number of IP problems effectively in the future was seen as a 
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possibility. In all cases, near-optimal solutions are readily obtainable with 

minimal computational iterations which is enhanced by the union of two 

disciplines which are: operations research and artificial intelligence. The paper 

also discussed four heuristic classifications capable of enhancing the 

development of AI and IP which includes: Controlled Randomization, Learning 

Strategies, Induced Decomposition and Tabu Search.  

 

In summary, the lists or types of algorithms available for mathematical and 

engineering applications are numerous and in most cases, they are designed 

specifically to perform designated functions. In load scheduling applications the 

future lies on how intelligent these algorithms could be because there are a lot 

of dynamics and variables involved which could make it too tedious for humans 

to follow in an active and accurate manner. The next section is a review of the 

impacts of DR participation on various households and steps taken towards 

minimizing those impacts.  

 

2.9 Impact of Demand Response Programs on Users and Grid 

 

Participating in DR programs in an ordinary term, entail users to abandon their 

preferred and natural times for appliance use to a time suggested by energy 

suppliers for the purpose of improved EMS. This means that there is a 

considerable impact on users who participate in DR programs as well as on the 

grid, and this impact can affect the long-term interest towards continued DR 

participation as acknowledged by various researchers in this review section. 
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A withdrawal from an earlier desire to participate in DR programs is an 

indication of dissatisfaction among the users [3]. Related literature around this 

cause is based on an observed failure to successfully continue to engage 

consumers to participate in DR programs due to discomfort experienced while 

participating in such programs. One of the reasons for these inadequacies is 

based on the difficulties experienced by the consumers in having to follow price 

changes which occurs on a daily basis [88]. This results to consumers having to 

check manually online on a daily basis to ascertain times of the day when prices 

are high in order to avoid using appliances at those times. A study carried out in 

Chicago showed that several consumers who initially signed up to dynamic 

pricing scheme ended up withdrawing from it as a result of a further increase in 

electricity bill, rather than having a reduction when compared to the original 

fixed flat rate [3]. The solution they proposed was to introduce an effective 

home automation system which should help in making those decisions, thereby 

improving user participation. 

 

 The authors in [89] investigated the possibilities of disruptions on the aggregate 

demand profile of a community who participates in DR programs, when such 

programs are implemented on individual households, unless those schedules 

are properly coordinated. The authors envisaged that a random distribution of 

energy requests could disrupt energy balance within the neighbourhood. This 

imbalance is perceived as being capable of creating new peaks which was not 

originally in the community load profile, thereby causing discomfort to the user. 

The paper proposed the formulation of coordinated HEMS which should care 

not just the households, but the grid in order to minimize user discomfort.    
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Similarly, transformers are not spared from encountering some operational 

stress occasioned by application of DR programs. The authors in [90] 

acknowledged the importance of DR in supporting the integration of renewables 

into the grid, and the impact of such integration on the transformer lifetime. The 

investigation on the effect of ageing was carried out using two models: 

 
 By ascertaining the ageing based on the load of certain customers who 

operated without DR application,  

 By ascertaining the ageing based on the load of those customers if they 

operated with DR application.  

 

Result showed that operating the transformer at the rated load is critical in 

preserving the life of the transformer. This goes to suggest that DR applications 

can cause the transformer to operate outside the rated load, but if they were to 

operate within the rated load, up to 75% reductions in ageing was achieved.  

Finally, authors in [91] developed an algorithm whereby certain loads such as 

water heater and battery storage systems were used in contingency conditions 

to restore grid frequency during peak demands. Apart from shedding these 

loads during these critical times, the battery storage systems can also be used 

as ancillary services to support the grid [92]. This shows that DR programs have 

the capacity to support the grid if managed properly. The incentive for this 

participation lies on the profit that the users can make by selling power to the 

grid, while the proposed market model includes several aggregators competing 

for active participation in DR programs.  
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Each of the instances discussed shows the consequence of applications of DR 

programs on the user as well as on the grid. The user being the key subject for 

investigation is readily affected by changes in the grid operation, while changes 

in the grid can also affect the user. The next section is a review of related work 

in the area of cybersecurity and the need to protect the HEMS from attack.  

 

2.10 Security Issues in Smart Grid Applications 

 

The last section of this review series is based on an investigation about security 

concerns which may become an issue in a fully automated and active DR 

programs within the smart grid. Due to the fact that we are all connected via the 

internet, the risk of invasion of householders’ privacy from remote locations in 

order to steal vital information or to disrupt system operations is a cause for 

worry. This attack could be evident on any of the data sources and this includes 

the load profile data as well as the pricing data within the household.  

An evidence of cyber-attack on the grid manifested on December 23 2015, 

whereby there was a recorded incident of attack on the Ukrainian reginal 

electricity distribution company where seven 110kV and twenty three 35 kV 

substations were disconnected for three hours [93]. This attack was attributed to 

foreign government-sponsored cyber-criminals who remotely controlled the 

SCADA distribution management system and caused blackout on 

approximately 225,000 customers. Such is an example of the numerous threats 

which cyber criminals oftentimes pose to the grid network, the vulnerabilities 

and the disturbing disadvantages of being all connected via the internet. 

Protection of vulnerable loads and other related components of the smart grid 
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from such attack keeps attracting interests from researchers around the globe 

due to the numerous challenges facing the internet world. In this section, the 

review is based on several authors’ contributions towards improved security of 

the grid network by highlighting the possible impacts that may be caused, as 

well as possible solutions available. 

 

The authors in [94] [95] discussed the importance of detecting cyber-attacks in 

energy consumption data of power systems as provided by smart meters, and 

suggested schemes for adequate protection.  Such attacks on dynamic loads 

known as: Dynamic Load Altering Attacks (D-LAA), was considered because 

the possibility to control loads dynamically implies also, the possibility to attack 

loads dynamically [95]. The paper suggested optimisation problem formulation, 

solution method and protection system design under uncertainty as approaches 

towards applying adequate protection schemes to hinder successful attacks on 

the load data. In contrast, Static Load Altering Attacks (S-LAA) is more common 

and is based on changing the volume of certain vulnerable loads, usually in an 

abrupt fashion. The paper suggested that the detection D-LAAs is possible by 

applying frequency domain analysis of the load profile using spectral analysis of 

the Fast Fourier Transform (FFT) of the original load profiles. 

 Another detection technique includes Real-time detection in frequency domain 

using Windowed-FFT (W-FFT), and detection based on both load and 

frequency signals [96], [97]. The paper suggested optimisation problem 

formulation, solution method and protection system design under uncertainty as 

approaches towards applying adequate protection schemes to hinder 

successful attacks on the load data.  
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Authors in [98] investigated the impact of price modification attack in smart grid 

and possible protection scheme capable of mitigating such attack. This attack 

was visualized based on the online reliance of pricing information by users who 

may be interested in reducing energy costs and possibly participating in DR 

programs. The attack model was based on false price injection on the actual 

pricing data which may trigger potential load altering attacks, thereby exposing 

the automated residential load control and increasing peak demand. The 

attacking scheme was formulated by failing as many transmission lines as 

possible due to the modified price and then a comparison is made about the 

effect of considering the impact of the attack when there is a cascading failure 

as well as when there is no cascading failure. In the cascading mode, the 

authors in [99] showed that the failure of a single node within the system is 

capable of causing load redistribution to the other nodes, which could lead to 

large global power failures. Nevertheless, several efficient protection scheme 

are successfully implemented which included the allocation of load protection 

resources to demand nodes in order to make such attacks unattractive.  

 

The authors in [100] investigated the attack vectors on smart home systems 

analysed on a DigitalSTORM installation using solution-based analysis. This 

was done by identifying and ranking of possible attack vectors or entry points 

into a smart home system and suggested ways of thwarting such attacks. 

Those entry points included: the server, communication bus, smart control 

device (e.g. smartphone or control station) and remote third party services 

which provides monitoring and control services. Two theoretical attack 

scenarios were described and in both cases, a malicious app was 
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surreptitiously installed on the home owner’s android smart-phone and was 

used as entry vector which either turns appliances ON and OFF without the 

home owners’ consent, or collects vital information from the household such as 

the load profile . For burglars, such information could be used to determine 

when to burgle such households. The authors recognized the merits of ensuring 

a secured smart home system which should include requesting some form of 

authentication from authorized users before obtaining access to perform any 

activity within the home.  

 

Finally, the authors in [101] improved mesh network security used within various 

smart grid domains against cyber-attack by introducing a dynamically updating 

key distribution strategy on network protocols. The proposed method was 

mainly designed against Denial of Service (DoS) attack by utilizing a 4-way 

Merkle-tree based handshaking scheme. The reliability of the model was 

verified using Proverif and they were able to demonstrate the effectiveness of 

key refreshment strategy in thwarting DoS attack on the smart grid network. 

 

Several other forms of cyber-attack are possible and may include 

communication system failure which could originate from the utility or from the 

localized HEMS [3]. For any type of attack that is capable of forcing all the 

consumer’s appliances to turn on at the same time portrays a potential to cause 

the grid to become congested which can also force it to a collapse. This type of 

attack or virtually any type of cyber-attack poses an immense security threat 

since potential terrorists can congest the grid to such a level that it succumbs 

and fails thereby giving these nefarious groups the appropriate environment to 



  61 
  

execute their terrorism intent. Therefore an analysis of the impact of the various 

types of cyber-attack could have on a household, as well as on the grid is 

included in this thesis. Proposals to the possible ways to identifying these treats 

are made and means to mitigate their effect when detected also suggested. 

 

2.11 Juxtaposition with Other Relevant Methods  

 

Before the completion of the literature review chapter, it is important to make 

comparisons with other relevant methods from various related sources. This is 

because such comparisons will be able to highlight the context of the work with 

other methods available. It will also show the contributions of the work to 

knowledge more clearly. Here, two broad comparisons are made and they are: 

 Comparisons made based on the solution techniques used. 

 Comparisons of results obtained with those from previous work. 

 

2.11.1 Comparison of Work with Other Solution Techniques 

 

Several other optimisation techniques can be used to solve the problem stated 

in this work depending on the key factors being sought. In time-critical systems, 

optimisation time would be important but in terms of accuracy, there might be 

some impact which might be of some reasonable significance. In this 

application, accuracy is not a critical issue since user-behaviour changes will 

have greater impact due to the override capabilities available to the user. Speed 
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of convergence is also not a critical issue since all data including the day ahead 

price is available several hours before the time required for load scheduling. 

However, convergence can be an issue but this is addressed here by the GA 

using a large number of 1000 sample population which also reduces the 

chances of the search mechanism getting stuck in a local minima, but enhances 

global optimal attainment. Effectively, this implies that various optimisation 

techniques will generally lead to similar answers unless the problem itself 

cannot converge. In order to solve the possibility of non-convergence of the 

results, metaheuristic approach was chosen which also involves stochastic 

optimization methods whereby the solution found is dependent on some set of 

random variables generated. This was where the choice of GA was useful. 

 

Other evolutionary-based optimization problems such as ant colony or particle 

swarm optimization (PSO) are expected to provide similar results expect for the 

speed of convergence which is expected to be higher for PSO. The key reason 

for higher convergence speed for PSO is due to fewer variables used which 

includes velocity and position of the variables in its algorithm. But as already 

stated, convergence speed is not a critical factor here unless an application that 

requires a real-time load scheduling is desired over very short time intervals 

[102]. However just as in GA and several other metaheuristics, there is no 

guarantee of an optimal solution although the chances of obtaining this is 

increased by increasing the number of the original random samples, while 

mutation as applied in GA enhances that the search does not get stuck in a 

local optimal solution. So in this regard, it can be stated that GA is more suited 

in this application that PSO. 
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2.11.2 Comparison of Results Obtained with Previous Work 

 

Finally, Table 2.1 shows a summary of the comparison of results from proposed 

method with results from previous work. It is observable that the measured 

impact on consumers who participate in demand response is not available in 

other related work which is the key outcome of this research.  

 

Table 2.1: Comparison of proposed work with related work  

Ref. Feedback 

Considered 

Response Mechanism Noted 

Impact 

(on User) 

Scheduling Type Measured 

Impact on 

Users 

Manual Automated Single Group 

2                                                   

29,31                                                   

40-47                                                   

51-52                                                   

66-71                                                   

88-91                                                   

Prop.                                                   

 

 

2.12 Chapter Summary 

 

This chapter presented a review of various contributions from different 

researchers’, as well as several projects and activities engaged by various 

governments across the world towards improving the activities of the power grid 

system. The areas that are considered of greater interest include reviews which 

aimed at improving domestic EMS whereby householders are able to engage 

more effectively in DR programs with retailers. While identifying with most of the 

techniques proposed, there remains a number of issues that still needs to be 
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investigated in this area. These issues are primarily observed from the literature 

review which confirms the research gap and can be classified into five different 

categories which are:  

 
1. There is an impact on consumers who participate in DR programs with 

respect to the difficulties in having to check varying RTP changes because 

they are unable to constantly monitor and react to the price changes given 

other activities that they might be engaged in.  

 

2. There is also an impact on consumers whereby appliance scheduling might 

deny users some preferred appliance time-of-use which might cause them 

some amount of discomfort. This discomfort is based on undesired 

schedules which can render demand scheduling programs inconvenient.  

 

3. These difficulties has discouraged customers from investing strategically in 

such tariff systems, thereby making investments in smart appliances or other 

smart grid- related accessories such as smart plugs, unattractive.  

 

4. As a result of the above, the number of customers who originally signed up 

to real-time-price tariff in several cities in the USA, have been known to 

decline over time. This is because those customers who fail to modify their 

consumption behaviour may end up paying more than they would have paid 

in standard tariff system [3]. So there is a strong likelihood of increased cost 

rather than cost reduction which can eventually drive customers back to 

fixed tariff pattern.  
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5. Similarly, customers in the UK who participate in DR programs such as 

Economy-7 have the challenge about not being able to discern which pricing 

model that is best for them. That was why a 2011 OFGEM report suggested 

that the addition of price comparison guide will help such customers to 

compare tariffs and make better decisions [103]. 

 

6. In the event of wide acceptability of the technique, the issue of security will 

most likely surface. Therefore, appropriate security design is required in 

order to ensure secure data transfer within a particular load area in order to 

ensure user confidence while participating.  

 

Finally, the literature review has highlighted different optimisation techniques 

that are used in demand response programmes. There is room to investigate 

further the best method by comparing different techniques given a particular 

case. However in this research, the optimisation method is not a key objective 

nor a contribution and so Genetic Algorithm was chosen. The reasons for using 

GA were based more on the interest of the author and its prior use as shown in 

the literature [104] [105] . Moreover, load scheduling is done well in advance so 

there is no requirement for high speed in solving the optimisation problem.   The 

next chapter will therefore present the architecture for a proposed model built 

which aims to co-ordinate the events taking place at the domestic areas. This 

design responds to event variables from the utility as well as customer 

behaviour attributes to control different household appliances by promoting 

behavioural modification for optimal results. 
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Chapter 3: Testbed Development  

 

3.1 Introduction 

 

In the previous chapter, a review of the related literature was carried out which 

discussed the state-of-the-art research by various writers as well as support 

from governments across the world towards enhancing grid performance. This 

chapter is a presentation of the testbed development that specifically describes 

the structure of a practical Smart Home Energy System, which satisfies the aim 

and objectives of the research. A description of the various aspects of the 

testbed highlights the approaches undertaken towards solving the research 

question. These are shown in various block diagrams that represents the 

different stages considered; starting from understanding the schematic of smart 

home energy system, to the proposed testbed activity chart. It therefore gives 

the perspective of the design structure that describes information gathering, 

data processing, data transfer and result display, to all the relevant aspects of 

system design thereby making it easier to connect with the remainder of the 

chapters that include the methodology, results and discussion.  

 

3.2 Schematic for Smart Home Energy Management System 

 

The key aspects of the smart home include: the customers, utility, retailers, 

load, smart meter and HEMS. This is the main system structure as shown in 

Figure 3.1 and their various interactions are shown by different arrow colours. 
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The Power Path: This is the live power infrastructure that emanates from the 

utility down to the consumer household. The smart meter and the smart plugs 

effectively controls the electrical power reaching the load which is in response 

to any specified load schedule. 

 

The User Service: This service is basically the human interaction between the 

user and the load. It is what provides satisfaction to the user as they interact 

with the automated home device while participating in DR programs. 

 

The Communication Path: Adequate load control depends on effective 

communication of commands that connects not only the HEMS to the smart 

meter and smart plugs, but also the retailer as well as the user. The HEMS has 

control over the key Internet of Things (IOT)-enabled appliances, which supplies 

a schedule to the appliances and also provides the customer with required 

services. Two approaches towards controlled appliances are noted in the 

industry. The first is the rise of smart appliances themselves that are connected 

to the internet or are able to be controlled by a remote device [4]. This 

technology is fast developing particularly for thermostatically controlled loads 

such as fridges heaters and air conditioners. The other approach is the 

development of smart sockets. Consumers can buy smart sockets which can be 

plugged into conventional sockets between the appliance and the socket, 

allowing the user to switch the appliance ON or OFF as required. These new 

devices can be installed permanently in new buildings and they are very trendy, 

unnoticeable, and permit the quick adoption of smart technologies which means 

that it is likely that advancement in this area will develop rapidly. 
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Figure 3.1 also shows that the retailer can communicate with the smart meter 

by sending pricing information to the HEMS for load scheduling as well as 

obtaining meter readings through the HEMS assuming the retailer cannot 

establish a direct communication with the meter. The retailer also 

communicates with the customer by informing them of the day-ahead price as 

well as the energy bills, while also receiving payment.  

 

In addition, the consumers can modify the schedule depending on their needs 

or based on the cost of electricity at the time of use (TOU) for which they would 

receive some information from the HEMS on the prices. The HEMS connects 

with a retailer who could be buying and selling electricity on behalf of the grid or 

a supplier or a load management operator working in the DNOs. Here we term 

this third agent as a retailer which can also be considered as a virtual power 

plant. The retailer receives prices for each half hour from the grid operator. In 

this work we assume that the prices are known a day before but they could be 

more real time depending on the type of market available. The retailer therefore 

sets prices that are passed on to the consumers and also pays the grid.  

 

Furthermore, the HEMS interacts with the customer by sending energy costs as 

well as proposed impacts on modified behavioural choices while also receiving 

instructions from the user about any modifications preferred. The HEMS may 

also advice the customers on how to modify their behaviour in addition to 

informing them of any planned schedule.  
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Finally, the HEMS supplies the optimized load schedule to the various 

appliances, and obtains actual load usage in real time which will minimize 

consumer discomfort and cost [104-106]. It is assumed that the appliances are 

IOT enabled, and are capable of collecting and transmitting data. 

 

3.3 Design Architecture 

 

The proposed design architecture for automated domestic EMS consists of 

some set of input data usually generated from the home area as well as data 

from energy retailers which are thereafter processed to produce some desired 

output. The goal is for an enhanced interaction among the key players in 

assisting consumers to participate more effectively in DR programs whereby the 

key outcomes that are effectively managed include the discomfort associated 

with participation in DR programs. Other output data generated includes 

forecast financial savings available as well as the generated load profile based 

on the load scheduler results in order to achieve maximum benefits. 

 

Figure 3.2 is the proposed design architecture of a smart home whereby the key 

components are clearly identified as: Input Data, Output Data, Peripherals, 

Central Controller, Retailers, Smart Meter and Grid Supply. The Input data set 

is made up of demand load profile which is user-behaviour based; pricing 

information which is generated by the retailer as well as customer’s interaction 

which is conveyed via a keyboard system. The customer’s interaction contains 

a user-override capabilities as well as the household occupancy profile which 
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must be keyed in manually over all intervals required during the day. 

Alternatively data such as the occupancy profile can be derived by the use of 

sensors within the house especially at the entrance or exit point, which are 

capable of counting the number of people within the house at regular intervals. 

 

 

Figure 3.2: Design Architecture 

 

The energy demand load profile information is obtained using data extraction 

devices such as smart plugs or appliances and connected to the smart meter, 

all connected as IOT. The meter measures the energy consumed at regular 

intervals thereby generating the user’s energy demand load profile which is 

passed on as one of the inputs to the central controller. User interaction data 

can be supplied using a localized keypad or maybe from a mobile device while 

the pricing information can be acquired from the retailer’s database. 
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Central Controller: This is the heart of the system design that runs the 

algorithm which performs the required load scheduling. Microcontrollers are the 

ideal possible device to be used to achieve this control although the actual 

application was not implemented. Other popular controllers used in the industry 

includes Proportional Integral (PI) and Proportional Integral Derivative (PID), but 

they are more suited in process-type applications hence not used here. 

 

The central controller block also contains storage and forecasting capabilities 

necessary for assimilation of input data, decision making and task execution via 

necessary communication protocol. Several independent algorithms can be 

designed and installed on this unit, and they should be able to coordinate the 

events occurring within the smart home by synchronising their individual 

activities with one another to achieve a particular aim. The highlight of this 

design is based on developing the functional algorithm for the controller. Stored 

data consists of recent pricing details as well as load profile data and the 

primary essence for this storage is to enhance load profile and price forecasting 

capabilities. Although there are various forecasting techniques available, in this 

work moving average forecasting technique was exclusively used whereby 

adequate priority is given to the most recent data available for the respective 

quantities being forecasted. During the load scheduling process, the algorithm 

ensures that the user’s specific characteristics and requests are met especially 

with regards to their accepted discomfort levels. In theory, consumers who 

accept higher discomfort levels tends to save more money than those that 

accept minimal discomfort levels. A no-discomfort means that the consumers 

are not participants in any form of DR activities hence, no financial savings 
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available to them. Finally, the central controller also computes the user 

participation levels which can be forwarded via the bi-directional communication 

link to the smart meter and then, to the retailers. 

 

Controller Output: This consists of the operating times for the scheduled load 

which is then fed to the smart plug as a programmed time-of-day energy 

consumption. The schedule is also visible to the user who may decide to 

override schedules that they are not comfortable with. The accepted schedules 

then controls the loads as connected to the smart plugs while the actual real-

time energy consumption details can be made available to the central controller 

for comparison with the forecasted load profile which may be applied to update 

the original schedule as a real-time scheduling algorithm. Although real-time 

load scheduling, is not covered here, but can be an interesting future work. 

Other output data includes forecast financial savings available, the discomfort 

level accepted per schedule as well as user participation or engagement levels 

and these are made accessible to the user via visual displays. The other key 

structures of the design and their respective functions are summarized further.  

 

Smart Meter: This is the window to an enhanced interaction between the utility, 

the retailers as well as the smart home. Details of the daily load profile data 

measured by the smart meter is passed down to the central controller as well as 

to the retailer for billing purposes, while also allowing actual power supply to be 

made available to the rest of the domestic appliances via the distribution board 

and smart plugs.  
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Smart Plugs: This is the interface between the energy supplied and the 

respective loads. These plugs determine the switching patterns of respective 

loads in response to any scheduling command sent from the central controller 

to effect the load usage. It is essentially an effector whose basic functions 

include switching appliances ON and OFF while at the same time, being used to 

send vital load information based on consumption behaviour to the controller. 

 

Communication Network: This is Important because the availability of 

adequate information is required in order to be able to co-ordinate the events 

happening both at the appliance side and the utility side. The network topology 

implemented could be star or mesh network and the devices that engage in 

these communications oftentimes talk to each other as much as they talk to the 

device directly above them in the communications hierarchy.  

 

 

Figure 3.3: Structure of Information Transfer of Design Architecture 
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Figure 3.3 is basically a communication structure within the design architecture 

of Figure 3.2 and has been elaborated to show a hierarchical structure of the 

relationship between power supply routes and data transfer routes, in a vertical 

top-down format. In this design, the use of smart plug as data extraction devices 

was adopted per appliance because, apart from acting as a switching device to 

the appliances, it also offers a communication link between the appliances and 

the smart meter via Wi-Fi connection. 

