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Abstract 

In this study, two models are proposed, one is a visual hull model and another one 

is a 3D object reconstruction model. The proposed visual hull model, which is based on 

bounding edge representation, obtains high time performance which makes it to be one of 

the best methods. The main contribution of the proposed visual hull model is to provide 

bounding surfaces over the bounding edges, which results a complete triangular surface 

mesh. Moreover, the proposed visual hull model can be computed over the camera 

networks distributedly. The second model is a depth map based 3D object reconstruction 

model which results a watertight triangular surface mesh. The proposed model produces 

the result with acceptable accuracy as well as high completeness, only using stereo 

matching and triangulation. The contribution of this model is to playing with the 3D 

points to find the best reliable ones and fitting a surface over them. 
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1. Introduction 

There are many applications such as obstacle avoidance in robotics, 3D modeling 

in inverse engineering, assisted living, security and surveillance which need to localize, 

recognize, reconstruct and track the 3D objects. There are many approaches for these 

applications, such as marker-based tracking which attaches some markers to the 

interesting objects. Some of the existing approaches are not applicable in many 

environments; for example, it is not possible to use the marker-based approaches for 

surveillance applications in public places. The best, applicable approach is vision 

network, because it is relatively cheaper, and it can be configured easily [1]. 

The area of these applications is quite wide, including Electrical Engineering, 

Computer Science, Mechanical Engineering, Medicine, and Security. The goal of all of 

these applications is to reconstruct the 3D object, but each of them needs the geometric 

information of the 3D object in different level of details. In obstacle avoidance 

applications in robotics, for example, moving robot gets the information from the 

environment using its sensors, and based on the received information it chooses a path to 

reach the destination without hitting the existing obstacles. Since the robot only needs the 

location and the course information of the shape of the 3D objects just to move along the 

objects, there is no need to recover the exact shape of the 3D object. Controversially, in 

3D modeling for inverse engineering, the shape of the object and all geometrical 

information of it should be reconstructed as accurate as possible. Considering the 

processing time, the reconstruction should be real time for moving robots, while there is 

no limitation for 3D modeling applications. 

In vision networks, there are different algorithms which will result in different 3D 

reconstructed shape of the object, from a coarse model to the most precise one. The 

applications in this field recover the 3D shape of the objects based on the captured 

images from different views of the object. Most of them use the silhouette images to do 

so. All the applications in this field have the three steps including getting geometrical 



information from each image, computing a model of the objects in the scene, representing 

the objects and making decision about the situation of the objects in the scene. 

The inputs used for vision network applications are multi-view calibrated images. 

Camera calibration is a part of vision network applications which is out of the scope of 

this study. Figure 1-1 shows sample images from DinoSparseRing dataset [2]. 

c 

Figure 1-1. Sample views of DinoSparseRing dataset [2]. 

The coarsest model in camera networks is 3D convex hull. The 3D convex hull of 

a set of 3D points is the smallest subset of the space such that for any two points u and v, 

the segment joining them is completely in the subset. Consider DinoSparseRing dataset, 

for example, the resulted 3D convex hull has been shown in Figure 1-2. 

Figure 1-2.3D convex hull for DinoSparseRing dataset. 
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A better 3D model for the reconstructed object is visual hull model which is 

described in the next section as a fundamental concept in 3D reconstruction field. As an 

overall view, visual hull is the best approximation of the object based on the binary 

images of the object without any color information. Figure 1-3 shows the resulted visual 

model for the DinoSparseRing dataset. As it can be seen clearly, the visual hull model is 

more precise than the convex hull. In other words, visual hull is much more similar to the 

3D object than the convex hull model. 

Figure 1-3. Visual hull model of DinoSparseRing dataset. 

The 3D reconstructed object is the name of the best model for representing an 

interesting 3D object, which shows all the concavities of the 3D objects. This model 

represents all geometric information of the object as accurate as possible. To produce 3D 

reconstructed object, all the information captured by the cameras will be used including 

color information. A sample view of the best reconstructed surface points of 

DinoSparseRing dataset has been shown in Figure 1-4. 

The 3D reconstructed object model is the most similar model to the 3D object. As 

providing more detailed information needs more processing, the execution time of the 3D 

reconstructed object is much higher than the visual hull and convex hull models. 
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Figure 1-4. Surface points for DinoSparseRing dataset 

In this thesis, I propose two new algorithms, one is a visual hull model and the 

other one is a 3D reconstructed object model. The proposed visual hull model produces a 

complete triangular mesh based on the bounding edge model, which is the fastest visual 

hull model in the existing approaches. The time performance of the proposed model is 

better than the most existing approaches which provide the same type of results. For the 

second model, I used depth maps to reconstruct the 3D surface points of the object. To 

have the reliable depth map, I did a survey in stereo vision to select the best way to do so. 

Before describing the proposed models, fundamental concepts are reviewed in 

section 2. Implementation platform including programming methodology and datasets are 

mentioned in section 3. Section 4 describes the proposed visual hull model and the 

obtained results and evaluation. The 3D reconstructed object model is described in 

section 5, followed by the conclusions in section 6. The last part, Appendix A, describes 

the implemented codes in Java programming language. 

I used Matlab and Java programming languages to implement the codes of the 

proposed algorithms. Because Matlab is much faster than Java for matrix manipulation, I 

used Matlab for image processing tasks, such as window matching. For the 3D 

computation, Java is used which is faster than Matlab in this case. The Matlab version 

used is 7.0.0.19920(R14), and the Java version is 1.6.0_12. 
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2. Fundamental Concepts 

W. N. Martin and J. K. Aggarwal [3] first described the volumetric description 

from multiple views. Later, other researches defined the fundamental concepts of the 3D 

model approximation, such as silhouette and visual hull. These concepts are used in all of 

the corresponding algorithms. 

To provide the multi-view calibrated images, as the input for 3D object 

reconstruction, there are two approaches. The first one is to use a turntable to rotate the 

object and a camera to capture images. The second approach is to configure a camera 

network on the environment under study. If a processing unit is available for the camera 

nodes in the network, the computation of the algorithms can be distributed over the 

network. Otherwise, there is a server which processes the captured images from different 

cameras. 

2.1. Distributed Vision Network 

The most significant concept to be defined is the Distributed Vision Network. In 

this study, the definition of the Distributed Vision Networks is the same as the definition 

of A. Mavrinac [4]. Distributed Vision Networks are networks of dispersed camera 

nodes. Each node has (i) a camera module for image acquisition, (ii) a processor to 

process the raw image locally, and (iii) a communication module to send and receive 

information. This type of network can either use a central device to perform collective 

processing of the data or perform the processing collaboratively by the nodes. The 

cameras are calibrated over the network. Camera calibration, also called camera 

resectioning, is the process of finding the true parameters of the cameras that produced a 

given photograph or video. Camera parameters include the focal length, point of view, 

global position, global direction, and global rotation. Camera calibration may be done 

automatically over the network, or as a preprocess step in network configuration. 



The field of distributed vision networks is a new and growing field, which is still 

in the beginning stages of research. This field is a combination of several fields including 

computer vision, image processing, distributed computing, embedded systems, data 

networks and communications. This combination adds new opportunities from the union 

of the fields and new limitations imposed by their intersections [4]. 

It this study, I consider distributed computing as well as centralized one. The 

performance of the proposed visual hull model is evaluated on the both types of 

networks. For the 3D reconstructed object model, all the computations are done 

sequentially on a centralized server. In this case, a set of camera stations send their 

captured images to the server and server reconstructs the 3D shape of the objects based 

on the received images and camera parameters. 

