102,369 research outputs found

    Inverse Design of Perfectly Transmitting Eigenchannels in Scattering Media

    Get PDF
    Light-matter interactions inside turbid medium can be controlled by tailoring the spatial distribution of energy density throughout the system. Wavefront shaping allows selective coupling of incident light to different transmission eigenchannels, producing dramatically different spatial intensity profiles. In contrast to the density of transmission eigenvalues that is dictated by the universal bimodal distribution, the spatial structures of the eigenchannels are not universal and depend on the confinement geometry of the system. Here, we develop and verify a model for the transmission eigenchannel with the corresponding eigenvalue close to unity. By projecting the original problem of two-dimensional diffusion in a homogeneous scattering medium onto a one-dimensional inhomogeneous diffusion, we obtain an analytical expression relating the intensity profile to the shape of the confining waveguide. Inverting this relationship enables the inverse design of the waveguide shape to achieve the desired energy distribution for the perfectly transmitting eigenchannel. Our approach also allows to predict the intensity profile of such channel in a disordered slab with open boundaries, pointing to the possibility of controllable delivery of light to different depths with local illumination.Comment: 9 pages, 6 figure

    Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    Get PDF
    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum-optics in photonic band-gap crystals and for applications wherein directional emission and total emission power are controlled.Comment: 10 pages, 10 figures, corrected pdf, inserted new referenc

    What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models

    Full text link
    One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO were intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called `EIT' waves is still strongly debated. They are considered to be either wave (primarily fast-mode MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies with the limitations of the EIT observations which have been used almost exclusively for their study. Their limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on December 07, 2007 when the STEREO spacecraft separation was ≈45∘\approx 45^\circ. Both a small flare and a CME were associated with the wave cadence, and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres

    The morpho-kinematics of the circumstellar envelope around the AGB star EP Aqr

    Full text link
    ALMA observations of CO(1-0) and CO(2-1) emissions of the circumstellar envelope of EP Aqr, an oxygen-rich AGB star, are reported. A thorough analysis of their properties is presented using an original method based on the separation of the data-cube into a low velocity component associated with an equatorial outflow and a faster component associated with a bipolar outflow. A number of important and new results are obtained concerning the distribution in space of the effective emissivity, the temperature, the density and the flux of matter. A mass loss rate of (1.6±\pm0.4)10−7^{-7} solar masses per year is measured. The main parameters defining the morphology and kinematics of the envelope are evaluated and uncertainties inherent to de-projection are critically discussed. Detailed properties of the equatorial region of the envelope are presented including a measurement of the line width and a precise description of the observed inhomogeneity of both morphology and kinematics. In particular, in addition to the presence of a previously observed spiral enhancement of the morphology at very small Doppler velocities, a similarly significant but uncorrelated circular enhancement of the expansion velocity is revealed, both close to the limit of sensitivity. The results of the analysis place significant constraints on the parameters of models proposing descriptions of the mass loss mechanism, but cannot choose among them with confidence.Comment: 26 pages, 31 figures, accepted for publication in MNRA

    Temporal evolution of the Evershed flow in sunspots. I. Observational characterization of Evershed clouds

    Full text link
    [Abridged] The magnetic and kinematic properties of the photospheric Evershed flow are relatively well known, but we are still far from a complete understanding of its nature. The evolution of the flow with time, which is mainly due to appearance of velocity packets called Evershed clouds (ECs), may provide information to further constrain its origin. Here we undertake a detailed analysis of the evolution of the Evershed flow by studying the properties of ECs. In this first paper we determine the sizes, proper motions, location in the penumbra, and frequency of appearance of ECs, as well as their typical Doppler velocities, linear and circular polarization signals, Stokes V area asymmetries, and continuum intensities. High-cadence, high-resolution, full vector spectropolarimetric measurements in visible and infrared lines are used to derive these parameters. We find that ECs appear in the mid penumbra and propage outward along filaments with large linear polarization signals and enhanced Evershed flows. The frequency of appearance of ECs varies between 15 and 40 minutes in different filaments. ECs exhibit the largest Doppler velocities and linear-to-circular polarization ratios of the whole penumbra. In addition, lines formed deeper in the atmosphere show larger Doppler velocities, much in the same way as the ''quiescent'' Evershed flow. According to our observations, ECs can be classified in two groups: type I ECs, which vanish in the outer penumbra, and type II ECs, which cross the outer penumbral boundary and enter the sunspot moat. Most of the observed ECs belong to type I. On average, type II ECs can be detected as velocity structures outside of the spot for only about 14 min. Their proper motions in the moat are significantly reduced with respect to the ones they had in the penumbra.Comment: Accepted for publication in A&
    • …
    corecore