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A NEW LOWER BOUND FOR THE NUMBER OF SWITCHES
IN REARRANGEABLE NETWORKS*

NICHOLAS PIPPENGER?

Abstract. For the commonest model of rearrangeable networks with n inputs and n outputs, it is shown
that such a network must contain at least 6n log6 n + O(n) switches. Similar lower bounds for other models
are also presented.

1. Introduction. The lower bound referred to in the title will be established by
modeling a rearrangeable network as a directed graph in which vertices represent wires
and edges represent switches. A number of alternative models will be considered
later.

A n-networkN (G, A, B) comprises a directed graph G (V, E), with vertices V
and edges E, a set A of n distinguished vertices called inputs, and a set/3, disjoint from
A, of n distinguished vertices called outputs.

A request for N is an ordered pair (a, b) comprising an input a and an output b. An
assignment for N is a set of requests for N, no two having an input or output in common.
A k-assignment for N is an assignment containing exactly k requests.

A route in N is a directed path in G, starting at an input and ending at an output. A
state of N is a set of routes in N, no two having a vertex in common. The set of states ofN
will be denoted f. A k-state of N is a state of N containing exactly k routes. The set of
k-states of N will be denoted

An assignment is said to be realized by a state if, for every request (a, b) in the
assignment, there is a route from a to b in the state. An n-networkN is an n-connector if
each of the n! n-assignments for N is realized by some state of N.

An n-connector must satisfy the lower bound

(1) IE[ => 3 n log3 n + O(n)

(3/ln 3 2.730...); this follows from the inequality

[E 3 log3 [n
(attributed to R. L. Dobrushin by Bassalygo and Tsybakov [1]), from the obvious
inequality

(distinct assignments must be realized by distinct states), and from the estimate

log n! n log n + O(n)

(due to Stirling [7, p. 137]).
The purpose of this note is to derive the improved lower bound

(2) [El _-> 6n log6 n + O(n)

(6/ln 6 3.348 .); this will follow from the improved inequality

(3) [El => 6 log6

* Received by the editors October 3, 1979, and in revised form October 24, 1979.
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These lower bounds may be compared with the upper bound for n-connectors,

6n logs n + O(n)

(6/ln 3 5.461 see Pippenger and Valiant [5, Remark 2.2.6]).
The qualitative significance of these improvements may be seen by comparing

these bounds with the corresponding bounds for n-shifters (n-networks that need not
have states realizing all n! assignments, but only the n assignments corresponding to
cyclic permutations). The inequality (1) actually follows immediately from the even
sharper lower bound for n-shifters,

]El _-> 3n logs n

(see Pippenger and Valiant [5, Corollary 2.2.2]). This may be compared with the upper
bound for n-shffters,

[E -< 3n log3 n + O(n)

(see Pippenger and Valiant [5, Remark 2.2.5]). The results of this note thus show that
n-connectors require more edges than n-shifters, a plausible conclusion which was,
however, not deducible from previous results.

2. The new lower bound. One may assume, without loss of generality, that no edge
is directed into an input or directed out of an output, for no such edge can occur in an
n-state.

If there is any vertex v in V-(A U B) out of which no edge is directed, one may
omit v from V and omit each edge of the form (u, v) from E. If there is any vertex v in
V-(A U B) out of which exactly one edge (v, w) is directed, one may omit v from V
and replace each edge of the form (u, v) by the edge (u, w) in E. In either case one
obtains a network with at most as many edges and just as many n-states. Thus one may
assume, without loss of generality, that at least two edges are directed out of each vertex
in V-(A UB).

Let f: B A be an arbitrary bijection. Let G*--(V*, E*) be the directed graph
with vertices V* and edges E* obtained from N as follows. Let V* be obtained from V
by omitting the vertices in B. Let E* be obtained from E by replacing each edge of the
form (v, b) in V x B bythe edge (v, f(b)) in V x A, and by adding the edge (v, v) for each
vertex v in V- (A U B).

