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Graph Entropy, Network Coding and Guessing
games

Søren Riis

November 25, 2007

Abstract

We introduce the (private) entropy of a directed graph (in a new
network coding sense) as well as a number of related concepts. We
show that the entropy of a directed graph is identical to its guessing
number and can be bounded from below with the number of vertices
minus the size of the graph’s shortest index code. We show that the
Network Coding solvability of each specific multiple unicast network
is completely determined by the entropy (as well as by the shortest
index code) of the directed graph that occur by identifying each source
node with each corresponding target node.

Shannon’s information inequalities can be used to calculate up-
per bounds on a graph’s entropy as well as calculating the size of the
minimal index code. Recently, a number of new families of so-called
non-shannon-type information inequalities have been discovered. It
has been shown that there exist communication networks with a ca-
pacity strictly ess than required for solvability, but where this fact
cannot be derived using Shannon’s classical information inequalities.
Based on this result we show that there exist graphs with an entropy
that cannot be calculated using only Shannon’s classical information
inequalities, and show that better estimate can be obtained by use of
certain non-shannon-type information inequalities.

Category E.4 Graph Theory, Information Theory, Network Coding and Cir-
cuit Complexity
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1 Introduction

1.1 Main results

Informally, one of the key problems in proving lower bounds on circuits is to
identify and prove that certain Circuit topologies (e.g. small circuits) provide
information bottlenecks for information flows. We introduce the notion of
(private/public) graph entropy and show that this notion in a very precise
way captures such information bottlenecks in the context of communication
networks. More specifically we show that a given communication network N
with k source and k corresponding target nodes provide an information bot-
tleneck (i.e. is unsolvable) if and only if the entropy (or public entropy) of GN

is strictly less than k. In the seminal works [28, 29] and [8] it was shown that
Shannon’s information inequalities (commonly known as Shannon’s laws of
information theory) are in general insufficient to identify specific information
bottlenecks in communication flow problems. Relying on this result we will
show that a similar type of result is valid in the context of graphs entropy.
By combining Theorem 1, Theorem 9 as well as Theorem 10, and modifying
the acyclic multiple unicast version of the Vamos graph introduced in [8] (by
passing to the corresponding line graph and by identifying each source node
with each corresponding target node) we show that the resulting graph has
an entropy that cannot be calculated using Shannon’s Classical information
inequalities and that better bounds can be achieved by use of Zhang and
Young’s non-shannon-information inequalities. 1

In the paper we introduce a number of new (directed) graph parameters2.
These include the (private/public) entropy, the Shannon (private/public)
entropy, the Zhang-Young (public/ private) entropy as well as the Doghtery-
Freiling-Zeger (private/public) entropy. The Concepts are in general different
from (but linked to) graph parameters that have already been extensively
studied in the literature. In general we drop the prefix ”private” (when no
confusion is possible) and refer to the (private) graph parameters as Entropy,
S-entropy, ZY-entropy and DFZ-entropy.

1later and joint with Sun Yun, we found - partly by extensive computer searches -
somewhat smaller and simpler examples

2throughout the paper graphs are always assumed to be directed
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1.2 Experimental results for small graphs

Using computer calculations we tested millions of (small) graphs and found
that quite different notions (different variants of guessing numbers and Graph
Entropy) led to identical numbers on the vast majority of graphs3. Key
concepts (most of which we will introduce in this paper), like the Graph
Entropy, the guessing number, the S-entropy and the ZY-entropy - gave
identical results for the vast majority of graphs we tested. One interesting
aspect is that although the different calculations usually lead to the same
numbers for the graphs we tested by computer (using weeks of computer
time), there appears to be a very sparse set of (small) graphs where the
calculations leads to slightly different results. It should, however, be noticed
that small graphs are atypical and it would be a mistake to expect that the
computational findings for small graphs with ≤ 10 nodes in general remains
valid for large graphs. To illustrate the problem, we noticed for example
that most small oriented graphs have entropy identical to the number of
vertex minus the acyclic independence number (i.e. the number of vertices
in the maximal induced acyclic subgraph). This is, we believe, not typical
for example, for large complex oriented graphs (e.g. random tournaments).

One curious fact (we discovered experimentally), is that the entropy for
the vast majority of (small) graphs is an integer. More specifically, we in-
vestigated (using computer calculations) many classes of graphs. The vast
majority of ”small” graphs (less than 10 nodes) seem to have integer or half
integer Entropy (identical to their S-entropy and ZY-entropy) 4.

This is striking as there does not seem to be any obvious reason why
graphs in general should have integer Entropy. If we chose for the complete
graph Kn for each edge an edge direction (getting a tournament on n vertex)
our computer calculations showed that there is 1 graph of type K2, 2 non-
isomorphic graphs of type K3, 4 non-isomorphic graphs of type K4, 12 non-
isomorphic graphs of type K5, 56 non-isomorphic graphs of type K6, 456
non-isomorphic graphs of type K7 and 6880 of type K8 and 191536 non-
isomorphic graphs of type K9

5.
Our computer calculations showed that all, but one, of the 531 non-

isomorphic graphs of type Kj for j ≤ 7 have integer Entropy. We did not

3a more detailed account of these and many other experimental findings is being pre-
pared in collaboration with Sun Yun

4we found a few graphs with Shannon Entropy and ZY-entropy being a third integer
5we identified this sequence independently by use of the dictionary of integer sequences

3



investigate all graphs of type K8 and K9
6, but random checks suggest that

the majority of these graphs have integer Entropy and that most remaining
graphs has half integer Entropy. We do not know if this pattern changes for
graphs of type Kn for n large. What we do know - we notice this in section
7 - is that the entropy is an integer whenever the (private) entropy and the
public guessing number (=number of vertices minus the smallest index code)
is identical.

Another striking point is that the (Shannon) Entropy for the vast ma-
jority of (small) graphs we tested is identical to the (Shannon) Entropy of
the dual graph where all edge directions have been reversed. To appreciate
this we noticed that the actual calculations needed to workout these identical
Entropies, are often very different, and do not seem to mirror each other in
any obvious sense.

1.3 Historical background

In [23] based on [22] Valiant introduced the concept of a bi-parte graph
representing n input output pairs, being realized by m common bits. It
turns out that Valiant’s concept of being realized by m common bits, is
mathematically equivalent to the graph G naturally associated to the bi-
parte graph having an index code of length m. The notion of an index code
of a graph (as well as a minimal index code) was first introduced in [4] and
further result on this graph parameter was presented in [3] and [15] 7. To
confuse matters further, the very same concept was independently referred to
in [20] and [19] as G having information defect m. To avoid further confusion
we will follow [4, 3] and [15] and refer to the notion as the minimal index
code.

Given a graph G = (V,E) with vertex set {0, 1, 2, . . . , n − 1} we define
for each t ∈ {0, 1, 2, . . . , n− 1} the ”shifted” graph Gt = (V,Et) with vertex
set V and with and edge (v1, v2) ∈ E exactly when (v1, v2 ⊕ t) ∈ Et where
v2⊕ t is calculated modulo n. This construction was essentially presented in
[16].

