488 research outputs found

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    Totally positive refinable functions with general dilation M

    Get PDF
    We construct a new class of approximating functions that are M-refinable and provide shape preserving approximations. The refinable functions in the class are smooth, compactly supported, centrally symmetric and totally positive. Moreover, their refinable masks are associated with convergent subdivision schemes. The presence of one or more shape parameters gives a great flexibility in the applications. Some examples for dilation M=4and M=5are also given

    A UNIQUE COMBINATION OF MASK IN BINARY FOUR-POINT SUBDIVISION SCHEME

    Get PDF
    A unique binary four-point approximating subdivision scheme has been developed in which one part of binary formula have stationary mask and other part have the non-stationary mask. The resulting curves have the smoothness of C3 continuous for the wider range of shape control parameter. The role of the parameter has been depicted using the square form of discrete control points

    Spline Subdivision Schemes for Compact Sets. A Survey

    Get PDF
    Dedicated to the memory of our colleague Vasil Popov January 14, 1942 – May 31, 1990 * Partially supported by ISF-Center of Excellence, and by The Hermann Minkowski Center for Geometry at Tel Aviv University, IsraelAttempts at extending spline subdivision schemes to operate on compact sets are reviewed. The aim is to develop a procedure for approximating a set-valued function with compact images from a finite set of its samples. This is motivated by the problem of reconstructing a 3D object from a finite set of its parallel cross sections. The first attempt is limited to the case of convex sets, where the Minkowski sum of sets is successfully applied to replace addition of scalars. Since for nonconvex sets the Minkowski sum is too big and there is no approximation result as in the case of convex sets, a binary operation, called metric average, is used instead. With the metric average, spline subdivision schemes constitute approximating operators for set-valued functions which are Lipschitz continuous in the Hausdorff metric. Yet this result is not completely satisfactory, since 3D objects are not continuous in the Hausdorff metric near points of change of topology, and a special treatment near such points has yet to be designed

    Convexity-preserving Bernstein–Be´ zier quartic scheme

    Get PDF
    A C1 convex surface data interpolation scheme is presented to preserve the shape of scattered data arranged over a triangular grid. Bernstein–Be´ zier quartic function is used for interpolation. Lower bound of the boundary and inner Be´zier ordinates is determined to guarantee convexity of surface. The developed scheme is flexible and involves more relaxed constraints

    Non-linear subdivision of univariate signals and discrete surfaces

    Get PDF
    During the last 20 years, the joint expansion of computing power, computer graphics, networking capabilities and multiresolution analysis have stimulated several research domains, and developed the need for new types of data such as 3D models, i.e. discrete surfaces. In the intersection between multiresolution analysis and computer graphics, subdivision methods, i.e. iterative refinement procedures of curves or surfaces, have a non-negligible place, since they are a basic component needed to adapt existing multiresolution techniques dedicated to signals and images to more complicated data such as discrete surfaces represented by polygonal meshes. Such representations are of great interest since they make polygonal meshes nearly as exible as higher level 3D model representations, such as piecewise polynomial based surfaces (e.g. NURBS, B-splines...). The generalization of subdivision methods from univariate data to polygonal meshes is relatively simple in case of a regular mesh but becomes less straightforward when handling irregularities. Moreover, in the linear univariate case, obtaining a smoother limit curve is achieved by increasing the size of the support of the subdivision scheme, which is not a trivial operation in the case of a surface subdivision scheme without a priori assumptions on the mesh. While many linear subdivision methods are available, the studies concerning more general non-linear methods are relatively sparse, whereas such techniques could be used to achieve better results without increasing the size support. The goal of this study is to propose and to analyze a binary non-linear interpolatory subdivision method. The proposed technique uses local polar coordinates to compute the positions of the newly inserted points. It is shown that the method converges toward continuous limit functions. The proposed univariate scheme is extended to triangular meshes, possibly with boundaries. In order to evaluate characteristics of the proposed scheme which are not proved analytically, numerical estimates to study convergence, regularity of the limit function and approximation order are studied and validated using known linear schemes of identical support. The convergence criterion is adapted to surface subdivision via a Hausdorff distance-based metric. The evolution of Gaussian and mean curvature of limit surfaces is also studied and compared against theoretical values when available. An application of surface subdivision to build a multiresolution representation of 3D models is also studied. In particular, the efficiency of such a representation for compression and in terms of rate-distortion of such a representation is shown. An alternate to the initial SPIHT-based encoding, based on the JPEG 2000 image compression standard method. This method makes possible partial decoding of the compressed model in both SNR-progressive and level-progressive ways, while adding only a minimal overhead when compared to SPIHT

    Subdivision schemes for curve design and image analysis

    Get PDF
    Subdivision schemes are able to produce functions, which are smooth up to pixel accuracy, in a few steps through an iterative process. They take as input a coarse control polygon and iteratively generate new points using some algebraic or geometric rules. Therefore, they are a powerful tool for creating and displaying functions, in particular in computer graphics, computer-aided design, and signal analysis. A lot of research on univariate subdivision schemes is concerned with the convergence and the smoothness of the limit curve, especially for schemes where the new points are a linear combination of points from the previous iteration. Much less is known for non-linear schemes: in many cases there are only ad hoc proofs or numerical evidence about the regularity of these schemes. For schemes that use a geometric construction, it could be interesting to study the continuity of geometric entities. Dyn and Hormann propose sufficient conditions such that the subdivision process converges and the limit curve is tangent continuous. These conditions can be satisfied by any interpolatory scheme and they depend only on edge lengths and angles. The goal of my work is to generalize these conditions and to find a sufficient constraint, which guarantees that a generic interpolatory subdivision scheme gives limit curves with continuous curvature. To require the continuity of the curvature it seems natural to come up with a condition that depends on the difference of curvatures of neighbouring circles. The proof of the proposed condition is not completed, but we give a numerical evidence of it. A key feature of subdivision schemes is that they can be used in different fields of approximation theory. Due to their well-known relation with multiresolution analysis they can be exploited also in image analysis. In fact, subdivision schemes allow for an efficient computation of the wavelet transform using the filterbank. One current issue in signal processing is the analysis of anisotropic signals. Shearlet transforms allow to do it using the concept of multiple subdivision schemes. One drawback, however, is the big number of filters needed for analysing the signal given. The number of filters is related to the determinant of the expanding matrix considered. Therefore, a part of my work is devoted to find expanding matrices that give a smaller number of filters compared to the shearlet case. We present a family of anisotropic matrices for any dimension d with smaller determinant than shearlets. At the same time, these matrices allow for the definition of a valid directional transform and associated multiple subdivision schemes

    Integration between Creativity and Engineering in Industrial Design

    Get PDF
    The objective of the paper is to illustrate which are the key issues today in the industrial design workflow, paying particular attention to the most creative part of the workflow, highlighting those nodes which still make hard the styling activities and giving a brief survey of the researches aimed at smoothing the transfer of the design intent along the whole design cycle and at providing tools even more adhering at the mentality of creative people. Based on the experience gained working in two different European projects, through the collaboration with industrial designers in the automotive and the household supplies fields, a general industrial design workflow will be depicted, highlighting the main differences between the automotive and non-automotive sectors; the problems still present in the design activity will be also illustrated. The paper includes short surveys, in relation to the aesthetic design, in matter of research activities aimed at - identifying the links between shape characteristics of a product and the transmitted emotions - better supporting, in a digital way, the 2D sketching phase and the automatic interpretation and transfer of the 2D sketches into a 3D surface model - improving the 3D Modeling phase
    corecore