 

3.4 Controller Specifications 

 

The central controller shown in Figure 3.2, is the heart of the proposed smart 

home model. Execution of several tasks and algorithms from various input 

sources as well as providing computational results for future use are the key 

functions of the central controller thereby making it by far, the busiest 

component that makes up the smart home. The activities executed within this 

unit can be given as follows:  

 Execution of forecast load profile using any forecasting technique adopted.  

 Execution of optimisation algorithm to obtain best schedule for appliances. 

 Execution of algorithm that sends control signals to the actuators such as 

smart plugs.  

 A computation and analysis of User Participation Index (UPI) in order to 

evaluate user engagement levels.  

 An events coordinator that receives composite information and relays them 

to the appropriate unit. 
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 Ability to inform the customer as well as the utility of any key information 

available such as estimated savings possible with every scheduling pattern 

chosen via a visual display unit. 

 

 

Figure 3.4: Central Controller Components Chart 

 

A model of the major units within the controller is as shown in Figure 3.4. These 

represent the aspects of the HEMS where investigations are carried out in this 

work with the exception of the actuator schedule controller which is considered 

a future work. Investigation about the impact of cyber-attack on the central 

controller is also included which focuses on protecting the HEMS from possible 

cyber-attacks. Further future work may also include the inclusion of learning 

algorithm and AI in Figure 3.4 whereby the system will learn from historical data 

especially from user-related behaviour in order to predict likely consumer 

behaviour thereby improving the system reliability. 
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3.5 Design of Proposed Test-bed 

 

Using the research aim and objectives as presented in section 1.2 while 

recognising the relationship amongst the component sections of the design as 

shown in Figure 3.2, a test-bed chart is proposed in order to serve as a model 

for the research experiment. Although Figure 3.2 shows the component aspects 

of the HEMS design, Figure 3.5 is an expansion of Figure 3.2 to show the time 

and sequence of event occurrences that takes place within the smart home. 

These events are divided into two phases and in as much as there are two 

phases to the events, naturally both events occur at the same time of midnight 

whereby they consist of:  

 
 Phase 1: These are activities performed at the end of the day. 

 Phase 2: These are activities performed at the beginning of the next day. 

 

Phase 1: As the day progresses, the actual load consumption utilised by the 

consumer is measured by the smart meter and at the end of the day, the actual 

load profile is obtained. This information can be stored in a memory device 

within the HEMS and assuming historical data of previous load profiles are 

available, a forecast load profile is obtainable for use for the next day. 

Therefore, the actual and the forecast load profiles can also be computed.  

 

Phase 2: Given a three-input supply to the “Load scheduling block and 

computing unit” at the beginning of the next day shown in Figure 3.5 as I/P1, 

I/P2 and I/P3, the scheduling process produces a visual display of the 

scheduled load profile as well as a display of the cost for the scheduled load.
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It also sends the appropriate scheduling signals to the smart plugs which 

directly controls the load switching patterns. A visual display of the discomfort 

level imposed on the consumer if they accept the proposed load schedule is 

shown, while a computation of participation level of the consumer is also 

evaluated. The user on the other hand, is capable of accepting, rejecting or 

modifying the impact on them by altering or specifying a discomfort level 

acceptable. For every modification affected, there is a corresponding re-

calculation of the events using the input variables supplied in order to visualise 

the proposed new results which is also subject to the user accepting the 

outcome. The occupancy profile is also part of the user interaction inputs 

already keyed in by the user.  

 

Furthermore, the user can more actively interact with the controller by setting a 

threshold that limits the discomfort because discomfort level is directly related to 

the amount of scheduling that is permitted for the scheduler to execute, as will 

be shown in the next chapter. Hence a low discomfort is expected to return a 

minimal load scheduling and deviation of the scheduled load from the forecast 

load profile, while a high discomfort is expected to return a high deviation from 

the forecast load profile due to load scheduling. Likewise, it is expected that the 

consumer will achieve minimal savings when operated in a low discomfort zone 

than in a high discomfort zone. The estimated savings available is calculated by 

finding the numerical difference between the actual cost and forecast cost. 

It is also worth noting that scheduling as applied in this research is only a 

modification of the time of the energy use and not necessarily a reduction of 

average energy usage in a day. This shift is expected to yield financial savings 
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when schedulable loads are operated at times of lower energy costs in a market 

that permits dynamic pricing system. The use of “User Interaction” is an 

enhanced feature which increases DR participation by helping the user to make 

an informed decision while the visual display enables the user to see the 

impacts of the choices they make. 

 

Finally, due to increased cyber-threats in most computerised systems especially 

about data shared via the internet, the awareness of incorporating security 

mechanisms in original system designs has inspired the need to investigate the 

impact of cyber-attack on the HEMS. This investigation is based on an 

envisaged attack modelled on the price profile as well as the forecast load 

profile data given as inputs 1 and 2 respectively, in figure 3.5. The result of this 

investigation is expected to identify any section of the test-bed as given in 

Figure 3.5 that may require an application of extra security feature which is 

expected to increase the robustness of the design. In this way, any such attack 

can be countered thereby providing a more secure, robust, efficient and reliable 

HEMS design. 

 

3.6 Chapter Summary 

 

This chapter has been a presentation of the testbed that provides the design 

architecture of the research which makes it easier to appreciate the scope and 

keep track of all event activities from one event to the other, thereby making it 

easy to follow the rest of the work. A design of the physical components of the 
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future smart home which includes the vital input and output information 

required, as well as data routing from one segment of the home design to the 

other is also presented. Majority of the investigation and analysis as presented 

in this work takes place in the “Load scheduling block and computation unit” as 

shown in Figure 3.5. The primary input data which includes the forecast load 

profile, pricing data and user interaction are processed in the central controller 

of the HEMS while the output data includes the scheduled load profile, financial 

benefits achievable, user-comfort considerations as well as user participation 

indices.  

 

The communication routes involved are also discussed whereby each data 

processed is conveyed via dedicated paths and in specified routine. The use of 

Wi-Fi is supported due to compatibility with other IOT devices within the home 

which includes the smart plug, smart meter and HEMS.  

 

The next chapter is therefore, a detailed description of the research 

methodology applied in achieving a model future smart home. This is designed 

within the context of the testbed proposed and in consideration to the impact of 

user participation in DR as well as behavioural attitude of participating 

customers. 
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Chapter 4: Research Methodology on 

Behavioural Demand Response  

 

4.1 Introduction 

 

The previous chapter was a presentation of the design architecture which 

defined the context of the research which is based within the home area. It also 

showed the communication routes, the controller specifications, as well as a 

presentation of the activity chart for the testbed. This chapter is a presentation 

of the methodology applied which includes all assumptions made, mathematical 

equations derived and applied, as well as the algorithm adopted for the 

implementation of the solution proposed. It is therefore, broadly divided into the 

following sections: 

 A detailed description of the key input variables applied. 

 A description of the GA application which includes: 

 Fitness function description. 

 Chromosome generation, selection and mutation. 

 Pseudo code application of the algorithm 

 Development of the optimisation criteria which includes: 

 Change in energy  

 Cost  

 Discomfort  

 Optimisation factor 
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 Design of load scheduling technique which includes: 

 Identification of load scheduling opportunities 

 Identification of schedulable and non-schedulable loads 

 Evaluation of user participation capabilities which includes: 

 Evaluation based on Fuzzy-logic analysis 

 Evaluation based on Boolean-logic analysis 

 

These are the sequence of the outline of this chapter with detailed description of 

each sub-section. Also included is the justification for their application, while the 

conclusion indicated the context of application which is based on understanding 

and managing user behaviour in demand response applications.  

 

4.2 Input Variables  

 

With reference to Figures 3.2 and 3.5 as discussed in chapter 3, three primary 

input variables are applied in the experiments presented and they include: the 

forecast load profile, dynamic pricing as well as household occupancy profile. 

Additionally given the forecast load profile, two secondary input variables are 

also calculated within the computing unit of the ‘Load Forecasting Block” of 

Figure 3.5. They include: the standard deviation of the load profile as well as a 

randomly-generated load profile. This therefore results to five input variables 

used throughout the entire experiments. 
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The dynamic pricing is supplied by the energy retailer while the occupancy 

profile can be keyed in manually by the householder or via other means of 

tracking the number of individuals in the home such as door and movement 

sensors. Although only five variables are considered of primary importance in 

this work, more input variables can be appended if they are found to be of 

relevance in determining the output. The next section is a more detailed 

description of each of the input variables already defined. Load forecasting 

techniques are discussed as well, and the respective relevancies in the 

experiment are also outlined. 

 

4.2.1 Load Profile Forecasting 

 

Forecast load profile is the framework upon which any proposed load schedule 

can be built. Its major function is based on providing a model load profile for the 

optimisation process thereby providing the constraints applicable. It is also used 

for result analysis by providing a reference baseline which is used for 

comparison of the system performance. Forecast load is derived using a 

consumer’s historical load profile data stored in the HEMS and then an estimate 

of the user’s load profile for the next day can thereafter be proposed [107].  

 

Forecasting techniques can be divided into Qualitative and Quantitative 

forecasting techniques. While qualitative forecasting techniques are based on 

intuition and are therefore subject to the researcher’s opinion and judgement, 
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this work applies the use of quantitative methods and specifically; Simple 

Moving Average (SMA) whereby the ability to generate a future data is a 

function of past data.  

 

Moving average methods are in the family of Time Series methods which 

include: Weighted Moving Average, Exponential Smoothing, Autoregressive 

Moving Average and Extrapolation, amongst other methods. The choice of SMA 

is because it provides a satisfactory forecast data which is assumed to be 

sufficient enough to obtain simulated results. This reason is acceptable since 

this work is not based on developing the best of forecasting techniques which 

may require the use of more sophisticated forecasting methods but it simply 

demonstrates the role played by applying load forecasting in load scheduling. 

Other external factors that may affect load forecasting includes weather, bank 

holidays, school calendar, etc. Given a series of daily historical load profile data 

over a period of n-days such that at the end of the most recent day up till n-days 

ago, the load profile can be represented as: 

Ԑ𝐻0
, Ԑ𝐻−1

, Ԑ𝐻−2
,…., Ԑ𝐻−(𝑛−1)

                                                                 (1) 

 

Therefore, the mathematical expression for SMA is therefore given as: 

Ԑ𝐻   =
Ԑ𝐻0

+ Ԑ𝐻−1
+  Ԑ𝐻−2

+ ⋯ +  Ԑ𝐻−(𝑛−1)

𝑛
   ⟹     

1

𝑛
∑ Ԑ𝐻−𝑖

                                  (2)

𝑛−1

𝑖=0

 

Where: 

           Ԑ𝐻 = Forecast load profile 
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           Ԑ𝐻0
= Load profile data for n-days ago 

           Ԑ𝐻−𝑛
 = Load profile data for previous day 

           n = Number of data-days available 

           i = Iteration count  

Given that when calculating an updated successive load profile values, a new 

value comes into the sum while that old value drops out. Equation 1 should 

therefore be updated regularly in order to reflect this addition. This is given in 

Equation 3.  

Ԑ𝐻 =     
1

𝑛
∑ Ԑ𝐻−𝑖

  +  
Ԑ𝐻0

−  Ԑ𝐻−𝑛

𝑛
                                                                (3)

𝑛−1

𝑖=0

 

 

4.2.2 Household Occupancy Profile 

 

A household hourly-occupancy profile can be defined as the number of 

individuals within a household for hourly intervals of time in a day. This is 

calculated in a rounding-off format whereby availability within the first 29 

minutes is rounded down while availability at home for 30 minutes or more is 

rounded up as an additional hour spent at home. According to the records of 

Office for National Statistics, the population of residents in the UK as at 2017 is 

66.18 million. This consists of 27.2 million households whereby 7.7 million 

people live alone, 9.45 million households comprise of 2 people, while 9.85 

million household comprise of more than 2 occupants [108]. 
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Occupancy is considered important because the fewer there are people within 

the household; the easier it is to reach a consensus about decision to accept 

appliance scheduling. This is unlike when there are a lot of people in the house 

whereby it will be more difficult to convince everyone to follow a specific load 

scheduling pattern. Furthermore, due to different lifestyles of each inhabitant 

which may include working, schooling or leisure activities, different occupancy 

profiles can be derived for a household within a week, month or year. The 

exactness of this data may not be very critical as it is practically impossible to 

extract a perfect occupancy profile at all times, but approximate values can be 

acceptable. 

 

4.2.3 Dynamic Pricing in Electricity Markets 

 

The price of a commodity is an important factor in marketing not just in energy 

market but in every other market scenario. It is usually not very easy to 

determine the best price for a commodity in order to meet the actual objectives 

of the business especially in response to market forces. Some of these forces 

may include: demand and supply, impacts from competitors, costs of running 

the business, the bargaining power of the customers, as well as the state of the 

economy. These factors often-times causes variations in pricing which can vary 

not only on hourly bases but also instantaneously, thereby making such pricing 

models dynamic. Dynamic pricing in electricity markets can therefore be defined 

as a pricing strategy with substantial price variation over time, usually within a 

day, whereby prices are set based on the current market demands [9].  
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A typical example of this pricing system is found in transport services such as 

train and bus services whereby fares are usually higher during peak or rush 

hours of the morning and evening times in the day, but cheaper in the 

afternoon. This therefore becomes the most efficient way to discourage 

commuters who do not necessarily have to travel during peak hours from 

congesting the public service system so that people who go to work may not 

need to stand while on transit. Unfortunately, dynamic pricing algorithm can be 

manipulated in order to create a false peak demand in order to cause 

transporters to charge commuters higher prices. An example is based on a 

research as reported by “The Independent” news media which found that some 

“Uber” drivers collude to deliberately go offline at the same time, thereby 

creating an artificial scarcity of drivers which will cause price surge. This will 

enable them to charge commuters more travel fares when they log back into the 

“Uber App” [109]. This therefore shows that although dynamic pricing is 

favourable, it can also be subject to manipulation. 

 

In load scheduling application as proposed in this work, the use of dynamic 

pricing in energy billing is used in order to encourage more active user 

participation so that they can defer the use of their non-essential loads when 

energy demand is high to other times of the day when demand is lower. This is 

of significant importance because consumers are still interested in lowering their 

energy bills whenever is it possible so if they are capable of following the price 

changes, it is very likely that only essential loads that will be used during peak 

demand and others will be used when prices are lower.  Hence, it is reasonable 
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to suggest that DR is practically unrealistic in a fixed tariff system unless there 

are other specific incentives to consumers who reduce their load usage on 

request. This is why dynamic pricing is considered one of the sources of input 

variables to the system design as described in chapter 3.  

 

Implementing dynamic pricing in energy market is therefore one of the key 

strategies applicable in assisting to ensure a reduction of peak demand thereby 

reducing C02 emission. In this work, an hourly day-ahead dynamic pricing 

strategy is applied which encourages sufficient dynamic load scheduling. Fixed 

flat rates do not offer any financial interest, while dual tariff plan (known as 

economy 7 in the UK) do not offer as much interest as the day ahead or real 

time pricing strategies which changes on hourly basis. Economy 7 has been 

around in the UK for some time, and can be considered not sufficient enough to 

be able to bring about the desired change in consumers demand pattern.  

 

4.2.4 Standard Deviation of Load Profiles 

 

The ability to understand and model a user’s behaviour can be derived from 

standard deviation of the user’s load profile. Other statistical parameters such 

as mean, median, etc. are not suitable for this purpose. This is because, mean 

for instance shows the average performance and does not reveal individual 

behaviour. However, variance is the square of Standard deviation so can also 

be used.    
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Using the smart plug to monitor electricity consumption per appliance and 

recorded by the smart meter, regular intervals of energy measurements can be 

captured and the load profile of energy use can be built for the day. A historical 

data of the household which is stored in the HEMS can be made available as 

required and from where the forecast load profile as well as the standard 

deviation of the load profiles of the customer can be calculated and segregated 

according to what day of the week, month and season when each reading is 

taken. For instance, this can be done for over a period of time, say 28 days and 

the profiles corresponding to the same day in a week (for example, profiles for 

all Mondays are grouped together and so on) can be used to obtain seven 

different standard deviations (STDs) representing each day of the week. Figure 

4.1 shows two load profile samples and the resultant standard deviation 

calculated from the mean load profile value as obtained from [110]. 

 

 

Figure 4.1: Standard deviation of 2 samples of Load profiles. 
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The need for the use of standard deviation in modelling user behaviour is based 

on the information available when a user is observed to use certain appliances 

constantly in a dedicated manner. This is applied such that energy consumption 

within any given time interval say 4:00pm daily, can be observed and if the user 

has a particular reason for using specific loads at that time, the standard 

deviation of the energy consumed will reflect the consistency of the appliances 

used at that time. Computed results show that the standard deviation of the load 

profiles at time intervals when dedicated appliances are used are very low when 

compared to times of the day when energy use within the home are more 

disperse. Therefore in this way, the user behavioural pattern can be evaluated 

using the information that is available in the standard deviation of their 

respective load profiles.  

 

The significance of standard deviation profile in a day is the role it plays in 

determining the user’s behaviour whereby higher values shows that the user is 

flexible in modifying their appliance time of use, thereby capable of participating 

in DR programs. On the other hand, lower standard deviation values shows that 

the user is rigid at those times and not particularly interested in participating in 

DR programs. Failure to recognize these dynamics in various users’ 

consumption patterns as well as their respective behaviours which is also 

unique from one user to another has been identified in this work as an important 

factor for the observed withdrawal of energy consumers who initially signed up 

to DR programs but ended up withdrawing. Therefore, load scheduling if carried 

out from the utility as a bulk control on consumer loads at times pre-determined 
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by the energy providers, creates a scenario whereby there is a very high 

chance for the consumers not to be satisfied with the scheduling pattern. This is 

therefore identified as a major cause among others; why there is a gradual 

withdrawal of customers who initially signed up to DR programs but became 

dissatisfied after a while due to inconvenient scheduling programs experienced. 

 

4.3 Load Scheduling Application using Genetic Algorithm 

 

In this work, the use of GA in searching for the optimal load profile that offers 

the maximum profit available and at optimal times of the day, is studied. 

Accepting the optimized load profile is at the customer’s discretion since they 

also have the ability to override any undesired allocation offered by the 

scheduler. Genetic algorithm is a search algorithm based on Darwin’s 

mechanics of natural genetics and natural selection, and was developed by 

John Holland and his team [111] [112]. It is in the class of evolutionary algorithm 

which uses mechanisms inspired by biological evolution such as selection, 

mutation, crossover (mating) and reproduction to produce optimal (superior) 

outcomes from an initial random processes [111]. Its application can be found in 

several fields, and can provide one of the best scheduling techniques for finding 

optimal solutions to search problems [112]. 

 

The choice of GA is primarily based on the ease of adding controlling variables 

to the objective function which offers mathematical convenience to the 

application. Genetic algorithm is also a very powerful optimisation technique 
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which has the capability to converge at the true maxima thereby providing more 

reliable results. The major drawback of using GA is its slow convergence speed 

as well as the possibility of the objective function not to converge at the global 

optimal value, but they are still one of the most widely used type of evolutionary 

algorithm. In this research, the convergence speed is not an issue since all data 

required, especially the day-ahead pricing data, are available early enough (up 

to 8 hours in advance) to perform the required operation. Problems with GA can 

only become very obvious if more instant computations are required, almost in 

real time scenario. This therefore means that a preference for faster 

convergence of the GA optimisation which may include a search for other types 

of optimisation techniques may become inevitable. 

 

4.3.1 Generating Random Load profiles for GA Application 

 

Various optimisation techniques require the creation of initial populations of 

randomly-generated samples of the forecast load profile which is bound within 

certain constraints as determined by the forecast load profile. A thousand initial 

populations are generated and each load profile is referred to as a 

chromosome. It comprises of the energy consumption capacities per time 

interval taken over a 24 hour period in a day. This means that for time slots 

taken hourly, the chromosomes will comprise of a 24-data value, just as 

chromosomes with 48 and 96 data values are available for time slots taken 

every half-hourly and quarter-hourly time intervals, respectively.  
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The fitness of each chromosome is evaluated by considering all the factors that 

affect appliance use in any given time. These factors comprise of the input 

variables which relates to one another in a specified way on the load profile, 

thereby producing a finite numeric value that represents the strength and 

relevance of each chromosome to the desired goal which is to optimize the 

fitness value. A weak fitness value reduces the chances of accepting the 

proposed load profile for the day which invariably leads the optimizer to search 

for better optimal values, while stronger fitness values remain strong contenders 

for final acceptance. Two constraints which are determined by the forecast load 

profile data are considered while generating the original random load profile 

samples as well as during the optimisation process. They include: 

 

 Margin control: This is given as the maximum and minimum energy values 

of the forecasted load profile within the day that the randomly-generated load 

profiles (chromosome) must not exceed. This is to ensure that the optimized 

load profile generated does not exceed the maximum load that the 

household would normally use, as given in Equation 5. 

 
 Energy conservation: This is given as a rule to ensure that the sum of 

energy consumption for each chromosome generated is equivalent to the 

total energy consumption of the forecast load profile. This is reasonable since 

total possible energy consumption within a household is constant, and this is 

as given in Equation 6. 
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At the end of the computation, a new load profile is obtained given the fitness 

function which is either minimized or maximized, while the forecast load profile 

is computed from historical energy data and made available at the beginning of 

a new day. Although some incentives are available which is mainly financial, but 

the choice to follow any suggested load pattern depends on the user. This 

means that the actual load profile is only obtainable at the end of the day after 

the users have either adopted, modified or rejected the suggested load profiles. 

 

4.3.2 Derivation of Fitness Function  

 

Derivation of fitness function is based on mathematical relationships of the input 

variables which can also be assigned specific weights depending on their 

impact levels on the overall outcome. Equation 4 of Table 4.1 shows the 

formulated fitness function with various weightings attached to the input 

variables while Equations 5 and 6 shows the constraints applied. Table 4.1 also 

shows four independent variables whose relationships with one another are 

carefully considered in order to produce the most appropriate output which is a 

minimised function. They are combined such that results which aim to promote 

the best interests of the consumer are generated. In order to minimise the 

output, the fitness value at any given time interval for each chromosome is 

calculated from the fitness function and the chromosome with the highest 

fitness value is substituted with the chromosome with the smallest fitness value. 

The crossover point before mating and the choice of partner to be chosen are 

both randomly selected while mutant energy values whose maximum value is 
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1% of the maximum load profile value are randomly added or subtracted from 

each hourly load data. The weightings are all initially set at the same value of 1, 

which means they all have the same impact before being varied one after the 

other in order to evaluate the response of the outcome. 

 

Table 4.1: Fitness Function Application 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input/output Variables used 

Minimize Function Fi = (wa * ∑ Aj,i + wb * ∑ Bj,i) – (wc * ∑ Cj,i + wd * ∑ Dj,i)     (4)  

Constraints used and Applications 

1. emin ≤ x ≤ emax                                                                                        (5a) 

2. ∑ 𝑒𝑗
24
𝑗=1 =   ∑ 𝑥𝑗

24
𝑗=1                                                                                              (5b) 

 
Let ∆ℰ = Abs (Forecast Load – Optimized Load) per iteration.                     (6) 

Where: 

Notation Mathematical Formulation Inference 
A ∆ℰ * Occupancy Overall Change in Energy  
B Optimized Load * Price Cost 
C ∆ℰ / STD of Load Profiles Discomfort 
D Optimized Load / Forecast Load  Optimisation Factor 

 

e = Forecast load profile.  

emax = Maximum value of forecasted load profile 

emin = Minimum value of forecasted load profile 

i = Iteration count  

j = hourly time interval in a day.  

w = Weighting factor 

x = Optimized Load (Originally randomly generated).  
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Table 4.2 shows a sample of a pair (A1 and A2) of randomly generated load 

profiles. The pair were randomly selected just as the crossover points are also 

randomly selected. B1 and B2 are the crossed pair while C1 and C2 shows the 

mutation events. The forecast load profile from which all samples of the 

randomly generated load profiles is also shown and the energy data chosen is 

only for the first 8 hours in a day. A mutation is represented by randomly adding 

or subtracting 1% of the energy data per time interval. It can also be observed 

that the randomly generated load profiles follows the constraints as given in 

Equations 5a and 5b.  