Valiant’s shift problem asks whether for each ε > 0 for all sufficiently large
values of n, each sparse graph G = (V,E) with vertex set {0, 1, 2, . . . , n− 1}
and at most n1+ε edges, can be shifted such that Gt has minimal index code

6each graph required a couple of hours computer analysis
7we recall the definition in section 7
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of length at least m. If it could be shown to be valid for m = O( n
log(log(n))

),
then a significant breakthrough in Boolean circuit complexity would follow
[17] [19]. In [22] Valiant conjectured that m < n/2 was not achievable, and
before [19] it was not even known if m < n−o(n) could be achieved. However
in [19] it was shown that in certain cases all cyclic shifts lead to graphs with
a (surprisingly) short minimal index code of length less than m = (n−nε)/2.
Despite this result, Valiant’s original common information approach remains
viable. The guessing number of a graph was introduced in [20] and was later
related to Valiant’s shift problem [19].

The notion of Guessing numbers [20] and the notion of (private) graph
entropy has, in general, been guided by analysis of specific communication
flow problems. Our notion of guessing number of a graph grew out of work on
the matrix transposition problem that is another long-standing open problem
in circuit complexity [24]. To illustrate some of the difficulties in solving the
matrix transposition problem, in [18] it was shown that there exist network
flow problems that can be only solved by use of non-linear boolean functions.
More specifically we constructed a specific acyclic graph with 25 input nodes
and 25 output nodes, such that any linear solution (over an alphabet of two
letters) can only transmit 24 of the messages correctly, while there exists
a non-linear solution that correctly transmits all 25 messages. In the same
paper [18] we presented a general construction, that allowed to lift this (and
similar results) that are valid for alphabets with two letters, to alphabets with
any number of letters. However, for each size of alphabet the construction
leads to a new (and typically larger) graph. In [6] the authors showed that
such an increase in graph size can be avoided and that there exists an acyclic
communication network that has a non-linear solution over an alphabet of
4-letters, but fails to have linear solution (even if the alphabet is organized
as a vector space) over alphabets of any finite cardinality. The paper [7] was
also significant as the authors used arguments from information theory to
show unsolvability of specific communication networks.

In [14] and [11] the authors showed that a network might be solvable over
all alphabets, but not scalar-linearly solvable over any alphabet.

In [15] the authors used a very interesting general construction (based on
an earlier construction that Alon, used to answer a question about Shannon
Capacity [1]). They showed that there exist graphs Gp,q with no linear index
code of less that n1−o(1) bits, but with a non-linear index code of no(1) bits.
It is still an open question if there exists solvable communication networks,
that requires non-linear coding functions, and where the performance (e.g.

5



the network capacity) gets substantially reduced if all coding functions are
linear.

In [21] a we constructed a specific acyclic graph that we showed consti-
tutes what we will call a one-way information bottleneck. More specifically in
[21] a concrete acyclic graph with 38 source nodes and 38 target nodes were
constructed, such that the messages fed into the source nodes in general can
be sent to their corresponding target nodes, while the ”dual” network where
all edge directions have been reversed and the role of source nodes and target
nodes have been reversed - is unsolvable (only 37 messages can be sent in
that direction). Using the lifting method from [18] for any size s ≤ 2 of
alphabet, it is possible to construct a one-way communication network that
is solvable over alphabets of size s in one direction, but is unsolvable in the
reverse direction.

The one-way information bottleneck constructed in [21] was improved in
[9] where it was shown that there is a network that has a solution in one
direction, but is unsolvable in the opposite direction. In the unsolvable di-
rection the network remains unsolvable even if the size of alphabet is allowed
to have any finite size 8. It should be pointed out that this network in general
(also for large alphabets) is unsolvable in both directions. It is an open ques-
tion if there exists a network that is a genuine one-way bottleneck, that is
solvable for any sufficiently large alphabet in one direction, but is unsolvable
for any choice of alphabet in the opposite direction. It is also an open ques-
tion if more dramatic one-way bottlenecks can be constructed (e.g. with a
polynomial difference in performance). The graph in [15] is self-dual (in fact
all edges are bidirectional), so this construction would need to be modified
to work. In [12] and independently in [21] is was shown that networks that
are solvable by linear coding functions never contain a one-way information
bottleneck.

2 The Guessing Number of a graph

The Guessing number of a (directed) graph was first introduced in [20] and
[19]. To explain this concept consider the following situation (based on [18])
where 100 players each has a die with s-sides (you may assume the die is a
traditional die, i.e. that s = 6). Assume each person rolls their die. No-one
is allowed to look at their own die, however each person has access to the dice

8in the solvable direction only certain sizes of the alphabet is allowed
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values of the remaining 99 people. One way of presenting this is that each
player has the value of their own die stuck to their forehead. But, unlike the
famous puzzle where the players can get additional information from other
players’ hesitation, in this game, all players have to ”guess”- simultaneously
and without any communication - what die value they have stuck to their
forehead. What is the probability that all 100 players correctly ”guess” the
value of their own die? It turns out that this question is ill-posed since the
probability depends on the general protocol adopted by the players. If, for
example, each player assumes that the sum of all dice-values is divisible by s
and each player from this assumption deduces the value of their own die - all
players are correct when exactly the sum of the dice value is indeed divisible
by s. Or equivalently if just one player is right (this happens with probability
1
s
) all players are right. Had the players guessed in a random uncoordinated

fashion they would only all have been right with probability 1
s

100
. Thus

adopting the ”0-mod s” guessing strategy the players are s99 times more
likely to be right, than if they guess randomly in an uncoordinated fashion.

This game can be modified and played on a directed graph G = (V,E).
The idea is that each node represents a player, and again each player throws a
die with s-sides. The value of each die is passed on along each edge. Thus the
player at node j has access to only the dice values corresponding to players
in nodes i where (i, j) is an edge in the graph. The task is - as before - to
find a guessing strategy that maximize the probability all n = |V | players
guess correctly the value of their die.

The example with the 100 players corresponds to the complete graph K100

(with bi-directed edges) on 100 nodes. On K100 the players can do s99 times
better than pure random guessing, which is why we say that the complete
graph K100 has guessing number 99. In general:

Definition : For each s ∈ {2, 3, 4, . . .}, we define the guessing number

g(G, s) of a graph G to be the uniquely determined α such that 1
s

n−α
is

the probability all n players guess correctly their own die value (assum-
ing the players have agreed in advance an optimal guessing strategy).
The general guessing number g(G) is defined as sups=2,3,...g(G, s).

More generally consider a pair (f,G) where f = (f1, f2, . . . , fn) is a fixed
function with f : An → An and G = (V,E) is a directed graph (not nec-
essarily acyclic, and possibly with self loops) with V = {1, 2, . . . , n}. The
values x1, x2, . . . , xn ∈ A are selected randomly and the task for player j is

7



to guess the value of fj(x1, x2, . . . , xn). The task for the players is to find a
general (deterministic) strategy that maximizes the probability that all play-
ers simultaneously guess correctly. The guessing number g(G, f,A) of (f,G)

is the uniquely determined α such that 1
s

n−α
is the probability each player j

guess correctly the value fj(x1, x2, . . . , xn) (assuming the players have agreed
in advance an optimal guessing strategy). In this paper we consider in gen-
eral only the case where f is the identity map, and we write g(G, s) instead
of g(G, id, s).