2.2. Distributed Computing 

Using the distributed computing network environment is beneficial for the Vision 

Networks in some ways. Distributed computing makes the networks to be scalable. It 

avoids transmitting the raw images, which have so huge amount of data. In addition, it 

can preserve the privacy of the network users in some applications such as assisted living. 

Also, it enhances the flexibility on the type of feature and level of exchanging data. So 

we will have the fusion across the three dimensions; 3D space (different camera views), 

time (collecting the data over time) and feature levels (selecting and fusing different 

feature subsets) [5]. As mentioned before, I consider distributed computing only for the 

evaluation of the proposed visual hull model. In this case, the first step of the algorithm is 

computed over the camera nodes in parallel, while the next step which is the merging step 

is done on a centralized server. 

2.3. Silhouettes 

All of the existing algorithms use the silhouette concept to get the information 

from the images. Silhouette is a binary image in which the pixels are labeled either 
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foreground or background. The scene background pixels are most often colored as white, 

while the foreground pixels are colored as black. These foreground pixels are related to 

the interesting objects in the scene. Baumgart [6] first considered silhouettes to 

approximate a polyhedron representation of the objects. He called his work as inverse 

computer vision, because computer vision generates synthetic images from the real 

world, while 3D object reconstruction uses the captured images to reconstruct the real 

object with all the geometric information. A sample silhouette image with its 

corresponding image has been shown in Figure 2-1. 

Baumgart [6] used three captured images from a plastic horse on a turntable to 

draw the silhouette images. Then by using the silhouette cone intersection, he produced a 

polyhedron model of the object. He mentioned that silhouette cone intersection looks like 

carving a statue by cutting away everything not related to the object. Figure 2-2 shows 

the 3D reconstructed object using Baumgart techniques. His result polyhedron looks like 

a statue of a horse which is not completed yet. It seems to be cut by knife. 

(a) (b) 
Figure 2-1. Sample view (a) of Dinosaur dataset and its silhouette image (b) [7]. 

Figure 2-2. The polyhedron representation of a plastic horse produced by Baumgart [6]. 
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There are two common ways to produce the silhouette from the captured images 

which include chromakeying and background subtraction. However, in some recent 

work, the silhouettes are computed manually using Adobe Photoshop, just to 

segmentation of the foreground and background pixels. 

The first approach, chromakeying, also called bluescreen matting. In this 

approach the background is a single uniform color which does not appear in the 

foreground objects. So by checking the color and compare it with the background color, it 

is possible to compute the silhouette of the object. This method can not be used in many 

applications, because of its limitation on the background color, but it is applicable in 

cinematic special effect and television weather forecasts [8]. A sample application of 

bluescreen matting has been shown in Figure 2-3. The selected color for the background 

is green, while there is no green pixel for the foreground object. So only by a comparison 

of the color of the pixels, it is possible to detect the background pixels and change their 

value to provide a special effect. 

Figure 2-3. Sample application of chromakeying. 

Another common way is background subtraction. In this method, first the 

statistical model of the background is produced by capture many images from the 

background. So it is possible to detect the foreground objects by comparing the new 

image with the statistical model of the background. If the difference for any pixel of the 
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new image is greater than the corresponding threshold, that pixel will be considered as a 

foreground pixel [9]. 

For some datasets, the dataset providers provide the contour information of the 

silhouettes as well as the image data. The contour information is a set of pixels which are 

not connected. The connected version of these pixels represents the silhouette contour. I 

implement a function to produce the best connected version of these pixels. Then based 

on the resulted silhouette contours, the silhouette image is produced. Other datasets 

suggest the best way to produce the silhouette information. These methods will be 

described later. 

Silhouette images are very efficient for vision networks in case of 

communication, because their size is much smaller than the size of the raw images. For 

example, a 2000x1500 color image is approximately 400KB, while a silhouette image 

with the same resolution (without any compression) is less than 8KB. 

2.4. Visual Hull 

The constructed objects of the silhouettes is called visual hull. Visual hull concept 

was first defined by A. Laurentini [10]. Visual hull is the intersection of the silhouette 

cones, which are the cones started from the camera positions and goes through the 

silhouette contours. Figure 2-4 shows the silhouette cones from different viewpoints with 

different colors. The intersection of all the silhouette cones is called visual hull model of 

the object. 

A 

Figure 2-4. Intersection of silhouette cones. 

9 | P a g e 



Based on the silhouettes information, visual hull is the best approximation of the 

interesting object. Because visual hull is constructed from the silhouette images, it is also 

called Shape from Silhouette (SFS). Visual hull is the maximal one of the objects which 

has the same set of silhouettes as the given one. In other word, it is possible for many 

objects to have the same set of silhouettes; visual hull represents the maximal object. So, 

it is not possible to identify the objects only based on the silhouette, especially for the 

non-convex objects. Figure 2-5 shows two different objects which have the same set of 

silhouettes. So based on the silhouette information, there is no way to recognize any of 

them. 

The visual hull applications and the resulted models are very sensitive to 

silhouette noise and camera calibration errors. 

G. Cheung et al. [11] defined a consistency concept for the set of silhouette 

images. The set of silhouette images is consistent, if there is at least one non-empty 

volume that exactly explains all the silhouette images. Because there are many objects 

that have the same set of silhouettes, G. Cheung defined the visual hull as the largest 

possible volume which exactly explains the silhouette images. 

A. Laurentini [12] divided the surfaces of a volume into two categories, 

silhouette-active surface and silhouette-inactive surface. The former is what can be 

reconstructed by the silhouette cone intersection, while the latter one is what can have 

any shape without affecting the silhouettes of the object. The following figure shows an 

example of this division. Figure 2-6(a) and (b) shows the two categories of surfaces. The 

shape of the object in the pentahedron P can not be identified only based on the silhouette 
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images. So the resulted visual hull in the best situation is what has been shown in Figure 

2-6(c), while the real object is one has been shown in Figure 2-6(d). 

• -p. 
• I silhouette-active surface 
• silhouette-inactive surface 

(») 0) («) (<) 

Figure 2-6. The division of Laurentini of the object surfaces [12]. 

The accuracy of the visual hull mainly depends on the number of silhouette 

images and their corresponding camera positions. The visual hull will be tighter if the 

number of silhouette images is increased. The greater the number of the views, the more 

precise the approximated visual hull. Figure 2-7 shows different reconstructed visual 

hulls based on different number of views. It also shows the execution time of 

reconstruction for each set. The execution time is increased by increasing number of 

views more rapidly. 

i ti: 
4 views 119 ma 

1
 \ 
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Figure 2-7. Reconstructed visual hull based on different number of views [13]. 

Based on the survey I did in this field, there are four main categories of visual hull 

models. In existing approaches for modeling the visual hull, two categories are popular, 

voxel based approaches and surface based (polyhedron) ones. Other categories are image-

based visual hull and bounding edge visual hull. Main existing models are described in 

the following subsections. 
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2.4.1. Voxel Based Visual Hulls 

The first category is modeling the objects by a collection of elementary 3D cells. 

These cells are called voxels (volumetric pixels), which are first introduced by W. N. 

Martin and J. K. Aggarwal [3]. Voxels are classified into two categories, the inside and 

the outside one. If voxels are positioned completely outside the visual hull, in other word, 

if they have not any intersection at least with one silhouette, they will be classified as 

outside voxels. Otherwise, if they intersected partially or completely with all the 

silhouette images, they will be classified as inside voxels. Because voxel based model 

uses the discrete volumetric representation, it generates some quantization and aliasing 

artifacts on the resulting model. 

The voxel based approaches improved by introducing octrees. Octrees have been 

first introduced by C. L. Jackins and S. L. Tanimoto as an efficient geometric 

representation [14]. Then octrees have been used for modeling the objects from three 

orthographic projections by C. H. Chien and J. K. Aggarwal [15]. 