 

Table 4.2: Application of GA in Load Scheduling 

Time LP  A1 A2  B1 B2  C1 C2 

1 3.50  4.64 4.77  4.64 4.77  4.69 4.72 

2 3.15  4.89 5.01  4.89 5.01  4.84 5.06 

3 3.00  2.72 4.97  2.72 4.97  2.69 4.92 

4 2.92  4.92 3.87  4.92 3.87  4.97 3.83 

5 2.93  4.13 4.70  4.13 4.70  4.17 4.75 

6 3.11  2.65 3.12  3.12 2.65  3.15 2.68 

7 3.74  3.15 4.85  4.85 3.15  4.80 3.12 

8 4.54  4.85 2.75  2.75 4.85  2.72 4.90 

 

LP = Forecast Load Profile 

A1 = Sample 1 of Randomly generated Load profile 

A2 = Sample 2 of Randomly generated Load profile 

B1 = Crossed-over energy samples of A1 

B2 = Crossed-over energy samples of A2 

C1 = Mutant B1 

C2 = Mutant B2 



  98 
  

Furthermore, the experiments are conducted such that all input variables are 

originally evaluated independently to observe their response before combining 

all variables on the fitness function for overall observation of the results. The 

fitness function shown in Equation 4 is a combination of the minimization and 

maximization of the controlling variables whereby variables A and B are 

minimized mathematically with the positive notation assigned while C and D are 

maximized with the negative notation assigned. The physical translations of the 

input variables are as discussed in the next subsections. 

 

4.3.3 Description of Overall Change in Energy Variable 

 

Change in energy (∆ℰ ) is the absolute difference between the forecasted load 

profile and the optimized load profile for a day. This variable is derived from the 

fact that load scheduling which entails shifting of appliance use from one time of 

the day to the other, creates a change in energy consumption at any given time 

slot. This change gives the impact of the actual change in load consumption 

schedule for each household, and this impact exacerbates as the number of 

occupants increases. Absolute change |∆ℰ| for this variable is shown in Figure 

4.2 but as defined by Equation 7. The absolute change in energy |∆ℰ| is 

considered rather than simply, the energy change ∆ℰ because irrespective of 

whether the load is used earlier than intended or delayed to a future time, it 

gives the same impact to the user since they have to use these loads outside 

their originally preferred times. Hence |∆ℰ| is expected to give a more accurate 

representation of the events. 
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Figure 4.2: Change in Forecast Load Profile and Optimized Load Profile. 

 

Furthermore, the effect of |∆ℰ| depends on the number of occupants in the 

house. If there is nobody in house, then the change has no effect on the 

residents. But if there are more than one occupant in the household, then in 

order to account for the impact of the change on the residents, it is proposed 

that |∆ℰ| is multiplied by the occupancy which produces a better measure of the 

impact of change in energy use on consumers. This is given as “A” in Table 4.1 

and if this impact on the occupants is minimized, then this change will be more 

favourable to them. Mathematically from Equation 6,  

∆ℰ = | Ԑ𝑓𝑡,𝑛
− Ԑ𝑃𝑡,𝑛

 |                                            (7) 

Where  

Ԑ𝑓𝑡,𝑛
= Forecast Load profile 

Ԑ𝑃𝑡,𝑛
  = Optimized Load Profile (per iteration) 



  100 
  

At the initial state of the optimisation process which is at the first iteration, the 

optimized load profile is not generated yet. Each randomly-generated load 

profile Ԑ𝑅𝑡,𝑛
 can therefore substitute Ԑ𝑃𝑡,𝑛

 as the initial population, before 

subsequent computations whereby optimised load profiles can thereafter be 

generated. Hence, they become better as the iteration increases until 

convergence. This means that Equation 7 can be rewritten as: 

∆ℰ = | Ԑ𝑓𝑡,𝑛
− Ԑ𝑅𝑡,𝑛

 |                                                                          (8) 

Hence: 

𝐴 = 𝐻𝑐  ∙ (| ∑ Ԑ𝑓𝑡,𝑛

𝑇

𝑡=1

−  ∑ ∑ Ԑ𝑅𝑡,𝑛

𝑇

𝑡=1

𝑁

𝑛=1

 |)                                                      (9) 

And: 

          ∀𝑡 ∈ {1, 2, … . . 𝑇}; ∀𝑛 ∈ {1, 2, … . . 𝑁} 

Where: 

          A = Impact of Change in Energy on all Occupants     

Ԑ𝑅𝑡,𝑛
 = Randomly-Generated Load profile 

𝐻𝑐  = Household Occupancy  

T = 24 Hours in a Day 

N = 1000 Sample Generations  
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4.3.4 Description of Cost Variable  

 

Whilst the impact of energy change on householders is critical, cost has been 

found to be a major incentive to adoption of DR programs and as such, 

calculated energy cost is given as B [3]. The cost is a product of load profile and 

forecast price profile data whose unit is presented in the local currency of the 

tariff. Costs derived from forecast load profiles are referred to as forecast costs, 

whilst costs derived from optimized load profile are referred to as optimized or 

scheduled cost. The actual cost which is derived at the end of the day is a 

product of the actual load profile and the actual price. Lower energy costs are 

considered favourable to the user hence it is minimized and also positive-valued 

in the fitness function equation.  

Mathematically:  

  𝐵𝑡 = Ԑ𝑃𝑡,𝑛
 . D𝑃𝑡,1

                                                                                (10) 

Hence: 

𝐵𝑡 =    ∑ ∑ Ԑ𝑃𝑡,𝑛

𝑇

𝑡=1

𝑁

𝑛=1

  .  ∑ D𝑃𝑡,1

𝑇

𝑡=1

                                                                          (11) 

Where:     

Ԑ𝑃𝑡,𝑛
  = Optimized Load Profile 

           D𝑃𝑡,1
 = Dynamic Pricing                        

          ∀𝑡 ∈ {1, 2, … . . 24}Hours; ∀𝑛 ∈ {1, 2, … . . 1000}Sample Generations. 
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4.3.5 Description of Discomfort Variable  

 

The discomfort experienced due to scheduling is represented by C and can 

either be minimized or maximized depending on the user’s preferences. This is 

because there is a trade-off between user comfort and energy cost whereby 

reduced discomfort leads to higher energy price due to lower savings available, 

unlike increased discomfort which leads to lower energy price as a result of 

higher savings available. In other words, it can be stated theoretically that 

unscheduled load profiles implies zero discomfort considerations while load 

scheduling introduces some amount of discomfort up to a level depending on 

how much of load redistribution that was encountered. On the other hand, 

minimal savings are expected if operated at lower discomfort mode that at 

higher ones. Therefore, discomfort in this context means having to endure the 

impact of load scheduling by giving up a preferred time-of-use of an appliance 

to a proposed scheduled time.  

 

A key contribution of this work is the measure of this discomfort function which 

is critical to automated real systems. Although standard deviation is considered 

an input variable to the central controller as shown in Figure 3.1, the actual 

input to the algorithm processor is the quotient of the absolute change in energy 

(∆ℰ) and the standard deviation of the load profile (σ). The discomfort variable 

is maximized according to Equation 4 of Table 4.1 which means that the 

deviation of the optimised load profile from the forecast load profile will be high, 

but with the benefit of having more financial savings available. Although 
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maximizing discomfort may not be an ideal approach towards encouraging user 

participation in DR programs, the user can be empowered to be able to manage 

discomfort to acceptable levels so that reduced interest in DR participation 

amongst users will be discouraged. Details of discomfort management is 

discussed in more details in section 4.4.  

Mathematically: 

𝐶 =  ∆ℰ/σ                                                                                         (12) 

Where 

𝜎 = ∑ ∑ D𝑃𝑡,1

𝑇

𝑡=1

1

𝑛=1

 

    ∆ℰ = | Ԑ𝑓𝑡,𝑛
− Ԑ𝑅𝑡,𝑛

 |                                                                           

 

Then Equation 12 becomes:  

 

 

 

 

4.3.6 Description of Optimisation Factor Variable  

 

The optimisation factor is used to scale the optimized load to the magnitude of 

the forecasted load. It is a dimensionless quantity used to determine how 

effectively a forecasted load profile should be used to create an optimized load 

∑ Ԑ𝑓𝑡,𝑛
− ∑ ∑ Ԑ𝑅𝑡,𝑛

𝑇

𝑡=1

𝑁

𝑛=1

𝑇

𝑡=1

 

∑ D𝑃𝑡,1

𝑇

𝑡=1

 

C = (13) 
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profile with minimal discomfort. It is the quotient of the optimized load profile 

and the forecast load profile which can be expressed mathematically as: 

 

 

 

 

 

Furthermore, since each sample of the sum of optimised load profile in a day 

which is the numerator in Equation 14, is usually not greater than the sum of 

forecast load profile which is the denominator in Equation 14, as a result of the 

constraints of Equation 5b, D is therefore a sort of a feedback system to the 

algorithm. It ensures stability of the optimisation process such that results that 

are so divergent were not obtained. In this way, the optimisation is enhanced by 

encouraging more loads to be moved from region of peak loads to regions of 

lesser load magnitude. A high value of this feedback system is considered 

favourable to the consumer. Mathematically, this feedback relationship can be 

presented as:   

Ԑ𝑓𝑡,𝑛
>  Ԑ𝑃𝑡,𝑛

                                                                         (15) 

 

Figure 4.3 shows the flow chart for the proposed testbed activity charts as given 

in Figure 3.5. It also shows the points of user interaction which can be modified 

assuming the results obtained are not accepted. A threshold for discomfort is 

introduced and this is discussed in more details in section 4.4.  

∑ Ԑ𝑓𝑡,𝑛

𝑇

𝑡=1

 

D = (14) 

∑ ∑ Ԑ𝑃𝑡,𝑛

𝑇

𝑡=1

𝑁

𝑛=1
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Figure 4.3: Flow Chart for the Proposed Testbed Activity chart 
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Table 4.3 shows the pseudo codes for the GA applied while simulating the 

convergence of the fitness function. These events takes place in the block that 

computes the values of the variables A, B, C and D as given in Figure 4.3.  

Table 4.3: Pseudo codes for Genetic Algorithm Procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. // Initialization; 

2. for i = 1000 (initial population of samples) 

3.   for j = 24 (hourly load profile interval) 

4.       Randomly generate xj,i in the range ( Emin, Emax);  

5.       Scale the sum of xj,i to the sum of E ; 

6.      end for; 

7.   end for; 

8. for iteration = 2000 (enough for convergence)   

9.     Evaluate fitness Fj,i,A for variable A; 

10.      Evaluate sum of fitness G = ∑ Fj  for all i ; 

11.      Swap Gi min for Gi max ; 

12.      Randomly set chromosomes in pairs for mating ; 

13.      Randomly select crossover site ; 

14.      Apply mutation, then result =  xj,i ; 

15.      Repeat 9 – 14 for fitness Fj,i,B for variable B 

16.      Repeat 9 – 14 for fitness Fj,i,C for variable C 

17.      Repeat 9 – 14 for fitness Fj,i,D for variable D 

18.      Fj,i =  Fj,i,A ± Fj,i,B ± Fj,i,C ± Fj,i,D 

19.      Update results after iteration 

20. End for ; 
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Steps 15-18 of Table 4.3 show how the variables are effectively added or 

subtracted from one another depending on whether the operation carried out is 

a minimisation or maximisation function, respectively. 1000 samples were 

chosen to ensure that the accuracy of the convergence is high. Although similar 

results were obtainable if fewer number of samples in their hundreds were 

chosen, but anything less than a hundred initial samples are discouraged 

because the optimized load profiles changes significantly if the initial population 

is too low. Hourly load profile was chosen because the pricing data from [12] 

and energy data from [11] are both from the same country, which happens to be 

hourly based. More accurate results are expected if data with shorter time 

intervals are available. It is also worth noting that at the completion of the 

optimisation process, it is expected that:  

Ԑ𝑃𝑡,1
=  Ԑ𝑃𝑡,2

=  Ԑ𝑃𝑡,3
= ⋯ = Ԑ𝑃𝑡,𝑛

;                                    (16) 

  Where:  

       Ԑ𝑃𝑡,𝑛
=  Optimised Load Profile 

        ∀𝑡 ∈ {1, 2, … . . 24} 

        ∀𝑛 ∈ {1, 2, … . . 1000} 

 

4.3.7 Percent Gain Computations on Scheduled Loads  

 

The incentive to participating in DR programs majorly lies on financial savings 

obtainable because the users are expected to be keen to receiving a benefit 
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towards such participation. This is only applicable for dynamic pricing tariff 

strategies since the choice of what to use schedulable loads offers the user 

some savings if they utilise the period of low energy costs as much as they can. 

Savings obtainable can be computed by finding the numerical difference 

between the costs of energy consumption if load scheduling is adopted, versus 

when it is not adopted. This is done on hourly basis and then summed up for all 

intervals of time in the day. Given the hourly cost of energy in a day for non-

scheduling of load as the product of the forecast load profile and the energy 

price for the day given as: 

𝐶𝑛𝑠 =  ∑ ∑ Ԑ𝑓𝑡,𝑛
 .  D𝑃𝑡,1

𝑇

𝑡=1

𝑇

𝑛=1

  

 

Similarly, energy cost for optimised load is the product of the optimised load 

profile and the energy price for the day given as: 

𝐶𝑠 =  ∑ ∑ Ԑ𝑃𝑡,𝑛
 .  D𝑃𝑡,1

𝑇

𝑡=1

𝑇

𝑛=1

  

 

Therefore, the percent savings is given as: 

SP =   
Cns –  Cs

Cns
                                                                         (17)   

Where: 

            Cns  = Energy cost for any converged sample of non-optimised of load 

               Cs = Energy cost for optimised load 
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4.4 Discomfort Evaluation in Demand Response Programs  

 

Discomfort can be described as an unpleasant feeling of being disturbed which 

can result to a state of physical unease, pain and constraint. It can also be a 

burden a customer that has accepted to participate in DR program is expected 

to bear to follow a load scheduling program. This burden is one of the leading 

causes as to why several consumers of electricity end up withdrawing from an 

earlier signed-up intention to participate in DR programs as indicated by [3]. 

Discomfort is usually occasioned by a request from the utility or localized 

scheduling algorithm to the consumers to adjust and modify their energy 

consumption pattern in order to aid grid performance which incidentally, may 

not be so desirable to the consumers.   

 

A positive response to a request to implement a change in consumption 

behaviour gives rise to user discomfort. A typical example could be how 

uncomfortable a customer could feel if requested to ignore making a cup of tea 

at any given time and perhaps delay the activity to another futuristic time. In this 

scenario, if the customer had wanted the drink due to thirst, they might be 

required to fetch another type of drink. Or if they wanted to feel warmer inside, 

they might have to put up with the cold for much longer. But certain customers 

who feel slightly discomforted may heed to the advice and respond positively, 

while some other customers who may not accept such prescribed change due 

to high impact discomfort caused, will ignore the schedule. Hence, scheduling 

algorithms should have override capabilities and user comfort considerations in 



  110 
  

order to ensure active user participation [41]. Nevertheless, several new 

methods and algorithms are being proposed to increase DR participation by 

encouraging peak load reduction in order to ensure grid sustenance [43]. This is 

usually enhanced by the means of offering financial incentives to consumers or 

may include the inclusion of a penalty term in the cost function in order to 

discourage having large changes in scheduling programs [46]. Also the use of 

dynamic pricing is becoming a common practice in several countries whereby 

avoiding energy use during high energy cost oftentimes translates to reduced 

cost of energy use on the user’s energy bill [48].  

 

4.4.1 Mathematical Modelling of Discomfort Function 

 

Two variables are considered relevant in analysing what causes discomfort in 

participating in DR programs. As already discussed in section 4.3.5, it is 

proposed that a measure of discomfort can be obtained from the relationship 

between the change in energy consumption and standard deviation of the 

historical load profiles. This relationship is investigated by considering that 

change in energy as a result of load scheduling creates the scenario for 

discomfort. This is because, deciding to abide by a suggested schedule 

whereby users are required to forgo the desire to use energy at more 

convenient times is a sacrifice to make and the absolute magnitude of this 

change in energy use contains the component for measuring the discomfort 

inherent in responding to such change requests. Similarly, the standard 

deviation as discussed in section 4.2.1 expresses the likelihood of the user to 
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respond either in a positive or negative way towards requests to change their 

behaviours with respect to in energy consumption schedules. This therefore 

implies that these two factors can be used for determining the comfort level of a 

user participation in DR programs. Using the two principal variables that affects 

the comfort level of users, a model of how these relates with each other is 

investigated as presented on a truth table.  

 

Table 4.4: Truth table for comfort relationships in load scheduling 

Standard Deviation Energy Change Output State 

Low Low Fairly Comfortable 

Low High Very Uncomfortable 

High Low Very Comfortable 

High High Fairly Uncomfortable 

 

Table 4.4 shows all four possible combinations with regards to high and low 

values of the input variables, as well as all possible outcomes. It can be 

observed that a high standard deviation of energy use and a low change in 

energy consumption is desirable to achieve an optimum comfort state. This is 

because a high standard deviation means that load usage at those time 

intervals are not very routine to the customer and the user is happy to change 

the load hence, load scheduling is encouraged. On the other hand, a low 

energy change is desirable for the consumer who may not be very happy to 

move a lot of their loads if requested by the scheduling algorithm. However, 

there may not be much gain in not being able to shift loads. A combination of 
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both variables as shown in Equation 12 produces an output that represents 

“Very Comfortable” state.  

 

An opposite relationship which encourages a minimal standard deviation and a 

maximum change in energy produces a “Very Uncomfortable” state. This 

relationship as derivable from Table 4.3 is presented mathematically as a 

dimensionless quantity as given in Equation 12. The “Fairly Comfortable” state 

indicates that although it is comforting to have a low change in energy, a low 

standard deviation will make it difficult to apply scheduling, just as the state of 

“Fairly Uncomfortable” indicates that a high standard deviation is desirable but a 

high energy change is not desired. Effectively, both states are considered 

equivalent to each other. Therefore, the method proposed here shows that the 

difference between the optimized and forecasted load profiles indicates 

discomfort, but when it relates to the standard deviation, gives a better 

understanding about the realistic discomfort the customer can experience.  

 

4.4.2 Minimizing and Limiting Discomfort in Load Scheduling  

 

Discomfort experienced can be calculated per iteration during the computational 

process of the optimisation. In order to minimise its impact on the optimised 

load profile, the discomfort variable “C” on the fitness function of Equation 4 can 

be modified by changing its operational sign from negative (which implies 

maximization) to a positive sign (which implies minimization). This modified 
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version of Equation 4 is as shown in Equation 18, while the variables are as 

discussed in Table 1. 

 

Min Fj,i = wa * ∑ A j,i + wb * ∑ B j,i + wc * ∑ C j,i - wd * ∑ D j,i                  (18)        

 

Equation 18 only relates to minimising the optimisation but further steps can be 

taken to restrict its numeric value from going lower than any specific value as 

determined by the user. Here, it is proposed that, a threshold is chosen in order 

to limit the differential between the optimized and forecasted load profiles 

thereby clipping the discomfort level experienced by the user. The expression 

for the discomfort threshold activation function 𝑓(𝐷𝑡) is given as: 

𝑓(𝐷𝑡)  = {
𝐷𝑡ℎ,                𝐷𝑡 > 𝐷𝑡ℎ

 
𝐷𝑡,                  𝐷𝑡 <  𝐷𝑡ℎ

                                                                              (19) 

Where:  

 .24,....2,1t       

𝐷𝑡 = Discomfort D, at time t. 

𝐷𝑡ℎ= Discomfort threshold. 

  

The discomfort threshold is therefore set by the user and at their discretion, but 

this threshold depends on their load consumption behaviour and participation 

capabilities in DR programs.  
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4.5 Schedulable and Non-Schedulable Load Identification  

 

One of the key requirements to applying appliance scheduling lies on the 

identification and differentiation of schedulable from non-schedulable loads. The 

burden of making this identification is expected to reside with the scheduler. 

This can be considered a difficult task because different customers can 

prioritize the use of certain appliances over others in different ways thereby 

creating an ambiguous means of making this decision. Some researchers have 

therefore consigned making this identification to be based on experience and 

observation of load patterns, leading to an empirical identification of what is 

considered to constitute such loads. This method is usually subjective as it 

relates to the user’s perception of what such loads within the household should 

consist of. In this work a novel and analytical means of making such decisions 

about identifying which appliances are considered schedulable and which ones 

are not, using available historical data is applied. This is based on the use of 

standard deviation of historical load profiles in order to make this distinction. 

 

In a household, the energy consumption at any time interval is the sum of 

energy use from all appliances used within the house at any given time. So a 

large deviation in amount of energy consumed for all appliances means that 

there will be an increased dispersion in appliance use at those times. But if the 

deviation is minimal, then there is more dedicated appliance use at those 

specific times. A measure of this dispersion can therefore be obtained by 

calculating the standard deviation of energy consumption at any given time 
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interval using various load profiles available for different days. For example, the 

use of electrical kettle as an appliance can be dependent on a person’s 

behaviour and if the kettle happens to be switched ON at a specific time interval 

over a period of time as observable in days and weeks ahead, the recorded 

standard deviation will be very minimal. But if the same appliance is observed to 

be in use at multiple times in a day as observable in subsequent days and 

weeks ahead, it will cause a significant increment in the recorded standard 

deviation. Hence, the latter will result in creation of schedulable loads while the 

former description will result in the creation of non-schedulable loads.  

 

Two other variables that help in the identification of appliance status with 

respect to whether they are schedulable or not, are: dynamic pricing data and 

probability of appliance use (PAU).  PAU is a measure of the likelihood of using 

a particular load at any given time interval in order to determine whether they 

can be shifted to other times within the day or not. Various probability functions 

exist but the calculations presented in this work are based on normal 

distribution function, given as: 

𝑃 =
1

𝜎√2𝜋
𝑒−

(𝑥−µ)2

2𝜎                                                                       (20) 

Each of the calculated probabilities is considered for every time interval and the 

effect of this combining this with the dynamic pricing helps in determining when 

scheduling opportunities occurs. Hence, the rest of the subsection describes the 

method applied in determining the state of the appliances, which is simplified by 

the help of threshold settings considered for each variable. 
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4.5.1 Identifying Load Scheduling Opportunities 

 

The first step towards identifying schedulable loads, also known as base loads, 

lies on identification of load scheduling opportunities. This is evaluated for every 

interval of time considered, such that only the identified loads are isolated and 

then passed onto the algorithm provided for scheduling purposes.  

 

 

Figure 4.4: Standard deviation of Load profile samples with threshold line 

 

Figure 4.4 shows a sample of the historical load profiles of energy consumed by 

all appliances in a household for a 2-day period as obtained from [110]. It also 

shows the standard deviation generated as well as threshold line 𝑆𝐷𝑡ℎ chosen 

to determine when the standard deviation is HIGH or LOW. Regions above a 

threshold line are considered time intervals where schedulable loads can 
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possibly exists while regions below the threshold line are considered time 

intervals where schedulable loads cannot exists 

 

The threshold is used to trigger a standard deviation activation function 

𝑓(𝜎𝑡) given by:  

𝑓(𝜎𝑡)  = {
1,             𝜎 > 𝑆𝐷𝑡ℎ

 
  0,             𝜎 <  𝑆𝐷𝑡ℎ

                                                              (21) 

Where: 

           ∀𝑡 ∈ {1, 2, … . . 24} 

𝜎𝑡 = Standard deviation at time t 

𝑆𝐷𝑡ℎ = Standard deviation threshold 

 

 

Figure 4.5: Day-ahead sample of price profile with threshold line 
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Similarly, Figure 4.5 shows a sample price profile as supplied by the energy 

provider Ameren, US and obtained from [113], while the threshold line 𝐶𝑡ℎ for 

the day ahead pricing profile P, as chosen by the user. This line is based on the 

price the user is willing to pay which should be reasonable, realistic and must 

be within the range of the provided price profile. Although optimisation 

techniques can be used to identify where the optimal threshold lies in order to 

maximize savings, however this aspect is not covered in this work.  