3 The Entropy of a graph

One way of thinking about the entropy of a graph informally, is to view the
graph G as representing a composite physical system FG where the nodes
represent identical physical subsystems that can each be in some state s ∈ A.
The (directed) edges in the graph indicate possible causal influences. The
(dynamic) behavior of the composed physical system is determined by specific
functions assigned to the vertices representing the underlying physical laws.
Like in physical systems subject to the laws of thermodynamics, the behavior
of the functions is such that the overall entropy H0 of the system FG is
maximized. Informally, the Entropy of G is defined as the maximal entropy
H0 possible for the system FG when the system is subject to the causal
constraints indicated by G (the system is, as is assumed in thermodynamics,
always in equilibrium i.e. all constraints are satisfied at any given moment).

More formally, let G = (V,E) be a (directed) graph with the set V of
nodes (n := |V |) and set E ⊆ V ×V of edges. Assume that each node j ∈ V
in G has assigned a stochastic variable xj selected from some finite alphabet
(or state space) A with s ≥ 2 elements. For each probability distribution p
on tuples (x1, x2, . . . , xn) ∈ An we define an entropy function Hp such that
for each subset S ⊆ {1, 2, . . . , n} the real number Hp(S) is given by:

Hp(S) :=
∑
v∈An

p(S, v) logs(
1

p(S, v)
) (1)

where p(S, v) for v = (v1, v2, . . . , vn) ∈ An is the probability that a tuple
(x1, x2, . . . , xn) ∈ An is selected with xs1 = vs1 , xs2 = vs2 , . . . , xsu = vsu

where S = {s1, s2, . . . , su}. Let H denote any such entropy function Hp.
For each vertex j in G we introduce the information equation:
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H(j|i1, i2, . . . , id) = 0 (2)

where (i1, j), (i2, j), . . . , (id, j) ∈ E is the edges with head j. We refer to
these n information equations as the information constraints determined by
G. Notice that the use of logarithm in base s in the definition ensures that
the Entropy function H is normalized. Thus it satisfies H(j) ≤ 1 for each
j = 1, 2, . . . , n.

Informally, the equation states that there is no uncertainty of the value
of the variable xj corresponding to vertex j if we are given the values of all
the stochastic variables associated with the predecessor vertices of j.

Definition :

The (private) entropy E(G, s) of a graph G over an alphabet A of size
s ∈ {2, 3, 4, . . .} is the supremum of Hp(1, 2, . . . , n) of all entropy func-
tions Hp over A that satisfies the n information constraints determined
by G. The general entropy E(G) (or just entropy) of a graph G is the
supremum of the entropy E(G, s) for s = 2, 3, 4, . . ..

As usual the conditional entropy is defined as H(X|Y ) := H(X, Y ) −
H(Y ) and the mutual information between X and Y is defined as I(X;Y ) :=
H(X)+H(Y )−H(X, Y ) where H(X, Y ) is shorthand for H(X∪Y ). In gen-
eral we drop set clauses when possible and for example write H(i1, i2, ..., ir)
instead of H({i1, i2, ..., ir}). We have H(∅) = 0.

An entropy function H has H(X) = 0 if and only if X is uniquely de-
termined, and has H(X|Y ) = 0 if and only X is a function Y (see [27]
for such and other basic properties of entropy functions). Shannon showed
that entropy functions satisfy a number of information inequalities e.g. 0 ≤
H(X, Y ) H(X, Y ) ≤ H(X) + H(Y ), H(X, Y |Z) ≤ H(X|Z) + H(Y |Z)
and H(X|Y, Z) ≤ H(X|Y ) ≤ H(X,Z|Y ). These inequalities can all be
obtained as a special case of Shannon’s famous information inequality

H(X, Y, Z) +H(Z) ≤ H(X,Z) +H(Y, Z) (3)

We will show:

Theorem 1 : For each directed graph G and for each s ∈ {2, 3, 4, . . . , } the
guessing number equals the entropy (i.e. E(G, s) = g(G, s)).

Furthermore, the general entropy of a graph G is identical to the general
guessing number of G (i.e. E(G) = g(G)).
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This result allows us to calculate the Entropy of a graph using quite differ-
ent methods. One can calculate lower bounds on the entropy, by constructing
an explicit entropy function, but alternatively lower bounds can be obtained
by providing a guessing strategy. For all (small) graphs we tested, and we
believe most graphs in general, good upper bounds on the entropy can be
calculated using Shannons Information inequalities or computationally more
efficiently by use of the polymatoidal axioms we will introduce in the next
section. In general - for the vast majority of (small) graphs we analyzed by
computer- it is possible to find matching lower and upper bounds on E(G, s)
in this fashion.

The main reason we do not merge the Guessing number and the (pri-
vate) Entropy into one concept is that we, as already mentioned,wants to
introduce a number of concepts related to the Entropy of a graph (e.g.the
Shannon-entropy, the ZY-Entropy and the DFZ-entropy of a graph) and al-
ready in [21, 19] have defined a number of distinct types of guessing numbers
of a graph (e.g. the linear guessing number and the scalar linear guessing
number). Joint with Danchev we also considered other types of guessing
numbers defined using analogues to various well known routing protocols
(e.g. fractional routing [5]).

4 The S/ZY/DFZ graph entropy

The entropy function H has a number of basic properties that are very useful
in computing the entropy of a graph. In general there exist functions that
satisfy all of Shannon information inequalities, but are not genuine entropy
functions. An entropy-like function f on an n-element set V = {1, 2, . . . , n}
is a map f from the subsets of V into R. 9 We require that an entropy-like
function has f(∅) = 0. For subsets X, Y ⊆ V we let f(X, Y ) := f(X ∪ Y )
and we define f(X|Y ) as f(X|Y ) := f(X, Y )− f(Y ).

We say an entropy-like function f is a shannon entropy function if for
X, Y, Z ⊆ V we have f(Z) + f(X, Y, Z) ≤ f(X,Z) + f(Y, Z)

As pointed out in [8] this information inequality (combined with H(∅) =
0), is known to be equivalent to the so-called polymatroidal axioms (for a
map f : 2V → R):

(i) f(∅) = 0

9as usual we use R to denote the real numbers
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(ii) for X, Y ⊆ V, f(X) ≤ f(Y ).

(iii) f(X ∩ Y ) + f(X ∪ Y ) ≤ f(X) + f(Y ).

For an entropy-like function f : P (V ) → R we define the mutual infor-
mation If such that

If (A;B|C) := f(A,C) + f(B,C)− f(A,B,C)− f(C) (4)

The special case where C = ∅, gives lf (A;B) := f(A) + f(B)− f(A,B).
We say an entropy-like function is a Zhang-Young entropy function (or

just ZY-entropy function) if for A,B,C,D ⊆ V we have

2If (C;D) ≤ If (A;B) + If (A;C ∪D) + 3If (C;D|A) + If (C;D|B) (5)

It can be shown that each ZY-entropy function is a Shannon entropy function.
Expressed in our terminology, Zhang and Young discovered [28] that while
each entropy function is a ZY-entropy function, there exist Shannon entropy
functions that fail to be ZY-entropy functions.

