1-1-1978

Generalized Connectors

Nicholas Pippenger

Harvey Mudd College

Recommended Citation

Pippenger, Nicholas. "Generalized Connectors." SIAM Journal on Computing 7, no. 4 (November 1978): 510-514.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

GENERALIZED CONNECTORS*

NICHOLAS PIPPENGER \dagger

Abstract

An n-connector is an acyclic directed graph having n inputs and n outputs and satisfying the following condition: given any one-to-one correspondence between inputs and distinct outputs, there exists a set of vertex-disjoint paths that join each input to the corresponding output. It is known that the minimum possible number of edges in an n-connector lies between lower and upper bounds that are asymptotic to $3 n \log _{3} n$ and $6 n \log _{3} n$ respectively. A generalized n-connector satisfies the following stronger condition: given any one-to-many correspondence between inputs and disjoint sets of outputs, there exists a set of vertex-disjoint trees that join each input to the corresponding set of outputs. It is shown that the minimum number of edges in a generalized n-connector is asymptotic to the minimum number in an n-connector.

Imagine an information transmission network intended to mediate between n sources of information and n users of this information. At any time, any of the users may wish to be connected with any of the sources; a user can be connected with only one source at a time, but many users may wish to be connected with the same source. This paper deals with an idealized version of the problem of designing a network capable of providing any such pattern of simultaneous connections.

An (n, m)-graph is an acyclic directed graph with a set of n distinguished vertices called inputs and a disjoint set of m distinguished vertices called outputs. An n-graph is an (n, n)-graph.

An n-connector is an n-graph satisfying the following condition: given any one-to-one correspondence between inputs and distinct outputs, there exists a set of vertex-disjoint paths that join each input to the corresponding output. (A path joining an input to an output is a directed path whose origin is the input and whose destination is the output.) Let $c(n)$ denote the minimum possible number of edges in an n connector; it is known that

$$
3 n \log _{3} n \leqq c(n) \leqq 6 n \log _{3} n+O(n)
$$

(see Pippenger and Valiant [4, Remark 2.2.6]).
A generalized n-connector is an n-graph satisfying the following stronger condition: given any one-to-many correspondence between inputs and disjoint sets of outputs, there exists a set of vertex-disjoint trees that join each input to the corresponding set of outputs. (A tree joining an input to a set of outputs is a directed tree whose root is the input and whose leaves are the outputs.) Let $d(n)$ denote the minimum possible number of edges in a generalized n-connector; that

$$
d(n) \leqq 10 n \log _{2} n+O(n)
$$

for n a power of 2 is implicit in the work of Ofman [1]. Thompson [5] has recently shown that

$$
d(n) \leqq 12 n \log _{3} n+O(n)
$$

for n a power of 3 .
The object of this note is to show that

$$
d(n)=c(n)+O(n),
$$

[^0]and thus that
$$
d(n) \sim c(n)
$$

It is clear that

$$
d(n) \geqq c(n) ;
$$

thus it will suffice to show that

$$
\begin{equation*}
d(n) \leqq c(n)+O(n) \tag{1}
\end{equation*}
$$

This will be done by means of a new type of graph which will be called a generalizer. An n-generalizer is an n-graph that satisfies the following condition: given any correspondence between inputs and nonnegative integers that sum to at most n, there exists a set of vertex-disjoint trees that join each input to the corresponding number of distinct outputs. Let $g(n)$ denote the minimum possible number of edges in an n-generalizer; it will be shown below that

$$
\begin{equation*}
g(n) \leqq 120 n+O\left((\log n)^{2}\right) \tag{2}
\end{equation*}
$$

so that in particular

$$
g(n)=O(n) .
$$

A generalized n-connector can be obtained from an n-generalizer and an n-connector by identifying the outputs of the generalizer with the inputs of the connector, as shown in Fig. 1. It is obvious that this yields a generalized n-connector: the generalizer provides the appropriate number of copies of each input, and the connector joins these copies to the appropriate outputs. Thus

$$
\begin{aligned}
d(n) & \leqq c(n)+g(n) \\
& \leqq c(n)+O(n)
\end{aligned}
$$

which completes the proof of (1).

GENERALIZED n-CONNECTOR

Fig. 1.

It remains to prove (2). To do this, two more types of graphs, called concentrators and superconcentrators, will be needed.