 

Applying a similar methodology in the implementation of thresholds as 

described with the standard deviation, the price threshold is effectively used to 

trigger a price activation function 𝑓(𝐶𝑡) given by: 

 𝑓(𝐶𝑡)  = {
1,           𝐶 > 𝐶𝑡ℎ

 
  0,           𝐶 <  𝐶𝑡ℎ

                                                                      (22) 

Where:  

          ∀𝑡 ∈ {1, 2, … . . 24} 

𝐶𝑡 = Price at time t. 

𝐶𝑡ℎ= Price threshold. 

 

A combination of both input variables are used to determine the time intervals 

when scheduling opportunities are feasible in order to help to identify when and 

which appliances to schedule at any given time. Table 4.5 is a presentation of 

the truth table of a logical AND operation which combines the logical values of 

both 𝑓(𝜎𝑡) and 𝑓(𝑃𝑡) to yield the shift coefficient function 𝑓(𝑆𝑐).  
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Table 4.5: Truth table for shifting coefficient 𝑓(𝑆𝑐) identification 

𝑓(𝜎𝑡) 𝑓(𝐶𝑡) 𝑓(𝑆𝑐) = 𝑓(𝜎𝑡). 𝑓(𝐶𝑡) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 

These rules are based on the reasoning that if standard deviation at an interval 

is low, it means that loads at that time are very likely to be used hence, it is 

unlikely for them to be shifted, and also if the price is low then it will not be 

financially reasonable to shift the load. It is only when both cases are high that 

we can expect users to become really interested in shifting their loads and at 

such intervals do schedulable loads exists. 

 

4.5.2 Identifying Schedulable Loads 

 

It is not expected to have the entire load in a household within the times when 

scheduling is expected, to be switched OFF or ON. Some appliances are 

expected to be kept ON and they are considered to be non-schedulable (base) 

loads at those specific time intervals. For instance lightings are expected to be 

kept ON whenever it is dark, while devices such as a household broadband 
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might be uninterruptible at all times. These loads are the base loads and should 

be identified so that the scheduler may exempt them from being involved in any 

form of load scheduling at those times of the day when they are usually kept 

ON. To solve this problem, the application of probabilities of each appliance turn 

ON as given by Equation 20, is introduced whereby the hourly probability profile 

for all appliance use can be obtained which helps in isolating of the base loads. 

 

Base loads are expected to return a relatively higher PAU when compared to 

other loads that are not permanently kept ON in any given time interval. 

Therefore a threshold can be used to determine these loads such that they 

could be exempted from being involved in scheduling events. The activation 

function 𝑓(𝑃𝑖)𝑡  that identifies the base load from a set of all household loads, 

given a specified time interval is given by: 

 

𝑓(𝑃𝑖)𝑡  = {
 0,            𝑃𝑖 > 𝑃𝑡ℎ

 
  1,            𝑃𝑖 <  𝑃𝑡ℎ

                                                          (23) 

Where: 

(𝑃𝑖)𝑡 = Probability of use for loads i, at time t. 

 𝑃𝑡ℎ = Probability threshold. 

             ∀𝑡 ∈ {1, 2, … . . 24} 
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Maximum values of the probability of appliance use (PAU) for all appliances is 

calculated using Equation 23, while Figure 4.6 shows the PAU for a specific 

electrical facility within the home such as a cooking system. A threshold of 0.85 

is therefore chosen simply based on convenience.  

 

 

 

Figure 4.6:  Per unit maximum probabilities of appliance use 

 

Therefore, applying AND logic given in Table 4.5 for both price and standard 

deviation of load profiles, the values for the shift coefficient  𝑓(𝑆𝑐) is obtained 

throughout the day which depends on the threshold value chosen for each 

variable. The outcome is further combined with the PAU whose profile is given 

as 𝑓(𝑃𝑖)𝑡 using AND logic of Table 4.6 in order to obtain the appliance status 

𝑓(𝐿𝑖)𝑡 which differentiates schedulable and non-schedulable loads as given in 

Equation 24.  
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Table 4.6: Truth table for appliance status identification 𝑓(𝐿𝑖)𝑡 

𝑓(𝑆𝑐) 𝑓(𝑃𝑖)𝑡 𝑓(𝐿𝑖)𝑡  = 𝑓(𝑃𝑖)𝑡. 𝑓(𝑆𝑐) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

Where: 

𝑓(𝐿𝑖)𝑡  = {
0,     𝐿𝑖 = 𝑁𝑜𝑛 − 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 𝑙𝑜𝑎𝑑

     
   1,     𝐿𝑖 = 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 𝐿𝑜𝑎𝑑                

                                   (24) 

 

In summary, classification of appliances based on their instantaneous energy 

behaviour pattern determines the appliance status. Although hourly time 

intervals are used in this report due to the data available, improved accuracy of 

the results are expected if energy readings are taken at shorter time intervals 

such as every half or quarter hourly. But the essence is to show how important 

it is to consider base load identification in an automated fashion rather than 

hand-picking these appliances based on an individual’s perception.  
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4.6 Evaluating User Participation Levels in Demand Response 

 

The models of evaluation of user participation in DR programs as presented in 

this work are carried out using two decision making techniques and they 

include: Boolean Logic and Fuzzy logic methods. The essence of using both 

approaches is mainly for comparison purposes whereby any similarities or 

differences between them can be observed. The primary or input data for both 

approaches are same and they are both based on information from the 

standard deviation of the load profiles as well as data from day-ahead energy 

prices. 

 

In decision making techniques that involve logical assessments of variables, 

there is usually a specified boundary at the input which defines the region for a 

specific cluster to yield a definitive output. In such applications especially where 

human behaviour is involved, these boundaries are usually not so clearly-cut or 

definitive. For instance, someone might decide never to buy a certain product if 

the price of the item goes beyond a certain amount but if there was an 

unexpected increased purchasing power, he may accommodate some extra 

expenditure. This overlap therefore makes human behaviour quite ambiguous 

to model because of unexpected conditions that may influence their decisions at 

the last minute. This is where fuzzy logic has an advantage over Boolean logic 

because it gives room for an overlap in defining conditions for a particular 

behaviour as well as an overlap in interpreting the results [114].  
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This section is therefore an investigation of how actively a user can participate 

in DR programs. This involves the “FUZZIFICATION” of the two quantities 

already stated, on a daily basis as executed by the HEMS. In order to predict 

the possible choices a user can make when confronted with decisions about 

responding to a suggested DR program, computing the user’s standard 

deviation of historical load profiles from a mean value, can help in making this 

prediction [4] [6]. Price changes on the other hand influences user’s behaviour, 

but it is true only for energy market that uses dynamic pricing system. A day-

ahead energy pricing model is assumed here and in most cases, higher energy 

prices are expected when energy demand is higher, but lower when energy 

demand are reduced. Evaluating user participation in DR programs is therefore 

possible with both parameters broken down as fuzzy input membership 

functions and processed using fuzzy logic technique. 

 

4.6.1 Fuzzy Evaluation System 

 

The proposed design is based on MAMDANI Fuzzy Inference System (FIS) 

whereby each of the input and output variables are represented in three states. 

Two inputs are used here although the use of more inputs is possible as shown 

in Figure 4.7. Input 1 is defined as the dynamic pricing profile while Input 2 is 

defined as the standard deviation of load profile. The three membership 

functions used at the input are: LOW, MEDIUM or HIGH, while the membership 

functions of the output being the evaluated (UPI), is represented as POOR, 

AVERAGE and ACTIVE. 
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Figure 4.7: Three-State Input / Output MAMDANI FIS System 

 

The number of fuzzy rules required is given as m and in this experiment, m is 

equivalent to 9. Logical AND is used as the connection amongst the input 

variables in order to generate the fuzzy rules used in determining the state of 

the output. In order to set the fuzzy rules, the state of each input variable needs 

to be placed into perspective since user participation is maximized when the 

standard deviation and price are both HIGH and it is minimal when both are 

variables are LOW.  

 

Table 4.7 shows the rules table that investigates this relationship whereby the 

LOW, MEDIUM and HIGH states are ranked as 1, 2 and 3 respectively. On the 

output, a sum of 2 or 3 represents POOR participation, while a sum of 4 

represents AVERAGE participation and a sum of 5 or 6 represents ACTIVE 

user participation. For ease of computation, all variables are converted to per-

unit measurement and extrapolated to 100% before evaluation. 
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Table 4.7: Rules table for standard deviation and price relationship 

Price Standard Deviation (STD) User Participation (Output) 

Low (1pt) Low (1pt) Poor (2pt) 

Low (1pt) Medium (2pt) Poor (3pt) 

Low (1pt) High (3pt) Average (4pt) 

Medium (2pt) Low (1pt) Poor (3pt) 

Medium (2pt) Medium (2pt) Average (4pt) 

Medium (2pt) High (3pt) Active (5pt) 

High (3pt) Low (1pt) Average (4pt) 

High (3pt) Medium (2pt) Active (5pt) 

High (3pt) High (3pt) Active (6pt) 

 

Figures 4.7a till 4.7d shows the FIS Editor for all variables and their 

corresponding Membership Functions. The choice of Gaussian curve as a 

membership function at the STD variable is because standard deviation curve is 

Gaussian for normal distribution.  

 

 

Figure 4.8a: FIS editor for a 2-input and 1-output variables 
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Figure 4.8b: Membership function for dynamic pricing 

 

 

Figure 4.8c: Membership function for standard deviation of load profiles 

 

On the other hand, the key reason for choosing trapezoidal membership 

function for price was because price variations for a given day are usually 

minimal when compared with the price for the next day. This tends to produce a 

more linear variation hence the preference for a trapezoidal membership 

function. Significant variations are usually observed depending on whether the 

comparison is between weekdays and weekend, or between seasons in a year.  
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Figure 4.8d: Membership function for user participation index 

 

 

Figure 4.9: Rule viewer for all variables 
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For any given time interval in the day, combinations of the values of the price 

and STD are used to generate the UPI. Figure 4.9 shows the rule viewer 

whereby for a price given as 77.9% of the maximum per-unit price in a day, the 

associated per-unit STD value is given as 80.1% while the corresponding UPI 

value is evaluated to be 75.8%. So in this way, each UPI value can be 

calculated for any given time interval for each household. The numeric value of 

the UPI is therefore the centroid of the “DEFUZZIFIED” output and the various 

descriptions of the range of the possible outputs are presented in Figure 4.8d. 

 

 

Figure 4.10: Surface viewer for all variables 

 

The surface viewer of Figure 4.10 shows the UPI distribution for the input 

variables described in Figure 4.9, with respect to its relationship to the fuzzy 

rules given in Table 4.7. ACTIVE participants of DR programs have UPI values 

of 60% or more which is “coloured in yellow” and at the topmost part of Figure 

4.10. On the other hand, UPI value of less than 40% represents POOR 

participants which is “coloured in blue” and at the lowest part of Figure 4.10. 

Between these values lie AVERAGE participants. 
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4.6.2 Model of Boolean Logic Evaluation System 

 

The variables of the proposed model which is based on Boolean algebra are 

converted to logical ONE’s and ZERO’s. This means that thresholds will be 

applied to all data used in order to determine the active and non-active regions 

of the user participation, before being processed via a truth table. Threshold 

line 𝑆𝐷𝑡ℎ as shown in Figure 4.4 is set by the user to differentiate regions of 

flexible and non-flexible energy use, which also depicts regions of possible 

active and non-active user participation. The threshold used to trigger a 

standard deviation activation function f(σt)  is as given in Equation 20, just as 

the threshold used to trigger the price threshold activation function f(Ct) is as 

given in Equation 21. A combination of both input variables are used to deduce 

time intervals when participation is POOR, FAIR or GOOD. Table 4.8 is the 

truth table for this combination whereby the output is categorized into 3 states.  

 

Table 4.8: Truth table for shifting coefficient identification 

𝑓(𝜎𝑡) 𝑓(𝐶𝑡) 𝑓(𝑆𝑐) = 𝑓(𝜎𝑡). 𝑓(𝐶𝑡) 

0 0 Poor 

0 1 Fair 

1 0 Fair 

1 1 Good 
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Furthermore, Figure 4.11 shows an applicable logic gate assembly deducible 

from Table 4.7 and capable of processing the input variables. This assembly is 

essentially derivations of AND, EX-OR and NOR logic gates, and are used to 

determine the three states of the output. Each state is activated by a HIGH 

output which indicates the user’s performance at any time. For ease of 

calculation, both Price and STD data are converted to the per-unit scale before 

computation.  

 

Price 

STD

Poor

Fair

Good
 

Figure 4.11: Three-State Input / Output MAMDANI FIS System 

 

Results from both methodologies can be compared in order to check how the 

output relates with each other. Boolean method is presented on hourly basis 

and describes an estimation about the availability of schedulable or non-

schedulable loads which tends to encourage GOOD or POOR user participation 

respectively, in DR programs. While on the other hand, fuzzy logic analysis tend 

to present an overall participation levels for each user throughout the entire day. 
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4.7 Chapter Summary 

 

In this chapter, the approach to investigating various aspects of the research 

problems was evaluated and discussed. This is vital towards understanding the 

role of this work which includes all novelties identified and ultimately, the 

contributions to knowledge. It can be observed that the use of standard 

deviation of the historical load profiles is central to all analysis described as it 

was shown to have contributed immensely towards understanding human 

behaviour. This therefore makes it pertinent to apply its importance in the 

context of implementing the human behavioural aspect in DR application.  

 

Besides the use of standard deviation, other variables which includes the 

pricing as well as user occupancy profile complements the input variables 

required to make a decision about the outcome of a forecast load profile which 

would be used to generate a scheduled load profile acceptable to the user. This 

outcome can still be over-ridden by the user in case undesired load schedule 

was generated and the whole optimization process started all over again. GA 

was used as an optimizing tool and due to the way it was construed, it has the 

capability to accept even more variables should there be other input variables 

considered in the future. The next chapter is therefore a presentation of the 

results obtained while investigating the outcome of an optimized load profile. 

This was investigated over a variety of considerations in order to ensure that 

relevant aspects of the research findings are obtained. 
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Chapter 5: Performance Evaluation of 

the proposed System 

 

5.1 Introduction 

 

The previous chapter presented a detailed description of the methodologies 

applied towards implementing various aspects of the design. This chapter is a 

presentation of the simulated results based on the methodologies applied, 

which therefore provides solutions to the gaps in research as discussed in 

section 1.5. Results of these experiments are presented in sections broadly 

divided into the following: 

 Evaluation of individual input variables for Load scheduling  

 Impact of change in energy on optimised load 

 Impact of energy costs on optimised load 

 Impact of discomfort on optimised load 

 Impact of optimisation factor on optimised load 

 Evaluation of all input variables for Load scheduling  

 GA-based Load scheduling with same weighting function  

 GA-based Load scheduling with varied weighting function. 

 

Majority of the input data used are based on energy data available in the US 

market although pricing data of energy supply in the UK is used at some point. 
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Therefore the simulated results presented in this chapter represents a part of 

the methodology discussed in chapter 4 based on analysing the performance of 

the algorithm in order to ensure that it is working optimally.  

 

5.2 Evaluation of Individual Input Variables for Scheduling  

 

These experiments were carried out in order to generate results of a basic load 

scheduling mechanism as described in section 4.3.2. The first approach is to 

evaluate the scheduled load when the input variables to the fitness function of 

Equation 4 are independently considered. This is given as: 

 

Minimize Function Fi = (wa * ∑ Ai + wb * ∑ Bi) – (wc * ∑ Ci + wd * ∑ Di) 

 

Recall also from Table 4.1 that A, B, C and D are given as: Change in Energy, 

Cost, Discomfort and Optimisation Factor respectively whereby on this 

occasion, their exclusive impact on the optimised load profile are evaluated. 

Although Equation 4 is a minimization function, this evaluation is done for both 

minimised and maximised output in order to observe broader results. 

 

Figure 5.1 shows the basic input variables for this experiment which include: the 

day-ahead dynamic pricing, standard deviation of load profile, as well as the 

occupancy levels. Their respective relationships with the input variables in 

Equation 4 are also, as presented in Table 4.1 
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Figure 5.1: Basic Input variables used [110] [113] 

 

5.2.1 Impact of Change in Energy on Optimised Load 

 

The exclusive impact of change-in-energy variable on the optimised load profile, 

is investigated by reducing B, C and D of Equation 4 to zero while having A to 

be equal to the fitness function. It also implies that only the occupancy profile as 

given in Figure 5.1 was used on this occasion, while the others were not. Figure 

5.2 shows the resultant optimised load profile when the impact of change in 

energy on all occupants are minimised. This shows that the load profile is 

equivalent to the forecast load profile. Recall also that Figure 4.2 describes this 
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change which therefore justifies the outcome as shown in Figure 5.2 because 

minimising the impact of change in energy on the householders will result to the 

optimised load profile being equal to the forecast load profile. 

 

 

Figure 5.2: Load profiles for minimised change-in-energy 

 

On the other hand, Figure 5.3 is a maximisation of the impact of the change in 

energy which effectively ensures that there is as much difference between the 

forecast load profile and the forecast load profile, as possible. It can therefore 

be concluded that the GA application for effective management of change in 

energy as implemented, performs efficiently as expected. 
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Figure 5.3: Load profiles for maximised change-in-energy 

 

5.2.2 Impact of Cost on Optimised Load 

 

The exclusive impact of cost variable on the optimised load profile, is 

investigated by reducing A, C and D of Equation 4 to zero while having B to be 

equal to the fitness function. It also implies that only the price profile as given in 

Figure 5.1 was used on this occasion, while the others were not. Setting prices 

for any commodity is important which usually results from balancing of the 

impact of market forces of demand and supply on such a commodity. In energy 

market, various pricing strategies are available which are designed to satisfy the 

local market. The pricing models which are applied in this experiment include:  
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 Hourly time-variant day-ahead pricing strategy.  

 Fixed tariff. 

 Two-part pricing model. 

 

Hourly time-variant day-ahead pricing strategy, or simply day-ahead pricing, is 

expected to generate the best dynamic DR results due to the ability to shift 

loads at shorter intervals within the day, occasioned by hourly price changes. 

But rather than relying on assumptions, the other pricing models will also be 

tested in order to observe their absolute impacts on the results obtained.  

 

Case 1: Day-Ahead Pricing Strategy 

This pricing strategy is increasingly becoming popular and effectively used in 

US markets today whereby energy prices changes on hourly basis through the 

day depending on the prevailing market forces of demand and supply. This 

pricing strategy is as shown in Figure 5.1 whereby due to the hourly variations 

in prices published, consumers will have to identify when it is most appropriate 

for them to engage with the market and use their schedulable loads.  

 

Figure 5.4 shows the resultant optimised load profile when energy costs are 

minimised. Time intervals with high energy costs as represented in Figure 5.1 

corresponds to intervals with low energy use as shown in Figure 5.4, while time 

intervals with low energy costs corresponds to intervals with high energy use.  
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Figure 5.4: Load profiles for minimised energy costs using day-ahead tariff  

 

Savings of 10.13% is obtainable which shows the ability to minimise costs when 

financial savings are exclusively maximised assuming any other factor that the 

user may be concerned about, are considered unimportant. However, Figure 

5.4 is not expected to represent a practical choice because of the unlikelihood 

of users to instantly switch OFF most of their appliances when they needed to 

use them and then begin to use them at non-favourable times.   

 

On the other hand, Figure 5.5 is a maximisation of energy costs which 

demonstrates the impact of not minimising costs. The algorithm therefore 

ensures that most of the energy consumption occurs when energy prices are 
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highest, which results to a 12% loss. This shows that losses are possible if 

wrong choices are made towards demand response participation. Such wrong 

choices are also possible as a result of cyber-attack if the HEMS is not properly 

protected. Results from cyber-attack models are presented in Chapter 8. 

 

 

Figure 5.5: Load profiles for maximised cost using day-ahead tariff  

 

It can be therefore be concluded that the implemented GA application for 

effective management of energy costs, performs efficiently as expected. The 

constraints are also observed to ensure that the optimised load profile remained 

approximately within the limits of the forecast load profile as well as maintaining 

the same total load as possessed by the users. 
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Case 2: Fixed Tariff Strategy 

Fixed tariff pricing is a common pricing strategy used in several countries 

whereby energy prices are fixed throughout the day and year. In the UK for 

instance, the average fixed rate tariff for domestic customers under British Gas 

in 2017 till January 2019 is 11.88p/kWh in West Yorkshire [115]. Therefore in 

this experiment, a fixed value of 11.88p/kWh was chosen which also replaces 

the varied price profile given in Figure 5.1 in order to obtain Figure 5.6. 

  

 

Figure 5.6: Input variables for fixed tariff strategy 

0 5 10 15 20 25
2

3

4

5

6

7
Load Profile (kWh)

0 5 10 15 20 25
10

11

12

13
Price Profile (p/kWh)

0 5 10 15 20 25
1

2

3

4

5

6
Occupancy Level (People)

0 5 10 15 20 25
2

2.5

3

3.5

4
Load Deviation Profile



  142 
  

Figure 5.7 shows the result of this application whereby the optimised load 

profile for a fixed tariff pricing is random and does not depict any particular 

relevance. This means that any outcome for the optimized load profile is 

possible, which makes sense because there is no particular need or incentive to 

shift the load whichever way. The optimized load profile shown in Figure 5.7 is 

simply a convergence of the original randomly-generated load profile and has 

no specific significance because it changes each time the algorithm is run. In all 

cases the percent financial savings computed using Equation 17, equals zero.  

 

 

Figure 5.7: Optimized load for minimised cost using fixed tariff  
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Case 3: Two-part Pricing Strategy  

A two-part pricing model is commonly known as economy 7 in the UK. 

According to British Gas tariff, the night rate which starts from 1:00 am till 8:00 

am is given at 7.46 pence per kWh while the day rate continues throughout the 

rest of the day at 14.82 pence /kWh [115]. This two-part pricing model therefore 

replaces the dynamic pricing given in Figure 5.1 and this modified version of 

this figure is therefore given as Figure 5.8.  

 

 

Figure 5.8: Input variables for a two-part economy 7 tariff  
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The resultant optimised load profile is given in Figure 5.9 whereby a significant 

amount of energy consumption was moved from daytime to very early in the 

morning representing the 8-hours of reduced energy costs. This result is only 

possible assuming all loads are schedulable and the users are not particularly 

bothered about the times of the day when their loads are scheduled.  

 

 

Figure 5.9: Optimised load for minimised cost using economy 7 tariffs  

 

The percent savings obtainable using Equation 17 is found to be 17.75% 

although in practical application, Figure 5.9 is not expected to represent a 
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demand during the early hours of the day as well as the nearly-flat minimum 

load demand during the later parts of the day, of which consumers will most 

likely not adhere to. However, the maximised version of Figure 5.9 (not shown) 

was observed to be an inverse of Figure 5.9 whereby a nearly-flat minimum 

load demand occurs during the early 8 hours of the day, while a nearly-flat 

maximum load demand occurs during the later hours of the day. This is 

relatable with Figure 5.5 but with losses of over 10%.  

 

Case 4: Inference on the performance of the Pricing models  

Section 5.2.2 gave detailed analysis of the performances of the three pricing 

models evaluated. Based on the results, the strengths, weakness as well as 

viabilities of each pricing model is clearly observable such that any realistic 

application of DR programs will appreciate the applicable pricing model for its 

application. However without any doubt, it can be observed that day-ahead 

pricing strategy is the only pricing model that permits constant load modification 

during the day which is essential for effective DR participation. This is because 

according to Figures 5.4 and 5.5, the optimised load profile is constantly 

changing depending on the prevailing pricing data. This means that if there is 

any need to reduce energy consumption, the utility will simply raise the price of 

energy at those times while reducing the prices at time intervals where they 

expect the users to try to use their non-essential loads. Therefore, if the 

incentive for DR participation is monetary, then it can be easily driven by 

allocating energy prices depending on the preferred and expected consumer 

load profile to be generated. 
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Conversely, the major flaw in the fixed-tariff pricing strategy is the fact that it 

does not encourage DR participation in any way what-so-ever as shown in 

Figure 5.7. This is because since all prices are the same, there is no incentive 

or bias towards any specified times of the day to move appliance use to. This 

therefore makes fixed-tariff pricing strategy in the real sense of it, a means to 

supress participation in DR programs. The random results obtained attests to 

this conclusion which means that there is no specific pattern to the use of the 

appliances. 