The condition required for functions to be a ZY-entropy function can be
written as

U ≤ W (6)

where

U := 2f(C)+2f(D)+f(A)+f(A∪B)+4f(A∪C∪D)+f(B∪C∪D) (7)

and

W := 3f(C ∪D) + 3f(A ∪ C) + 3f(A ∪D) + f(B ∪ C) + f(B ∪D) (8)

Equality U = W happens in a number of cases e.g. when A = B = C = D,
when A,B,C and D are independent sets with respect to f (i.e. f(X ∪Y ) =
f(X) + f(Y ) as well as when X, Y ∈ {A,B,C,D} are distinct.

In [8] a number of new shannon information inequalities were presented
and showed to be independent. We refer to such information inequalities
(that can not be derived from the ZY-information inequalities) as DFZ-
information inequalities.

Somewhat informally (depending on which of these non-shannon infor-
mation inequalities we consider) we say that a function f is a DFZ-entropy-
like function if If satisfies the ZY-information inequality as well the DFZ-
information inequalities.
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Definition :

Let G be a graph. We define the S-entropy/ZY-entropy/DFZ-entropy of
G as the maximal value of f({1, 2, . . . , n}) for any S/ZY/DFZ entropy-
like function f that satisfies the entropy constraints determined by G.

For a graph G we let ES(G), EZY (G) and EDFZ(G) denote the S-
entropy resp. ZY-entrop and DFZ-entropy of G.

Proposition 2 : For each graph G and each s ∈ {2, 3, 4, . . . , }, g(G, s) =
E(G, s) ≤ EDFZ ≤ EZY (G) ≤ ES(G). Furthermore the S-Entropy
ES(G) is bounded from above with the number |V | of vertices minus
the acyclic independence number of G.

Proof: The equality g(G, s) = E(G, s) follows from Theorem 1. The inequal-
ity E(G, s) ≤ EDFZ(G) follows from the fact that each entropy function is
an DFZ-entropy-like function. EDFZ(G) ≤ EZY (G) follows from the fact
that part of the requirement of being a DFZ-entropy-like function is that
it is ZY-entropy-like. The ZY-information inequalities are known to imply
Shannon’s information inequalities, which ensures that EZY (G) ≤ ES(G).
For each S-entropy-like function f that satisfies the information constraints
for G, for any subset B of vertices for each vertex j with all tails in B,
f(B) = f(j, B). Let A ⊆ V is any subset with the induced graph on
V \ C being acyclic. Without loss of generality, we can assume that the
elements in V \ C are the elements {1, 2, . . . , r} and that there is no edge
from any vertex i to a vertex j if i, j ∈ {1, 2, . . . , r} and i > j. But, then
f(C) = f(C, 1) = f(C, 1, 2) = . . . , f(V ) and thus f(V ) = f(C) ≤ |C|. The
number |C| is at most |V | minus the acyclic independence number of G. ♣

5 The Entropy of the pentagon

It is not hard to show that Kn has entropy as well as S-entropy n− 1. The
entropy (S-entropy) of an acyclic graph is 0 (recall that the entropy H(j)
of a node with in-degree 0 vanish since H(j) = H(j|∅) = 0). In general
the graph Cn oriented as a loop has entropy (S-entropy) 1. To illustrate the
concepts with a less trivial example consider the pentagon C5 where all edges
are bi-directed.

The Shannon Capacity - a famous graph parameter that is notoriously
difficult to calculate - of C5 was eventually shown to be

√
5 = 2.23... We will
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show that pentagon C5 have Entropy (as well as S-entropy, ZY-entropy and
DFZ-entropy) E(C5) = 2.5 10. It turns out that the concrete Entropy over
an alphabet A is 2.5 if and only if s = |A| ∈ {2, 3, 4, . . .} is a square number.
The entropy of C5 over an alphabet of two elements is log2(5) = 2.32....

First we show that C5 has S-entropy ≤ 2.5 i.e that any S-entropy-like
function f that satisfies the information constraints determined by C5 has
f(1, 2, 3, 4, 5) ≤ 2.5.

Assume that f satisfies Shannon Information inequality f(A,B,C) +
f(C) ≤ f(A,C) + f(B,C). If we let A = {1}, B = {3}, C = {4, 5} we
get f(1, 2, 3, 4, 5) + f(4, 5) = f(1, 3, 4, 5) + f(4, 5) ≤ f(1, 4, 5) + f(3, 4, 5) =
f(1, 4) + f(3, 5) ≤ f(1) + f(3) + f(4) + f(5). Thus f(1, 2, 3, 4, 5) ≤ f(1) +
f(3) + f(4) + f(5)− f(4, 5).

Next notice that f(1, 2, 3, 4, 5) − f(2, 5) ≤ f(3, 4|2, 5) = f(4|2, 5) ≤
f(4|5) = f(4, 5)− f(5).

Thus f(1, 2, 3, 4, 5) ≤ f(2, 5)+f(4, 5)−f(5) ≤ f(4, 5)+f(2). Adding the
two inequalities we get: 2f(1, 2, 3, 4, 5) ≤ f(1)+f(2)+f(3)+f(4)+f(5) ≤ 5
which show that the S-entropy (and thus the entropy, as well as the ZY-
entropy and DFZ-entropy ) of C5 is at most 2.5.

Next we show that the entropy of Cn is at least 2.5 if s the size s of the
underlying alphabet is a square number i.e s = t2 for some t ∈ {2, 3, 4, . . .}.
According to Theorem 1 (the easy direction that g(G, s) ≤ E(G, s)) it suffices
to show that C5 has guessing number ≥ 2.5. Assume that in each of the five
nodes of C5 is a player with two dice each with t-sides. Each of the players has
access to the dice values of their two neighbors. Assume that each player’s
dice are labeled L and R and they use a guessing strategy where each player
assumes that their L-die has the same value as the left-hand neighbors R-
die, and that their R-die has the same value as the right-hand neighbors
L-die. Notice that this protocol divides the 10 dice into 5 pairs with one
L and one R die in each pair. Notice that the players are right exactly if
each of the 5 pairs of matched L and R-pairs have identical dice-values. This
happens with probability 1

t

5
= 1

s

2.5
= 1

s

5−2.5
. This shows that the Entropy

(and thus the S-entropy, the ZY-entropy and DFZ-entropy) of the pentagon
(with bi-directed edges) is at least 2.5.

To show that the entropy can only be achieved when s = |A| is a square
number, we use the non-trivial direction of Theorem 1 (E(G, s) ≤ g(G, s))

10Joint with Dantchev we showed that Ck in general have (Shannon) Entropy k
2 for any

k ≥ 4
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and show that there is no guessing strategy that achieve guessing number 2.5
unless s is a square number. Assume the players fix a (deterministic) guessing
strategy. There are S5 different assignments of values (x1, x2, . . . , xn) ∈ An
so if we let m denote the number of assignments where all players guess
correctly, the guessing number of 2.5 is achieved exactly when m = s2.5.
Since m is an integer the identity is only possible when s is a square number.