Octrees are tree-structured representations which are used to model the volumetric 

data. The octree is constructed by recursively dividing each cube to eight sub-cubes to 

cover the interesting volume as accurate as possible. There are three possible locations 

for the cubes including inside the volume, outside the volume and on the boundary. If a 

cube is completely inside the volume, it will be labeled as inside and its color will be 

black. If it is completely outside the volume, it will be labeled as outside and it will be 

colored as white. Otherwise, it will be labeled as boundary and be colored as gray. Based 

on the application, the gray cubes will be recursively divided to reach the desired 

accuracy for modeling the object. Figure 2-8 shows the structure of a sample octree 

model [16]. 

Figure 2-8 represents an octree model by 6 cubes of two consecutive levels. Each 

cube has a color, and the gray cubes of the first level has been divided their sub-cubes. 
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Figure 2-8. A simple octree structure to model the 3D object [16]. 

R. Szeliski used the octree representation to model the objects. To have an 

efficient algorithm, he first produced a coarse model of the objects and then by dividing 

the gray cubes, he refined the model. By using this approach, the number of the trimmed 

cubes was decreased. To check the location of the cube, it is necessary to project the cube 

to each image plane to check whether it is inside the silhouette or not. The simplest way 

is to project the corners of the cube to the image plane and then check the situation of the 

projected hexagon against the silhouette. This method is accurate, but it is very time 

consuming. R. Szeliski proposed to convert the cube to a bounding square instead of 

project its corners. The resulted reconstructed visual hulls of his model have been shown 

in Figure 2-9 [16]. 

Figure 2-9. The synthetic objects and their octree models produced by R. Szeliski [16]. 

The octree model performs voxel model. With the same storage space, the 

precision of the octree model is better than the voxel one. In terms of processing time, the 
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time needed to construct a voxel model is greater than what the octree model needs, 

because it evaluates more geometric cells. For representing the reconstructed 3D shape of 

the object, octree model is also faster, since the number of its geometric cells is less than 

voxel model. 

K. Kutulakos and S. Seitz [17] proposed a voxel based algorithm to model the 

visual hull. They called it space carving. Space carving algorithm starts on the initial 

volume and recursively checks the surface voxels to decide whether to carve them or not. 

It continues checking until no voxels is carved in an iteration. 

If the silhouette images are noise free, the smaller voxel size results the better 

approximation of the visual hull. Otherwise, if the silhouette images are noisy, smaller 

voxel size causes more errors in classification. So, the best size of the voxels is highly 

dependent to the error of silhouette images [18]. 

2.4.2. Polyhedral Visual Hulls 

The second category of the popular visual hull modeling is surface based one. In 

this category, a polyhedron model of the object is produced by intersecting the silhouette 

cones. The surfaces of the polyhedron are the visual cone patches, the edges of it are the 

intersection curve between two silhouette cone, and the vertices are the points where 

more than two silhouette cones intersect. To generalize the polyhedron, it is assumed that 

the contour of the object has been oriented counterclockwise, so the object is always at 

the left of the contour. 

S. Lazebnik et al. [19] proposed two representations for the visual hull of a 3D 

object, the rim mesh and the visual hull one. Rim is the surface points of the object where 

a ray through the viewing point intersects the object. The projection of the rim to the 

corresponding image plane is the silhouette contour. The intersection of two rims could 

be isolated points which are called frontier points. The rim concept has been shown in the 

following image. They defined the rim mesh by its vertices (the frontier points), edges 

(the segment between successive frontier points), and the faces (the surfaces bounded by 
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the edges). Figure 2-10 shows two rims from two different points of view which intersect 

at a frontier point. 

Besides, S. Lazebnik et al. [19] described the difference between the rim mesh 

and the visual hull one. Because the rim mesh depends only on the ordering of the 

frontier points, it is topologically more stable. While the visual hull meshes recover the 

geometry information in a more reliable manner. 
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Figure 2-10. Two rims intersecting at a frontier point [19]. 

C. Buehler et al. [20] proposed the real time representation of the polyhedral 

visual hulls. Their representation is view independent, so it does not need to be 

reproduced for a set of silhouette images. It is suited to be computed by the graphics 

hardware. They assumed each silhouette is a 2D polygon. For each edge of the polygon, 

they compute the face of the silhouette cone. By using the intersection of the face and 

other silhouette images, the face of the polyhedron is determined which itself is a 

polygon. To intersect the face of the silhouette cone by the other silhouette images, the 

edges of the face of the silhouette cone have been projected to the silhouette images. To 

accelerate this process, preprocess has been done for each silhouette images. In the 

preprocessing step, each silhouette has been divided to the bins. Based on these bins, a 

table of the edges-bins is computed. Figure 2-11 shows the divided silhouette image and 

the corresponding edge-bins table. The algorithm uses this table to respond as quickly as 

possible to the intersection problem. This edge-bin structure can be used for the visibility 

issue as well. 

15 | P a g e 



Figure 2-11 shows an example of an edge-bin structure. The silhouette image is 

divided into seven bins. The cells of the edge-bin table contain the intersecting edges 

which are sorted ascendingly, based on the distance to the epipole increasingly. 

bill i / /Mtt5X^ hmi 
/ t x X 
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Figure 2-11. The silhouette image and the corresponding edge-bin structure [20]. 

J. S. Franco and E. Boyer [13] proposed a fast algorithm to represent the best 

polyhedral visual hull. They first computed a coarse approximation of the visual hull by 

retrieving the viewing edges. Then, they generated the surfaces of the mesh. Finally, they 

identified the faces of the polyhedron. They applied their algorithm on a torus for 

different number of views. The greater the number of the views, the more precise the 

approximated visual hull. Their results have been shown in Figure 2-12. The time needed 

to compute each result has been shown as well, which is increased faster than the number 

of views. 

4 views /19 m* 8 views 175 mi 12 views 1125 us 16 views /217 ms 41 views / 1.44s 

Figure 2-12. The results of the proposed algorithm in [13] on a torus in different number of views 
with the processing time. 
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2.4.3. Image-Based Visual Hulls 

On of the compact representations of the visual hull is image-based visual hull. C. 

Buehler et al. [21] defined the image-based representation as a two dimensional, sampled 

representation. For example, a color image is a 2D color samples, or a disparity map in 

stereo vision is a 2D disparity samples. 

The image-based visual hull is a two dimensional, occupancy intervals samples. 

The visual hull is represented by the rays from view points through the image plane. 

Instead of storing either foreground or background, the samples are the intervals of the 

rays which are inside the visual hull. In other word, the intervals of the ray which 

intersect all the other silhouette images are stored in the samples. So for each pixel, the 

list of its corresponding intervals is stored. If a pixel is a background pixel, its list will be 

empty. Figure 2-13 shows a slice of the image-based visual hull [21]. 

Figure 2-13. A sample slice of the image based visual hull [21]. 

The image-based representation has many advantages in comparison to other 

models. Its storage requirements and computational complexity are very low, which is 

much less than the aforementioned algorithms. It has a simple and fast computation. The 

rendering is too simple as well. Because it has two discrete dimensions and one 

continuous dimension, it has a higher resolution than the resolution of the voxel based 

representation. 

W. Matusik et al. [22] proposed an image-based approach to represent the visual 

hull. Based on the Calculatus Eliminatus principle, they said that the visual hull 

approximation is carving away the regions of space where the object is not. Calculatus 

Eliminatus principle states that we should look everywhere that an object is not located, 
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and it must be in the place we haven't looked. Their algorithm contains three steps. It first 

projects the rays from a desire viewing point to the silhouette images. Then, in the second 

step, by intersecting the projected rays and the silhouettes, it computes the interesting 

intervals. Finally, the intervals are returned to the 3D space. The intersected parts of these 

intervals from all the silhouettes will be saved for each pixel. A plot of the projected rays 

is shown as follows. Figure 2-14 shows the rays from the point of view of an image 

through the interesting pixels and their corresponding projected lines on the plane of 

another image. All the projected lines intersect at the epipole, the projected point of the 

corresponding point of view. 

