91 research outputs found

    GMRES for oscillatory matrix-valued differential equations

    Get PDF
    We investigate the use of Krylov subspace methods to solve linear, oscillatory ODEs. When we apply a Krylov subspace method to a properly formulated equation, we retain the asymptotic accuracy of the asymptotic expansion whilst converging to the exact solution. We will demonstrate the effectiveness of this method by computing Error and Mathieu functions

    On an integrated Krylov-ADI solver for large-scale Lyapunov equations

    Get PDF
    One of the most computationally expensive steps of the low-rank ADI method for large-scale Lyapunov equations is the solution of a shifted linear system at each iteration. We propose the use of the extended Krylov subspace method for this task. In particular, we illustrate how a single approximation space can be constructed to solve all the shifted linear systems needed to achieve a prescribed accuracy in terms of Lyapunov residual norm. Moreover, we show how to fully merge the two iterative procedures in order to obtain a novel, efcient implementation of the low-rank ADI method, for an important class of equations. Many state-of-the-art algorithms for the shift computation can be easily incorporated into our new scheme, as well. Several numerical results illustrate the potential of our novel procedure when compared to an implementation of the low-rank ADI method based on sparse direct solvers for the shifted linear systems

    Krylov subspace approximations for the exponential Euler method: error estimates and the harmonic Ritz approximant

    Get PDF
    We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error

    A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems

    Get PDF
    In this paper, two efficient iterative algorithms based on the simpler GMRES method are proposed for solving shifted linear systems. To make full use of the shifted structure, the proposed algorithms utilizing the deflated restarting strategy and flexible preconditioning can significantly reduce the number of matrix-vector products and the elapsed CPU time. Numerical experiments are reported to illustrate the performance and effectiveness of the proposed algorithms.Comment: 17 pages. 9 Tables, 1 figure; Newly update: add some new numerical results and correct some typos and syntax error

    A black-box rational Arnoldi variant for Cauchy-Stieltjes matrix functions

    Get PDF
    Rational Arnoldi is a powerful method for approximating functions of large sparse matrices times a vector. The selection of asymptotically optimal parameters for this method is crucial for its fast convergence. We present and investigate a novel strategy for the automated parameter selection when the function to be approximated is of Cauchy-Stieltjes (or Markov) type, such as the matrix square root or the logarithm. The performance of this approach is demonstrated by numerical examples involving symmetric and nonsymmetric matrices. These examples suggest that our black-box method performs at least as well, and typically better, as the standard rational Arnoldi method with parameters being manually optimized for a given matrix

    Computational Methods for UV-Suppressed Fermions

    Get PDF
    Lattice fermions with suppressed high momentum modes solve the ultraviolet slowing down problem in lattice QCD. This paper describes a stochastic evaluation of the effective action of such fermions. The method is a based on the Lanczos algorithm and it is shown to have the same complexity as in the case of standard fermions.Comment: 10 pages, 1 figur
    • …
    corecore