Finally assume that the alphabet has size 2. In general the guessing
number of a graph G = (V,E) over an alphabet of size s is of the form logs(m)
for some m ∈ {0, 1, 2, . . . , s|V |}. Thus, since the guessing number of log2(6) >
2.5 is impossible to obtain, it suffices to show that there is a guessing strategy
where all players can correctly guess their own assigned coin (coin rather than
die since s = 2) value with probability 5

32
. One such strategy is that each

player assumes that the assigned coin values do not have three consecutive
0’s and not two consecutive 1’s. This condition is satisfied globally exactly
when one of the 5 configurations occurs: 00101, 10010, 01001, 10100, 01010.
Notice that whenever this condition is satisfied ”globally”, each player can
(based on ”local” information) deduce the value of their own coin value. ♣

6 Proof of Theorem 1

A guessing strategy G induces a map ΨG that maps An to An. More specif-
ically, ΨG maps each dice assignment to the guess made by the individual
nodes, and thus maps each tuple (x1, x2, . . . , xn) ∈ An to a tuple
(z1, z2, . . . , zn) ∈ An representing the players’ guess.

All players guess correctly their own die value exactly when the assign-
ment (x1, x2, . . . , xn) of dice values is a fix-point for ΨG. From this we notice:
Observation: For each guessing strategy G let C = C(G) ⊆ An denote
the set of fixpoints for the map ΨG : An → An. The guessing strategy G
corresponds to guessing number logs(m), where m is the number of fixpoints
(i.e. m = |C|).

The set C ⊂ An of fixpoints of ΨG form a code with m codewords from
An. Let p = p(G) be the probability distribution on An where each code
word in C has the same probability (in fact probability 1

m
) and each word in

An \ C has probability 0. Since each probability distribution p on An defines
an entropy function Hp, this especially applies to the probability distribution
p(G), that therefore defines an entropy function Hp(G).
claim: If G is a guessing strategy for the graph G, the corresponding entropy

14



function Hp(G) satisfies the information constraints determined by G.
To see this consider a given vertex v with predecessor vertices w1, w2, ..., wd.

The guessing strategy G has the guess zv determined as a function of
xw1 , xw2 , . . . , xwd

. Thus each word (c1, c2, ...., cn) ∈ C that corresponds to a
word where each player guess correctly their own assigned value, have cv being
a function of cw1 , cw2 , . . . , cwd

. Thus the entropy of xv given xw1 , xw2 , . . . , xwd

is 0. In other words
H(v|w1, w2, . . . , wd) = 0. This shows that g(G, s) ≤ E(G, s).

The entropy functions that arise from guessing strategies are constant on
their support 11. Most entropy functions are non-constant on their support
and do not correspond to guessing strategies. Potentially such entropy func-
tions might turn the inequality g(G, s) ≤ E(G, s) into a strict inequality. To
prove Theorem 1 we need to show that this cannot happen i.e. we need to
show that E(G, s) ≤ g(G, s). Assume that Hp is an entropy function that
corresponds to a general probability distribution p on An. The support of
the entropy function Hp that corresponds to the probability distribution p,
forms a code C = C(p) ⊆ An. As before we notice that the code C can be
used to define an entropy function HC that is constant on the C ⊆ An and
vanishes outside C.

If Hp(X|Y ) = 0 then X is uniquely determined by Y . If q is a probability
distribution on An with the same support as p, then Hq(X|Y ) = 0. Or in
general if a collection of information constrains each is of the formHp(X|Y ) =
0 for some probability distribution p, then the very same constraints are
satisfied for all probability distributions q with the same same support as p.
Thus since Hp and HC corresponds to probability distributions with the same
support (= C) the Entropy function Hp satisfies the information constraints
of the graph G if and only if HC satisfies the information constraints of the
graph G.

Furthermore, a basic result in information theory states that the sym-
metric probability distribution on the set of support, maximizes the entropy.
Thus Hp(1, 2, . . . , n) ≤ HC(1, 2, . . . , n).

To complete the proof it suffices to observe that if HC is an entropy
function that is defined from a code C over an alphabet A, and satisfies the
information constraints of the graph G, then the code C can arises from a
guessing strategy G over A.

This observation can be obtained as follows: The code C satisfies the con-

11the support of p is defined to be the set of elements in An that has non-zero probability
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straints that the letter cj is uniquely determined by the letters ci1 , ci2 , . . . , cid
where i1, i2, . . . , id are the nodes with head j. For each player j this determine
a (partial) guessing function. To make to function total, choose any value
for the function (it does not matter which) on each tuple (xi1 , xi2 , . . . , xid)
that does not have xi1 = ci1 , xi2 = ci2 , . . . , xid = cid for some code word
(c1, c2, . . . , cn) ∈ C. If the players follow this guessing strategy, they are all
correct for all assignments x1, x2, . . . , xn) ∈ C ⊆ A\ (and possibly even for
more words). This shows that E(G, s) ≤ g(G, s). ♣

7 Minimal index codes

Assume that we play the guessing game on a graph G = (V,E) and with
alphabet A. Assume that we have available a public information channel
that can broadcast m messages and for each assignment of dice values we
broadcast a single message to all the players. What is smallest value of m
for which there exists a general protocol such that each player is always able
to deduce his/her own assigned value? This concept, defined in terms of
guessing games was introduced in [20] without knowledge of [4]. As already
explained we will use the terminology of [4] and define the shortest index
code i(G, s) of G (wrt. to A) as logs(m) where s = |A| denotes the size of
the alphabet A.

Assume that a graph G has a minimal index code (over an alphabet with s
letters) of length logs(m). Then by definition it is possible to broadcast one of
m-messages and ensure that all players with probability 1 work out their dice
values. This is (essentially) 12 a factor sn−logs(m) better than the probability
that the players could have achieved if they disregarded the information
given from G and only had available a public channel broadcasting one of
m messages. Using the analog to the definition of the guessing number, we
define the public guessing number as n− logs(m) i.e. as n− i(G, s).

It is possible to define the entropy of the length of the minimal index
code of a graph G. Given a strategy S that achieve an index code with m
messages (i.e. it possible to broadcast one in m public messages, in such a
fashion that each node in G to deduce their own assigned value). The length
of the code is logs(m). We define the entropy of the code as the entropy of the
set of public messages with the probability distribution by which they will be

12essentially, since if m does not divide sn each of the m messages are not broadcast
with identical probabilities
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broadcasted (this is not always the symmetric probability distribution). We
let ientro(G, s) denote the minimal entropy (calculated using the logarithm in
base s) of any index code for G. A priori there is no reason to believe that
the minimal code contains the same number of code words as the code with
the minimal entropy (the code might contain more words but if the occur
with less uniform probabilities their entropy might be lower).

The value of the entropy of the index code with minimal entropy can
be calculated in a fashion that can be approximated by entropy-like func-
tions (S-entropy-like, ZY-entropy-like as well as DFZ-entropy-like). As in
the definition of the graph entropy we assume that each node j ∈ V in G
has assigned a stochastic variable xj selected from some finite alphabet (or
state space) A with s ≥ 2 elements. Let W be a finite set of potential public
messages. To ensure W is large enough we may assume W = An. It turns
out the size of W - as long as it is large enough - does not affect the result.
For each probability vector p on An ×W we define an entropy function Hp

analogous to equation (1). More specifically, for each probability distribution
p on tuples (x1, x2, . . . , xn, xw) ∈ An ×W we define an entropy function Hp

such that for each subset S ⊆ {0, 1, 2, . . . , n, w}13 the real number Hp(S) is
given by (1) i.e. by

Hp(S) :=
∑

v∈An×P
p(S, v) logs(

1

p(S, v)
) (9)

but where p(S, v) for v = (v1, v2, . . . , vn, vw) ∈ An × W is the probability
that a tuple (x1, x2, . . . , xn, xw) ∈ An ×W is selected with xs1 = vs1 , xs2 =
vs2 , . . . , xsu = vsu if S = {s1, s2, . . . , su} ⊆ {1, 2, . . . , n, w}. Let H denote any
such entropy function Hp.

