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a b s t r a c t

The large class, say NLOG, of Boolean functions, including 0-1 Sort and 0-1 Merge, have
an upper bound of O(n log n) for their monotone circuit size, i.e., they have circuits with
O(n log n) AND/OR gates of fan-in two. Suppose that we can use, besides such normal
AND/OR gates, any number of more powerful ‘‘F-gates’’ which realize a monotone Boolean
function F with r(≥ 2) inputs and r ′(≥ 1) outputs. Note that the cost of each AND/OR gate
is one andwe assume that the cost of each F-gate is r . Nowwe define: A Boolean function f
in NLOG is said to be F-Easy if f can be constructed by a circuit with AND/OR/F gates whose
total cost is o(n log n). In this paper we show that 0-1 Merge is not F-Easy for an arbitrary
monotone function F such that r ′ ≤ r/ log r .

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that we wish to construct a Boolean monotone circuit for 0-1 Merge by using ordinary AND and OR gates of
fan-in two and (any number of) Majority gates of any number of inputs at any places. It is well known that, if we are allowed
to use only AND/OR gates, then the circuit size must beΘ(n log n). Here a size means the number of gates and each AND/OR
gate has a unit cost. When we use a Majority gate of r inputs, we assume that such a gate has a cost of r (the reason is given
later). It should be noted that a Majority gate of r inputs is realized by using O(r log r) AND/OR gates, and therefore, if its
cost is r log r , then Majority gates are obviously useless. Our setting of cost r is thus subtle, and our primary question in this
paper is whether such Majority gates are substantially useful, or whether we can construct a circuit of size o(n log n) for 0-1
Merge by adding Majority gates. The motivation is as follows:
Our knowledge about the traditional (bounded-fan-in AND, OR and Negation gates are allowed) circuit complexity is

summarized as follows: (i) If we cannot use Negation, i.e., for monotone circuits, exponential lower bounds are known (e.g.,
[17,4,8]). (ii) If we can use few Negations, i.e., at most (1/6) log log nNegations, then there are also a superpolynomial lower
bounds [2]. (iii) If we can use dlog(n+ 1)e Negations, then all n inputs can be negated by using O(n log n) gates [5]. In other
words, if we can obtain an ω(n log n) lower bound for circuits with dlog(n + 1)e Negations, the same lower bound applies
for general circuits. The best lower bound for this type of circuits, however, is 6n− log(n+ 1)− c for a two-output function
[10] (see below for details). (iv) For general circuits (i.e., without any restriction for the number of Negations), the best lower
bound is still 5n− o(n) [11,9] in spite of the long history of research.
Looking at this series of facts, the challenging and somewhat realistic goal is to attain nonlinear lower bounds for circuits

of type (iii), for example, for the circuit that negates all n inputs as mentioned above (which we call Inverter). Towards this
goal, this paper proposes an approach based on reduction which is quite popular in many different contexts of complexity
theory.
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Our contribution. In [5], Beals, Nishino and Tanaka studied Inverter. Reading this paper carefully it turns out that if we can
use only log(n+ 1) Negations, then the way of using them is very restricted, i.e., such circuit includesmonotone subcircuits
which compute log(n + 1) different threshold values with respect to the number of input one’s, in particular, one of them
must be a majority of n. This means, if we can prove some (e.g., nonlinear) lower bound for monotone Majority, then that
bound also applies for Inverter with log(n+1)Negations. Thus, proving lower bounds for Inverter can be reduced to proving
(similar) lower bounds formonotone circuits, which appears to be much easier.
We further extend this reduction approach. Let NLOG be the class of (possibly multi-output) Boolean functions which

