412 research outputs found

    Mobile crawler robot vibration analysis in the contexts of motion speed selection

    Get PDF
    The article presents the methodology of body vibration analysis of an inspection robot with the use of flexible connection between the body and the track propulsion modules. The article presents the methodology of selection of motion parameters of an inspection robot, taking into account the vibration of the robot body. The speed of movement of the robot affects the frequency of contact track claws with the ground, which is related to the frequency of vibration excitation. Robot motion parameters are chosen in such a way so as not to over-stimulate the natural frequency of the system. Due to the vibration reduction, it was possible to install a visual system based on an Ethernet video camera without a stabilizer in the body of the robot. Such an approach enables mass production of robots without active suppression systems and video stabilizers which generate high production costs, increase weight of robots and energy consumption

    Planning stable and efficient paths for articulated mobile robots on challenging terrains

    Full text link
    An analytical strategy to generate stable paths for a reconfigurable vehicle while also meeting additional navigational objectives is herein proposed. The work is motivated by robots traversing over challenging terrains during search and rescue operations, such as those equipped with manipulator arms and/or flippers. The proposed solution looks at minimizing the length of the traversed path and the energy expenditure in changing postures, yet also accounts for additional constraints in terms of sensor visibility (i.e arm configurations close to those orthogonal to the horizontal global plane which can afford a wider sensor view) and traction (i.e. flipper angles that provide the largest trackterrain interaction area). The validity of the proposed planning approach is evaluated with a multitracked robot fitted with flippers and a range camera at the end of a manipulator arm while navigating over two challenging 3D terrain data sets: one in a mock-up urban search and rescue arena (USAR), and a second one from a publicly available quasi-outdoor rover testing facility (UTIAS)

    A Tread/Limb/Serpentine Hybrid Robot: Toward Hypermobility in Deconstructed Environments

    Get PDF
    According to the Red Cross, an average of over 600 disasters and 100,000 associated deaths occur annually throughout the world. This frequency of disasters strains an already overburdened disaster response effort. In the first 48 hours of a rescue operation, it is estimated that a responder will get less than three hours of continuous sleep as they need to work at full force to set up the operation and begin work in the field. This leads to sleep deprivation during the most critical time for search and rescue of victims. Therefore, robots are greatly needed as a force multiplier in USAR response to reduce some of the burden and workload placed on the human rescue workers to make for a more efficient and effective response

    Dynamical Modelling and a Decentralized Adaptive Controller for a 12-Tetrahedral Rolling Robot

    Get PDF
    The 12-tetrahedral robot is an addressable reconfigurable technology (ART)-based variable geometry truss mechanism with twenty-six extensible struts and nine nodes arranged in a tetrahedral mesh. The robot has the capability of reconfiguring shape and dimension for environment sensing requirements, which makes it suitable for space exploration and environmental perception. In this paper, we have derived a dynamics model and presented a decentralized adaptive controller for a 12-tetrahedral robot. First, the robot is divided into the node and the strut subsystems, and the kinetic and the potential energy are calculated for the two subsystems. Then, the dynamics model is achieved by applying the Lagrangian formalism on the total energy of the robot. Since the dynamics is too complicated for implementing model-based controllers, a two-layer controller is presented to control the robot, in which the planning layer determines gait and trajectory of the robot, and the executive layer adopts the decentralized adaptive control strategy and consists of twenty-six strut controllers. Each strut controller regulates the movement of the corresponding strut without information exchange with other struts. Co-simulations based on ADAMS and Matlab have been conducted to verify the feasibility and effectiveness of the proposed controller

    Stair Climbing Control for 4-DOF Tracked Vehicle Based on Internal Sensors

    Get PDF
    In search-and-rescue missions, multi-degrees-of-freedom (DOF) tracked robots that are equipped with subtracks are commonly used. These types of robots have superior locomotion performance on rough terrain. However, in teleoperated missions, the performance of tracked robots depends largely on the operators’ ability to control every subtrack appropriately. Therefore, an autonomous traversal function can significantly help in the teleoperation of such robots. In this paper, we propose a planning and control method for 4-DOF tracked robots climbing up/down known stairs automatically based on internal sensors. Experimental results obtained using mockup stairs verify the effectiveness of the proposed method

    Roving vehicle motion control Final report

    Get PDF
    Roving vehicle motion control for unmanned planetary and lunar exploratio

    Supervisory Autonomous Control of Homogeneous Teams of Unmanned Ground Vehicles, with Application to the Multi-Autonomous Ground-Robotic International Challenge

