133 research outputs found

    Structure and motion estimation from apparent contours under circular motion

    Get PDF
    In this paper, we address the problem of recovering structure and motion from the apparent contours of a smooth surface. Fixed image features under circular motion and their relationships with the intrinsic parameters of the camera are exploited to provide a simple parameterization of the fundamental matrix relating any pair of views in the sequence. Such a parameterization allows a trivial initialization of the motion parameters, which all bear physical meaning. It also greatly reduces the dimension of the search space for the optimization problem, which can now be solved using only two epipolar tangents. In contrast to previous methods, the motion estimation algorithm introduced here can cope with incomplete circular motion and more widely spaced images. Existing techniques for model reconstruction from apparent contours are then reviewed and compared. Experiment on real data has been carried out and the 3D model reconstructed from the estimated motion is presented. © 2002 Elsevier Science B.V. All rights reserved.postprin

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    No full text
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    Get PDF
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Reconstruction of sculpture from its profiles with unknown camera positions

    Get PDF
    Profiles of a sculpture provide rich information about its geometry, and can be used for shape recovery under known camera motion. By exploiting correspondences induced by epipolar tangents on the profiles, a successful solution to motion estimation from profiles has been developed in the special case of circular motion. The main drawbacks of using circular motion alone, namely the difficulty in adding new views and part of the object always being invisible, can be overcome by incorporating arbitrary general views of the object and registering its new profiles with the set of profiles resulted from the circular motion. In this paper, we describe a complete and practical system for producing a three-dimensional (3-D) model from uncalibrated images of an arbitrary object using its profiles alone. Experimental results on various objects are presented, demonstrating the quality of the reconstructions using the estimated motion.published_or_final_versio

    3D Object Reconstruction using Multi-View Calibrated Images

    Get PDF
    In this study, two models are proposed, one is a visual hull model and another one is a 3D object reconstruction model. The proposed visual hull model, which is based on bounding edge representation, obtains high time performance which makes it to be one of the best methods. The main contribution of the proposed visual hull model is to provide bounding surfaces over the bounding edges, which results a complete triangular surface mesh. Moreover, the proposed visual hull model can be computed over the camera networks distributedly. The second model is a depth map based 3D object reconstruction model which results a watertight triangular surface mesh. The proposed model produces the result with acceptable accuracy as well as high completeness, only using stereo matching and triangulation. The contribution of this model is to playing with the 3D points to find the best reliable ones and fitting a surface over them

    Satellite Articulation Sensing using Computer Vision

    Get PDF
    Autonomous on-orbit satellite servicing benefits from an inspector satellite that can gain as much information as possible about the primary satellite. This includes performance of articulated objects such as solar arrays, antennas, and sensors. A method for building an articulated model from monocular imagery using tracked feature points and the known relative inspection route is developed. Two methods are also developed for tracking the articulation of a satellite in real-time given an articulated model using both tracked feature points and image silhouettes. Performance is evaluated for multiple inspection routes and the effect of inspection route noise is assessed. Additionally, a satellite model is built and used to collect stop-motion images simulating articulated motion over an inspection route under simulated space illumination. The images are used in the silhouette articulation tracking method and successful tracking is demonstrated qualitatively. Finally, a human pose tracking algorithm is modified for tracking the satellite articulation demonstrating the applicability of human tracking methods to satellite articulation tracking methods when an articulated model is available

    Sketch2Pose : estimating a 3D character pose from a bitmap sketch

    Full text link
    Artists frequently capture character poses via raster sketches, then use these drawings as a reference while posing a 3D character in a specialized 3D software --- a time-consuming process, requiring specialized 3D training and mental effort. We tackle this challenge by proposing the first system for automatically inferring a 3D character pose from a single bitmap sketch, producing poses consistent with viewer expectations. Algorithmically interpreting bitmap sketches is challenging, as they contain significantly distorted proportions and foreshortening. We address this by predicting three key elements of a drawing, necessary to disambiguate the drawn poses: 2D bone tangents, self-contacts, and bone foreshortening. These elements are then leveraged in an optimization inferring the 3D character pose consistent with the artist's intent. Our optimization balances cues derived from artistic literature and perception research to compensate for distorted character proportions. We demonstrate a gallery of results on sketches of numerous styles. We validate our method via numerical evaluations, user studies, and comparisons to manually posed characters and previous work
    corecore