have a monotone upper bound of O(n log n). Then f in NLOG is said to beMaj-Easy if f has a circuit C of size o(n log n)with
AND/OR gates of fan-in two and Majority gates of any fan-in. (Recall that the cost of each AND/OR gate is one and the cost
of each Majority gate of fan-in r is r .) Now one can easily see that a conventional (without Majority gates) nonlinear lower
bound for monotone Majority (and therefore the same lower bound for Inverter, too) is attained if we can find a monotone
Boolean function f such that f isMaj-Easy and f has a conventionalmonotone lower bound ofΩ(n log n). A Boolean function
f is monotone if f (x1, . . . , xn) ≤ f (y1, . . . , yn)whenever xi ≤ yi for all i.
Note that we already know that several Boolean functions do have a conventional monotone lower bound ofΩ(n log n),

including Merge. So, we are done if we could prove that Merge is Maj-Easy, which is exactly the question raised at the
beginning of this paper. Unfortunately, we can show thatMerge is notMaj-Easy. In factwe can prove a stronger result, Merge
is not F-Easy for any monotone Boolean function F of r inputs and up to r/ log r outputs (under the similar definitions, see
Section 2 for details). In other words, even if such an F-gate is arbitrarily powerful, it does not help to reduce the complexity
of Merge if its cost is r and its output size is at most r/ log r .
Thus, we have to seek other candidates. (Sort has also anΩ(n log n) lower bound but it obviously does not help since Sort

is more powerful than Merge.) One candidate we show in this paper is what we call an approximated Sort that is Maj-Easy
(but is not known if it has anΩ(n log n) lower bound).
Previous work. Proving a superpolynomial lower bound for AND/OR/Negation circuits that compute a particular NP
language implies P6=NP. However, research towards this ultimate goal has not been very successful. Schnorr first gave a
nontrivial lower bounds of 2n using base B2 [18]. After a number of improvements, Zwick gave a 4n lower bound for base
U2 [24]. Some ten years later, Lachish and Raz succeeded in improving this bound to 4.5n by using the new Strongly-Two-
Dependent function [11]. Iwama and Morizumi [9] raised this to 5n by deeper analysis of [11], which is currently best. All
those results are based on the so-called gate-elimination method, which many people believe has a clear limit of power for
further improvement.
For monotone circuits, Razborov first proved a superpolynomial lower bound for a circuit computing Clique [17], which

was later improved to an exponential lower bound by Andreev [4]. By combining their proof technique and other techniques,
Amano and Maruoka obtained a superpolynomial lower bound for circuits which can use at most (1/6) log log n Negation
gates [2].
As mentioned before, Beals, Nishino and Tanaka studied the least amount of Negations to compute all Boolean functions.

Especially they showed, for Inverter, a lower bound of 5n + 3 log(n + 1) − c and an upper bound of O(n log n) which is
conjectured optimal by them [5]. Their lower bound was improved to (7+ 1/3)n+ log(n+ 1)/3− c in [19] and improved
to 8n− log(n+ 1)− c in [10]. For the case that a function has two outputs, the best lower bound for circuits with log(n+ 1)
Negations is 6n− log(n+ 1)− c. This lower bound is obtained by applying the lower bound on a circuit with log(n+ 1)− 1
Negations for Parity in [10] to the lower bound on a circuit with log(n + 1) Negations for (Parity, ¬Parity). Interestingly, if
the number of available Negations is less than log(n+ 1), even by one, the lower bound jumps. Sung and Tanaka proved an
exponential lower bound for (log(n+ 1)− 1)-Negation circuits [20].
0-1 Sort, 0-1 Merge and Majority are all practically important and have a large literature for their circuit realization.

Majority can be constructed by O(n) AND/OR/Negation gates (see e.g., Chap. 3.4 in [23]) and by O(n log n) AND/OR gates
by using the famous sorting network [1]. (Valiant gave a completely different construction based on a probabilistic method
[22].) For its monotone lower bound, however, we have only linear ones. In 84, Dunne proved a 3.5n lower bound [7], and
in 86, Long proved a 4n lower bound [14], but we did not have any further progress in the last two decades. By contrast, we
have tight lower bounds for Sort andMerge. Lamagna and Savage [13] proved anΩ(n log n) lower bound for Sort. Pippenger
and Valiant [16] and Lamagna [12] proved independentlyΩ(n log n) lower bound for Merge. Amano, Maruoka and Tarui [3]
provedΘ(2an) for Merge in negation-limited circuits with log log n− a Negations.