2.4.4. Bounding Edge Visual Hull 

The next visual hull representation is bounding edges. This representation has 

been first introduced by G. Cheung [18, 23, 11, 1]. He defined the bounding edge 

representation as the parts of the rays from the viewing point through the contour of the 

corresponding silhouette image which intersect all the other silhouette images. 

Target Image 

Figure 2-14. The rays and their corresponding projected rays [22]. 

Figure 2-15. A bounding edge through the first camera [23] 
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Figure 2-15 shows a bounding edge of first camera for a sample pixel which is 

located on the 3D ray from the camera position through the pixel, and is intersected with 

other three silhouettes. The starting point SV and finishing point F F will be saved for the 

pixel as the endpoints of a bounding edge. To have a better performance, instead of 

saving the 3D position of each endpoint, its distance to the camera position will be saved 

[23]. 

Bounding edges are very similar to the image-based representation. Like image-

based model, it calculates the intervals of the rays from the view point through the 

silhouette pixels. However, in contrast to image-based representation, it considers only 

the silhouette contour pixels instead of all the silhouette pixels. Image based 

representation is view dependent, since it produces the interval samples for only one 

view, but bounding edge model produces the edges for all viewpoints. An example of 

bounding edge representation has been shown in Figure 2-16 [11]. 

Figure 2-16. A sample view of a 3D object and corresponding bounding edge model from two views 
[Hi-

Bounding edges lie exactly on the surface of the visual hull. They intersect the 

real object at least at one point. The drawback of this representation is that it is 

incomplete. A visual hull is complete, if it has all the geometrical information of its 

shape. If visual hull has any holes on its surface, it will be considered as incomplete 

model. Since the small amount of accurate data is better than the large amount of the 

approximated data, in many applications, an exact visual hull is preferred than the 

complete one. 

19 | P a g e 



It is not necessary for the bounding edges to be continuous. They can consist of 

many parts. It exactly depends on the shape of the silhouette images. If all the silhouette 

images are convex, the bounding edges will be continuous. The important usage of the 

bounding edge representation is refinement of the visual hull across time. G. Cheung et 

al. [11] proposed an algorithm to increase the number of silhouettes by capturing more 

images of the interesting objects over the time. 

2.5. Visual Hull across Time 

As mentioned before, the visual hull accuracy depends mainly on the number of 

silhouette images. To increase the precision of the visual hull, the number of silhouette 

images should be increased. There are two ways to increase the silhouettes number. The 

first one is to increase the number of cameras to produce more silhouette images which 

has the financial cost and the limitation for the camera positions. The second approach is 

using the same cameras across time. G. Cheung et al. [11] proposed an algorithm to 

increase the number of silhouette by capturing more images of the interesting objects 

over the time. If there are K cameras in the environment, and J frames of each camera are 

used, the effective number of silhouette images will be JK instead of K. To apply this 

approach, first it is necessary to calculate the motion of the interesting object between the 

time instances. Then silhouette images in different time instances can be combined based 

on the computed motion over the time. The task of estimating the motion of the object is 

called visual hull alignment, and the task of combining the silhouette images is called 

visual hull refinement. 

G. Cheung et al. [23, and 11] considered two fundamental properties of the visual 

hull. The first one, called 1st FPVH (First Fundamental Property of Visual Hull), is that 

the 3D object which produces the silhouette images lies completely inside the visual hull. 

This property can be used for many applications such as obstacle avoidance in robotic 

navigation. The second one, called 2nd FPVH, is that each bounding edge touches the real 

object at least at one point. This property is very important, such that it makes the 
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construction of the colored surface points (CSP) possible. To construct the colored 

surface points, they combined the 2nd FPVH with the stereo vision concept. 

Colored surface points have been first introduced by G. Cheung [18]. CSPs are 

the 3D points on the bounding edge which touch the object. The information needed to 

find the position of the CSPs through the bounding edge comes from the color 

consistency check algorithm. It finds the best point on the bounding edge, the color of 

which is consistent in all other color images for which the point is visible. The visibility 

is another important issue to refine the visual hull across time. Because at least one point 

exists on the bounding edge to touch the object, there is no need to define any threshold. 

An error measurement algorithm is applied to find the best point. This error is the 

variance of the color of the point from different visible point of view. In noise free 

environment, the color variance of a 3D point in all the points of view should be zero. 

But in real environment, it is necessary to find the best point with least color variance. 

Figure 2-17 represents the visual hull by its colored surface points. These CSPs are on the 

surface of the visual hull. In contrast to all other representation, CSPs are colored 3D 

points. 

Figure 2-17. A sample view of a 3D object and the corresponding colored surface points from two 
different views [11]. 

To estimate the motion of the object, G. Cheung et al. [11] used the 3D CSPs. The 

algorithm starts with an initial motion, followed by the refinement step. To decrease the 

complexity of the algorithm, CSPs are moved forward from the first time instance to the 

next one based on the initial motion, and then projected to the images in the second time 

instance which is followed by the 3D consistency check. This approach is done in inverse 

direction; the 3D CSPs from the second time instance are moved backward to project to 
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the silhouettes of first time instance. Figure 2-18 shows the forward and backward 

movement of the 3D CSPs through the time instances. 

To refining the motion, G. Cheung et al. [11] used two error measurements 

including photometric error and geometric one in both directions, forward and backward. 

The forward photometric error is the color difference between the CSPs in the first time 

instance and the projected moved points in the second time instance. If the moved points 

project in the background section of the corresponding silhouette, the photometric error 

will be considered as zero. Because the images may be noisy and there are some errors in 

camera calibration in practical cases, they considered valid. For these cases, geometric 

error is defined, which is the distance of the projected moved CSPs to the silhouettes. 

This error is zero, when the points project inside the silhouette [11]. 
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Figure 2-18. Forward and backward moving of the colored surface points have been shown as well as 
the corresponding errors [11]. 

After finding the best approximation of the motion, it's time to combine the 

silhouette images, called visual hull refinement. To do so, first a reference time instance 

should be set. The first time instance is the best candidate for the reference. The 

silhouette images from other time instances are effective silhouette images in reference 

time instance, whose points of view are moved, based on the corresponding refined 

motion. Figure 2-19 shows the visual hull refinement algorithm. 
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Figure 2-19. Combining silhouette images from different time instances, by moving the center of the 
cameras backward [11]. 

G. Cheung et al. [11] applied the proposed algorithm on the rigid objects as well 

as the articulated objects. The articulated objects are the objects that have many parts 

which can move in different directions. The best example of an articulated object is 

human body. The joint estimation is separated from the motion estimation to decrease the 

complexity of the algorithm. The shape and the motion of all the object parts are 

computed individually, and then the position of the joints are localized. 

2.6. Comparison 

The four different representations of visual hull have been described. The entities 

of the representations are different. The voxel-based one represents the visual hull by the 

cube cells, while the polyhedral representation models it by the faces, edges and vertices 

of the polyhedron. The image-based visual hull consists of a two dimensional interval 

samples, and the bounding edge model represents the visual hull by the bounding edges 

from different viewpoint. 

The comparison of the visual hull models has been shown in Table 2-1. Two 

factors of the comparison should be defined here which are completeness and exactness. 