 

On the other hand, results from the two-part pricing strategy shows that change 

in behaviour is possible but the major flaw is that the users cannot be effectively 

engaged in participating in DR programs. This is because, although non-

essential loads can be moved to times when energy supply is cheaper, if there 

is unexpected and imminent need to further reduce load use when prices are 

already specified to be high, this pricing strategy cannot be applied since the 

higher price has already been specified. This therefore means that this pricing 

model cannot be effectively engaged where changes in energy consumption is 

prevalent which therefore defeats the aim towards applying effective user 

participation and behavioural changes in the ever dynamic DR programs. In the 

light of this, only results obtained using Day-ahead pricing model was continued 

with in the rest of this chapter since it is the most appropriate pricing strategy 

that encourages effective participation in DR programs. The next subsection 

investigates the impact of exclusively considering the discomfort factor when it 

is minimised as well as when maximised on the fitness function. 
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5.2.3 Impact of Discomfort on Optimised Load 

 

The exclusive impact of discomfort variable on the optimised load profile, is 

investigated by reducing A, B and D of Equation 4 to zero thereby having C to 

be equal to the fitness function.  It also implies that only the Standard deviation 

profile given in Figure 5.1 was used on this occasion, while others were not.  

 

 

Figure 5.10: Load profiles for minimised discomfort 

 

Figure 5.10 shows the resultant optimised load profile when discomfort 

experienced while participating in demand response programs was minimised. 

It then shows that the load profile is equivalent to the forecast load profile which 
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is an expected outcome since experiencing zero discomfort implies non-

participation in demand response programs. Recall also that discomfort function 

is defined as the quotient of the change in energy and standard deviation of the 

load profile as discussed in section 4.3.5 and section 4.4. It is therefore not 

surprising to observe the similarities between Figure 5.2 and Figure 5.10, as 

well as between Figure 5.3 and Figure 5.11.   

 

 

Figure 5.11: Load profiles for maximised discomfort 

 

Figure 5.11 is therefore a maximisation of discomfort which effectively ensures 

that there is as much difference between the forecast load profile and the 

forecast load profile, as possible. Incidentally, standard deviation of the load 

profiles are highest at 11:00 hours and at 17:00 hours so it did not change any 
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results. It can be concluded that the GA application for effective management of 

discomfort as implemented, performs optimally as expected. 

 

5.2.4 Impact of Optimisation Factor on Optimised Load 

 

The exclusive impact of the optimisation-factor variable on the optimised load 

profile, is investigated by reducing A, B and C of Equation 4 to zero thereby 

having D to be equal to the fitness function. Being a quotient of the relationship 

between the optimised load profile and the forecast load profile, it means that 

only the forecast load profile of Figure 5.1 was used during optimization.  

 

 

Figure 5.12: Load profiles for minimised optimisation factor 
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Figure 5.12 shows that minimising the optimisation factor causes the optimised 

load to tend towards the load profile. This shows that it does not have so much 

impact on the optimised load profile, hence it is dormant if minimised. On the 

other hand, maximising the optimisation factor creates an optimised load which 

is inversely related to the forecast load profile as shown in Figure 5.13.  

 

 

Figure 5.13: Load profiles for maximised optimisation factor 

 

The optimisation factor is observed to assist in creating a distinct and separate 

optimised load from forecast load profile. The key significance of this variable as 

shown in Figure 5.12 and Figure 5.13 is that, it is more significant when 

maximised than when minimised. In other words, this variable acts as a 

negative feedback system that helps in stabilising the optimisation process. 
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5.3 Evaluation of all input variables for Load scheduling  

 

Assigning varying weightings to controlling variables enhances the ability to 

project certain aspects of the results obtained, than others. They are expected 

to introduce more dynamics in participation in demand response programs by 

encouraging the creation of outputs that cater for specific requirements which 

represents some peculiar preferences of the user. For instance some 

customers may consider financial savings more desirable than comfort or vice 

versa, etc. Appropriate weightings are therefore crucial in generating load 

profiles that recognises behavioural attributes towards effective participation in 

demand response programs. This section will therefore evaluate the results 

obtained when the weightings are modified in order to bias the outcome such 

that specific interests which reflects the user’s preferences based on their 

behaviour, can be achieved. The resultant optimised load profile and associated 

costs are thereafter compared between: when same weightings are applied and 

when varied weightings are applied.  

 

5.3.1 Load Scheduling with Same Weighted Functions  

 

In this section, all the input variables are assigned with the same weightings on 

the fitness function such that: wa = wb = wc = wd. Figure 5.14 shows the 

convergence of all the input as well as output variables whereby cost  

converged to minimum values while others converged to maximum values. 

Figure 5.14 also presents the average values of all variables used, as they 
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converge after 200 iterations. Here, a fast convergence technique was applied 

by eliminating 100 weaker samples of the optimised load profile simultaneously 

so that the 200 iterations shown is also approximately equivalent to 40,000 

iterations (200 multiplied by 200). Although the same weightings were applied, 

the numeric value of the cost variable happens to be the most dominant factor. 

This dominance is observable from Figure 5.14 whereby the axis that 

represents average values for energy costs are much higher than the others. 

 

 

Figure 5.14: Convergence of variables with same weightings  

 

The resultant optimised load profile generated from the forecast load profile is 

shown in Figure 5.15 whereby the cost variable is observed to be the dominant 

variable hence, the result tends towards satisfying the impact of the cost 
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variable more than other variables. This shows that the cost variable has higher 

impact on the fitness function and this is evidenced on the average values of 

Figure 5.14. A comparison with Figure 5.4 attests to this observation whereby 

the highest energy prices which occurs between 16:00 and 17:00 hours has a 

corresponding lowest allocation for energy demand, just as the lowest energy 

prices outside this time interval have significantly more load usage allocation. 

 

 

Figure 5.15: Load profiles for variables with same weightings 

 

Figure 5.16 presents the hourly costs profiles for optimized and non-optimized 

load profiles whereby variations of hourly cost allocations are observable. It also 
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shows a more flattened energy cost profile for optimised energy costs than for 

forecast cost profiles. Financial savings of 5.1% is also available which occurred 

mainly due to the shift of some loads away from times of high energy costs to 

times of lower energy costs in the day. Hence cost reduction and increased 

financial savings are usually treaded off by sacrifice of comfort.  

 

 

Figure 5.16: Hourly energy costs for variables with same weightings 

 

Finally although all the weightings are the same, it is observed that the input 

variables are not the same. In the next section, an attempt is made in order to 

vary the weightings such that nearly the same numeric values of the input 

variables are applied in the fitness function equation and the corresponding 

results analysed.  

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

En
er

gy
 C

o
st

s 
($

)

Hourly Time Intervals

Forecast Energy Cost Optimized Energy Cost



  155 
  

5.3.2 Load Scheduling With Varied Weighted Functions  

 

In this analysis, different weightings are attached to the input variables which 

enables the input variables to have approximately the same values hence, 

equal impacts on the fitness function. This is achieved by multiplying the inverse 

of the median value on the y-axis for each variable shown in Figure 5.14 such 

that the axis are standard unit of 1. The median values for y-axis representing 

A, B, C, and D as given in Figure 5.14 is as shown in Table 5.1. 

 

Table 5.1: Weightings assigned for the respective input variables 

Weighting Input Variable median values for y-axis Reciprocals Weightings 
to the ratio 

of 1 

Wa A 4.05 0.247 0.067 

Wb B 11.5 0.087 0.024 

Wc C 0.42 2.381 0.649 

Wd D 1.048 0.954 0.260 

 

Given the weightings whose corresponding values are the reciprocals as shown 

in Table 5.1, Figure 5.17 is generated after 500 iterations. A significant 

observation shows that all the “Average Values” axis appear to be within the 

same range much more than in Figure 5.14 thereby giving the variables 

approximately the same bias within the fitness function equation. The 

convergence of all the input as well as output variables are also similar with that 

of Figure 5.14 with none of them dominating the other in a significant way.  
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Figure 5.17: Convergence of variables with varied weightings  

 

Figure 5.18 shows the optimised load profile generated which differs from 

Figure 5.15. The major differences lie between 8:00 and 17:00 hours as a result 

of low occupancy as shown in Figure 5.1 which permits sufficient load 

scheduling activity, thereby allowing the impact of the discomfort function to 

increase dispersion of load usage. Financial savings are also made and in this 

analysis whereby energy savings of 4.9% was realised. This therefore confirms 

that biasing the weighting for any specific variable can also tilt the outcome in 

favour of the quantity represented by the variable. It can be concluded that 

application of appropriate weightings are expected to create varied load profiles 
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which corresponds to specific user choices. Although a limited example of 

investigating the impact of weightings is discussed, obtaining optimal weighting 

assignment for all input variables is an interesting area for future research. 

Choosing these variables are expected to be automated and should reflect 

historical behaviour of the user. 

 

 

Figure 5.18: Load profiles for variables with same weightings 

 

Finally, it is worth mentioning that the fitness function equation can be changed 

especially the discomfort function which is maximised on this occasion and in 

accordance with Equation 4, but be minimised if desired. Such a scenario has 

been demonstrated in section 6.3 of the next chapter whereby various methods 

of managing discomfort in demand response were discussed. 
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5.4 Chapter Summary 

 

In this chapter, the use of GAs for load scheduling in a future smart home was 

demonstrated. The choice of using GA was primarily based on the ease offered 

in adding different controlling variables to the input source such that 

independent quantities identified can be appended to the fitness function in 

order to achieve an overall result. One of such instances of addition of very 

important input variables to the fitness function is the use of a variable that 

determines “user comfort” which is also considered one of the major 

contributions of the work. This is because this variable helps to ensure that 

scheduled loads reflect specific user behaviour, thereby encouraging user 

participation in DR programs. This variable was also defined as a discomfort 

factor whose role was to demonstrate how the quality of load scheduling can be 

improved. Introduction of discomfort clipping helps in limiting the dispersion of 

scheduled load from the forecast mean if desired by the user, thereby stabilizing 

the optimisation process. This can be viewed as a feedback system which is a 

novel idea that can be implemented in order to encourage more user 

participation in DR programs as well as improving their confidence to engage 

more actively. The next chapter therefore is a presentation of the various 

applications of the method presented which includes the results obtained when 

choosing schedulable and non-schedulable loads, results obtained when 

discomfort experienced in DR programs are monitored and managed to levels 

acceptable to the user as well as results obtained from evaluating user 

participation capabilities in DR programs.    
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Chapter 6: Application of Results  

 

6.1 Introduction 

 

Analysis of the system performance was carried out in the previous chapter 

whereby various aspects of the algorithm were tested and evaluated. This 

chapter is a presentation of various applications of the simulated results based 

on user-specific considerations of energy consumers within the future smart 

home. Results of these experiments are presented in sections broadly divided 

into the following: 

 Identification of specific appliances for scheduling  

 Discomfort deductions and management. 

 Impact of No Discomfort considerations 

 Impact of Discomfort considerations without clipping  

 Impact of Discomfort considerations with clipping 

 Evaluation of user participation in demand response programs.  

 

The simulated results presented in this chapter represents not only some 

aspects of the methodology discussed in Chapter 4 but also some aspects of 

the results from Chapter 5. It represents an assessment of user behaviour and 

participation capabilities in demand response programs for future smart homes. 

Most aspects of the results presented are based on GA application while others 

are analysis of intelligent sensor fusion of Boolean and fuzzy logic systems. 
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6.2 Identification of Specific Appliance for Scheduling 

 

In most domestic applications, the use of appliances at specified times during 

the day is considered critical while considering what appliance to schedule and 

what not to schedule. With respect to section 4.5 which is a description of the 

methodology applied towards identifying specific appliances for scheduling, the 

key data required for this evaluation are: standard deviation of the load profiles, 

forecast load profile, price profile and probability of appliance use (PAU).  

 

Figure 6.1 shows nine electrical appliances identified for a typical household 

whose individual load profiles are represented as “A to I”. These are described 

as: Electrical Facility, HVAC Appliance, Heating, Miscellaneous, Interior Light, 

Water Heater, Interior Equipment, Exterior Light and HVAC Fan respectively. 

They represent the forecast load profiles for each appliance in a particular day, 

in the month of January, for a household in Baton Rouge, Louisiana, US [110]. 

The data samples are obtained over a 28-day period but segregated on a 

weekly basis. In reference to section 4.5, the standard deviation of load profiles 

for each appliance is calculated within this 28 day period and a threshold of 

0.25 was chosen for each appliance as given in Figures 4.4, while a threshold 

of 0.023$/kWh was chosen for the forecast price profile as given in Figures 4.5. 

A threshold of 0.85 was chosen for the PAU and Figure 4.6 represents the PAU 

for appliance A, which is an electrical facility represented as an electric cooker. 

Although the PAU for the remaining eight loads are not shown, they are 

individually computed and are also at the same threshold of 0.85 each.  
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Figure 6.1: Individual load profiles of sample appliances  

 

6.2.1 Isolating Base Loads from Scheduling  

 

Following the algorithm for computation of all input variables as discussed in 

section 4.5, Table 6.1 shows the individual status of each appliance whereby 

the ZEROS represent intervals when the specified appliance behaved as a non-

schedulable load, while the ONES represent when they are schedulable. 

Appliances D, E, G and H are clearly non-schedulable loads at all times, while 

the rest behaves as schedulable loads at certain times of the day as well as 

non-schedulable loads at other times.  
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Table 6.1: Status profile for all appliances in a day 

Time A B C D E F G H I 

00:00-05:00 0 0 0 0 0 0 0 0 0 

05:00-06:00 1 1 1 0 0 1 0 0 1 

06:00-7:00 1 1 1 0 0 1 0 0 1 

07:00-8:00 1 1 1 0 0 1 0 0 1 

08:00-9:00 1 1 1 0 0 1 0 0 1 

09:00-10:00 1 1 1 0 0 1 0 0 1 

10:00-11:00 1 1 1 0 0 1 0 0 0 

11:00-12:00 1 1 1 0 0 1 0 0 1 

12:00-13:00 1 1 1 0 0 1 0 0 1 

13:00-14:00 1 0 0 0 0 1 0 0 1 

14:00-19:00 0 0 0 0 0 0 0 0 0 

19:00-20:00 0 0 0 0 0 1 0 0 1 

20:00-21:00 0 0 0 0 0 1 0 0 1 

21:00-00:00 0 0 0 0 0 0 0 0 0 

 

 

It is also interesting to note that inasmuch as the data presented is evaluated 

from 00:00 hours till 24:00 hours within the same day, Table 6.1 can also infer 

that from 21:00 hours of the previous night up till 5:00 hours in the new day, the 

use of all appliances follow a similar pattern hence, all of them are non-

schedulable at these times. Times within the amber sections indicate time 

intervals when load scheduling is not permitted while the green sections 
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indicate time intervals when load scheduling is possible. Table 6.2 therefore 

represents a summary of all the activities of the appliances whereby intervals 

when load scheduling is possible are indicated, as well as when there are not.  

 

Table 6.2: Summary of activity profile for all time intervals in a day 

Time Interval 𝒇(𝑳𝒊)𝒕 Inference 

00:00-05:00 0 Non-Schedulable (5hrs interval) 

05:00-14:00 1 Schedulable (9hrs interval) 

14:00-19:00 0 Non-Schedulable (5hrs interval) 

19:00-21:00 1 Schedulable (2hrs interval) 

21:00-00:00 0 Non-Schedulable (3hrs interval) 

 

 

Figure 6.2 is obtained from Table 6.2 whereby it can be observed that all 

appliances used at night time and mid-afternoon are non-schedulable hence, 

they behave like base loads. This means that opportunities to perform load 

scheduling are only in the morning and late evening. It also observable from 

Figure 6.2 that any load scheduling technique applied by a smart scheduler 

should only target these intervals because the rest of the intervals will not be 

allowed or favourable to the user. It also shows that more appliances are 

available for scheduling in the morning than at late evening.  
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Figure 6.2:  Aggregated load profile and base load  

 

6.2.2 Eliminating Pricing Effect while Isolating Base Loads 

 

Consider a scenario whereby the effect of price 𝑓(𝐶𝑡) as given in Equation 21 is 

excluded from the shifting coefficient 𝑓(𝑆𝑐) given in table 4.2. The aim is to be 

able to observe what happens when only the standard deviations of the load 

profiles are used in determining the base load during the day. Figure 6.3 shows 

that load scheduling can take place at all times during the day if the pricing 

factor is excluded. This is expected because the role of dynamic pricing in 

affecting the decision to schedule loads is no longer present. Although on 

analysing individual status of each appliance as given in Table 6.1, appliances 

D, E, G and H still remained base loads at all times. This is because of the very 
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low standard deviation values which are observed to be so close to zero, 

although these are not shown in the report. 

 

 

Figure 6.3:  Aggregated load profile and base load without price factor 

 

Conversely, there was never any time interval when all appliances are 

considered to be base loads. This is why the base load profile is completely 

detached from the total load profile unlike as presented in Figure 6.2 whereby at 

some intervals, all loads are non-schedulable thereby acting as base loads. It is 

therefore clear that Figure 6.2 and Figure 6.3 differ significantly depending on 

the number, as well as significance of the controlling variables used in making 

the required decisions. 
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In summary, identification of load characteristics with respect to user behaviour 

is the first step towards making a decision about what appliance to schedule if 

an opportunity to schedule load occurs. In this way, user preferences are placed 

paramount before applying load scheduling algorithms since sensitive loads 

used at any given time interval are identified and then prevented from the 

possibility of undergoing load scheduling. The next section is therefore a 

presentation of the results obtainable when load scheduling is applied on a load 

profile using GA method, using load profiles that are assumed to have been 

identified as schedulable loads. 

 

6.3 Managing Discomfort Experienced in Demand Response 

 

The problems associated with participation in DR programs on consumers as 

indicated by several authors and already discussed in chapter 1, are recognized 

to be comfort-based. This section shows the results of effective management of 

load scheduling routines that caters for specific needs of various users by 

minimizing discomfort associated with load scheduling thereby improving user 

participation. Profiles of the input data applied are as given in Figure 5.1 and the 

performance of various discomfort evaluation tests are carried out in three 

categories which include:  

 A case of no discomfort considerations  

 A case of discomfort considerations without clipping  

 A case of discomfort considerations with clipping.  
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Figure 6.4 shows the convergence of the fitness function after 3000 iterations 

whereby the convergence shown is only for a case of discomfort considerations 

without clipping. Although this convergence is very similar for all cases 

presented herein, the discomfort axis is not available for the first case since it is 

conditioned as a case of no discomfort considerations.  

 

 

Figure 6.4: Graph of Convergence of variables for discomfort analysis 

 

6.3.1 Case of No Discomfort Considerations 

 

Figure 6.5 shows load profile optimisation using GA, when the discomfort 

variable is eliminated from the fitness function. It can be observed that at 

several time intervals on the graph, there exist huge differentials between the 

optimized and forecast load profiles. Notable among these times is at 01:00 
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when the difference is over 2kWh despite supposedly having a low standard 

deviation as given in Figure 5.1. This is because the discomfort function which 

contains the standard deviation factor was actually not included in the fitness 

function of Equation 4. This therefore permits the very low price of energy at 

that time to be the key decisive factor for the scheduler, thereby resulting to a 

shift of a significant amount of energy to 01:00 hours.  

 

 

Figure 6.5: Load profiles with no discomfort consideration  

This result also shows what several users will experience based on the use of 

conventional load scheduling algorithms that does not cater for user comfort, 

and are sometimes controlled from the utility side. At the end of the day, the 

most likely scenario would be an eventual signing off from DR programs 

whenever consumers are tired of enduring the huge differentials in load usage 

pattern, which invariably leads to high discomfort on the users. 
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6.3.2 Case of Discomfort Considerations without Clipping 

 

Figure 6.6 shows unclipped optimized and forecast load profile data with the 

implementation of discomfort reduction considerations. Here, the discomfort 

function is re-introduced in the fitness function of Equation 4 but minimised as 

given in Equation 18, unlike in Equation 4 where it was maximised (see sign 

change). It can be observed that there is a significant improvement from the 

differentials observable between these two load profiles, than as observed in 

case 1. It is also observable that the large energy gap at 01:00 from case 1 is 

narrowed, although significant energy variations at 10:00 and 18:00 still exists 

which the user may or may not consider too excessive depending on their 

choices. 

 

Figure 6.6: Load profiles with no limited discomfort 
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6.3.3 Case of Discomfort Considerations with Clipping 

 

Figure 6.7 shows a significant narrowing of the gap between 10:00 till about 

19:00 hours which is due to the limitation imposed concerning how much 

energy variation that is allowed due to the discomfort threshold value applied.  

 

 

Figure 6.7: Load profiles with limited discomfort 

 

Therefore, the very wide margins after optimisation can be reduced depending 

on the extent of discomfort limiting imposed. Therefore in this way, the customer 

can effectively manage their scheduling algorithms more appropriately, and to 

their specific requirements. 
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6.3.4 Inferences on the three cases investigated 

 

Having observed the various results obtainable from the three cases, it will be 

appropriate to examine the results of the magnitudes of the discomfort caused 

by load scheduling, given the discomfort function of Equation 18. This is shown 

in Figure 6.8 whereby the graphs of the clipped and unclipped discomfort levels 

are compared.  

 

 

Figure 6.8: Comparison of clipped and unclipped discomfort  

The magnitude of the clipped discomfort is at a threshold at 0.2 which 

represents about 40% of the maximum unclipped discomfort. By observation, it 
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here is a novel approach towards improving customer satisfaction while 

implementing load scheduling, whereby Cases 1 and 2 are used as a control in 

order to compare with them when the discomfort is clipped.  

 

Although GA takes a considerable amount of time depending on the 

computational speed of the processor (in this case, up to 3 minutes), it did not 

affect the system significantly as the results are required to be computed at the 

end of each day. Results obtained also shows that although a maximum 

differential of about 60% exists at various time intervals between the optimized 

and non-optimized load when optimisation is considered without discomfort 

factor, this differential could be lowered by half with the introduction of the 

discomfort function. Further results showed that the differential can be lowered 

much further depending on the user’s choice. In as much as one can lower the 

discomfort threshold line as desired, it is also important to note that lowering 

this threshold reduces the savings in energy cost accruable to customers who 

participate actively in DR programs. 

 

6.4 Evaluation of user participation in Demand Response  

 

These experiments observes the causes to the inconsistencies that undermine 

active user participation in DR programs over a period of time. It also shows 

how behaviour modification can influence energy costs, while not necessarily 

having to alter energy consumption levels in any given time. In this section, an 
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evaluation of user participation is achieved which shows how utility providers 

may be able to understand their consumer behaviours more effectively by the 

evaluation of UPI using fuzzy logic which can enable such energy providers to 

set their priorities as appropriately as desired. The method presented in this 

work as discussed in section 4.6 shows evaluation of consumer energy 

consumption behaviours whereby information obtained can be useful in 

designing grid network with improved active user participation in DR programs. 

Fuzzy logic method is a relatively straight forward approach to achieving this 

goal due to the ease of designing the respective membership functions. Results 

obtained are therefore discussed herein. 