2. F -Easiness and nonlinear lower bounds

In this paper, we mainly deal with the class, denoted by NLOG, of monotone Boolean functions that can be computed
by circuits consisting of O(n log n) AND/OR gates of fan-in two. One such function is MERGE(n,m), which is a collection of
functions that merges two presorted binary sequence x1 ≤ x2 ≤ · · · ≤ xn and xn+1 ≤ xn+2 ≤ · · · ≤ xm into the sequence
y1 ≤ y2 ≤ · · · ≤ ym. In this paper we discuss only MERGE(n, 2n).
Unless otherwise stated, all circuits in this paper are monotone. A (monotone) circuit C is a directed acyclic diagram

consisting of gates and links as shown in Fig. 1. Each gate has input and output terminals. Each link connects an output
terminal to an input terminal, where no two links can go to a single input terminal. Gates are associated with different
types: An AND (similarly for OR) gate has two input and one output terminals, an F-gate has r input and r ′ output terminals
and computes the Boolean function F : {0, 1}r → {0, 1}r

′

. Different F-gates in the circuit may have different r/r ′ values
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Fig. 1. Circuit.

(i.e., different gate sizes), but must compute the same Boolean function F like Majority, Merge, Sort and so on. An input gate
has one output and no input terminals and is labeled by a variable in {x1, . . . , xn} or a constant 0 or 1, and an output gate has
one input and no output terminals and is labeled by a variable in {y1, . . . , ym}.
Each gate has a cost. The cost of AND and OR gate is one, and that of an F-gate is always r regardless of the function F .

An input and output gate has cost zero. The size of a circuit C is the sum of the costs of all gates in C . The size measure is
also used for a Boolean function f : sizeF (f ) is the minimum size of a circuit with AND/OR/F gates computing f . size(f ) is
the minimum size of a circuit computing f in which only AND and OR gates can be used (without F-gates). Thus, NLOG can
be written as a family of Boolean functions f such that size(f ) = O(n log n). Now we are ready to define F-Easy Boolean
functions; intuitively F-Easy functions are those functions for which F-gates are substantially useful:

Definition 1. Let f be in NLOG and F be a monotone function. f is said to be F-Easy if sizeF (f ) is o(n log n). In particular, if F
is Majority then f is called Maj-Easy.

Now the next Theorem is immediate:

Theorem 1. Suppose that a function f is Maj-Easy and size(f ) isΩ(n log n). Then size(Majority) is ω(n).

Inverter is a Boolean function from {0, 1}n into {0, 1}n such that yi = ¬xi for 1 ≤ i ≤ n. A (not monotone) circuit C is
said to be FewNOT if C uses at most log(n + 1) Negation gates. sizeFewNOT (f ) is the minimum number of AND/OR/Negation
gates that are needed to realize f by a FewNOT circuit.

Theorem 2. (Implicit in [5]).

size(Majority) ≤ sizeFewNOT (Inverter).

Thus, in order to prove a nonlinear lower bound for the FewNOT size of Inverter, it is enough to find a function f in NLOG
such that f is Maj-Easy and size(f ) = Ω(n log n). Although details are omitted, Theorem 2 still holds if Majority is replaced
by LogThreshold which is a collection of log n threshold functions T nn/2, T

n
n/4(or T

n
3n/4, controlled by extra input), T

n
n/8(or T

n
3n/8,

T n5n/8, T
n
7n/8) and so on (The k-threshold function T

n
k is 1 iffΣxi ≥ k.), and therefore Maj-Easy in the above sentence can also

be replaced by LogThreshold-Easy. This is the case not only for Inverter but also for many others including (Parity,¬Parity).

3. Merge is not F -easy

Recall thatΩ(n log n) lower bounds for size(f ) are already known for some functions f in NLOG, in particular for Sort and
Merge. Hence, by Theorem 1, our goal would be achieved if we could prove, for example, Merge is Maj-Easy. Unfortunately
this is not the case (and neither for Sort since Sort operates exactly as Merge for the presorted inputs). In fact we prove the
following stronger result:

Theorem 3. For any monotone function F : {0, 1}r → {0, 1}r ′ such that r ′ ≤ r/ log r, MERGE(n, 2n) is not F-Easy.