As it mentioned before, a visual hull is complete, if it has all the geometrical information 

of its shape. If visual hull has any holes on its surfaces, it will be considered as 

incomplete model [18]. Exactness is a term which refers to the quantization and 

discretization issues. If a visual hull model uses any type of quantization, it will be 

considered as an inexact model. Otherwise, it is an exact representation. 

23 | P a g e 



Considering exactness, it should be mentioned that only the voxel-based 

representation is not exact because it uses discretization for classification of the voxels. 

Because surface-based and voxel-based models produce all the geometric information of 

the resulted 3D shape, they are complete, while the others are not. 

However, it is not possible to select the one representation as the best model 

because each model has its own strengths and weaknesses. Deciding about the best model 

only depends on the intended application. 

Table 2-1. The comparison of different visual hull models. 

Model Voxel-Based Surface-Based 
(Polyhedral) 

Image-Based Bounding Edge 

Geometric 
Entity 

Cube Cells 
Polyhedron 

Faces, Edges and 
Vertices 

Two 
Dimensional 

interval samples 

Bounding 
Edges 

Number of 
Dimension 3D 2D ID ID 

Exactness Inexact Exact Exact Exact 

Completeness Complete Complete Incomplete Incomplete 

Computational 
Complexity 

Low High Low Moderate 

Storage 
Requirement Moderate-High High Low Low-Moderate 
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2.7. Stereo Vision 

To reconstruct a 3D shape of the object, the second suggested model is proposed 

based on Depth Maps. Depth map is a map which contains the depth information for each 

pixel. Depth value is the amount of shifting between the positions of the corresponding 

pixels between two images from different views. The shifting amount is called disparity, 

and the depth map is also called disparity map. Depth maps can be shown as grayscale 

images, in which the nearer objects to the camera look lighter. The top performers of the 

existing methods in 3D object reconstruction are depth map based methods, which 

usually have two steps, producing depth maps and merging them. 

The main step of depth map based methods is to produce the reliable depth maps, 

which influences the quality of the final reconstructed object. To produce the depth maps, 

two images of the scene from different viewpoints are used. Because of using a pair of 

images, it is called stereo vision or stereopsis. Stereo vision gets two rectified images 

from different viewpoints, and calculates the disparity for each pixel. Disparity value is 

the shifted amount between the two views for each pixel. In other words, disparity value 

is the difference between the position of each pixel in one view and its best match in 

another view. Because to provide the depth maps, the disparity value is calculated for all 

pixels of the image, it is called dense stereo matching. 

In stereo matching, the view for which the depth information is calculated is 

called reference view, and another view is called the target view. To find the best match 

for each pixel of the reference view, first a neighborhood window is considered, which is 

usually a square window. Then a measurement is applied to find the best match pixel 

from the target view. There are two types of measurement including the error 

measurement and correlation measurement. 

1. Error Measurement: It measures the errors between the reference pixel and 

the target one over the neighboring window. Finally, the target pixel 

which has the minimum amount of error is selected as the best match. Sum 
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of Absolute Differences (SAD) and Sum of Square Differences (SSD) are 

the error measurement functions which have been shown as follows. 
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where the neighboring window i s m x m square window, and R(x,y) and 

C(x,y) mean the pixel value of the reference image and target image for 

row x and column y, correspondingly. 

2. Correlation Measurement: It measures the correlation between two 

windows, and selects the pixel with the highest correlation value as the 

best match. Normalized Cross Correlation (NCC) is a correlation equation 

which has been shown as follows. 
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where R and C are the average of the pixel values over the neighboring 

window of the pixels of the reference image and target image, 

correspondingly. 

Sample image pairs of Middlebury stereo vision datasets [24] have been shown in 

Figure 2-20. As it can be seen clearly, the objects which are nearer to the cameras have 

larger amount of shifting between two views. 
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Figure 2-20. Sample image pairs for stereo vision [24]. 

The ideal depth map for the sample image pairs which have been shown in Figure 

2-20 has been shown in Figure 2-21. Because the disparity values for the nearer objects 

are higher, they look lighter in depth map. 

Figure 2-21. The ideal depth map for sample pairs [24]. 

The depth map based models have been reviewed in depth because the proposed model is 

a depth map based model. The proposed model uses the surface reconstruction methods 

to provide a triangular mesh surface to evaluate the results by Middlebury benchmark. 
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3. Implementation Platform 

In this thesis, two models to reconstruct the 3D object have been proposed. The 

proposed algorithms are implemented using Java programming language and Matlab. 

Matlab is used because it is very fast for matrix manipulation which is very important in 

computer vision; images are considered as matrices. However, Matlab is very slow for 

other computations such as ray projection. In these computations, the algorithms are 

implemented in Java. 

To test and evaluate the proposed models, the algorithms are applied on existing 

datasets, which are popular in this field. The selected datasets will be described in the 

following subsections. For one of the datasets, Adobe Photoshop is used to produce the 

high quality silhouette images as a semi-automatic process, like what S. Lazebnik et al. 

[25] did. 

3.1. Implementation Methodology 

As it mentioned before, matrix manipulations is implemented in Matlab, which 

include the silhouette production, image rectification, and stereo matching process. The 

codes for mentioned computation are implemented as the Matlab functions. For each 

dataset, a final script is implemented which performs all the steps for all the images 

sequentially. However the number of implemented functions in Matlab is great, all the 

implemented functions in Matlab have small number of Lines of Code (LOC). 

Source line of code (LOC) is a software metric which is used to measure the size 

of an implemented application, by counting the number of lines in the source code of the 

implementation. There are two types of this measure, physical and logical. Physical line 

of code which is referred by LOC counts the number of line in the text file of the source 

code. It counts the comment lines and also blank lines as lines of code, which is not 

accurate enough to estimate application size. In contrast, logical line of code, referred as 



LLOC, counts the number of statements in the code. Logical measure is more appropriate 

for size estimation of the application. 

However, all the other computations of the proposed methods are implemented in 

Java using Object Oriented Programming (OOP). I defined 31 different classes which are 

described in Appendix A. Just to show the estimation of the implemented codes, it should 

be mentioned that the number of logical lines of code (LLOC) for all the java codes is 

4252 lines, and the number of physical lines of code (LOC) is 6380. For detailed 

information of the implemented classes, please refer to Appendix A. 

Another important issue here is that there is no graphical user interface 

implemented in Java, and codes are just implemented to calculate the final results and 

save it as a file with PLY format. Finally, MeshLab software [26] is used to show the 

final result. MeshLab is an advanced mesh processing application for automatic and user 

assisted editing, painting, converting, cleaning, remeshing, coloring, filtering, measuring, 

scanning, and rendering of large unstructured 3D triangular meshes. 

Implementation of MeshLab is started as a university project with small group of 

core developers at Visual Computing Lab of the Italian National Research Council 

Institute. Now, there are many plug-in developers for MeshLab around the world. Figure 

3-1 shows a sample view of MeshLab application showing the final result of the proposed 

visual hull model on Dinosaur dataset. 

Figure 3-1. A sample view of MeshLab application. 

29 | P a g e 



PLY file format is developed at Stanford University [27]. PLY file format has two 

different types, binary and ASCII. An ASCII PLY file is a text file which first determines 

the number of vertices and surfaces of a mesh, following by the information of all 

vertices and surfaces. Vertices are defined by their x, y, and z parameters and their color 

if applicable. Surfaces are determined by the lists of their vertices which are defined by 

their indices in vertices section. 

3.2. Datasets 

To show the performance of the proposed models, complex 3D datasets have been 

selected. These datasets are the 3D Photography datasets [7] and Middlebury datasets [2]. 