 

6.4.1 Comparing Two Households for Participation in DR  

 

Two households were compared by obtaining a 2-day energy sample for each 

household and their corresponding standard deviations in order to evaluate their 

respective HPI and UPI participation. These data are as given in Figure 4.1 and 

Figure 4.4. A threshold of 50% of the per unit measurement is also applied 

while following the rest of the routine as presented in the model for Boolean 

evaluation system such that Figure 6.9 is obtained. The Hourly Performance 

Index (HPI) of each household is shown whereby Household-1 which is derived 

from Figure 4.4 has 22 hours of Fair HPI with 2 hours of GOOD HPI, while 

Household-2 which is derived from Figure 4.1 has a mixture of POOR, FAIR 

and GOOD HPI. Also, the day ahead dynamic pricing used is as given in Figure 

5.1. at this stage, it may be difficult to ascertain which of the two households 
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performs better than the other because, although Household-2 has several 

GOOD HPI’s the POOR HPI’s may degrade its overall performance. 

 

 

Figure 6.9: Activity profiles for 2 households over a 24-hr period 

 

Interestingly, the next section is able to clear this ambiguity. Furthermore, it is 

worth noting that the threshold line plays a key role in determining the HPI 

values because it was observed that if the threshold line is lowered, the HPI 

values improve and vice versa. For instance at reduced threshold of 30% per 

unit threshold for both Price and STD data, Household-1 has 12 hours of Good 

HPI and 12 hours of Fair HPI, while Household-2 has 20 hours of Good HPI, 4 

hours of Fair HPI, without any Poor HPIs (Figures not shown). 
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Furthermore, using the fuzzy rules as given in Table 4.8, while following the rest 

of the routine as presented in the model for Boolean evaluation system, the UPI 

profile evaluated for every hourly energy use for both households is shown in 

Figure 6.10. For Household 1, the average UPI value is 55.2% while the 

average UPI value for Household 2 is 64.6%. 

 

 

Figure 6.10: User Participation Index profiles for households 1 and 2 

 

Theoretically, households with higher UPI values indicate more active 

participation in DR programs than those with lower UPI values. This is a similar 

result obtained in Figure 6.9 hence; occupants in Household 2 are 

comparatively better customers who participate in DR programs than those in 

Household 1. This is the key outcome of this research because it indicates 

clearly how any of the two techniques can be used to identify such important 

information which can be useful in understanding the weak link in DR 

participation within a community or a micro grid. 
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6.4.2 Verification of Results: Case studies  

 

The results obtained and evaluated are based on non-probabilistic approach for 

both methods of evaluation systems applied. To be able to verify this, the 

results of the HPI and UPI for both households are compared against when 

probabilistic approach is used. The details of this approach is as already 

discussed in section 4.6 and the essence of this comparison is to observe the 

performance of each household in order to validate the theoretical suggestion 

that users in Household 2 are more active DR participants than users in 

Household 1. 

 

Case 1: Probabilistic analysis for household 1 

With reference to the methodology as discussed in section 4.6.1 which included 

the application of probability of appliance use (PAU) for identifying schedulable 

or non-schedulable loads, the input details of Household 1 was used in order to 

observe the proportion of time intervals when load scheduling could occur.  

 

The resultant graph shown in Figure 6.11 comprises of the entire load profile as 

well as the base load profile. It can be observed that the intervals when load 

scheduling is possible is narrowed which is only between 9:00 hours and 10:00 

hours thereby implying that fewer appliances can be scheduled under the 

conditions used in the experiment.  
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Figure 6.11: Aggregated load profile and base load for household 1 

 

Case 2: Probabilistic analysis for household 2 

On this occasion the same technique was applied, but by replacing the input 

data with the details of Household 2 and then generating the response 

graphically as shown in Figure 6.12. Here, there exists considerable interval 

where load scheduling can take place which is approximately between 8:00 

hours and 14:00 hours, as well as 18:00 hours till midnight. This means that the 

intervals where scheduling could not take place are mainly in the early morning 

as well as in mid-afternoon. But when compared with the results from case 1, it 

shows that under the same pricing conditions, users in Household 2 has the 

tendency to engage more actively in DR programs than users in Household 1.   
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Figure 6.12: Aggregated load profile and base load for Household 2 

 

Finally, more households within the same community are considered in order to 

evaluate their respective performances in DR participation. Figure 6.13 shows 

the performances of 10 households whereby Households 1 and 2 with UPI of 

55.2% and 64.6% respectively, are the samples already discussed herein.  

 

It is observable that participation of Household 3 in DR programs is significantly 

Poor (UPI < 40%) which means that the occupants may not be interested in DR 

participation and persuading them may not yield any reasonable result. On the 

other extreme lies Households 2 and 9 who are the only Active participants 

available (UPI > 60%). The rest of the households which constitutes of 70% of 

the households within the community are Average and they can be encouraged 
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to improve their participation levels. In this way, a better energy management 

schedule could be designed in order to improve energy efficiency within the 

grid. 

 

 

 

Figure 6.13 Performances of 10 Households in DR Participation 

 

On the other hand, Figure 6.14 shows the hourly participation index of the ten 

households which shows that most of them are poor participants from early 

morning up till 8:00 hours. This is expected since fewer but dedicated 

appliances are usually ON at this time such as refrigerators, security lights and 

all loads that are usually left all through the night. Household 3 is shown to have 

the least activity while the best is Household 9 hence, thereby complementing 

Figure 6.13 results. 
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Figure 6.14: Hourly Performance of 10 Households in Demand Response 

 

6.5 Chapter Summary 

 

This chapter has shown the importance of using standard deviation of load 

profiles in various analytical applications for understanding user behaviours. 

This is because data with historical statistical contents tend to provide 

information that is useful in forecasting applications which makes it ideal for 

modelling user behaviour as desired in this research. The result of such 

usefulness as used in this work includes the application of user comfort 

considerations, identification of schedulable and non-schedulable loads, as well 

as evaluation of user participation capabilities. Understanding user behaviour is 

the basis of these considerations such that a design of an appropriate future 
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smart home application can be made. Results showed that a particular 

appliance which behaves as a schedulable load at certain times, could become 

a non-schedulable load at other times, even within the same day. This relativity 

is important to helping load optimisation algorithm to understand the user and 

only apply load scheduling at the user’s convenience thereby helping to 

minimize discomfort. Discomfort is also reduced by directly selecting a choice 

threshold level as desired by the user.  

 

Finally, this chapter shows the importance for the utility to evaluate consumers 

based on their potentials to participate in DR programs. Ideally, users with high 

UPI do not need any persuasion to participate based on the merits of their high 

participation levels but those with low UPI are open to being encouraged to 

increase their participation levels. This may be in form of increased marketing of 

incentive offers such as bonuses, assuming their participation levels exceed a 

certain threshold.  

 

The next chapter is therefore, a detailed description of the research 

methodology applied in achieving various models of cyber-attacks on a future 

smart home. This is modelled within the context of the testbed proposed as 

discussed in Chapter 3 and also using the fitness function as well as the same 

algorithm as presented in Chapter 4. The aim is to be able to modify relevant 

aspects of the fitness function and then run the algorithm in order to observe the 

impact on the results obtained which can in turn affect user participation in DR 

programs assuming they received irregular load profiles due to cyber-attack.   
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Chapter 7: Cyber-Attack Modelling  

 

7.1 Introduction 

 

Cyber-attack is a familiar experience to internet users since the 

commercialization of internet services and operations. As in the real world, 

similar criminal activities are carried out by people who have capitalized on the 

vulnerabilities of data transferred over the internet for their own selfish needs. 

The realization that information transferred via the internet can be hacked, 

harvested and compromised, has offered intruders alternative ways to invading 

peoples’ privacy without having to physically step into their premises. As a 

result, the evolution of the traditional power grid network system to a smart grid 

network, which fundamentally utilizes communication and data transfer 

infrastructure that many people have access to, has to ensure there are 

adequate security measures in order to deter intruders from disrupting the 

network and wrecking people’s lives.   

 

Several factors can encourage cyber-criminals to consider hacking into people’s 

privacy but the commonest reasons seem to be just for fun, intending to prove a 

point that they can hack a new system or simply because they just want to bring 

down an organized system [116]. They usually find or stumble on the flaws in 

an existing design and then exploit these deficiencies. Sometimes information 

harvested from unsuspecting victims are sold to a third party for some monetary 
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value, and this is one of the occasions whereby cyber-criminals trade directly 

the username, passwords, phone numbers and several other personal details of 

online users in the so called “dark web” [117]. Other forms of menace from 

cyber criminals can include but not limited to internet fraud, cyber-bullying and 

blackmail. This therefore leaves the energy grid itself as a matter of national 

security if it becomes attacked and at the end of the day, their activities turn out 

to be a pain not only to the users of such systems but also to the designers as 

well. Companies oftentimes do respond to this threats by rewarding those who 

help find security flaws on their own systems [118].  

 

A case of cyber-attack in October 2016 when a Distributed Denial of Service 

(DDoS) attack knocks heating system offline in at least two housing bocks in the 

city of Lappeenranta in Finland, leaving their residents in sub-zero weather 

conditions. In an attempt to fight back the attack which was only short-lived, the 

automated systems rebooted which unfortunately got stuck in an endless loop 

that kept restarting and shutting down. This scenario lasted for over a week but 

returned to normal service by 3rd November afternoon [119]. Therefore, as 

much as researchers are working hard every day to improve living standards as 

well as efficiency of system designs, criminals are also attempting and finding 

ways to interfering with these systems thereby sabotaging and frustrating their 

operations. Cyber-attack is a persistent threat to internet users and if it is not a 

case of virus attack, it could be DoS or a phishing attack. In this theme, the 

focus of cyber-attack is on the consumer side of the smart grid within a 

liberalized energy market as well as within the emerging HEMS.  



  184 
  

 

Figure 7.1: Schematic for Smart HEMS Showing Possible Attack Points 

 

Figure 7.1 is a schematic for the HEMS that show various communication lines 

and various possible attack points within the architecture proposed. Attacks on 

the pricing data as well as on the load profile are considered, under attack 

scenarios such as DoS and phishing attacks. While DoS attack involves the 

congestion of data traffic to the HEMS thereby making it difficult for the actual 

data to arrive, phishing attack involves much more which includes having 

access to important personal details of a victim such as usernames and 

passwords [120]. By masking and pretending to be a trusted organization, 

fraudsters can get the customers to give up their login details with which they 

can have access to the personal information within the household. 
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As soon as an access is obtained onto the network, further information such as 

load profile, occupancy, historical data and every other personal information 

available to the HEMS can be accessible by the attacker and the contents of 

this data can be modified or replaced. If such an attacker gains access to the 

household, they can use sophisticated software to modify and override the 

entire input variables to their choice. This could lead to the generation of the 

worst possible load schedules which may lead to reduced profit margin or 

possibly losses as well, when compared to the schedule without attack.  

 

In any smart home, the attack vector to a load profile data stored in the HEMS 

is via the communication network that connects the HEMS to the internet. This 

connection provides the connection that enables the HEMS to obtain pricing 

data online as they are published by the energy providers. Unfortunately, this 

invariably exposes the communication link to become a target for an attack of 

which cyber-criminals could break into. This is where appropriate security 

design should be enforced because as much as the load profile data is 

vulnerable; virtually any data on the HEMS can be attacked.  

 

Due to the vulnerabilities of devices connected online especially as more 

devices are connected via IOT, the risks posed by cyber attackers is a 

continuous threat to users who participate in active DR programs. In as much 

as reactive response may become inevitable after which an attacker has left the 

victim counting their losses in the aftermath, proactive response to cyber-

attacks is usually the best way to arrest an attack scenario. This section will 
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analyse a simulated impact of various possible security incidents within the 

smart home network for users who participate actively in DR programs 

assuming such attacks by any means, becomes successful. The aim is to 

demonstrate an applicable response which is incorporated in the original smart 

home design thereby ensuring a proactive response to cyber-attacks. Each 

model of the various possible cyber-attacks is simulated in order to investigate 

the impact of such attacks on the localized scheduler. Pricing is an important 

input variable but also vulnerable because several scheduling activities are 

usually concerned around energy cost savings thereby making them an 

attacker’s target [7]. Therefore, the scope for this analysis is focused on any of 

the numerous communication links around the HEMS as shown in Figure 7.1, 

whereby possible attacks on the network is investigated for pricing as well as on 

load profile data.  

 

Finally in the proposed approach, a household whose inhabitants are active DR 

participants are presumed to have received a load schedule of which they are 

prepared to abide with, before a specific attack is carried out. The objective 

function as given by Equation 4 is optimized using GA where the input variables 

are as defined in Table 4.1. Various possible attacks are observed to affect 

specific aspects of the input variables depending on the type of attack assumed, 

thereby enabling a nullification or modification of the affected input variable in 

order to emulate the simulated attack. In this way, the impact of the respective 

attack on the scheduled load profile can be observed. The modelled attack 

scenarios are broadly divided into the following sections: 
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 Cyber-attack modelling and protection schemes on price profile 

 Cyber-attack modelling and protection schemes on the load profile 

 

7.2 Cyber-Attack Models on Pricing Data  

 

The attacks on pricing data are categorized under: DoS Attack, Constant-

Pricing Attack, False Data Interference as well as Data Manipulation Attack. 

The results from this analysis are compared with the normal scheduling 

operations which is used as a control to show an attack-free optimisation with 

secured data, in order to ascertain the impact each of these attack models 

could have on the household. 

 

7.2.1 Denial of Service Attack 

 

A typical DoS attack is initiated when an attacker deliberately generates multiple 

requests from his device to a target via a single protocol, thereby causing an 

impediment on data traffic and preventing the target from accessing their data 

online. Alternatively, the attacker can generate multiple requests through some 

master computers to the slave computers while pretending to be the victim 

computer as shown in Figure 7.2. The slave computers not recognizing the 

source of the request command presumes that all requests came from the 

victim computer and in an attempt to respond to those requests, they end up 

causing an unprecedented traffic and delays on the victim’s computer. 
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Figure 7.2: Distributed Denial of Service Attack on a Victim  

 

Such requests are usually too massive for the server to withstand and any such 

attack on the pricing information is capable of preventing the load scheduling 

algorithm from accessing the pricing data required for load scheduling. The 

consequence of this attack is the unavailability of the pricing details for the 

fitness function and in this way, the impact on the convergence of the scheduled 

load profile can be observed. Mathematically from Equation 4, given the cost B, 

as a variable of the fitness function F, Total Energy Cost per day according to 

Table 4.1, is given as: 

𝐵 = D𝑃𝑡,1
 ∗ ∑  Ԑ𝑃𝑡,𝑛

                                                                              (25)     

Where: 

D𝑃𝑡,1
= Dynamic price  

  Ԑ𝑃𝑡,𝑛
  = Energy Consumed 

          ∀𝑡 ∈ {1, 2, … . . 24} Hours. 
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For a DoS attack, Price = nil (Pricing data is delayed or unavailable) 

Then from Equation 25, 

Total Energy Cost per day = 𝑤𝑏 ∗ 0 ∗ ∑  Ԑ𝑃𝑡,𝑛
   

Therefore for a DoS attack, Equation 4 becomes: 

𝐹𝑗,𝑖= 𝑤𝑎*∑𝐴𝑗,𝑖 + 0 − (𝑤𝑐*∑𝐶𝑗,𝑖 + 𝑤𝑑*∑𝐷𝑗,𝑖)                                       (26)     

 

7.2.2 Constant- Pricing Attack  

 

Several domestic load scheduling models are implemented using dynamic 

pricing regimes which help to respond and balance the market forces of 

demand and supply. Higher prices are usually expected during high energy 

demand or during high cost of energy generation. Therefore, the domestic load 

scheduler requires adequate pricing model which reflects the current market 

scenario as accurate as possible in order to make an informed decision towards 

load scheduling. But if for any reason the pricing data being fed to the scheduler 

turns out to be a fixed pricing model, there could be consequences. Reducing a 

dynamic pricing regime to a fixed pricing signal could be a consequence of an 

unsecured network hijacked by a cyber-attacker. In order to model this attack, 

Let Constant Price factor = Ύ𝑡. 

Then from Equation 25, 

Total Energy Cost per day, B = Ύ𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
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Therefore for a fixed pricing attack, Equation 4 becomes:  

𝐹𝑗,𝑖= 𝑤𝑎 ∗ ∑𝐴𝑗,𝑖 + 𝑤𝑏 ∗ Ύ𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
 − (𝑤𝑐 ∗ ∑𝐶𝑗,𝑖 + 𝑤𝑑 ∗ ∑𝐷𝑗,𝑖)           (27)       

 

7.2.3 False data Injection Attack  

 

A cyber-attack on the dynamic pricing information can occur in form of an 

interference occasioned due to the injection of false data on the actual pricing 

signal. The aim of this sort of attack can be to cause the generation of random 

and unpredictable results thereby presenting a scheduled load which is not a 

true reflection of the market events. The unpredictability of the output is 

important because this type of attack could be difficult to detect since different 

types of results can be generated each time the algorithm is run. Let us 

consider an attack scenario whereby the dynamic price signal is injected with 

some discrete randomly generated false data ɳt to create some form of 

distortion thereby creating a new price profile Rt. The new price profile Rt is 

given as: 

Rt =  D𝑃𝑡,1
 + ɳt                                                          (28)    

Where: 

           ∀𝑡 ∈ {1, 2, … . . 24}; Hours 
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A variation of false data levels introduced is evaluated and a maximum false 

data level of up to 20% of the maximum dynamic price (signal) value is 

assumed. Therefore by definition, R𝑡 is bound by a maximum allowable 

proportion of the actual pricing signal for only positive pricing values as given in 

Equation 29. 

 

D𝑃𝑡,1
 
min

≤  Rt ≤ 1.2D𝑃𝑡,1
 
max

                                                  (29) 

 

The actual day-ahead pricing data was obtained from [113] and 20 iterations of 

increasing false data levels were incremented in a step-wise manner from zero 

up till 20% of the maximum price value.  

Therefore, Let Price with false data =Rt ; Then from Equation 25, 

Total Energy Cost per day, 𝐵 = 𝑅𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
  

Therefore for a fixed pricing attack, Equation 4 becomes:  

𝐹𝑗,𝑖= 𝑤𝑎 ∗ ∑𝐴𝑗,𝑖 + 𝑤𝑏 ∗ 𝑅𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
 − (𝑤𝑐 ∗ ∑𝐶𝑗,𝑖 + 𝑤𝑑  ∗ ∑𝐷𝑗,𝑖)             (30)    

  

7.2.4 Data Manipulation Attack  

 

This attack scenario is modelled by rearranging the data of the dynamic pricing 

information to create new price profiles which is similar to the original pricing 

data but differs in their respective times of occurrence. The aim of this 

rearrangement is to cause the HEMS to follow a false schedule which is 
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intended to lead to more expensive energy costs when applied by the HEMS. 

Four categories of this attack are presented of which the original price profile is 

also used, but as a control. The essence of this type of attack is based on the 

presumption that attackers may decide not to introduce any external data to 

disrupt the input variables but would rather scramble the original data with the 

aim of evading any security check which is capable of detecting changes in 

original data set, but not the scrambled original data. Manipulation of pricing 

data is of interest and four models are considered. These are shown in Figure 

7.3 and Figure 7.4 whereby the original price profile has prices which range 

between $2/kWh and $4.5/kWh and the other 3 samples also have same price 

ranges aimed at helping in masking the true price profile.  These samples are 

referred to as: 

 Original price profile  

 Flipped price profile 

 Inverted price profile 

 Flipped and Inverted price profile 

 

 

Figure 7.3: Price Profiles showing Original and Flipped price 
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Figure 7.4: Price Profiles showing Inverted and Flipped-Inverted Price  

 

The attacker can use any of the attack samples although it is expected that 

different samples are capable of generating different load schedules with 

varying losses, when compared to the savings accruable if the original pricing 

sample was used for scheduling. In order to model this attack;  

 

Let the Imposed Price =β, 

Then from Equation 25, 

Total Energy Cost per day = 𝛽𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
 

Therefore for an imposed pricing attack, Equation 4 becomes:  

𝐹𝑗,𝑖= 𝑤𝑎 ∗ ∑𝐴𝑗,𝑖 + 𝑤𝑏 ∗ 𝛽𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
 − (𝑤𝑐 ∗ ∑𝐶𝑗,𝑖 + 𝑤𝑑  ∗ ∑𝐷𝑗,𝑖)          (31)    
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The lists presented herein are not exhaustive and can be directed towards any 

input variable on the load scheduling algorithm. Furthermore, the definitions to 

the variables of Equation 31 as well as Equations 26, 27 and 30 are same for 

Equation 4 as described in Table 1 with the exception of the cost variable which 

is subjected to cyber-attack. Hence the cost variable was substituted with the 

specific model of cyber-attack as already discussed in this section. The 

concluding section is based on modelling attack scenarios on load profile data 

on the HEMS. 

 

7.3 Cyber-Attack Models on Load profile Data  

 

Load profile can be described as a graph of the variation in electrical load 

consumption within residential, commercial and industrial consumers. It can 

vary with ambient temperature as well as seasons over a period of time. Some 

of its uses includes assistance in determining energy allocation and planning 

benefits depending on how much power is available for distribution as well as 

where the priority lies during peak and off-peak periods. A forecasted load 

profile is usually obtained from historical load profile data and it is very useful 

whenever it is required to be used for planning purposes. The emerging HEMS 

is an invaluable tool for use in designing load scheduling algorithms which is 

used to propose a futuristic scheduled load usage for consumers for improved 

grid balancing and reduction of consumer’s energy costs. This means that load 

profiles are invaluable and any successful attack can disrupt power supply and 
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disrupt the network by producing inaccurate results as well as invalidating the 

outcome of the proposed load allocation and efficient energy planning schedule. 

 

The model of attack on Load Profile is described as an injection of false data on 

an original load profile data with the aim to cause the creation of random and 

unpredictable results thereby presenting a scheduled load which is not a true 

reflection of the consumer’s choice and the market events. By attacking the load 

it is expected that a direct impact will be is primarily felt on input variables A, C 

and D of Equation 4, because they are the variables that have load data as a 

component. By modifying the affected input variables as they relate to the 

attack on the load, the impact on the scheduled load profile is observed as the 

optimisation process is run. The results are thereafter compared with the normal 

scheduling operation which is used as the control to show an attack-free 

optimisation1 with secured data, in order to ascertain the impact of the attack on 

the household as well as the grid.  

 

An attack scenario is considered whereby the forecast load profile  Ԑ𝑓𝑡,𝑛
  is 

injected with some discrete randomly-generated false data ɳ𝑡 to create some 

distortion which in turn results to a new forecast load profile. The new load 

profile 𝑞𝑡, over a 24 hour interval is given in Equation 32.  

 𝑞𝑡 =  Ԑ𝑓𝑡,𝑛
+   ɳ𝑡                                                      (32)  
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The false data signal can also be a sinusoidal wave form, which may be out of 

phase with the original signal. Any amount of false data injection is possible 

although it is assumed that the maximum false data that can be introduced is up 

to 100% of the mean load profile value. By definition,  𝑞𝑡 is bound by a 

maximum allowable proportion of the forecast load profile and for only positive 

load profile values given as:  

Ԑ𝑓𝑡,𝑛min
 ≤  𝑞𝑡  ≤ 2Ԑ𝑓𝑡,𝑛max

                                            (33)  

 

The load profile data was obtained from [110] and 10 iterations of increasing 

false data levels from zero up till 100% of the mean load value was introduced. 

In order to derive the corresponding objective function, the new load profile  𝑞𝑡 

as it affects A, C and D is substituted in Equation 4, to produce Equation 34 as 

shown: 

𝐹𝑡,𝑖 =  𝑤𝑎 ∗  ∑ 𝐴𝑛𝑒𝑤𝑡,𝑖
+  𝑤𝑏 ∗  ∑ 𝐵𝑡,𝑖 – (𝑤𝑐 ∗  ∑ 𝐶𝑛𝑒𝑤𝑡,𝑖

 + 𝑤𝑑 ∗  ∑ 𝐷𝑛𝑒𝑤𝑡,𝑖
) (34)  

Where:  

 𝐴𝑛𝑒𝑤𝑡,𝑖
=  (𝑞𝑡 − 𝑥) * 𝐻𝑐                                                                     (35)  

 𝐶𝑛𝑒𝑤𝑡,𝑖
= (𝑞𝑡 − 𝑥) /σ                                                                        (36)  

 𝐷𝑛𝑒𝑤𝑡,𝑖
= 𝑥/𝑞𝑡                                                                                 (37) 

 

Modifications of Equation 4 are a consequence of cyber-attack and the 

corresponding equations are carefully deduced to represent each attack model. 
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Results of the various optimized load profiles generated are presented in the 

subsequent chapters where each of the modified versions of Equation 4 

representing specific attack is presented.  

