212 research outputs found

    Barcode Annotations for Medical Image Retrieval: A Preliminary Investigation

    Full text link
    This paper proposes to generate and to use barcodes to annotate medical images and/or their regions of interest such as organs, tumors and tissue types. A multitude of efficient feature-based image retrieval methods already exist that can assign a query image to a certain image class. Visual annotations may help to increase the retrieval accuracy if combined with existing feature-based classification paradigms. Whereas with annotations we usually mean textual descriptions, in this paper barcode annotations are proposed. In particular, Radon barcodes (RBC) are introduced. As well, local binary patterns (LBP) and local Radon binary patterns (LRBP) are implemented as barcodes. The IRMA x-ray dataset with 12,677 training images and 1,733 test images is used to verify how barcodes could facilitate image retrieval.Comment: To be published in proceedings of The IEEE International Conference on Image Processing (ICIP 2015), September 27-30, 2015, Quebec City, Canad

    STUDIJA DOHVATA SLIKA POMOĆU POJAČANE TRANSFORMACIJE RADONA I PCS I LDA TEHNIKA

    Get PDF
    Image Retrieval is very one of the biggest task in the recent years. It is widely used in many real time databases to retrieve related images in various fields like medicine, military, online shopping etc. This paper offers with using radon transform followed by PCA and LDA techniques for image retrieval is called as Combined Radon Space Features Set (CRSFS). Caltech 101 database image sets used in this paper. The correct direction is select means the computation time and complexity of operation is less to achieve good retrieval rate.Obrada slika je jedan od najvećih zadataka u posljednjih nekoliko godina. Naširoko se koristi u mnogim bazama podataka kad se u realnom vremenu koriste povezane slike u različitim područjima kao što su medicina, vojska, online trgovina, itd. Ovaj rad nudi pomoć radon pretvorbe i zatim PCA i LDA tehnika za popravljanje slike (CRSFS). Korištena je Caltech 101 baza slika. Ispravan smjer je odabrati način računanja vremena i složenosti rada da bi se postigla manja cijena preuzimanja

    Shape-based invariant features extraction for object recognition

    No full text
    International audienceThe emergence of new technologies enables generating large quantity of digital information including images; this leads to an increasing number of generated digital images. Therefore it appears a necessity for automatic systems for image retrieval. These systems consist of techniques used for query specification and re-trieval of images from an image collection. The most frequent and the most com-mon means for image retrieval is the indexing using textual keywords. But for some special application domains and face to the huge quantity of images, key-words are no more sufficient or unpractical. Moreover, images are rich in content; so in order to overcome these mentioned difficulties, some approaches are pro-posed based on visual features derived directly from the content of the image: these are the content-based image retrieval (CBIR) approaches. They allow users to search the desired image by specifying image queries: a query can be an exam-ple, a sketch or visual features (e.g., colour, texture and shape). Once the features have been defined and extracted, the retrieval becomes a task of measuring simi-larity between image features. An important property of these features is to be in-variant under various deformations that the observed image could undergo. In this chapter, we will present a number of existing methods for CBIR applica-tions. We will also describe some measures that are usually used for similarity measurement. At the end, and as an application example, we present a specific ap-proach, that we are developing, to illustrate the topic by providing experimental results

    Content-based image retrieval using colour and shape fused features

    Get PDF
    Multi-feature methods are able to contribute to a more effective method compared to single-feature methods since feature fusion methods will be able to close the gap that exists in the single-feature methods. This paper presents a feature fusion method, which focuses on extracting colour and shape features for content-based image retrieval (CBIR). The colour feature is extracted based on the proposed Multi-resolution Joint Auto Correlograms (MJAC), while the shape information is obtained through the proposed Extended Generalised Ridgelet-Fourier (EGRF). These features are fused together through a proposed integrated scheme. The feature fusion method has been tested on the SIMPLIcity image database, where several retrieval measurements are utilised to compare the effectiveness of the proposed method with few other comparable methods. The retrieval results show that the proposed Integrated Colour-shape (ICS) descriptor has successfully obtained the best overall retrieval performance in all the retrieval measurements as compared to the benchmark methods, which include precision (53.50%), precision at 11 standard recall levels (52.48%), and rank (17.40)

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Human Activity Recognition Based on R Transform

    Full text link
    This paper addresses human activity recognition based on a new feature descriptor. For a binary human silhouette, an extended radon transform, transform, is employed to represent low-level features. The advantage of the trans-form lies in its low computational complexity and geomet-ric invariance. Then a set of HMMs based on the extracted features are trained to recognize activities. Compared with other commonly-used feature descriptors, transform is robust to frame loss in video, disjoint silhouettes and holes in the shape, and thus achieves better performance in rec-ognizing similar activities. Rich experiments have proved the efficiency of the proposed method. 1

    Features for Cross Spectral Image Matching: A Survey

    Get PDF
    In recent years, cross spectral matching has been gaining attention in various biometric systems for identification and verification purposes. Cross spectral matching allows images taken under different electromagnetic spectrums to match each other. In cross spectral matching, one of the keys for successful matching is determined by the features used for representing an image. Therefore, the feature extraction step becomes an essential task. Researchers have improved matching accuracy by developing robust features. This paper presents most commonly selected features used in cross spectral matching. This survey covers basic concepts of cross spectral matching, visual and thermal features extraction, and state of the art descriptors. In the end, this paper provides a description of better feature selection methods in cross spectral matching

    A Survey of 2D and 3D Shape Descriptors

    Get PDF
    corecore