3D Photography datasets are produced using three fixed cameras (Canon EOS ID Mark 

II) and a motorized turn table in Beckman Institute and Department of Computer Science 

at University of Illinois at Urbana-Champaign. Each dataset of 3D Photography 

collection has 24 images from 24 points of view, which are calibrated using Intel's 

OpenCV package [28]. The calibration information is provided in the format of the 

Camera Calibration Toolbox for Matlab [29]. Moreover, the contour information of the 

interesting object has been provided as unconnected 2D pixels. 

Middlebury datasets are provided by support of Middlebury College, Microsoft 

Research, and the National Science Foundation. They used the Stanford Spherical Gantry 

to capture images, which enables moving a camera on a sphere to specified latitude and 

longitude angles. The cameras are calibrated by capturing the images of a planar grid 

from different points of view. 

From 3D Photography datasets, Dinosaur dataset and Predator dataset are 

selected, each of which has 24 images from different viewpoint. The intrinsic parameters 

and the image size are the same for the first 8 views. They are the same for next 8 ones as 

well as the last 8 ones. These intrinsic parameters include the focal length, principal 

point, skew coefficient and distortion coefficients. It is easy to provide the matrix of the 

intrinsic parameters to map the camera coordinate system to the pixel coordinates of the 

image. The extrinsic parameter for each camera is provided as a 3x4 matrix. This matrix 
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can be used to map a world point in homogeneous coordinate to the corresponding 

camera coordinate. The images for Dinosaur dataset have been shown in Figure 3-2. 
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Figure 3-2. Images of Dinosaur dataset. 

The Predator dataset specification is similar to Dinosaur dataset. The images for 

Predator dataset have been shown in Figure 3-3. 
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Figure 3-3. Images of Predator dataset. 

From Middlebury datasets, the DinoSparseRing dataset is selected which has 16 

images from different viewpoint. The intrinsic parameters and image size is the same for 

all 16 views. Figure 3-4 shows the images for DinoSparseRing dataset. 
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Figure 3-4. DinoSparseRing dataset images. 

The contour information is provided for each image of 3D Photography dataset in 

a text file in the following structure. The file starts with "Contour" name, followed by the 

number of contours. It contains the number of pixels and the pixel information for each 

contour. In all of the datasets, it is considered that there is only one contour. As it can be 

seen in some images of Dinosaur dataset, the images have some holes, so the silhouette 
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information of this object should not be a connected part. However, they consider the 

contour of the object as a part without any hole. 

A sample file is as follows. 

1. CONTOUR 
2. 

3. 1 
4. 
5. 951 
6 . 

7. 1276.27 871.568 
8. 1280.03 871.535 
9. 1283.78 871.377 

As it is clear, the pixels coordinate information is not discrete, it is in float format. 

Prior to computing a connected version of the image contour, the numbers should be 

discretized. 

3.3. Silhouette Images Computation 

This section is divided into two parts. The first one is for the 3D Photography 

datasets, and the second one is for the DinoSparseRing dataset. 

For 3D Photography datasets, the contour information is provided. I use this 

information to compute the silhouettes. I first convert the pixel information of the contour 

to the discrete values. Using these discrete values, I produce a binary image which is 

black in the mentioned pixels, while other pixels are white. I connect each pixel to the 

consecutive pixel by finding the best discrete connection throw four neighboring pixels. 

This algorithm works based on the slope of the connecting line between the current pixel 

and the consecutive one. In each iteration, it selects the best of its four neighbors. The 

best neighbor is one for which the slope of the connecting line throw the current pixel is 

close to the slope of the line connecting the current pixel and the consecutive one. 

After producing the closed silhouette contour, the silhouette image can be 

produced. In other words, the pixels which are located in the contour should be 
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considered as foreground pixels. To do so, I implement another algorithm which 

classifies pixels based on the class of its neighbors. If one of the eight neighboring pixels 

of a pixel is classified as foreground, the pixel will be classified as foreground too. This is 

the same for the background pixels. If all the neighboring pixels are not classified yet or 

they are the contour pixels, the pixel will be classified based on the class of the pixels in 

the other side of the contour pixels, inversely. 

These two mentioned algorithm is implemented in Matlab as a parser function 

which gets the text file as an input and produces the silhouette images. Resulted 

silhouette images for Dinosaur dataset have been shown in Figure 3-5, and Figure 3-6 

shows the produced silhouette images for Predator dataset. 

T, H 

Figure 3-5. Resulted silhouette images for Dinosaur dataset. 

As it can be seen clearly, silhouette images do not have any holes, because there 

is no information provided for the exiting holes. To apply the proposed models, the same 

silhouette images as ones shown in Figure 3-5 and Figure 3-6 are used. 
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For Middlebury dataset, there is no contour information, but dataset providers 

suggest doing three steps to get a good set of silhouettes. However, the results of their 

suggestion are not good enough to get appropriate results from the proposed models. I 

refine these results using Adobe Photoshop as a semi-automatic process to get high 

quality silhouette images. Using the new silhouette images, many of the wrong holes 

produced by the previous silhouette images are removed from the 3D reconstructed 

object. Like how S. Lazebnik [25] used Adobe Photoshop, I use it as a segmentation of 

the foreground and background pixels. 

7 V 0 0 $ ' • % 

s 4 ̂  ^ 
Figure 3-6. Resulted silhouette images for Predator dataset. 

Figure 3-7 shows the results of the suggested method as well as the refined 

results. The silhouettes resulted of the suggested method has many errors, especially for 

dark shadows on the object. However, the object is partially outside the field of view in 

some images, which makes some inconsistency to the final results. 
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The suggestion of the providers of Middlebury dataset [2] includes following 

steps: 

1. Threshold the gray images at 0.19 (where intensity values range 

from 0 to 1). 

2. Dilate the result by 10 pixels. 

3. Erode the result of dilation by 7 pixels. 

Figure 3-7. Resulted silhouette images for DinoSparseRing dataset; sample images (1st row), results 
of providers suggestion (2nd row), manually refined results (3rd row). 
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4. Proposed Visual Hull Model 

In this section, a complete visual hull model is introduced. The proposed model is 

based on bounding edge representation which is one of the fastest visual hull models. 

However, the bounding edge model has fundamental drawbacks, which make it 

inapplicable in some environments. The proposed model produces a refined result which 

represents a complete triangular mesh surface of the visual hull. Further, comparison of 

the results by the state-of-the-art methods shows that the proposed model is faster than 

most of modern approaches, while the results are qualitatively as precise as theirs. Of 

interest is that proposed model can be computed in parallel distributively over the camera 

networks, while there is no bandwidth penalty for the network. Consequently, the 

execution time is decreased by the number of the camera nodes dramatically. 

The goal of all the algorithms in this field is to construct a visual hull H from the 

input set of silhouette images from different points of view {Sk\k — 1,..., K), where K is 

the number of cameras in the network. 

Camera calibration is an important issue in vision network which is out of the 

scope of this study. There are many works done to calibrate the cameras. It is considered 

that the cameras are calibrated, and there is a function /7fc(P): R 3 —» Z2, which maps a 

3D space point P to a 2D pixel coordinatep in the kfh image plane. 

The proposed visual hull model is described in the following subsection in details. 

The resulted visual hull model has been shown in next subsection, followed by the 

evaluations and comparison of the results by modern approaches. 

4.1. The Algorithm 

As it can be seen clearly in the comparison of existing models in previous 

sections, every visual hull model has some weaknesses. The volumetric models are not 

applicable in some application because of the quantization errors. The surface-based 



models suffer from the complexity of the computation it needs as well as the run time. 

The bounding edge and image-based models are incomplete. Moreover, the image-based 

model is view dependent. Fortunately, it is possible to overcome disadvantages by 

applying other algorithms to improve the final results. We found that it is possible to 

produce a complete visual hull model based on the bounding edge visual hull. This 

section describes the ideas and algorithms which are used in the new model. 