 

7.4 Chapter Summary 

 

In this chapter, the means to having a secure future smart home such that any 

intended cyber-attack can be identified and therefore prevented, in order to 

achieve a more robust system design. Equations 26, 27, 30, 31 and 34 are 

effectively the key equations applied which substituted Equation 4 and the 

essence of this subsection is based on the need to be able to understand how 

best to prevent or minimize the impact of an attack which is only possible when 

detailed performance of the operations of the HEMS is carefully studied and 

understood. The attack methods listed are not exhaustive, which means other 

attack mechanisms are possible. However, the key essence of this chapter is to 

be able to demonstrate a means of investigating various attack models so that 

thwarting them can be possible.  

 

The next chapter will be a presentation of simulated results for a robust system 

design which is capable of identifying, recognising and responding 

autonomously to possible cyber-attacks on the HEMS design for improved 

performance as well as sustained user participation in DR programs. This 

includes attack on both the pricing data as well as on the forecast load profile.  
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Chapter 8: Results of Cyber-Attack 

Impacts and Mitigation 

 

8.1 Introduction 

 

A robust design of the HEMS within the smart home is based on the ability of 

the system design to withstand cyber-attack which is capable of compromising 

the normal working operations of the HEMS, thereby jeopardizing the continued 

user participation in DR programs. With several attack models as discussed in 

Chapter 7, the HEMS is expected to evade being trapped as a result of any 

form of these attacks so that adequate response will be applied while not 

necessarily having to wait for the user themselves, to effect the correction. 

While various types of attacks on the HEMS are possible, specific attack 

scenarios are considered, modelled and are discussed under the following 

themes: 

 Attack on pricing data, which include: 

 Denial of Service (DoS) Attack 

 Constant-Pricing Attack 

 Data Manipulation Attack 

 False data Injection Attack on pricing data 

 Attack on forecast load profile data which includes: 

 False data injection attack on forecast load profile data 
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Each attack discussed can affect specific targets on the input variable as 

discussed in Chapter 7. Results of various simulated attacks and the 

corresponding means of correction are presented in this chapter which 

effectively shows the means of ensuring the design of a reliable system.  

 

8.2 Cyber Security Strategies: Attack on Pricing Data 

 

The input variables used for the simulated results are as shown in Figure 8.1 

whereby the details of the pricing data, standard deviation of the load profile as 

well as occupancy profile are provided. This is different from the data used in 

the previous chapters since any data sample is capable of generating results. 

 

 

Figure 8.1: Principal Input Variables for Load Scheduling 
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This section provides the outcome of an attack event specifically on the pricing 

profile on the central controller within the smart HEMS. In all cases, it is 

assumed that no other external factor is capable of prevented the HEMS from 

running the algorithms as expected. In order words, the algorithm which is 

under attack is still expected to process all data available unless the attack is 

able to interrupt or terminate the normal operation of the system. Hence, any 

possible interruptions or other disruptive events are being investigated and 

results obtained are presented here. At the end of the day, the essence of 

incorporating a robust response to such attacks at the original design for secure 

HEMS would have been appreciated. Understanding and managing possible 

scenarios is therefore expected to assist the system so that it will be capable of 

managing such attacks even without the knowledge of the users. The next 

section is an analysis of such attacks with respect to DoS attacks. 

 

8.2.1 Impact of DoS Attack on Pricing Data 

 

The results obtainable due to an exemption of the pricing-data component of 

Equation 25, from participating in load scheduling optimisation due to a DOS 

attack is presented. It is observable that if there is a DoS attack on the HEMS 

thereby creating a delayed or non-availability of a specific variable within the 

fitness function, there will be consequences. In this case, pricing data is the 

victim and the resultant optimized load profile is observed to re-trace the original 

forecast load profile as shown in Figure 8.2. This is expected because pricing 

information is not available to the scheduler due to a DoS attack on pricing data 
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stream and this therefore, causes the optimized load profile to retain 

approximately same profile as the original forecast load profile. In other words, 

such an attack will render the scheduling operation temporarily dormant and 

non-functional without any new results. 

 

 

Figure 8.2: DoS Impact on Load Profile and Possible Correction 
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2. The chances of generating a scheduled load profile which is exactly same 

as the forecast load profile is practically zero under normal circumstance. 

Only a zero-valued pricing data can generate such data as an optimized 

load profile hence, such an outcome is possibly as a result of a DoS attack. 

 

A reliable way to recovering from this attack is by locally generating a 

forecasted load profile using acknowledged forecasting techniques as 

discussed in section 4.2.4, with the aid of stored historical price profiles 

accessible within the HEMS. Following this action, it is also very important to 

inform the user so that any further protective action might be taken which may 

include change of passwords, software update and antivirus clean-up.  

 

Figure 8.2 also shows an optimized Load Profile which is the corrected outcome 

whereby the forecast price profile was generated locally within the HEMS. It 

also shows the optimized load profile obtained using the actual day-ahead price 

as provided by the energy suppliers. It is impressive to observe how much of a 

good job the pricing data forecasted locally within the HEMS did, in providing a 

price profile that can be used as an approximate data to substitute a DoS attack 

on a pricing data 

 

8.2.2 Impact of Constant-Pricing Attack 

 

A constant-pricing attack can be modelled using Equation 26 by replacing the 

dynamic pricing with a fixed pricing system for different fixed pricing levels.  
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Figure 8.3: Principal Input Variables for a high-valued Constant Price attack 
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Figure 8.4: Scheduled Load Profile for a high-valued Constant Price attack 
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Figure 8.5: Principal Input Variables for a mid-valued Constant Price attack 

 

Figure 8.6: Scheduled Load Profile for Medium Constant Price 
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Figure 8.7: Principal Input Variables for a low-valued Constant Price attack 

 

Figure 8.8: Scheduled Load Profile for low Constant Price 
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Finally, a summation of the changes in energy which are also deviations of the 

optimised load from the forecast load, were obtained for constant pricing values 

between 0.5$/kWh and 4.5$/kWh. This is presented on the left hand side of 

Figure 8.9 whereby it is observable that at low constant-pricing threshold, the 

deviations of the optimised load profile from the forecast load profile is almost 

equal to zero, which means that the optimised load profile almost equals the 

forecast load profile. This shows that the pricing value gives an outcome that is 

comparable to the pricing value for a DoS attack as discussed in section 8.2.1. 

However, a sharp increment is observed when the constant-pricing threshold 

approaches 2$/kWh and the deviations continues to increase at varying rates 

so long as the constant-pricing threshold is increasing.  

 

  

 

Figure 8.9: Deviations of Optimized Load profile with Increasing Threshold 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

Constant-Pricing Threshold

D
e

v
ia

ti
o

n
s
 f
ro

m
 F

o
re

c
a

s
t 
L

o
a

d
 P

ro
fi
le

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-60

-40

-20

0

20

40

60

80

100

P
e

rc
e

n
t 
d

e
v
ia

ti
o

n
s
 f
ro

m
 A

c
tu

a
l 
S

a
v
in

g
s
 (

%
)Load Profile Deviations

Savings Deviations



  208 
  

The right-hand axis of Figure 8.9 shows how much of a false projection of profit 

obtainable when the HEMS was attacked due to a constant-pricing attack. The 

percent derivations were obtained using Equation 38 as given  

𝛼 =  𝜃 −  𝜗                                                             38 

Where: 

𝛼  = Deviations from Actual savings  

𝜃 = Actual percent profit without attack  

𝜗 = False Profit with constant-pricing attack  

 

In this experiment, the actual percent profit without attack was found to be 

10.4% using Equation 17. This means that from Equation 38, positive-valued 

deviations indicates that 𝜗 is less than 10.4% while negative-valued deviations 

shows that 𝜗 is greater than 10.4% as shown in Figure 8.9. Hence, all percent 

profit which may have been provided by a system under a constant-price attack 

is false except at the corresponding threshold iteration of 3.25 which produces a 

zero deviation when the actual percent profit without attack is equivalent to the 

false profit as projected by the constant-pricing attack. 

 

Attack detection and recovery: 

Fortunately, this type of attack is considered relatively easy to detect especially 

because constant-valued pricing data is an anomaly in a dynamic pricing 

system hence, the HEMS can easily detect and flag such as an error. This 
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therefore makes it possible for the HEMS to be able to nullify its impact either 

by requesting for a second update on the pricing information or by relying on a 

localized forecasting mechanism as discussed in section 8.2.1. 

 

8.2.3 Impact of Data Manipulation Attack 

 

This attack as modelled in Equation 30 shows different samples of manipulated 

models of the price profile as described in Figure 7.3 and Figure 7.4. Table 8.1 

shows the savings obtainable due to optimisation application from the four 

samples of price profiles generated for this experiment. It also shows the 

proportion of the possible losses for each sample, on the consumer.  

 

Table 8.1: Savings obtainable due to optimisation application 

Pricing Attack 

Model Profile 

Savings 

Available (%) 

Attacker’s Impact 

off the Savings (%) 

Consumer’s Loss 

from Savings (%) 

Original 9.90 0 0 

Flipped 9.02 0.88 8.89 

Inverted 5.26 4.64 46.87 

Flipped and 

Inverted 

6.51 3.39 34.24 
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Using the day-ahead price profile as the original price reference, the actual 

savings obtainable as a result of the optimisation generated a savings of 9.9% 

for the consumer. So depending on the price model adopted by the attackers, 

various amounts of losses are possible. The Inverted Price Profile sample 

produces the highest financial loss which is equivalent to 46.87% when 

compared to the actual original price profile. This attack could be reduced using 

antivirus software as well as educating the users about how to avoid patronizing 

untrusted sources.  

 

8.2.4 Impact of False Data Injection Attack  

 

This attack is modelled in Equation 29 using the inputs as given in Figure 8.1. 

Here, the impact on the optimized load profile is examined such that if an 

attacker infiltrates the pricing data with some randomly generated false data 

and then made available to the load scheduler, various responses are 

obtainable. Here, the false data is gradually introduced to the pricing data 

variable and the scheduled load is observed to respond in different ways.  In 

order to verify the overall impact of false data injection on the pricing data, the 

false data is gradually introduced in a stepwise incremental fashion whose 

magnitude begins from amplitude of 1% of the pricing data up till 20% as the 

assumed allowable false data level. Figures 8.10–15 shows only three levels of 

false data introduction with significant variations in the results obtained whereby 

Figure 8.10 is used as a control, and has no false data content. However, 

Figure 8.12 contains 10% of false data while Figure 8.14 has 20% of same.  
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Figure 8.10: Principal Input Variables for 0 % False Data content 

 

Figure 8.11: Load Schedule for 0 % False Data content 
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Figure 8.12: Principal Input Variables for 10 % False Data content 

 

Figure 8.13: Load Schedule for 10 % False Data content 
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Figure 8.14: Principal Input Variables for 20 % False Data content 

 

Figure 8.15: Load Schedule for 20 % False Data content 
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The corresponding results show that Figure 8.13 and Figure 8.15 which 

basically looked identical to each other, deviates significantly from Figure 8.11. 

This means that introducing false data can quickly degenerate the output almost 

instantaneously, but thereafter maintains very similar shape even with further 

increase in false data content on the load profile. This is the scenario as shown 

in Figure 8.16 whereby this instantaneous degeneration terminates at about 5% 

of false data injection, while the scheduled load profile deviations remains 

constant.  

 

 

Figure 8.16: Price and Energy Changes as False Data Increases  
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discussed in 4.3.3, is also observed to increase rapidly as a result of false data 

introduction and this impact is expected to increase discomfort.  

 

Finally, it is observable that a very little false data injection for as little as a 5% 

injection at the input can quickly degenerate the results obtained and can cause 

huge impact on the final result generated. Unfortunately, a customer who would 

have made more than 10% savings while applying DR programs will end up 

with only about 1% savings if their pricing data is attacked in this way. 

 

Attack detection and recovery 

Nevertheless, it is remarkable to observe that there is always positive savings 

obtainable for any given level of false data injection on the price. This is due to 

the optimisation program that tends to follow the cheapest possible load profile 

for any given input variable. Although this attack might be difficult for the 

optimizer to detect depending on the magnitude of false data content and can 

go on for a while, following the routines as discussed in section 8.2.1 will be 

helpful. This is required because if no steps are taken to mitigate these types of 

attack, the users could become frustrated and may eventually withdraw from 

DR participation believing that there are no significant benefits, without 

acknowledging that their house has come under cyber-attack. The next section 

is a presentation of the results of the optimised load profile assuming the 

forecast load profile data is attacked by the means of false data attack injection. 
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8.3 Cyber Security Strategies: Attack on Load Profile 

 

The results discussed in previous section showed the impacts of various cyber-

attack on the load profile depending on the type of attack investigated. This 

section is a further investigation of false data injection attack on the HEMS 

whereby the target on this occasion is the forecast load profile, while Input data 

of Figure 8.1 are also used. Figures 8.17 to 8.20 show various results that are 

generated when various false data levels are injected based on the use of 

Equation 33 as the objective function. Here, the Original Load Profile is subject 

to attack and the result obtained produces the Optimized Load Profile (With 

Attack) as shown in Figure 8.17. 

 

Figure 8.17: Load Schedule with 0 % False Data Content 
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The Optimized Load Profile (W/out Attack) is used as a control and is generated 

using the Original (Forecast) Load Profile without the introduction of any false 

data injection. It therefore indicates the response assuming there was no attack 

and hence, acts as the baseline result.  

 

On the other hand, Forecast Optimized Load Profile is generated from Forecast 

Load Profile (which acts as the back-up against attack) and is generated locally 

from historical data of the previous 4 days of the same day of the week, as 

recorded within the HEMS. In this illustration, the retailer supplies the required 

Original Load Profile data, while the back-up Load Profile data was generated 

locally, although the sources of these data can be interchanged if desired. Since 

the false data content is zero, Figure 8.17 therefore shows that no attack is 

involved on the forecast load profile which thereafter generates the optimized 

load profile with all results approximately same for all outcomes as expected.  

 

The second scenario as shown in Figure 8.18 shows a false data injection of 

20%. Here, the Optimized Load Profile (with Attack) begins to pull away from 

the optimized load profile (without Attack) and this continues consistently even 

at 50% as shown in Figure 8.19.  
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Figure 8.18: Load Schedule with 20 % False Data Content 

 

Figure 8.19: Load Schedule with 50 % False Data Content 
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In Figure 8.20 and at 80% of false data injection as shown, it can be observed 

that the Optimized Load Profile (with Attack), is nearly flattened out except for 

the spike at 6:00 hours. This is a very key result as it clearly shows the effect of 

introducing false random data to the original load profile. On the other hand, the 

Forecast optimized load profile shows that it is a reasonably good back-up to 

rely upon in case the HEMS detects irregular random or unexpected data within 

Load Profile data. It is also appropriate to mention that the Optimized Load 

profile (without Attack) which is the baseline result remained the same with 

minimum and maximum values of about 2.5 kWh and 5.5 kWh respectively. 

 

 

Figure 8.20: Load Schedule with 80 % False Data Content 
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Two key observations are derivable from these results and they include: 

1. It is observable that as false data levels increases, the optimized load profile 

shrinks towards a straight line which represents the average value of the 

original load profile. This is an interesting result because we could see the 

effect of false data in diminishing the efficiency of the load scheduling 

process.  

2. The implications as deducible from the graphs is that such  shrinking is 

capable of effecting significant load shifting whereby several loads could be 

turned ON when they are expected to be OFF and vice versa.  

 

Therefore, this can be a worrisome scenario for consumers who participate in 

DR programs and may not realize that their load profile has come under attack. 

They may conclude that participating in DR programs is highly discomforting or 

that perhaps, their HEMS system is dysfunctional. Therefore preventing this 

attack is important and a means of doing so is same as already discussed in 

section 8.2. 

 

Figure 8.21 shows the changes in the deviations of the load profile with attack 

and the changes when the corrected mechanism is introduced. It is observable 

that the deviations of the load profile with attack increases significantly as the 

injected false data increases, while the deviations of load profile with backup 

remains fairly stable. In this way, it can be shown that backups can be used as 

a key means of preventing and diminishing the potency of such attacks. 
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Figure 8.21: Load Profile Changes as False Data Content Increases 
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The two critical input data simulated for attack included the dynamic pricing data 

and forecast load profile data. Results show that for every attack, the system is 

degraded in one way or the other especially the forecast load profile which 

changes from optimal to less optimal load profile. This impact is capable of 

leading to a failure to meeting the grid’s objectives in price setting as well as 

energy savings. It has also been demonstrated that using techniques such as 

applying localized forecasting to help as an alternative remedy is effective in 

deflating these impacts such that a near optimum schedule can be achieved 

even while under attack, while a more permanent solution is processed. Access 

authentication is naturally a key part of any proposed solutions and a provision 

for this security measures should be included in design frameworks of 

automated HEMS. It is important to ensure consumer confidence else, the 

dream of having a robust and efficient smart home could become elusive. The 

next chapter is an overall discussion and relevance of all results obtained, 

evaluated in context of behavioural response to DR programs.  
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Chapter 9: Discussions 

 

9.1 Evaluation of Load Scheduler Performance 

 

With the completion of all designs and experiments for a proposed future smart 

home, this chapter critically evaluates the results and the inferences deducible 

from previous four chapters, while comparing them with the literature review. 

This chapter therefore assesses of all these results and events within the 

context of the smart home as well as on the grid, while keeping in perspective; a 

comparison with the state-of-the-art research as outlined in chapters 1 and 2, 

towards a sustainable grid operation which serves not only the consumers but 

the retailers as well.  

 

9.1.1 Evaluating the Accuracy of Algorithm Developed 

 

With respect to Figure 5.14 and based on Equation 4, it is observable that the 

result obtained recognised a user-specific application of load schedules which 

caters for the behaviour of the user in a personalised way based on their 

individual characteristics. Apart from the price profile data which is universal for 

all the customers as supplied by a specific retailer, the uniqueness of the 

schedule generated is based on the characteristics of the users as a result of 

their occupancy as well as the standard deviation of the load profile. Figure 5.14 

showed that the profile obtained allocated appropriate appliance use depending 

on the input data supplied. A scheduling objective of cost minimisation for 
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instance, is achieved such that more load allocation is assigned during lower 

energy prices while lesser load allocation is obtained during higher energy 

prices. In this way, it can acknowledged that the load scheduler is performing its 

tasks effectively as required.  

 

Accuracies of results based on costs evaluation is found to be true as shown 

also in Figures 5.4, 5.5, 5.7 and 5.9 whereby both maximised and minimised 

cost evaluations are observed to respond accurately. The other variables which 

include the occupancy as well as the standard deviation of the load profiles as 

given in the basic input variables of Figure 5.1 are also found to affect the 

resultant optimised load profile accordingly, depending on their respective 

values. This therefore proves that the fitness function generated as well as the 

methodology applied in either minimising or maximising any variable as defined, 

is efficient, accurate and also implementable so that realistic outcomes can be 

achieved. Although analysis of the occupancy as well as the standard deviation 

of the load profile was not conducted in so much details just as it was done for 

the cost variable, the obtained results are enough to show that the methodology 

and accuracy of the algorithm developed is reliable. 

 

9.1.2 Evaluating the Relevance of Discomfort Application 

 

Discomfort considerations and minimisation during load scheduling applications 

is found to be an important factor which encourages improved and sustained 

user participation in DR programs. With respect to Figures 6.5, 6.6 and 6.7, it is 
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observable that the load profile generated continuously stabilises and tends to 

follow directly the limitations imposed by the user. This is an amazing result to 

observe because the user is firmly kept in control of the final schedules 

obtained which practically eliminates any complains about incessant undesired 

load schedules imposed by a localised scheduler or the utility. Although it is 

acknowledged that only the load profiles are scheduled, the experiments could 

have been more completed if the actual loads that exists at the specified times 

on the load profiles are scheduled. This is also another interesting aspect of this 

research but it is reserved as a future work.  

 

Another incomplete aspect of this work is based on actually testing the results 

obtained in the field. For instance, the discomfort obtained can be tested in a 

real home whereby the user will implement the schedule without discomfort 

limitations in one application, and then apply the discomfort considerations and 

then a comparison about the user experiences can be made. This is therefore 

an evaluation of actual discomfort obtainable based on the experiences the user 

reports. Other actual data obtainable such as actual cost and the application of 

the actual load schedules for evaluation in the next day according the 

description of Figure 3.5, are also other aspects whereby this research can be 

further enhanced. This will ensure that more complete deductions can be made 

although despite these limitations cited, the methodology applied is the key 

outcome and any further improvement can be built on the work already done.  

The next section discusses the basis for optimisation and is argued using the 

five W’s and one H formula for obtaining a complete research analysis which 

include: When, Where, Why, Who What and How. 
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9.1.3 Justification of Load Scheduling for Smart Homes 

 

Why schedule loads? In most cases where load scheduling is applied for 

optimum energy distribution and consumption, the major reason for optimisation 

is usually to reduce peak demand. However in this work the application is not 

necessarily to reduce the peak demand of the individual’s load profile, but to 

use the various factors that affect user behaviour in order to affect specific load 

scheduling provided the new load profile generated remains within the forecast 

load profile. The estimation is that the overall effect on the grid where there is 

an impressive participation will ensure reduced peak demand, since energy 

prices are usually high during peak demand thereby causing a more diffused 

load profile away from the peak demand. This aim is clearly achieved in all 

scheduling results obtained thereby sustaining the need for load scheduling 

application. The key advantage of this activity is to reduce carbon foot print on 

the environment as well as avoiding the need to build additional power plants 

which only serves to supply marginal demand of energy, which typically occurs 

only during peak demand in a day. Figure 5.15 shows the result of a simulated 

optimized load profile in comparison with a non-optimized load profile whereby it 

is observable that there is a significant shift of the TOU for various appliances 

which results to financial savings shown in Figure 5.16.  This therefore confirms 

that the optimisation process is valid  

 

Another reason to schedule loads is the need to achieve energy or financial 

savings which therefore, naturally becomes an incentive and a motivation for 
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the consumers to become interested to participate in DR programs. This is 

because energy costs of optimized load with minimized costs are usually lower 

when compared with non-optimized energy costs provided dynamic pricing is 

available in the energy market. This is therefore applicable for every dynamic 

pricing scheme including day ahead dynamic pricing which is observed in this 

work, and also according to authors in [45], savings of about 13%-15% on 

energy bill are possible depending on the user.   

 

How is load scheduling done? This involves an automated moving loads from 

critical times characterised by high energy cost and demand, to non-critical 

times, achieved by the use of appropriate load management algorithm which 

considers various user preferences while making a decision towards 

redesigning a new load profile that suit their preferences. It is an interactive 

design whereby the user has the capability to key in their preferred input 

variables such as price thresholds and discomfort limits, while also being able to 

see a suggested load profile for use the next day. The discomfort threshold 

applied in Figure 6.8 shows that the user has override capabilities to use any 

specific load as desired, assuming they do not want to follow the prescribed 

load profile. The issue of occupancy is also accounted for in the algorithm and 

the results show that user comfort changes depending on how the fitness 

function is formulated based on whether the aim was to minimize or to 

maximize variables of interest. The weightings on the fitness function also 

affects the output whereby higher weightings propagates the impact of certain 

variables more than others. This algorithm was also evaluated for different 

household types and similar results were obtained.  
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When to schedule?  Scheduling opportunities are identified depending on the 

user’s preferences and lifestyle whereby the right combination of energy prices 

and standard deviation of the user’s load profile plays key role is ascertaining 

this, as discussed in section 4.5.1 whereby high energy prices and low high 

standard deviation was found to be best conditions for identifying load 

scheduling opportunities. Identifying these specific times is vital because it 

recognises and considers the behaviour as well as the impact on the user 

before attempting to apply scheduling. This is a novel approach whereby 

discomfort associated with load scheduling is minimized. 