An n-superconcentrator is an n-graph that satisfies the following condition: given any set of inputs and any equinumerous set of outputs, there exists a set of vertexdisjoint paths that join the given inputs in a one-to-one fashion to the given outputs. Let $s(n)$ denote the minimum possible number of edges in an n-superconcentrator; that

$$
s(n) \leqq 234 n
$$

was shown by Valiant [6], who first defined superconcentrators. Pippenger [3] subsequently showed that

$$
s(n) \leqq 39 n+O(\log n)
$$

An (n, m)-concentrator is an (n, m)-graph that satisfies the following condition: given any set of m or fewer inputs, there exists a set of vertex-disjoint paths that join the given inputs in a one-to-one fashion to distinct outputs. Let $r(n, m)$ denote the minimum possible number of edges in an (n, m)-concentrator; that

$$
r(n, m) \leqq 29 n
$$

was shown by Pinsker [2], who first defined concentrators. It will now be shown that

$$
\begin{equation*}
r(n,\lfloor n / 2\rfloor) \leqq 20 n+O(\log n), \tag{3}
\end{equation*}
$$

where $\lfloor\cdots\rfloor$ denotes "the greatest integer less than or equal to ...".
A $(n,\lfloor n / 2\rfloor)$-concentrator can be obtained by combining $\lfloor n / 2\rfloor$ edges with an $\lceil n / 2\rceil$-superconcentrator (where $\lceil\cdots\rceil$ denotes "the least integer greater than or equal to ..."), as shown in Fig. 2. It is obvious that this yields an ($n,\lfloor n / 2\rfloor$)-

\longrightarrow INDICATES EDGES
\multimap INDICATES IDENTIFICATION OF VERTICES (NOT EDGES)

Fig. 2.
concentrator: those of the given inputs that lie among the upper $\lfloor n / 2\rfloor$ inputs can be joined to distinct outputs through the edges; those that lie among the lower $\lceil n / 2\rceil$ can be joined to other distinct outputs through the superconcentrator. Thus

$$
\begin{aligned}
r(n,\lfloor n / 2\rfloor) & \leqq\lfloor n / 2\rfloor+s(\lceil n / 2\rceil) \\
& \leqq\lfloor n / 2\rfloor+39\lceil n / 2\rceil+O(\log \lceil n / 2\rceil) \\
& \leqq 20 n+O(\log n),
\end{aligned}
$$

which completes the proof of (3).
It still remains to prove (2). This will be done by means of a recursive construction: an n-generalizer can be obtained by combining an ($n,\lfloor n / 2\rfloor$)-concentrator, an $\lfloor n / 2\rfloor$-generalizer, 2ไn/2〕 edges, and an n-superconcentrator, as shown in Fig. 3. This can be seen to yield an n-generalizer as follows. If an input is to be joined to x

Fig. 3.
distinct outputs, one can write $x=2 y+z$, where y is a nonnegative integer and z is either 0 or 1 . Since the x 's sum to at most n, there can be at most $\lfloor n / 2\rfloor$ inputs for which y is greater than 0 . Each of these inputs can therefore be joined to a distinct output of the concentrator, thence to y distinct outputs of the $\lfloor n / 2\rfloor$-generalizer, and finally to $2 y$ distinct outputs of the n-generalizer. All that remains is to join the inputs for which z is 1 to other distinct outputs; this can be done through the superconcentrator. Thus

$$
\begin{aligned}
g(n) & \leqq g(\lfloor n / 2\rfloor)+r(n,\lfloor n / 2\rfloor)+2\lfloor n / 2\rfloor+s(n) \\
& \leqq g(\lfloor n / 2\rfloor)+20 n+O(\log n)+2\lfloor n / 2\rfloor+39 n+O(\log n) \\
& \leqq g(\lfloor n / 2\rfloor)+60 n+O(\log n) \\
& \leqq 120 n+O\left((\log n)^{2}\right)
\end{aligned}
$$

which completes the proof of (2).
The result of this note is satisfying from a theoretical point of view: informationtheoretic considerations suggest that since

$$
\log n^{n}=\log n!+O(n)
$$

one should have

$$
d(n)=c(n)+O(n)
$$

as has indeed been shown to be the case. The proof technique used in this note, however, does not endow the result with any practical significance: $120 n$ exceeds $6 n \log _{3} n$ until n exceeds $3^{20}=3,486,784,401$.

Acknowledgment. The author is indebted to Clark Thompson for suggesting the possibility of proving the existence of linear generalizers.

REFERENCES

[1] Yu. P. Ofman, Universalnyi avtomat, Trudy Moskov. Mat. Obšč., 14 (1965), pp. 186-199 = A universal automaton, Trans. Moscow Math. Soc., 14 (1965), pp. 200-215.
[2] M. S. Pinsker, On the complexity of a concentrator, Proc. 7th Internat. Teletraffic Conf., Stockholm, 1973, pp. 318/1-318/4.
[3] N. J. Pippenger, Superconcentrators, this Journal, 6, (1977), pp. 298-304.
[4] N. J. Pippenger and L. G. Valiant, Shifting graphs and their applications J. Assoc. Comput. Mach., 23 (1976), pp. 423-432.
[5] C. D. Thompson, Generalized connection networks for parallel processor interconnection, CarnegieMellon Univ. Tech. Rep., Pittsburgh, May 1977.
[6] L. G. Valiant, On non-linear lower bounds in computational complexity, Proc. 7th Ann. ACM Symp. on Theory of Computing, Albuquerque, 1975, Assoc. Comput. Mach., New York, pp: 45-53.

[^0]: * Received by the editors May 13, 1977.
 \dagger Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

