28 research outputs found

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Advanced Resource Management Techniques for Next Generation Wireless Networks

    Get PDF
    The increasing penetration of mobile devices in everyday life is posing a broad range of research challenges to meet such a massive data demand. Mobile users seek connectivity "anywhere, at anytime". In addition, killer applications with multimedia contents, like video transmissions, require larger amounts of resources to cope with tight quality constraints. Spectrum scarcity and interference issues represent the key aspects of next generation wireless networks. Consequently, designing proper resource management solutions is critical. To this aim, we first propose a model to better assess the performance of Orthogonal Frequency-Division Multiple Access (OFDMA)-based simulated cellular networks. A link abstraction of the downlink data transmission can provide an accurate performance metric at a low computational cost. Our model combines Mutual Information-based multi-carrier compression metrics with Link-Level performance profiles, thus expressing the dependency of the transmitted data Block Error Rate (BLER) on the SINR values and on the modulation and coding scheme (MCS) being assigned. In addition, we aim at evaluating the impact of Jumboframes transmission in LTE networks, which are packets breaking the 1500-byte legacy value. A comparative evaluation is performed based on diverse network configuration criteria, thus highlighting specific limitations. In particular, we observed rapid buffer saturation under certain circumstances, due to the transmission of oversized packets with scarce radio resources. A novel cross-layer approach is proposed to prevent saturation, and thus tune the transmitted packet size with the instantaneous channel conditions, fed back through standard CQI-based procedures. Recent advances in wireless networking introduce the concept of resource sharing as one promising way to enhance the performance of radio communications. As the wireless spectrum is a scarce resource, and its usage is often found to be inefficient, it may be meaningful to design solutions where multiple operators join their efforts, so that wireless access takes place on shared, rather than proprietary to a single operator, frequency bands. In spite of the conceptual simplicity of this idea, the resulting mathematical analysis may be very complex, since it involves analytical representation of multiple wireless channels. Thus, we propose an evaluative tool for spectrum sharing techniques in OFDMA-based wireless networks, where multiple sharing policies can be easily integrated and, consequently, evaluated. On the other hand, relatively to contention-based broadband wireless access, we target an important issue in mobile ad hoc networks: the intrinsic inefficiency of the standard transmission control protocol (TCP), which presents degraded performance mainly due to mechanisms such as congestion control and avoidance. In fact, TCP was originally designed for wired networks, where packet losses indicate congestion. Conversely, channels in wireless networks might vary rapidly, thus most loss events are due to channel errors or link layer contention. We aim at designing a light-weight cross-layer framework which, differently from many other works in the literature, is based on the cognitive network paradigm. It includes an observation phase, i.e., a training set in which the network parameters are collected; a learning phase, in which the information to be used is extracted from the data; a planning phase, in which we define the strategies to trigger; an acting phase, which corresponds to dynamically applying such strategies during network simulations. The next generation mobile infrastructure frontier relies on the concept of heterogeneous networks. However, the existence of multiple types of access nodes poses new challenges such as more stringent interference constraints due to node densification and self-deployed access. Here, we propose methods that aim at extending femto cells coverage range by enabling idle User Equipments (UE) to serve as relays. This way, UEs otherwise connected to macro cells can be offloaded to femto cells through UE relays. A joint resource allocation and user association scheme based on the solutions of a convex optimization problem is proposed. Another challenging issue to be addressed in such scenarios is admission control, which is in charge of ensuring that, when a new resource reservation is accepted, previously connected users continue having their QoS guarantees honored. Thus, we consider different approaches to compute the aggregate projected capacity in OFDMA-based networks, and propose the E-Diophantine solution, whose mathematical foundation is provided along with the performance improvements to be expected, both in accuracy and computational terms

    Heterogeneous Networks for the IoT and Machine Type Communications

    Get PDF
    The Internet of Things promises to be a key-factor in the forthcoming industrial and social revolution. The Internet of Things concept rely on pervasive communications where ’things’ are ’always connected’. The focus of the thesis is on Heterogeneous Networks for Internet of Things and Machine Type Communications. Heterogeneous Networks are an enabling factor of paramount important in order to achieve the ’always connected’ paradigm. On the other hand, Machine Type Communications are deeply different from Human-to-Human communications both in terms of traffic patterns and requirements. This thesis investigate both concepts. In particular, here are studied short and long range solutions for Machine-to-machine applications. For this work a dual approach has been followed: for the short-range solutions analysis an experimental approach has been privileged; meanwhile for the long-range solutions analysis a theoretical and simulation approach has been preferred. In both case, a particular attention has been given to the feasibility of the solutions proposed, hence solutions based on products that already exist in the market have been privileged