The edges of the form (v, v) added to E* are directed out of vertices v in
V- (A LIB), and E contains at least two edges directed out of each such vertex. Thus

(4) IE*I  IEI.
A set of closed directed paths in G* containing exactly one edge directed into each
vertex and one edge directed out of each vertex will be called a circulation in G*. The
set of circulations in G* will be denoted fl*. Each n-state of N corresponds to a
circulation in G* (by replacing edges of the form (v, b) by edges (v, f(b)) and adding
edges of the form (v, v) as necessary), and distinct n-states correspond to distinct
circulations. Thus

By virtue of these inequalities, it will suffice to show

(5) log6 If),*l
for an arbitrary directed graph G*.
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LetM be the (0, 1)-matrix with rows and columns indexed by V* and with (v, w)th
entry M.w equal to 1 or 0 according as (v, w) does or does not appear in E*. Let

wEV*

denote the sum of the entries in the vth row of M. Then

IE*I E L.
vEV*

On the other hand,

la*l per M,

where per M denotes the permanent of M, since both sides count the number of
permutations g of V* for which (v, g(v)) appears in E* for each v in V*. Thus it will
suffice to show

(6) Y L _-> 9 log6 per M
vV*

for an arbitrary (0, 1)-matrix M.
The inequality

Y (log (L, !))/L, >= log per M
vV*

for an arbitrary (0, 1)-matrix M was conjectured by Minc [3] and proved by Bregman
[2] (see Schrijver [6] for a particularly simple and elegant proof). Since the expression
(log (L !))/L2 assumes its maximum over integers L at L 3,

Z L ->_ (3Z/log (3 !)) Y. (log (L !))/L,
v V* v V*

_->9 2 (log6 (L!))/Lo
vE V*

_-> 9 log6 per M.

This proves (6), and thus establishes (5), (3) and (2) in turn.

3. Other new lower bounds. The argument of this note is easily extended to a
number of other models of rearrangeable networks. The most interesting of these is
obtained by replacing directed graphs and directed paths by undirected graphs and
undirected paths. A directed graph G (V, E) can be obtained from an undirected
graph G’ (V’, E’) by setting V V’ and replacing each undirected edge {v, w} in E’ by
a pair of directed edges (v, w) and (w, v), so that

In this way, a directed n-connector N (G, A, B) can be obtained from an undirected
n-connector N’ (G’, A’, B’) by setting A A’ and B B’. One may assume, without
loss of generality, that at least three undirected edges are incident with each vertex in
V’- (A’U B’), so that

(7)

Continuing with the argument of 2 leads to the lower bound

[E’] >_--n log6 n + O(n)
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(27/8 In 6 1.883...) for undirected n-connectors. This may be compared with the
previous bound

log4 n + O n

(5/2 In 4 1.803 ...) which applies even to undirected n-shifters (see Pippenger and
Valiant [5, Thm. 2.2.3]). No better upper bounds are known for undirected n-
connectors and n-shifters than for their directed counterparts.

Other, even easier, extensions are to consider "single-ended" or "undifferen-
tiated" n-connectors in which the n inputs and n outputs are replaced by a single
undifferentiated set of n distinguished vertices called "terminals" (this reduces the
leading terms of lower bounds by a factor of 2) and to bound log Ifl rather than merely
log IInl (this affects only the O(n) terms). These extensions yield improvements of the
results in Pippenger [4].

James Shearer, the referee for this paper, has pointed out some improvements to
the foregoing results. In the directed case, a vertex w in V (A U B) into which only two
edges (u, w) and (v, w) are directed and out of which only two edges (w, x) and (w, y) are
directed can be omitted, the edges being replaced by (u, x), (v, x), (u, y) and (v, y).
Repeating this transformation as long as possible yields a graph with just as many edges
and n-states but in which a total of at least five edges are directed into or out of each
vertex in V-(A U B). This allows (4) to be sharpened to

and results in a lower bound of

ILl-->n log6 n + O(n

(45/7 In 6= 3.587...). Similarly, in the undirected case, a vertex w in V-(A tAB)
incident with only three edges {w, x}, {w, y} and {w, z} can be omitted, the edges being
replaced by {x, y}, {y, z} and {z, x}. This yields a graph in which every vertex in
V- (A U B) is incident with at least four edges, allows (7) to be sharpened to

51IE*I_-<zIE[,
and results in a lower bound of

[E’I-->n log6 n + O(n

(18/5 In 6= 2.009’’ ").
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