16 research outputs found

    "Graph Entropy, Network Coding and Guessing games"

    Get PDF
    We introduce the (private) entropy of a directed graph (in a new network coding sense) as well as a number of related concepts. We show that the entropy of a directed graph is identical to its guessing number and can be bounded from below with the number of vertices minus the size of the graph’s shortest index code. We show that the Network Coding solvability of each speciïŹc multiple unicast network is completely determined by the entropy (as well as by the shortest index code) of the directed graph that occur by identifying each source node with each corresponding target node. Shannon’s information inequalities can be used to calculate up- per bounds on a graph’s entropy as well as calculating the size of the minimal index code. Recently, a number of new families of so-called non-shannon-type information inequalities have been discovered. It has been shown that there exist communication networks with a ca- pacity strictly ess than required for solvability, but where this fact cannot be derived using Shannon’s classical information inequalities. Based on this result we show that there exist graphs with an entropy that cannot be calculated using only Shannon’s classical information inequalities, and show that better estimate can be obtained by use of certain non-shannon-type information inequalities

    A New Lower Bound for the Number of Switches in Rearrangeable Networks

    Get PDF
    For the commonest model of rearrangeable networks with nn inputs and nn outputs, it is shown that such a network must contain at least 6nlog⁥6n+O(n)6n \log _6 n + O( n ) switches. Similar lower bounds for other models are also presented

    Generalized Connectors

    Get PDF
    An nn-connector is an acyclic directed graph having nn inputs and nn outputs and satisfying the following condition: given any one-to-one correspondence between inputs and distinct outputs, there exists a set of vertex-disjoint paths that join each input to the corresponding output. It is known that the minimum possible number of edges in an nn-connector lies between lower and upper bounds that are asymptotic to 3nlog⁥3n3n\log _3 n and 6nlog⁥3n6n\log _3 n respectively. A generalized nn-connector satisfies the following stronger condition: given any one-to-many correspondence between inputs and disjoint sets of outputs, there exists a set of vertex-disjoint trees that join each input to the corresponding set of outputs. It is shown that the minimum number of edges in a generalized nn-connector is asymptotic to the minimum number in an nn-connector

    Rearrangeable Networks with Limited Depth

    Get PDF
    Rearrangeable networks are switching systems capable of establishing simultaneous independent communication paths in accordance with any one-to-one correspondence between their n inputs and n outputs. Classical results show that Ω( n log n ) switches are necessary and that O( n log n ) switches are sufficient for such networks. We are interested in the minimum possible number of switches in rearrangeable networks in which the depth (the length of the longest path from an input to an output) is at most k, where k is fixed as n increases. We show that Ω( n1 + 1/k ) switches are necessary and that O( n1 + 1/k ( log n )1/k ) switches are sufficient for such networks

    Reductions for monotone Boolean circuits

    Get PDF
    AbstractThe large class, say NLOG, of Boolean functions, including 0-1 Sort and 0-1 Merge, have an upper bound of O(nlogn) for their monotone circuit size, i.e., they have circuits with O(nlogn) AND/OR gates of fan-in two. Suppose that we can use, besides such normal AND/OR gates, any number of more powerful “F-gates” which realize a monotone Boolean function F with r(≄2) inputs and râ€Č(≄1) outputs. Note that the cost of each AND/OR gate is one and we assume that the cost of each F-gate is r. Now we define: A Boolean function f in NLOG is said to be F-Easy if f can be constructed by a circuit with AND/OR/F gates whose total cost is o(nlogn). In this paper we show that 0-1 Merge is not F-Easy for an arbitrary monotone function F such that râ€Č≀r/logr

    Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require Logarithmic Conjunction-depth

    Get PDF
    We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of and-gates on a directed path to an output gate). In particular, we show that any normalized Boolean circuit of at most epsilon log n conjunction-depth computing the n-dimensional Boolean vector convolution has Omega(n^{2-4 epsilon}) and-gates. Analogously, any normalized Boolean circuit of at most epsilon log n conjunction-depth computing the n x n Boolean matrix product has Omega(n^{3-4 epsilon}) and-gates. We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by the known fast algebraic algorithms

    Wide-Sense Nonblocking Networks

    Get PDF
    A new method for constructing wide-sense nonblocking networks is presented. Application of this method yields (among other things) wide-sense nonblocking generalized connectors with n inputs and outputs and size O( n log n ), and with depth k and size O( n1 + 1/k ( log n )1 - 1/k )

    On Matrix Rigidity and the Complexity of Linear Forms

    Get PDF
    The rigidity function of a matrix is defined as the minimum number of its entries that need to be changed in order to reduce the rank of the matrix to below a given parameter. Proving a strong enough lower bound on the rigidity of a matrix implies a nontrivial lower bound on the complexity of any linear circuit computing the set of linear forms associated with it. However, although it is shown that most matrices are rigid enough, no explicit construction of a rigid family of matrices is known. In this survey report we review the concept of rigidity and some of its interesting variations as well as several notable results related to that. We also show the existence of highly rigid matrices constructed by evaluation of bivariate polynomials over finite fields
    corecore