    Terminal LTE flexível

    Get PDF
    Mstrado em Engenharia Eletrónica e TelecomunicaçõesAs redes móveis estão em constante evolução. A geração atual (4G) de redes celulares de banda larga e representada pelo standard Long Term Evolution (LTE), definido pela 3rd Generation Partnership Project (3GPP). Existe uma elevada procura/uso da rede LTE, com um aumento exponencial do número de dispositivos móveis a requerer uma ligação à Internet de alto débito. Isto pode conduzir à sobrelotação do espetro, levando a que o sinal tenha que ser reforçado e a cobertura melhorada em locais específicos, tal como em grandes conferências, festivais e eventos desportivos. Por outro lado, seria uma vantagem importante se os utilizadores pudessem continuar a usar os seus equipamentos e terminais em situações onde o acesso a redes 4G é inexistente, tais como a bordo de um navio, eventos esporádicos em localizações remotas ou em cenários de catástrofe, em que as infraestruturas que permitem as telecomunicações foram danificadas e a cobertura temporária de rede pode ser decisiva em processos de salvamento. Assim sendo, existe uma motivação clara por trás do desenvolvimento de uma infraestrutura celular totalmente reconfigurável e que preencha as características mencionadas anteriormente. Uma possível abordagem consiste numa plataforma de rádio definido por software (SDR), de código aberto, que implementa o standard LTE e corre em processadores de uso geral (GPPs), tornando possível construir uma rede completa investindo somente em hardware - computadores e front-ends de radiofrequência (RF). Após comparação e análise de várias plataformas LTE de código aberto foi selecionado o OpenAirInterface (OAI) da EURECOM, que disponibiliza uma implementação compatível com a Release 8.6 da 3GPP (com parte das funcionalidades da Release 10). O principal objectivo desta dissertação é a implementação de um User Equipment (UE) flexível, usando plataformas SDR de código aberto que corram num computador de placa única (SBC) compacto e de baixa potência, integrado com um front-end de RF - Universal Software Radio Peripheral (USRP). A transmissão de dados em tempo real usando os modos de duplexagem Time Division Duplex (TDD) e Frequency Division Duplex (FDD) é suportada e a reconfiguração de certos parâmetros é permitida, nomeadamente a frequência portadora, a largura de banda e o número de Resource Blocks (RBs) usados. Além disso, é possível partilhar os dados móveis LTE com utilizadores que estejam próximos, semelhante ao que acontece com um hotspot de Wi-Fi. O processo de implementação é descrito, incluindo todos os passos necessários para o seu desenvolvimento, englobando o port do UE de um computador para um SBC. Finalmente, a performance da rede é analisada, discutindo os valores de débitos obtidos.Mobile networks are constantly evolving. 4G is the current generation of broadband cellular network technology and is represented by the Long Term Evolution (LTE) standard, de ned by 3rd Generation Partnership Project (3GPP). There's a high demand for LTE at the moment, with the number of mobile devices requiring an high-speed Internet connection increasing exponentially. This may overcrowd the spectrum on the existing deployments and the signal needs to be reinforced and coverage improved in speci c sites, such as large conferences, festivals and sport events. On the other hand, it would be an important advantage if users could continue to use their equipment and terminals in situations where cellular networks aren't usually available, such as on board of a cruise ship, sporadic events in remote locations, or in catastrophe scenarios in which the telecommunication infrastructure was damaged and the rapid deployment of a temporary network can save lives. In all of these situations, the availability of exible and easily deployable cellular base stations and user terminals operating on standard or custom bands would be very desirable. Thus, there is a clear motivation for the development of a fully recon gurable cellular infrastructure solution that ful lls these requirements. A possible approach is an open-source, low-cost and low maintenance Software-De ned Radio (SDR) software platform that implements the LTE standard and runs on General Purpose Processors (GPPs), making it possible to build an entire network while only spending money on the hardware itself - computers and Radio-Frequency (RF) front-ends. After comparison and analysis of several open-source LTE SDR platforms, the EURECOM's OpenAirInterface (OAI) was chosen, providing a 3GPP standard-compliant implementation of Release 8.6 (with a subset of Release 10 functionalities). The main goal of this dissertation is the implementation of a exible opensource LTE User Equipment (UE) software radio platform on a compact and low-power Single Board Computer (SBC) device, integrated with an RF hardware front-end - Universal Software Radio Peripheral (USRP). It supports real-time Time Division Duplex (TDD) and Frequency Division Duplex (FDD) LTE modes and the recon guration of several parameters, namely the carrier frequency, bandwidth and the number of LTE Resource Blocks (RB) used. It can also share its LTE mobile data with nearby users, similarly to a Wi-Fi hotspot. The implementation is described through its several developing steps, including the porting of the UE from a regular computer to a SBC. The performance of the network is then analysed based on measured results of throughput

    A Survey of Resource Allocation Techniques for Cellular Network’s Operation in the Unlicensed Band

    Get PDF
    With an ever increasing demand for data, better and efficient spectrum operation has become crucial in cellular networks. In this paper, we present a detailed survey of various resource allocation schemes that have been considered for the cellular network’s operation in the unlicensed spectrum. The key channel access mechanisms for cellular network’s operation in the unlicensed bands are discussed. The various channel selection techniques are explored and their operation explained. The prime issue of fairness between cellular and Wi-Fi networks is discussed, along with suitable resource allocation techniques that help in achieving this fairness. We analyze the coverage, capacity, and impact of coordination in LTE-U systems. Furthermore, we study and discuss the impact and discussed the impact of various traffic type, environments, latency, handover, and scenarios on LTE-U’s performance. The new upcoming 5G New Radio and MulteFire is briefly described along with some of the critical aspects of LTE-U which require further research. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    corecore