In the proof of this theorem we don’t need the condition that all F-gates compute the same function F . It means that we
also prove the theorem for the more general case that F-gates compute different functions.
To prove Theorem 3, we need several new definitions: We define vertex-disjoint paths for both circuits and graphs. For

an directed acyclic graph G = (V , E), a path is a sequence v1v2 · · · vk of vertices such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1.
Two paths v1v2 · · · vk and u1u2 · · · ul are said to be vertex-disjoint if {v1, v2, . . . , vk} ∩ {u1, u2, . . . , ul} = ∅. For a circuit C , a
path is a sequence of terminals u1v2u2v3 · · · ukvk+1 such that u1, u2, . . . , uk are output terminals, v2, v3, . . . , vk+1 are input
terminals, vi and ui (2 ≤ i ≤ k) belong to the same gate, and there is an link from ui to vi+1 (1 ≤ i ≤ k). Two paths are
terminal-disjoint if their terminals are disjoint. For example, o1i2o2i3 and o4i5o5i6o6i7 are terminal-disjoint in Fig. 1.
For finite setsX and Y (|Y | ≥ |X |), let δ be a one-to-onemapping fromX into Y .We say that a graphG = (V , E) implements

a mapping δ : X → Y if the following is met: (i) X ⊆ V and Y ⊆ V . (ii) X ∩ Y = ∅, and (iii) there are |X | vertex-disjoint
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Fig. 2. Tn .

paths from each x ∈ X to δ(x). For fixed X and Y , letM be a set of one-to-one mappings from X into Y . Then G implements M
if G implements every mapping inM . Let X = {u1, . . . , un} and Y = {w1, . . . , w2n}. Then mapping tj(0 ≤ j ≤ n) is defined
as tj(ui) = wi+j. Let Tn = {t0, t1, . . . , tn} (see Fig. 2). Then the following fact is known (see Corollary 2.2.2 in [16]).

Lemma 1. Suppose that a graph G = (V , E) implements Tn. Then |E| = Ω(n log n).

Now we consider an arbitrary circuit, denoted by Cn,2n, with AND/OR/F gates which computes Merge(n, 2n). Recall that
an F-gate has r input and r ′ output terminals and different F-gates may have different r/r ′ values. Note that Cn,2n has 2n
input gates x1, . . . , x2n and 2n output gates y1, . . . , y2n, and let mapping tj; {x1, . . . , xn} → {y1, . . . , y2n} be defined exactly
as before, i.e., tj(xi) = yi+j.

Lemma 2. For any 0 ≤ j ≤ n, Cn,2n has a set of n terminal-disjoint paths connecting xi to tj(xi) for 1 ≤ i ≤ n.

Proof. The following argument is similar to the one in [16]. Suppose that j = 0. Then we set x1 = · · · = xn = 0 and
xn+1 = · · · = x2n = 1, which forces y1 = · · · = yn = 0 and yn+1 = · · · = y2n = 1. Now we change the value of xn from 0
to 1. Then since Cn,2n is monotone, there must be at least one path P0 from xn to yn such that the value of all the (input and
output) terminals on P0 changes from 0 to 1 according to this input change. Note that these values of the terminals on P0
will never change if we keep xn = xn+1 = · · · = x2n = 1.
We next change the value of xn−1 from 0 to 1, by which the value of yn−1 changes from 0 to 1. Then there must be at

least one new path P1 from xn−1 to yn−1 such that all the terminal values on P1 change from 0 to 1 and that P0 and P1 are
terminal-disjoint. (Otherwise, i.e., if all the new paths intersect with P0, then the value of yn−1 should have been changed to
1 when xn was changed from 0 to 1 in the previous step.) Similarly, by changing the value of xn−2 from 0 to 1, we can create
another new path P2 which does not intersect P0 or P1, and so on. Thus, there are n terminal-disjoint paths P0, . . . , Pn−1
connecting xn to yn (= t0(xn)), . . ., x1 to y1 (= t0(x1)), respectively.
For j = 1, we can repeat the same argument by initially setting x1 = · · · = xn+1 = 0 and xn+2 = · · · = x2n = 1. We can