For each vertex j in G we introduce the information equation:

H(j|i1, i2, . . . , id, w) = 0 (10)

where (i1, j), (i2, j), . . . , (id, j) ∈ E is the edges with head j. We also add the
information equation

H(w|1, 2, . . . , n) = 0 (11)

as well as the equation

13where w is a new symbol distinct from 1, 2, . . . , n
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H(1, 2, . . . , n) = n (12)

The task is to find the entropy function H that satisfies all constraints and
produce the minimal value of H(w) (over A). We refer to ientro(G, s) as
the minimal entropy of an index code over an alphabet A = {1, 2, . . . , s}
associated to G.

Proposition 3 : The minimal value of H(w) (over A with s = |A|) is at
most i(G, s) i.e. ientro(G, s) ≤ i(G, s).

Proof: First we show that there exists an entropy function Hp that satisfies
the constraints determined by G such that Hp(w) ≤ i(G, s). Consider a
strategy S where each player choose a function (that depend on all incoming
values as well as the public message). Consider the set C ⊆ A\ ×W of all
tuples (x1, x2, ..., xn, w) ∈ An ×W where w is the message that according to
the strategy S have to be broadcast when the players have been assigned the
values x1, x2, . . . , xn ∈ An. The set C contains exactly sn elemnets. Let p
be the symmetric probability distribution on C (probability of each element
being 1

sn ) that vanish on An ×W \ C. Let Hp : P (V ) → R be the entropy
function corresponding to that probability distribution. Let m denote the
number of messages w ∈ W that can occur this way. The entropy Hp(W )
is at most logs(m) since this is the highest entropy possible on a set with m
elements. Since i(G, s) = logs(m) this shows that H(w) ≤ i(G, s). ♣

Like in the definition of private entropy we consider entropy-like func-
tions f . We define the S-minimal index code iS(G) as the minimal value of
f(w) that is possible to derive using Shannon’s Information Inequalities (or
equivalently the polymatroidal axioms). We define the ZY-minimal index
code iZY (G) as the minimal value of f(w) that is possible to derive using
the ZY-information inequalities. The DFZ-minimal index code iDFZ(G) is
defined analogous by considering the minimal value of f(w) that is possible
for a DFZ-entropy like function.

Proposition 4 : i(G, s) ≥ ientro(G, s) ≥ iDFZ(G) ≥ iZY (G) ≥ iS(G).

Proof: The inequality i(G, s) ≥ iintro(G, s) follows from Proposition 3.
Each entropy function is an DFZ-entropy-like function which shows that
iintro(G, s) ≥ iDFZ(G). Part of the requirement of being a DFZ-entropy-like
function is that it is ZY-entropy-like and thus iDFZ(G) ≥ iZY (G). Finally, the
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ZY-condition is known to imply Shannon’s information inequalities, which
ensures that iZY (G) ≥ iS(G). ♣

Using the analog to the definition of the private entropy, (and Propo-
sition 3) we define the public Entropy Epublic(G, s) of G = (V,E) over an
alphabet with s letters as n − ientro(G, s) and the general public entropy as
sups=2,3,...E

public(G, s). The public S-entropy is defined as n−iS(G), the pub-
lic ZY-entropy as n − iZY (G) and the public DFZ-entropy as n − iDFZ(G).
With these definitions, Proposition 4 can be restated:

Proposition 5 : gpublic(G, s) ≤ Epublic(G, s) ≤ Epublic
DFZ (G) ≤ Epublic

ZY (G) ≤
Epublic
S (G)

Example: The index code of C5 with minimal entropy has entropy 2.5 (i.e.
C5 has public entropy 5 − 2.5 = 2.5) over alphabets of size 4, 9, 16, 25, . . ..
The length i(C5, s) of the minimal index code is also 2.5 over alphabets of
size 4, 9, 16, 25, . . ..

To see this we first show that iS(C5) ≥ 2.5 (and thus that the public
S-entropy is ≤ 2.5). Assume that f satisfies Shannon Information inequality
f(A,B,C) + f(C) ≤ f(A,C) + f(B,C). If we let A = {1}, B = {3}, C =
{4, 5} we get f(1, 2, 3, 4, 5, w) + f(4, 5, w) = f(1, 3, 4, 5, w)+ f(4, 5, w) ≤
f(1, 4, 5, w)+ f(3, 4, 5, w) = f(1, 4, w)+f(3, 5, w) ≤ f(1)+f(3)+f(4)+f(5)+
2f(w). Thus f(1, 2, 3, 4, 5, w) ≤ f(1)+f(3)+f(4)+f(5)−f(4, 5, w)+2f(w).
Next notice that f(1, 2, 3, 4, 5, w)− f(2, 5, w) ≤ f(3, 4|2, 5, w) = f(4|2, 5, w)
≤ f(4|5, w) = f(4, 5, w) − f(5, w). Thus f(1, 2, 3, 4, 5, w) ≤ f(2, 5, w) +
f(4, 5, w)−f(5, w) ≤ f(4, 5, w)+f(2)+f(5, w)−f(5, w) = f(4, 5, w)+f(2).
Adding the two inequalities we get: 2f(1, 2, 3, 4, 5, w) ≤ f(1) + f(2) + f(3) +
f(4) + f(5) + 2f(w). So far the calculation was essentially identical to the
calculation for the graph entropy with one additional node assigned a variable
xw ∈ W . Now the special information equation for calculating the index code
allows us to deduce that f(1, 2, 3, 4, 5, w) = f(1, 2, 3, 4, 5) = f(1) + f(2) +
f(3) + f(4) + f(5) = 5 and to conclude that 2 × 5 ≤ 5 + 2f(w) i.e. that
2.5 ≤ f(w) and that iS(C5) ≥ 2.5.

It is not hard to adopt the guessing strategy for the guessing game on C5

and for s ∈ {4, 9, 16, 25, . . .} broadcast the sum (modulo
√
s) of each of the

five L-R pairs. This shows that i(C5, 2) ≤ 2.5 ♣

Proposition 5A :

g(G, s) = E(G, s) ≥ Epublic(G, s) ≥ gpublic(G, s)
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Proof: We already showed g(G, s) = E(G, s) (Theorem 1) and Epublic(G, s) ≥
gpublic(G, s) (Proposition 4). It suffices to show that g(G, s) ≥ Epublic(G, s).
Before we show this let us observe that g(G, s) ≥ gpublic(G, s) (this was also
noticed in [20, 19]). This is because one message w0 of the m possible public
messages must occur with probability at least 1

m
. If the players guess using

the same strategies as in the public game, but with each player pretend-
ing that the public message is w0, they all win with probability ≥ 1

m
and

g(G, s) ≥ logs(m).
We want to show that g(G, s) ≥ Epublic(G, s) = n − ientro(G, s). As-

sume that (p1, p2, p3, . . . , pu) is a probability vector and 0 ≤ q ≤ 1 and
Σjpj logs(

1
pj

) ≤ logs(
1
q
). Then there exists j such that pj ≥ q (just view the

left hand side as a convex linear combination of the logs(pj). Thus for some
j we must have logs(

1
pj

) ≤ logs(
1
q
)). If the players assume that the public

message is w0, where this message happens to be broadcasted with probabil-
ity at least as high as q where q is chosen such that g(G, s) = n − logs(

1
q
).