The base contribution for the proposed model is to provide a complete visual hull 

representation based on the incomplete representation fundamentals. The bounding edge 

representation is an incomplete representation, but it is not view dependent because it is 

applied on all points of view. Based on the bounding edge model, we can provide an 

incomplete, but accurate visual hull representation of the 3D object. As mentioned 

before, the bounding edge model is efficient in execution time as well as storage space 

requirement. Our contribution is to provide a surface mesh over the incomplete visual 

hull model, which results in a complete and accurate 3D triangular mesh representation of 

the object in an acceptable time instance. 

Our proposed visual hull algorithm consists of the following four steps: 

1. Applying a modified bounding edge model on the set of the 

silhouettes. 

2. Provide bounding surfaces based on bounding edges for each 

viewpoint. 

3. Merge the bounding surfaces to produce the final visual hull mesh. 

4. Applying a re-meshing algorithm to improve the quality of the 

final mesh. 

All the mentioned steps are described in the following subsections. 

The idea for this work is motivated by Projective Visual Hulls which is published 

by Lazebnik et al. [25]. They considered the cone strips of the surface of the cones as the 

boundaries of the visual hull. They provide a mesh based on the edges and points they 

recover from the visual cones. The edges are intersection curves between two visual 
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cones, and the points are frontier points and intersection ones. As the first step of their 

work, they provide the surface of the cone strips from each point of view. Then the cone 

strips provide the final visual hull as a triangular mesh. Their work is based on oriented 

projective differential geometry, which transfers the data from the 3D space to 2D one. 

The idea taken from the projective visual hull model is to provide a final visual 

hull mesh based on the bounding surfaces. The bounding surfaces are the surfaces 

produces based on the information from bounding edge model. In overall view, our 

model is similar to Projective Visual Hull. The outputs of the steps are similar to each 

other, but not the same. The outputs of the first steps for both models are the geometrical 

information recovered from silhouette images. In our model, the information are 

bounding edges, while in Projective model, it is the intersection curves and points. More 

important, the details of each step are completely different. For example, the merging 

step merges the surfaces provided from each point of view for both models, but in 

different way, because their input information are not the same. However, the last step 

which is refining the final model is the same for both models. 

4.1.1. Modified Bounding Edge Model 

The first step of the algorithm is to apply the bounding edge model to the 

silhouette set. The bounding edge model which is used in the proposed algorithm is 

different from the main bounding edge model in only one part. The difference between 

these two types is the information they record for each contour pixel. The method used to 

calculate the occupancy intervals are the same as what Matusik et al. [22] used for their 

image-based model. 

The main bounding edge model works as follows. Each contour pixel pf of the 

silhouette Sk is back projected to a 3D ray Rf which starts from camera center C* and 

goes through the 3D position of the mentioned pixel coordinate p f . The 3D ray R? is the 

position of all the 3D points P which are mapped to the corresponding contour pixel pf 

of the silhouette Sk by function /7fc(P). 
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Rf = {.p\nk(p) = P f } (4) 

The algorithm starts with a contour pixel and continues to its neighbor 

recursively, until algorithm reaches the start point. The index i for the contour pixels is 

based on the mentioned order, which can be clockwise or counterclockwise. In our 

experiment, we consider the counterclockwise order, in which the map of the object is 

always at the left hand side of the direction of traversing the contour points. In the next 

step, the 3D rays are projected to the all other silhouette planes, and intersected with the 

silhouettes. Finally, the intersection parts of the rays with all other silhouettes are 

returned to the 3D space. These returned intersection parts are the occupancy intervals. 

It is not necessary for the occupancy intervals to be complete. The occupancy 

intervals can consist of more than one segment, if there is at least one non-convex 

silhouette image. The intervals are saved for each contour pixel, as a set of segments. 

Each segment is considered as a pair of its endpoints, start and finish points. For each 

endpoint, only the distance to the corresponding camera center is saved which is a ID 

value (real number). Bounding edge Ef is shown by 

E i = { { S P t m . F P t m ) \ m = { 1 M } } (5) 

where M is the number of segments of the bounding edge. SP^m and FP*m are the 

distance from the start point and finish point of the mth segments to the camera center Ck, 

correspondingly. 

The difference between our proposed model and the main bounding edge model is 

the information recorded for each occupancy interval. The main model records only ID 

value (real number) for each endpoint of each occupancy interval. In our model more 

information is recorded for each endpoint of occupancy intervals. It includes the ID 

value, the silhouette which intersects the occupancy interval at the corresponding 

endpoint and the pixel of the silhouette which cuts the occupancy interval at the position 

of endpoint. Consider an occupancy interval(5P^m,FP^m). When a 3D ray Rf is 

projected to a silhouette plane Sk„ the endpoints of the intersection parts of the projected 
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ray with the silhouette Skl are its contour pixels. The SP£m and FP^m are back-projection 

of the contour pixels to the 3D ray Rf. In our model, we record references to the 

silhouette Sk, and to its corresponding contour pixels. 

This modification does not affect the run time of the main model, because it is 

similar to the main bounding edge model and only keeps more information. So it needs 

more storage space than the main model. For each endpoint in the main model, there is 

only a ID value, but in the modified model, each endpoint needs to have sufficient space 

for the ID value, the silhouette reference, and the pixel position. Like the main bounding 

edge model, the modified bounding edge information should be produced based on each 

point of view. 

Figure 4-1. (a) The bounding edge model for the 1st view of Dinosaur dataset and (b) corresponding 
contour map. 

Figure 4-1 shows the resulted bounding edge model and the corresponding 

contour map for the first view of the Dinosaur dataset. The contour map is a diagram for 

which the x-axis is the contour pixels in their order and the y-axis is the occupancy 

intervals in term of their distance to the camera center. 

There are two types of discontinuities in contour map. The first one is the 

discontinuity for inconsistent contour pixels. Cheung et al. [11] defined a consistency 

concept for the set of silhouette images. The set of silhouette images is consistent, if there 

is at least one non-empty object O that exactly explains all the silhouette images 

m m" ̂ W""""*! "m m m UK to: to: to;: to: to 
Contour Pixels 

6} 
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which means that the projections of the volume to the silhouette planes fit the silhouettes, 

that is 

3 0 V f c e { l K} n k ( 0 ) = 5 f e . (6) 

The inconsistent pixels are those pixels whose back-projected 3D ray has no 

intersection with all the other silhouettes. This type of discontinuity is removed for the 

final visual hull automatically, because the rays from different points of view cover the 

discontinuity. 

However, the inconsistent pixels can be removed as a preprocess step for the 

model. The preprocess step first finds the inconsistent pixels and removes them from the 

silhouettes. Like bounding edge step, the preprocess algorithm starts from a contour 

pixel, and traverses the contour pixels in a way that the silhouette is located on the left 

hand side. In processing each pixel, it checks whether the corresponding 3D ray has 

intersection with all the other silhouettes. If there is any intersection, it goes for the 

successor contour pixel. Otherwise, it removes the current pixels from the silhouette and 

then finds a new successor for the preceding pixel. This routine is continued until the 

starting point is reached. 

Table 4-1 shows the result of applying preprocess algorithm on the first 8 

silhouettes from the Dinosaur dataset. The result shows that the percentage of 

inconsistent pixels is less than 0.5% for each point of view. After the preprocess step, the 

proposed algorithm will apply to the consistent silhouette set. 

Table 4-1. Numbers of inconsistent points for the first 8 views of the Dinosaur dataset. 