argue similarly for j = 2, 3, . . . , n. �

Lemma 3. Suppose that every F-gate of r input and r ′ output terminals in Cn,2n satisfies that r ′ ≤ r/ log r and that the size of
Cn,2n is s. Then there exists a graph Gn,2n = (V , E) such that Gn,2n implements Tn and that |E| = c · s for some constant c.

Proof. We consider a graph, denoted by Πr,r ′ (r ′ ≤ r), such that the graph has disjoint subsets of r input vertices X and r ′
output vertices Y and that it implements every one-to-one mapping from any size-r ′ subset of X to Y . If r ′ ≤ r/ log r , we can
constructΠr,r ′ with O(r) edges as follows.
The construction depends on results in communication networks [15]. Consider a graph that has n input vertices X ′ and n

output vertices Y ′. A graph is an n-superconcentrator if for allm (1 ≤ m ≤ n) the graph implements at least one one-to-one
mapping from any size-m subset of X ′ to any size-m subset of Y ′. (Note that nothing is said about which input vertex is
connected to which output vertex.) A graph is an n-connecter if the graph implements every one-to-one mapping from X ′
to Y ′. Πr,r ′ is obtained from an r-superconcentrator and an r ′-connecter by connecting arbitrary r ′ output vertices of the
r-superconcentrator to the input vertices of the r ′-connecter. Beneš [6] has given a construction of an n-connecter with
O(n log n) edges and Valiant [21] has given a construction of an n-superconcentrator with O(n) edges. Since we assume that
r ′ ≤ r/ log r , the constructedΠr,r ′ has O(r + r ′ log r ′) = O(r) edges.
Now we construct the graph Gn,2n from the circuit Cn,2n as follows. Each AND/OR gate of Cn,2n is replaced by a vertex

of in-degree two. Each F-gate is replaced by Πr,r ′ with O(r) edges. Therefore, the number of edges in the whole resulting
graph Gn,2n is at most c · s for some constant c since the size of the original Cn,2n is s. By Lemma 2, the original Cn,2n has n
terminal-disjoint paths from xi to tj(xi), which define a one-to-one mapping for each F-gate, from some subset of its input
terminals to its output terminals. In the replaced Πr,r ′ there are vertex-disjoint paths for such mapping. Thus, the original
terminal-disjoint paths are transformed into n vertex-disjoint paths in Gn,2n, and thus Gn,2n implements Tn. �

Proof of Theorem 3. Suppose for the sake of contradiction thatMERGE(n, 2n) is F-Easy. By definition, there is a circuit Cn,2n
which satisfies the condition of Lemma 3 andwhose size is o(n log n). Then Lemma 3 implies that there is a graph G = (V , E)
such that it implements Tn and that |E| = o(n log n), contradicting to Lemma 1. �
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4. Concluding remarks

Thus, we need to seek another function towards our goal. One such candidate is whatwe call d-Approximated Sort defined
as follows:

Definition 2. Let (y1, . . . , yn) = f (x1, . . . , xn) be a Boolean function and let m be the number of input one’s and m′ be
output one’s. Then f is called d-Approximated Sort if y1 ≤ y2 ≤ · · · ≤ yn and |m−m′| ≤ n/d.

o(log n)-Approximated Sort is Maj-Easy for the following reason: (i) We can compute the n-input threshold function
of any specific threshold value by using 2n-input Majority by setting {0, 1}’s to the extra n inputs appropriately. (ii) Let
d = o(log n). Then d-Approximated Sort can be constructed by using d n-input threshold functions whose d threshold
values distribute evenly between 0 and n. At this moment, we do not have any nontrivial lower bounds for its size.
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