This shows that g(G, s) ≥ Epublic(G, s). ♣
The private entropy E(G, s) and the public guessing number

Epublic(G, s) seem to be identical for many small graphs. This is, however,
not always the case.

Proposition 6 : There exists a graph G with distinct private entropy and
public guessing number (over a fixed alphabet). More specifically
g(C5, 2) = E(C5, 2) > gpublic(C5, 2)

Proof: We already calculated E(C5, 2) = log2(5) = 2.32.... Since
Epublic(C5, 2) ≤ gpublic(C5, 2) and since the public guessing number is on the
form 5 − log2(m) the only two serious possibilities for the public guessing
number are that gpublic(C5, 2) = 5 − log2(7) = 2.19... or gpublic(C5, 2) = 2.
Thus gpublic(C5, 2) ≤ 5− log2(7) < log2(5) = E(C5, 2) i.e. the entropy (guess-
ing number) is distinct from the public guessing number. ♣
Our computer calculations showed that many small graphs have integer en-
tropy. This can (partly) be explained by combining the fact that the private
and public entropy tend to measure very similar notions with the following
proposition:

Proposition 7 : If the private entropy E(G, s) is identical to the public
guessing number gpublic(G, s) and s is a prime, then E(G, s) is an in-
teger.
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Proof: Let A be an alphabet with s letters. The private entropy is of the
form logs(m1) while the public guessing number is of the form n− logs(m2)
for m1,m2 ∈ {0, 1, 2, . . .}. If the private entropy is identical to the public
guessing number, we have n = logs(m1) + logs(m2) = logs(m1m2) i.e. sn =
m1m2. If s is a prime number, this is only possible if m1 as well as m2 is a
power of s i.e. if logs(m1) and logs(m2) are both integers. ♣

8 Graph Entropy and its link to Network Cod-

ing

8.1 Historical background

Network Coding is based on the idea that for many network topologies mes-
sages can be transmitted more efficiently using coding functions instead of
being transmitted in discrete packets (like in traditional routing). This basic
observation is often credited in the Network Coding literature to the highly
influential paper [26] about Distributed Source Coding for satellite commu-
nications. It should be pointed out that - if we disregard issues about poten-
tial applications - the idea was known to the Circuit Complexity community
at least 25 years before. Curiously in many of Valiant papers including
[22] where Valiant anticipated the definition of the minimal index code of a
graph, Valiant considered problems that mathematically clearly presuppose
the basic observation in Network Coding.

The main result in [26] (see also [13]) was to show that Network Coding
for each specific unicast problem - provided the underlying alphabet is suffi-
ciently large - never leads to ”unnecessary” information bottle necks. More
specifically, they showed that as long as the min-cut capacity between the sin-
gle source node and each specific target node allows transmission (i.e. there
are no obvious obstructions), simultaneous transmission from the source node
to all target nodes is always possible.

In our view the real significance of [26] was to recognize and propose
Network Coding as an alternative approach to data management in commu-
nication networks. Later the notion of Network Coding has been broadened
and now include, ideas in wireless communication, peer-to-peer files sharing
(e.g. as in Avalanche by Microsoft). For a general introduction to Network
coding see for example [25] or [10].

21



8.2 Solvability and graph entropy

A multiple unicast network problem is an acyclic graph with k input nodes
and k output nodes. Each input is demanded exactly at one output. Each
node (except for the input nodes) is assigned a coding function and functions
compose in the obvious manner.

The acyclic independence number of a graph G = (V,E) is defined as
the size of the maximal induced acyclic subgraph of G 14 [2]. In general if
B ⊆ V we can obtain a network N by duplicating B, such that each node
in B is copied into two nodes, one being an input node and one being an
output node. We say B is a split if the resulting network N is acyclic (i.e.
if the induced graph on V \ B is acyclic). The number of nodes in B is the
size of the split. A minimal split is a split of minimal size and the minimal
split of a graph is the size a minimal split. The minimal split of an acyclic
graph is 0 since the empty set can serve as a split set.

(iii)(ii)(i)

1 2 3

4 5

1 2 3

4 5

4 5

1 2 3

1 4

35

2

As an example consider the communication Network (i) where the inputs
in vertices 1,2 and 3 at the to are required at vertices 1,2 and 3 at the bottom.
The network is unsolvable since all messages have to pass through nodes 4
and 5 that create an information bottleneck. Consider the graph (ii) that
appeared by identifying each input node with its corresponding output node.
If the graph (ii) is split with split set {4, 5} we get network (iii). This
network is clearly solvable which shows that graph (ii) has entropy 2.

We can show (see [21] and [19] for a related result):

Theorem 8 : Let G be a directed graph, and let NG be a communication
network (circuit) that occurs by splitting G with a split of size k. Fix

14the task (G, r) of deciding if the input graph G has independence number ≥ r is
NP-complete [2]
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an alphabet A and assume that guessing functions g1, g2, . . . , gn are as-
signed to each node in G. Further, assume that the very same functions
(with the arguments in a specific order that depends on the split) are
assigned to the corresponding computational nodes in NG. Then the
following are equivalent:

(i) The probability that by using the guessing strategy determined by
g1, g2, . . . , gn all players guess correctly their own assigned values is (at
least) 1

sn−k

(ii) The coding functions g1 ◦ τ1, g2 ◦ τ2, . . . , gn ◦ τn define a solution
to the Network NG where τ1, . . . , τn are suitable permutations of the
arguments determined by the split.

If the split is not minimal (i) and (ii) are never satisfied and the theorem
becomes vacuous.

Proof: Assume that the players use the functions g1, g2, . . . , gn as guess-
ing functions on the graph G = (V,E). Let B be the split. The induced
graph on V \ B is acyclic. Without loss of generality we can assume that
the nodes 1, 2, . . . , k belong to B while the nodes k + 1, k + 2, . . . , n be-
longs to V \ B. Assume that the very same functions g1, g2, . . . , gn are
assigned as coding functions in the corresponding network NG. Let ~x =
(x1, x2, . . . , xn) ∈ An be a random assignment of values to the nodes in G.
Let (z1(~x), z2(~x), . . . , zn(~x)) ∈ An denote the ”guess” by the players deter-
mined by the guessing functions g1, g2, . . . , gn.