    Get PDF
    There are many different proposed methods for Supervisory Control of semi-autonomous robots. There have also been numerous software simulations to determine how many robots can be successfully supervised by a single operator, a problem known as fan-out, but only a few studies have been conducted using actual robots. As evidenced by the MAGIC 2010 competition, there is increasing interest in amplifying human capacity by allowing one or a few operators to supervise a team of robotic agents. This interest provides motivation to perform a more in-depth evaluation of many autonomous/semiautonomous robots an operator can successfully supervise. The MAGIC competition allowed two human operators to supervise a team of robots in a complex search-and mapping operation. The MAGIC competition provided the best opportunity to date to study through practice the actual fan-out with multiple semi-autonomous robots. The current research provides a step forward in determining fan-out by offering an initial framework for testing multi-robot teams under supervisory control. One conclusion of this research is that the proposed framework is not complex or complete enough to provide conclusive data for determining fan-out. Initial testing using operators with limited training suggests that there is no obvious pattern to the operator interaction time with robots based on the number of robots and the complexity of the tasks. The initial hypothesis that, for a given task and robot there exists an optimal robot-to-operator efficiency ratio, could not be confirmed. Rather, the data suggests that the ability of the operator is a dominant factor in studies involving operators with limited training supervising small teams of robots. It is possible that, with more extensive training, operator times would become more closely related to the number of agents and the complexity of the tasks. The work described in this thesis proves an experimental framework and a preliminary data set for other researchers to critique and build upon. As the demand increases for agent-to-operator ratios greater than one, the need to expand upon research in this area will continue to grow

    Kinisi: A Platform for Autonomizing Off-Road Vehicles

    Get PDF
    This project proposed a modular system that would autonomize off-road vehicles while retaining full manual operability. This MQP team designed and developed a Level 3 autonomous vehicle prototype using an SAE Baja vehicle outfitted with actuators and exteroceptive sensors. At the end of the project, the vehicle had a drive-by-wire system, could localize itself using sensors, generate a map of its surroundings, and plan a path to follow a desired trajectory. Given a map, the vehicle could traverse a series of obstacles in an enclosed environment. The long- term goal is to alter the software system to make it modular and operate in real-time, so the vehicle can autonomously navigate off-road terrain to rescue and aid a distressed individual

    Improving perception and locomotion capabilities of mobile robots in urban search and rescue missions

    Get PDF
    Nasazení mobilních robotů během zásahů záchranných složek je způsob, jak učinit práci záchranářů bezpečnější a efektivnější. Na roboty jsou ale při takovém použití kladeny vyšší nároky kvůli podmínkám, které při těchto událostech panují. Roboty se musejí pohybovat po nestabilních površích, ve stísněných prostorech nebo v kouři a prachu, což ztěžuje použití některých senzorů. Lokalizace, v robotice běžná úloha spočívající v určení polohy robotu vůči danému souřadnému systému, musí spolehlivě fungovat i za těchto ztížených podmínek. V této dizertační práci popisujeme vývoj lokalizačního systému pásového mobilního robotu, který je určen pro nasazení v případě zemětřesení nebo průmyslové havárie. Nejprve je předveden lokalizační systém, který vychází pouze z měření proprioceptivních senzorů a který vyvstal jako nejlepší varianta při porovnání několika možných uspořádání takového systému. Lokalizace je poté zpřesněna přidáním měření exteroceptivních senzorů, které zpomalují kumulaci nejistoty určení polohy robotu. Zvláštní pozornost je věnována možným výpadkům jednotlivých senzorických modalit, prokluzům pásů, které u tohoto typu robotů nevyhnutelně nastávají, výpočetním nárokům lokalizačního systému a rozdílným vzorkovacím frekvencím jednotlivých senzorů. Dále se věnujeme problému kinematických modelů pro přejíždění vertikálních překážek, což je další zdroj nepřesnosti při lokalizaci pásového robotu. Díky účasti na výzkumných projektech, jejichž členy byly hasičské sbory Itálie, Německa a Nizozemska, jsme měli přístup na cvičiště určená pro přípravu na zásahy během zemětřesení, průmyslových a dopravních nehod. Přesnost našeho lokalizačního systému jsme tedy testovali v podmínkách, které věrně napodobují ty skutečné. Soubory senzorických měření a referenčních poloh, které jsme vytvořili pro testování přesnosti lokalizace, jsou veřejně dostupné a považujeme je za jeden z přínosů naší práce. Tato dizertační práce má podobu souboru tří časopiseckých publikací a jednoho článku, který je v době jejího podání v recenzním řízení.eployment of mobile robots in search and rescue missions is a way to make job of human rescuers safer and more efficient. Such missions, however, require robots to be resilient to harsh conditions of natural disasters or human-inflicted accidents. They have to operate on unstable rough terrain, in confined spaces or in sensory-deprived environments filled with smoke or dust. Localization, a common task in mobile robotics which involves determining position and orientation with respect to a given coordinate frame, faces these conditions as well. In this thesis, we describe development of a localization system for tracked mobile robot intended for search and rescue missions. We present a proprioceptive 6-degrees-of-freedom localization system, which arose from the experimental comparison of several possible sensor fusion architectures. The system was modified to incorporate exteroceptive velocity measurements, which significantly improve accuracy by reducing a localization drift. A special attention was given to potential sensor outages and failures, to track slippage that inevitably occurs with this type of robots, to computational demands of the system and to different sampling rates sensory data arrive with. Additionally, we addressed the problem of kinematic models for tracked odometry on rough terrains containing vertical obstacles. Thanks to research projects the robot was designed for, we had access to training facilities used by fire brigades of Italy, Germany and Netherlands. Accuracy and robustness of proposed localization systems was tested in conditions closely resembling those seen in earthquake aftermath and industrial accidents. Datasets used to test our algorithms are publicly available and they are one of the contributions of this thesis. We form this thesis as a compilation of three published papers and one paper in review process
    corecore