 

Who can schedule?  There are principally three types of energy consumers 

which include: Domestic, Industrial and Commercial users. The experiments 

presented here are based on domestic users only, although same methodology 

is applicable for a wider range of consumers so long as considerations are 

made towards acknowledging the importance of user behaviour which is critical 

in making decisions to schedule loads, accompanied with cost considerations. It 

is expected that industrial and commercial users may not be as flexible as 

domestic users due to consistent use of most of their load during working hours, 

and may therefore not necessarily be able to participate effectively in DR 

programs as presented in this work. It is also expected that the standard 

deviation of their historical load profiles will remain very low for most parts of the 

day, although investigating exactly how these will be affected will be an 

interesting work for the future.  
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Where to schedule? The forecast load profile is an expected load profile that 

the user will follow assuming that load scheduling was not applied, while 

optimized load profile shows the newly suggested load profile for use. The 

difference between these load profiles clearly shows where to reduce energy 

consumption as well as where to add the changes to. Therefore, the TOU for all 

appliance schedules is available on the optimized load profile. This aspect of 

the project was not implemented here and it is a good subject matter required 

for a future work. 

 

What gets scheduled? The realisation that specific loads can become 

schedulable at one instant and then non-schedulable at other times even on the 

same day is an interesting aspect of this work. Therefore, if one develops the 

habit of using a particular appliance at a particular time on a daily basis, that 

appliance instantly becomes a non-schedulable load only at those times. This 

means that it is unwise to expose such an appliance to scheduling because it 

will most likely upset the user more significantly. It therefore shows that 

schedulable loads can be identified in a dynamic fashion whereby the strength 

of this technique is based on using standard deviation of load profiles in 

understanding a user’s behavioural pattern in order to optimize load scheduling.  

 

After identifying load scheduling opportunities as well as the specific 

schedulable and non-schedulable appliances as discussed in section 4.5.1 and 

4.5.2, the expected TOU for all schedulable loads are identified and the user 

can be assisted in deciding what time they get used whereby it is expected to fit 

within the newly proposed load profile. Furthermore, the threshold chosen is 
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observed to play a very key role in making decisions on the status of each 

appliance at any given time. Choosing an optimal threshold depending on the 

user’s preferences could be a future area to research because it was observed 

that the choice of the threshold value is critical in determining how actively a 

user can be able to participate in load scheduling. We acknowledge that this 

technique can be used not only in markets with dynamic pricing, but in power 

industry in general because a knowledge about the base loads is key to 

understanding how to sustain critical loads especially in developing countries 

where energy supply may not be sufficient for the entire community.  

 

9.2 Justification of Feedback in Energy Management Systems 

 

Feedbacks are known to be stabilising factor in any system design because of 

the need to always compare the output with the input which in this case 

involves, comparing the results obtainable with the user’s historical behavioural 

characteristics. This is expected to bring stability as well as long term user 

participation and engagement with a third party energy provider by ensuring that 

lumped scheduling either from the utility or by users themselves, who rush 

towards low energy prices at one time thereby causing potential new peaks, are 

prevented. It also prevents the automated scheduler from inadvertently forcing 

undesirable schedules on users. For instance with reference to table 6.1, the 

major reason why the status profile of appliances D, E, G and H showed ZERO 

output throughout was because they possessed zero standard deviation at all 

times, thereby constantly making them non-schedulable (base) loads. This 
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means that such loads are exempted from scheduling, a decision derived from 

the usefulness of feedback, hence user discomfort can be reduced. 

 

Another aspect of the importance of feedback as presented in this work has to 

do with the results that describes effective means of limiting discomfort as 

desired by the user. Section 6.5 showed results of effective discomfort 

management in DR program participation and the outcomes are based on 

effective communication between the user and the display of the HEMS which 

presents the discomfort available. In this way the user can effectively manage 

how load scheduling within their homes can be applied. Feedback can therefore 

be described as an inseparable aspect of DR application. 

 

9.3 User Participation Evaluation in Energy Management 

 

In energy market, several factors could prompt utility providers to seek 

information about the possibilities of encouraging users within a community to 

participate more actively in DR programs. In developing countries where energy 

supply is usually inadequate, active participation will help in improving the 

quality of energy supply. The load profiles of households analysed represents a 

model of what could be expected in a community where DR programs are 

applied. A critical analysis of the results obtained in this aspect of the work is 

discussed whereby the numerical evaluation of user participation is key in 

determining the participation levels of various users available. 
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An observation from Figure 6.14 shows that the three indicators of the various 

HPI provided limited information about the overall user’s actual engagement in 

DR programs unlike UPI values in Figure 6.10 that provides numeric values for 

the same evaluation. It can be said that Fuzzy logic methodology has an 

advantage in this regard over Boolean logic technique since actual and specific 

participation levels can be evaluated. Conversely, Boolean logic technique has 

the capability to provide information about what happens amongst users on 

hourly basis which is important information that Fuzzy logic method did not 

provide. This can be applied in a useful way for instance, assuming an energy 

provider is keen on having an instant and specific response to DR program say, 

between 4:00 and 7:00 hours on the day as shown in Figure 6.14. Results from 

Boolean logic methods can therefore indicate whom amongst the households 

that are more probable to accept DR engagements more than others. Although 

it can be seen on the overall evaluation that occupants in Household-2 are 

better participants in DR programs than occupants in Household-1, but given 

the specified times of DR requests, the latter becomes better participants to 

respond more actively to such requests than the former. This means that 

Boolean technique permits hourly appreciation of the user engagement unlike 

the Fuzzy logic method that gives only the overall daily performance, although 

their respective strengths complement each other. 

 

Another observation made is that the UPI is significantly affected by the 

standard deviation of load profile. This is because householders with rigid 

energy consumption pattern such as in Household 3 are poor DR participants 

but they can be encouraged to improve their participation if possible. From the 
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results obtained, it is possible for energy providers to use a simply fuzzy 

application or Boolean logic technique to understand the activities of users in 

their network. A key advantage is the fact that the computations are done locally 

within the household by an intelligent HEMS, hence the problems associated 

with privacy breach are avoided. This is because only the final results obtained 

are sent to the utility so the actual load profile details of the users are not made 

available to a third party.  

 

The ability of being able to see what happens on the user side at regular time 

intervals will enable any desired improvements on the user behaviour to 

become achievable more easily. This means that community load scheduling 

can easily be implemented where users with higher chances of active 

participation can be targeted in order to reduce their load during intervals of 

peak demands. Finally, another important advantage of applying the techniques 

presented herein in analysing user participation capabilities is the absence of 

the need to calculate the probabilities of appliance use which therefore reduces 

the computational time in sourcing for the extra information 

 

9.4 Sustaining a Secure Future Smart Home 

 

The key to an efficient and active DR participation is on provision of a secured 

network with the correct and up-to-date levels of authentication and malware 

security applied, in order to prevent intrusion. In a case where an attack on the 

HEMS is successfully achieved, the response by any installed security 
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mechanisms becomes critical. In all the experiments carried out, it can be 

observed that there is no disruption of the optimisation process due to the 

attack which means that neither the HEMS nor the users will be able to detect 

any anomalies by themselves since there will always be optimized load as 

results. It is therefore obligatory for the designers of load optimisation 

algorithms to include means of flagging any unexpected results and as well, 

include means of deriving instant solutions. Fortunately, the optimisation 

constraints played key roles in ensuring that the optimized load profile stayed 

within certain boundaries of the original (forecasted) load profile irrespective of 

the type of attack on the scheduler. This offers a great relief in appreciating that 

the impact of such attacks on the grid can be localized and the possibility of the 

attackers causing all the appliances in a household to turn ON at the same time 

can be suppressed.  

 

The metering system can be a reliable source to detecting anomalies within the 

HEMS which is in view of the availability of the historical load consumption 

stored in the HEMS. So if an unexpected scheduling pattern which has no 

resemblance and differs remarkably with the historical load profile is generated, 

the system could call for a reassessment and vetting of all the input data. For 

instance in this case as presented in Figure 8.2, having an untrusted result can 

require the HEMS to generate forecast load data locally, or use the last 

accurate load data and apply it with the current price and occupancy data, 

assuming they too are not affected by the attack. This is a good step towards 

effective error detection which will in turn create the avenue to seek the best 

solution depending on the type of attack involved. 
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Result from the billing system is also another means of effective error detection. 

Although it is recognized that consumers’ attitude or conditions may change 

instantaneously thereby creating a remarkable change in energy consumption 

costs, such a change can be a trigger for the HEMS to call for an error check. 

The retailers can also assist by publishing forecasted cost estimate of which 

remarkable deviation from the localized schedule could trigger a call for error 

check. This therefore provides an increased means towards error detection.  

 

Finally, every attack investigated is observed to produce results which lead to a 

reduction in savings obtainable as well as reduction in customer satisfaction. 

This therefore creates the potential to discourage consumers from active 

engagement in DR programs which may end up defeating the aim for its design. 

But with improved security, there will be a long term benefit and advancement 

of the grid. 

 

9.5 Chapter Summary 

 

In insight into the usefulness and relevance of the experimental results obtained 

was discussed in this chapter whereby the important aspects of the discussion 

were based on the impact of automated DR participation which specifically 

caters for user behaviour. The utility providers have important roles to play 

which apart from ensuring the application of dynamic pricing strategy, there 

should also be a constant evaluation of user participation capabilities which 

assesses user engagement levels in DR programs. The use of GA provides a 
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comprehensive optimisation methodology which allows the input variables to be 

added to the fitness function while also using evolutionary technique to 

converge the output variables. The application and evaluation of user behaviour 

based on assessment of historical load data is important in almost all the results 

obtained which included the discomfort measurements and this factor can be 

effectively managed during the optimisation process depending on user 

preferences. 

 

An evaluation of results obtained justified the methodology applied whereby 

these results were able to establish a direct relationship with the objectives of 

the research, given the specified input variables. This enabled interesting 

aspects of the output such as the need to minimize discomfort, identification of 

schedulable and non-schedulable loads, as well as evaluation of user 

Participation capabilities within a community, to be fully analyzed in order to 

maximize efficient resource allocation for energy providers, thereby estimating 

various activity participation levels. Finally the issue of security and data 

protection is inevitable and results obtained showed that specific security 

measures need to be in place and should be a part of any original HEMS design 

in order to be more proactive in protecting the home from unsolicited intruders. 

At the end of the day, a robust and reliable system design which the home 

owners will be proud of can be obtained which serves not only the users but the 

grid as well. 
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Chapter 10: Conclusions and Future 

Work 

 

10.1 Prologue 

 

In this research it has been demonstrated that allowing all the key players 

involved in DR programs to participate effectively in such programs, is a means 

of ensuring a successful implementation of the virtues of DR program. This 

work places the consumer at the centre of this implementation whereby specific 

users are permitted to participate according to their behavioural attributes and 

lifestyles thereby preventing sudden withdrawal from such programs. This is 

effectively captured as an aim of the research whereby the impact of DR 

programs on users have been evaluated and the impact on such users 

minimised, thereby increasing the chances of improved user participation. 

Further evaluations of the research are appreciated based on the content of the 

chapters presented which took care of the objectives of the research and are 

summarised further. 

 

Analysis of the Chapters 

Chapter 3 focused on the design architecture of a smart home upon which the 

testbed for the experiment was developed. Chapters 4 and 5 analysed the 

methodology applied towards achieving the stated aims and objectives while 
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chapters 6, 7 and 8 showed all the results obtained. Here, the aspect of human 

behaviour during load scheduling was made very important for effective 

management of the impact of DR programs on consumers as well as the 

security mechanisms required to ensure continued user participation. Together, 

all these chapters converges to form a single story which is based on ensuring 

that the user was given adequate care and consideration as a key player in the 

management of the grid for effective energy consumption. The rest of this 

section analyses the achievement of the objectives of this research as 

enumerated in section 1.2. 

 

10.2 Achieving the Proposed Objectives of Research 

 

Statistical approach to managing load scheduling for domestic applications is 

paramount in this work whereby the novelties lie in ascertaining the state and 

behaviour of each consumer household with respect to their appliance use 

before implementation. This helps in optimizing the best times of engagement 

which is peculiar to the individual households, thereby managing the discomfort 

associated with load scheduling to a considerable and predictive levels. 

Application of historical considerations for user behaviour accounts for the 

elimination of undesired choices in load management thereby making it an 

important aspect of this work. Automation of the scheduling process is also a 

requirement since it is difficult for users to manually track changes in prices as 

they occur daily. The four objectives of this research were successfully met and 

are further discussed. 
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Effective Identification of Schedulable and non-Schedulable Loads 

The first objective met was a demonstration that appliance status is only relative 

when determining and differentiating between schedulable and non-schedulable 

loads for smart homes. This is important because it has been shown that the 

status of an appliance depends on the consistency of appliance use in the day 

based on the customer’s historical load profile. The methodology applied was 

aimed at preventing loads which show little or no deviation at specific times in a 

day from being scheduled even when all other factors such as lower price, etc. 

suggests otherwise. The opportunity to schedule loads are identified only when 

they are suitable to the user and the major benefit is to encourage users to 

participate more actively in DR programs. Although many optimisation schemes 

are published, in this contribution, integrating the behaviour of consumers in 

identifying opportunities to schedule so that the user experiences low discomfort 

has been highlighted as critical to design of HEMs. 

 

Effective Management of Discomfort Associated with DR Programs 

The second objective met was a measure discomfort function as used in the 

fitness fiction which helps to monitor and automate scheduling mechanisms 

thereby accounting for the actual user behaviour. The issue of occupancy was 

also accounted for in the algorithm and results show that the costs as well as 

user comfort can be effectively managed based on user preferences, depending 

on whether the aim was to minimize or to maximize those variables of interest. 

A discomfort factor was proposed to demonstrate the role of the discomfort 

function which is capable of improving the quality and essence of load 
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scheduling. The introduction of discomfort clipping which can be set by the user 

helps in stabilizing the optimisation process. This can be viewed as a feedback 

system which is also a major contribution to the field of DR management and 

can be implemented in order to encourage more user participation in DR 

programs as well as improving their confidence to engage more actively. 

 

Effective Evaluation of User Participation Capabilities in DR Programs 

The third objective met involves the use of statistical analysis of historical load 

profile data, combined with other data that constantly changes in magnitude 

such as dynamic price, to determine user participation levels. Based on the 

results obtained, a self-evaluation can be made in accessing a user’s 

participation level. The results can also be of benefit to a third party energy 

provider who can be precisely informed on the best decisions to make which 

may include having to encourage the less active users to improve their 

engagements. Another key advantage of this process is the provision of 

confidentiality of user’s data since all analysis are made locally within the smart 

home EMS and only the final crisp value of the household’s performance is 

made available to the third party. Utility providers can understand their 

consumer behaviours more effectively using Fuzzy and Boolean-based 

evaluations of UPI and HPI which can enable them to set their priorities as 

appropriately as desired. In this work, a method of evaluating consumer energy 

consumption behaviours has been presented whereby the results obtained can 

be useful in designing grid network with improved active user participation in DR 

programs. The essence is to understand the consumer behaviours and then 

enhance the design and planning of a robust and effective micro grid network.  
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Effective Recovery Mechanism from Cyber-attacks in DR Programs 

Finally, the fourth objective met has also shown that Cyber-attacks on HEMS 

are a real possibility and care should be taken towards ensuring the protection 

of the infrastructure that constitutes the network, whereby a provision for this 

security measures should be included in the original design frameworks of 

automated HEMS. The vulnerable links within the HEMS were identified and the 

critical one was determined to be the link between the HEMS and the retailer. 

Security of the HEMS from cyber-attacks is important and several types of 

attacks were described, their impacts assessed as well as suggested solutions 

provided and analysed. One of such assessment is the simulation of cyber-

attack on the HEMS, modelled as false data injection onto the load profile data. 

Results obtained showed that such an attack diminishes the optimisation 

mechanism as well as the system performance by forcing the load profile to 

flatten out. Having such a flattened load demand throughout the day may seem 

to be the most optimal energy supply for a community from the grid perspective 

in terms of ensuring a supply of constant energy capabilities thereby eliminating 

peak load demand but in practice, a flattened load profile is neither realistic nor 

comfortable for the users. Using previously known accurate data was adjudged 

as a possible solution which can help minimize the impact of such attacks. This 

means that the HEMS should keep a record of recent data and also perform 

some forecasting mechanisms on all data available to support the contingency 

response. Nevertheless, preventing unauthorized access remains the best 

possible solution and access authentication should naturally be a key part of 

any proposed solution as this is important so that consumer confidence can be 

guaranteed. 
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10.3 Future work 

 

Practically every research conducted usually leaves room for improvement. 

These constitutes the limitations which can be extended as a future work in an 

attempt to minimise or eliminate these limitations. There are aspects of this 

research that can be further improved and they are discussed in this section. 

 

Hardware Implementation 

The most important aspect for consideration in the future is the implementation 

of an actual hardware application of the design whereby the HEMS application 

as described in this work can be tested in a real home. This will entail having 

volunteering households within a community as well as the availability of an 

energy market that operates on day-ahead dynamic pricing as already 

obtainable in US markets. The major aim for this application is to observe the 

key aspects of this research such as:  

 Discomfort measure and the practical effect of minimising or not 

minimising it. 

 Evaluation of participation levels in DR programs for users within a 

community. 

 Identification of schedulable and non-schedulable loads using statistical 

analysis of the historical load profiles. 

 Application of the actual load scheduling form original forecast position to 

the new optimised location.  
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Primary Data Harvesting  

Sourcing for data is usually not a very easy task to accomplish due to a variety 

of reasons which includes privacy concerns. Although the data used are 

obtained online based on the published data for various customers in the US, it 

would have been preferred if these data were obtaining directly from consumer 

homes so that a more realistic outlook to the results can be justified. Although 

the approach presented here can serve as a template, a more reliable result 

can be attained when smart plugs are physically mounted so that the 

appliances of interest can be monitored more effectively. This means that a pilot 

field trial to collect data can be carried out. 

 

 

Testing the various pricing models 

This is another aspect of the design that requires further research. The issue of 

different dynamic pricing models were analysed and simulated but in the real 

presentation, it is required for these models to be tested so that their relative 

effects can be evaluated. In order words, a specific set of households used for a 

test analysis should be supplied with various realistically and applicable 

dynamic pricing strategies so that the various effects can be evaluated. This 

therefore requires the support of not only the home owners who will have to 

volunteer for this exercise, but also the support of energy suppliers in order to 

ensure a successful and a more complete outcomes.   
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Evaluating the Actual Impacts on Individual Homes 

This is another aspect of the research that can be further investigated. Although 

factors like discomfort and user participation evaluations were modelled and 

mathematically calculated, in the real sense comfort is an abstract noun or an 

imaginary feeling which is quite debatable to be measurable. Therefore unless 

the actual application is implemented and then the users are able to give a 

feedback on their satisfaction levels maybe through questionnaires, the 

discomfort measure cannot be considered an absolutely accurate outcome. 

Although theoretically the mathematical derivations makes a lot of sense, it still 

requires to be confirmed with practical and on-the-field results. 

 

 

 

Further Development of the Algorithm 

The algorithm proposed can be further developed in order to be able to play 

more dynamic roles other than those discussed in this work. These 

improvements includes but may not be limited to:  

 More investigation into the effect of weightings which will improve certain 

specific outcomes by the user can be carried out. 

 Improving the speed of convergence of the algorithm with the aim for 

adaptation in real-time implementation for online applications. 

 Provision and the use of actual discomfort can be investigated to see 

how it can be used to determine the discomfort threshold. This may 
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involve the use of more complex computational capabilities and some 

sort of artificial intelligence.  

 Evaluation of this algorithm for different household types in order to 

improve the version created can be investigated.  

 Investigation of load profiles commercial and industrial consumers in 

order to find out their DR capabilities. 

 An automated mechanism for choosing an optimal and preferred 

thresholds for the user can be investigated, which can be applied based 

on the user’s tendency towards choosing certain thresholds. 
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  0,             𝜎 <  𝑆𝐷𝑡ℎ

                           

Equation 22 
𝑓(𝐶𝑡)  = {

1,           𝐶 > 𝐶𝑡ℎ

 
  0,           𝐶 <  𝐶𝑡ℎ

            

Equation 23 
𝑓(𝑃𝑖)𝑡  = {

 0,            𝑃𝑖 > 𝑃𝑡ℎ

 
  1,            𝑃𝑖 <  𝑃𝑡ℎ

      

Equation 24 
𝑓(𝐿𝑖)𝑡  = {

0,     𝐿𝑖 = 𝑁𝑜𝑛 − 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 𝑙𝑜𝑎𝑑
     

   1,     𝐿𝑖 = 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 𝐿𝑜𝑎𝑑                
                                             

Equation 25 𝐵 = D𝑃𝑡,1
 ∗ ∑  Ԑ𝑃𝑡,𝑛

 

Equation 26 𝐹𝑗,𝑖= 𝑤𝑎*∑𝐴𝑗,𝑖 + 0 − 𝑤𝑐*∑𝐶𝑗,𝑖 − 𝑤𝑑*∑𝐷𝑗,𝑖                                           

Equation 27 𝐹𝑗,𝑖= 𝑤𝑎 ∗ ∑𝐴𝑗,𝑖 + 𝑤𝑏 ∗ Ύ𝑡 ∗ ∑ Ԑ𝑃𝑡,𝑛
− 𝑤𝑐 ∗ ∑𝐶𝑗,𝑖 − 𝑤𝑑 ∗ ∑𝐷𝑗,𝑖  

Equation 28 Rt =  D𝑃𝑡,1
 + ɳt    
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Equation 29 D𝑃𝑡,1
 
min

≤  Rt ≤ 1.2D𝑃𝑡,1
 
max

 

Equation 30 𝐹𝑗,𝑖=𝑤𝑎 ∗ ∑𝐴𝑗,𝑖 + 𝑤𝑏 ∗ 𝑅𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
− 𝑤𝑐 ∗ ∑𝐶𝑗,𝑖 − 𝑤𝑑 ∗ ∑𝐷𝑗,𝑖   

Equation 31 𝐹𝑗,𝑖=𝑤𝑎 ∗ ∑𝐴𝑗,𝑖 + 𝑤𝑏 ∗ 𝛽𝑡 ∗ ∑  Ԑ𝑃𝑡,𝑛
− 𝑤𝑐 ∗ ∑𝐶𝑗,𝑖 − 𝑤𝑑 ∗ ∑𝐷𝑗,𝑖 

Equation 32  𝑞𝑡 =  Ԑ𝑓𝑡,𝑛
+   ɳ𝑡 

Equation 33 Ԑ𝑓𝑡,𝑛min
 ≤  𝑞𝑡  ≤ 2Ԑ𝑓𝑡,𝑛max

  

Equation 34 𝐹𝑡,𝑖 = 𝑤𝑎 ∗ ∑ 𝐴𝑛𝑒𝑤𝑡,𝑖
+ 𝑤𝑏 ∗  ∑ 𝐵𝑡,𝑖- 𝑤𝑐 ∗  ∑ 𝐶𝑛𝑒𝑤𝑡,𝑖

- 𝑤𝑑 ∗

∑ 𝐷𝑛𝑒𝑤𝑡,𝑖
 

Equation 35  𝐴𝑛𝑒𝑤𝑡,𝑖
=  (𝑞𝑡 − 𝑥) * 𝐻𝑐   

Equation 36  𝐶𝑛𝑒𝑤𝑡,𝑖
= (𝑞𝑡 − 𝑥) /σ 

Equation 37  𝐷𝑛𝑒𝑤𝑡,𝑖
= 𝑥/𝑞𝑡 

Equation 38 𝛼 =  𝜃 −  𝜗 
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