Condition (i) can then be stated as:

p(z1 = x1, z2 = x2, . . . , zn = xn) = (
1

s
)n−k (13)

and condition (ii) can be stated as:

p(z1 = x1, z2 = x2, . . . , zk = xk|zk+1 = xk+1, zk+2 = xk+2, . . . , zn = xn) = 1
(14)

In general P (U |V ) = P (U∩V )
P (V )

and thus

p(z1 = x1, z2 = x2, . . . , zk = xk|zk+1 = xk+1, zk+2 = xk+2, . . . , zn = xn) =

p(z1 = x1, z2 = x2, . . . , zn = xn)

p(zk+1 = xk+1, zk+2 = xk+2, . . . , zn = xn)
(15)
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In general, for any choice of guessing functions (coding functions) we have

p(zk+1 = xk+1, zk+2 = xk+2, . . . , zn = xn) = (
1

s
)n−k (16)

since the induced graph of G restricted to the nodes k + 1, k + 2, . . . , n is
acyclic so the involved probabilities are independent. Substituting (16) into
(15) we get that

(
1

s
)n−kp(z1 = x1, z2 = x2, . . . , zk = xk|zk+1 = xk+1, zk+2 = xk+2, . . . , zn = xn)

= p(z1 = x1, z2 = x2, . . . , zn = xn) (17)

i.e. that (13) holds if and only if (14) holds. ♣
To illustrate the theorem, consider the Networks (b)-(d) and the assign-

ments of guessing functions g1, g2, . . . , g7 for the graph a. Each Networks
(b)-(d) appears by ”splitting” the graph a in different ways.

Consider as an example Network b 15. The network in b was introduced in
[6, 7] where the authors showed that the network has only linear solutions over
fields of characteristic 2 (i.e when the alphabet contains 2r elements for some
r ∈ {1, 2, 3, . . .}). Our concern is to illustrate Theorem 8. Let us recall that
solving network b consists of finding coding functions g1, g2, . . . , g7 such that
for any choice of input messages x1, x5, x2 ∈ A, (for nodes 1,5 and 2 at the
top) these messages can be reproduced at their corresponding output nodes
(nodes 1,5 and 2 at the bottom). Since each vertex has two predecessors,
each coding function is a map gj : A2 → A. The coding functions compose in
the obvious way and they solve the network if for any input (x1, x5, x2) the
output (viewing the network as a circuit) is (x2, x5, x1) (reading from left to
right).

15we prefer to represent multiple unicast problems in Network coding by using the line-
graph. This way coding functions are attached to the nodes rather to the edges
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If we in Network b identify the three sources at the top (nodes 1, 2 and 5)
with the corresponding output nodes at the bottom (nodes 1, 2 and 5), we get
the graph a. The functions g1, g2, . . . , g7 are assigned to the corresponding
nodes in Network b. The spilt {1, 2, 5} leads to network b while the split
{2, 3, 6} leads to network c. Other splits e.g. {3, 4, 7} lead to a network
that is isomorphic to network a and network b . The split {1, 3, 5} leads
to network d and the split {2, 4, 6} would lead to Network isomorphic to
network d. We assigned guessing functions to the nodes in the graph a.
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Notice that each split leads to different assignments of coding functions in
the resulting network. Please keep in mind that the arguments of coding
functions has to be defined appropriately. Let τ(u, v) = (v, u) and define in
general ĥ := h ◦ τ . Then if we define the coding functions such that they
take the left incoming value as first argument, and right incoming as second
argument, we get a network coding solution for Network b by assigning the
coding functions ĝ1, ĝ2, g3, g4, ĝ5, g6 and ĝ7 as indicated.

One direct consequence of theorem 8 is that the functions g1, g2, . . . , g7,
provide a solution for one of the networks (b), (c) or (d) if and only if they
provide a solution for each of the networks ((b), (c) and (d)). Combining
Theorem 1 that the entropy is identical to the guessing number, as well as
Proposition 3, i.e. that the public entropy of a graph G = (V,E) is identical
to |V | minus the minimal index code of G (since the minimal index code is
the very same notion as the information defect [20, 19]), Theorem 4 in [19]
can be rephrased as follows:

Corollary 9 : A multiple unicast network N with k input and k output
nodes, is a solvable Network over an alphabet A if and only if the graph
GN has (private/public) entropy k over A

Corollary 9 is not correct if we remove reference to a specific alphabet A
and just consider the general Entropy. This follows essentially by considering
the unsolvable network N with coding capacity 1 constructed in [5].

8.3 Links to Network coding capacity

In [8] the authors define the coding capacity of a communication network.
Here we are only interested in the special case of coding capacity 1 (more
specifically coding capacity (1, 1)). Let N be a communication network i.e.
an acyclic graph with a set I of k input nodes and k output nodes. We say
that N has S-coding capacity (1, 1) (ZY-coding capacity (1, 1)) if there exists
a S-entropy-like function f (ZY-entropy-like function f) such that

(*) Conditions N1,N2 and N3 from [8] for (1, 1) coding capacity:

N1: f(I) = k,

N2: f(j) ≤ 1 for each node j

N3: f(j|i1, i2, . . . , id) = 0 for each node j where i1, i2, . . . , id are the prede-
cessors of j.
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The coding capacity conditions N1,N2 and N3 (for capacity (1, 1) net-
works) differ of course in general from the definition of graph entropy. The
coding capacity is defined for acyclic networks, with special input nodes,
rather than for graphs. Condition N1 for calculating the coding capacity as-
sumes that the certain nodes are assigned independent variables, while there
is no such assumption in the definition of graph entropy. On the other hand,
the graph entropy assumes that a certain entropy is being optimized, while
there is no such assumption in the definition of the coding capacity. How-
ever, the two notions Graph entropy and Coding capacity are in some sense
identical in the special case where the maximal value of f(1, 2, . . . , n) = f(I)
(in which case condition N1 holds).

In other words, if we disregard condition N1 and just try to maximize
f(1, 2, . . . , n) = f(I) like we need to calculate the graph entropy, then since
the network is assumed to have S-coding capacity (1, 1) (ZY-coding capacity
(1, 1)) we conclude that f(I) = k which ensures that condition N1 is auto-
matically satisfied. Conversely, assume that GN has S-entropy k (ZY-entropy
k). But then since f(I) = f(1, 2, . . . , k) = f(1, 2, . . . , n) = k, we conclude
that the conditions N1,N2 and N3 are satisfied. Hence:

Proposition 10 : A network N with k input-output pairs, has shannon
coding capacity (ZY-coding capacity) (1, 1) if and only if the graph GN

that occurs by identifying each input node with its corresponding output
node has S-entropy (ZY-entropy) k (or ≥ k).

Theorem 11 : There exists a graph G with EZY (G) < ES(G). Thus it
has a general entropy E(G) that cannot be calculated using Shannon’s
information inequalities.

Proof: From [8] we know that the Vamos communication network N ′ modi-
fied to the multiple-unicast-situation has S-capacity 1, but has strictly smaller
ZY-capacity (at most 12/13). The network can be represented as a circuit
(by passing to the line graph). This does not change anything since the in-
volved coding functions are the same and the resulting circuit N still has
S-capacity 1 and strictly less ZY-capacity (that is at most 12/13). We then
identify each source node with its corresponding target node and obtain a
graph GN . It follows from Theorem 10, that since the S-capacity of N is
(1, 1) - the S-entropy of GN is k (where k is the number of input nodes in
N). The ZY-capacity of N is not (1, 1) - so again according to Theorem 10
the ZY-entropy of GN is strictly less than k ♣
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We do not attempt to calculate the specific difference between G’s S-
entropy and ZY-entropy, and this is left as an open problem.

9 Final remarks and acknowledgments

Proposition 10 and Theorem 11 as well as many concepts introduced in the
paper depends strongly on the work by Dougherty, Freiling and Zeger ([6, 7,
8]) as well as the earlier work by Zhang and Young ([28]). The use of entropy
functions for multiple-unicast networks was introduced in [6].
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