View 1 2 3 4 5 6 7 8 
Silhouette 
Points No. 604,566 429,018 378,636 588,082 627,430 480,970 394,818 622,285 

Inconsistent 
Points No. 2,444 949 608 977 1,150 315 917 1,310 

Percentage 
(%) 

0.40 0.22 0.16 0.16 0.18 0.06 0.23 0.21 
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Figure 4-2 shows the input silhouette and the differences between the input 

silhouette for the first view and the consistent one resulted by applying preprocess. The 

difference image contains the inconsistent pixels which are 2444 for the first point of 

view. It has the greatest number of inconsistent pixels because of the relative position of 

the object to the corresponding camera center. 

Figure 4-2. The silhouette of the 1st view of Dinosaur dataset (left) and the inconsistent pixels which 
are the difference between the input silhouette and the consistent one (right). 

The second type of discontinuity is due to the self-occlusion. Since the interesting 

object here, dinosaur toy, is a self-occluded object, some parts of its body are occluded in 

some point of view. The occlusion causes some discontinuities in the bounding edge 

model. As it can be seen clearly in the 3D representation of the resulted bounding edge 

model, Fig. la, the hands of the dinosaur, for example, are not connected to its body, and 

also there is no information for the part of its stomach which is occluded by hands. These 

discontinuities can be seen in the contour map as well. Actually, these discontinuities are 

due to the fact that the occluded parts of this view are visible from other points of view. 

So the discontinuities are recovered for the final visual hull by the occupancy intervals 

from the other points of view. It should be mentioned here that the occluded parts of the 

3D object which are not visible in all views do not make any discontinuity in contour 

map. 
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4.1.2. Bounding Surfaces 

After computing the bounding edge information, it is time to produce the mesh 

over the computed bounding edges. This job is done for each point of view individually. 

A surface is generated using a triangular mesh algorithm for each point of view. These 

surfaces are bounding surfaces which cover parts of the object which are invisible for the 

corresponding point of view. The input for this step is a contour map, and the output is 

3D triangular mesh surfaces. The algorithm for this step considers the gap between 

occupancy intervals of two successive contour pixels as the surface of the visual hull, if 

they have any intersection with each other. If a gap between two occupancy intervals are 

considered as a part of surface, then two triangles will be generated which have one 

occupancy interval as a side and one endpoint from other occupancy interval as a vertex. 

Consider two successive contour pixels pf and pf+ 1 . For each segment of their 

occupancy intervals, the endpoints are evaluated. Consider the m'h segment of the 

occupancy interval for point pf and the nth segment of the occupancy interval for the next 

pixel. If one of the endpoints of each of them is located between the endpoints of the 

other one, the gap between these two segments is considered as a part of the strip mesh 

surface. For instance, if S P ^ which is a ID value (real number) is greater than 

SPj<
+ln and smaller than F P f + l n , then two triangles are added to the strip mesh surface. 

These triangles are triple points (SP^m, FP*m, FP;+ l j n) and (SP/^, FPf-+ln, 5P(+l n ) . To 

have the best triangular mesh, based on the positions of the endpoints, the new points 

may be added. To select the occupancy intervals for providing the surfaces, only the ID 

value of the endpoints are used. The other information will be used for the next section to 

merge the surfaces. 

4.1.3. Merging Bounding Surfaces 

The next step is merging the resulted bounding surfaces. To merge the surfaces, 

the extra information recorded in the first step is used. We call both the start point SP*m 

and finish point FPj^m as the endpoints EPfm . As mentioned before, an endpoint EPj^m 
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of any segments of any occupancy interval has a reference to the silhouette Sk, which has 

an intersection with one of its contour pixels p f ' . Because pf ' i s a contour pixel of 

silhouette Sk„ it should have an occupancy interval f f ' for the bounding edges of the 

silhouette Sk,. This interval crosses the endpoint EP^m. Endpoint EP^m can be positioned 

on an endpoint of a segment of Ef'or on the middle of a segment. 

Figure 4-3. Intersection of the occupancy intervals form different viewpoints. 

Figure 4-3 shows a part of the final triangular mesh, in which some endpoints are 

the endpoints for another point of view (right hand side of the figure) and others are the 

middle points (left hand side of the figure). Based on the concept mentioned above, it can 

be concluded that each endpoint of occupancy intervals at least exists in one bounding 

edge model from different point of view. So by finding these points, it is possible to 

merge the surfaces. By this algorithm, the number of the points of the merged surface is 

much less than the points of the overall strip surfaces. The experiments show that the 

number of the points is decreased by 30 to 40 percent. At first glance, it seems it should 

be decreased by more than 50 percent, but it is not. Some endpoints are located on the 

middle of another occupancy interval. Since middle points are not counted as endpoints, 

the decreasing amount of the point number is less than 50 percent. The decreasing 

percentage of the point number depends on the 3D object and the relative positions of the 

cameras. 

4.1.4. Re-Meshing 

The final step of the proposed model is refining the resulted mesh. Because of the 

lack of the vertices along the occupancy intervals, which are used to produce the 
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triangular bounding surface mesh, the triangles are thin and long. To refine the triangles, 

a set of edge split, collapse and swap operations are applied on the final mesh. Edge split 

operation is considered for too long edges, while edge collapse operation is performed for 

too short edges. The edge swap operation guarantees that each vertex has a degree close 

to six. After applying the re-meshing step, we will have a refined complete triangular 

mesh of the visual hull. 

4.2. Experiments 

To show the quality of the proposed model, it is applied to some datasets which 

are describe in previous section. The results have been shown in the next subsection 

followed by an evaluation part. There is one step before applying the proposed model 

which is producing consistent silhouette set for each dataset based on provided 

information, which is described completely in previous section. 

4.2.1. Results 

Figure 4-4 shows the bounding mesh surfaces resulted from the first 8 views of 

Dinosaur dataset. Each image shows the bounding surface from one viewpoint. As it can 

be seen clearly, the strip surfaces are not connected and there are some discontinuities in 

them. 
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Figure 4-4. Bounding surfaces resulted for the first 8 views of Dinosaur dataset. 

The bounding surfaces resulted for the Predator dataset has been shown in Figure 

4-5, and Figure 4-6 shows the same type of results for DinoSparseRing dataset. 

Figure 4-5. Bounding surfaces resulted for the first 8 views of Predator dataset. 
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Figure 4-6. Bounding surfaces resulted for the first 8 views of DinSparseRing dataset. 

Figure 4-7 and Figure 4-8 show the merged surface of the bounding surfaces for 

Dinosaur and Predator datasets. The final triangular mesh for DinoSparseRing dataset has 

been shown in Figure 4-9. As it can be seen clearly, the surfaces are connected and the 

discontinuities have been removed from the mesh. 

Figure 4-7. Final triangular meshes for Dinosaur datasets. 
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Figure 4-8. Final triangular meshes for Predator datasets. 

Number of vertices in the overall surface and merged surface before re-meshing 

for each dataset has been shown in Table 4-2. By merging surfaces, number of vertices is 

decreased significantly. For example, for Dinosaur dataset, it has been decreased by 40%. 

It is true that some points in the final mesh are removed because they are identical in two 

or more viewpoints. 

j l i W f e , 

Figure 4-9. Final triangular meshes for DinoSparseRing dataset. 
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Table 4-2. Number of vertices in the all surfaces versus the merged surfaces before re-meshing. 

Dataset All Surface Merged Surface Percentage (%) 

Dinosaur 432,422 261,017 60.36 

Predator 388,406 258,726 66.61 

DinoSparseRing 126,772 80,063 63.16 

4.2.2. Comparison and Evaluation 

Since the proposed model is complete and has a triangular mesh surface, to 

compare and evaluate the results, complete triangular models should be considered. For 

this study, the projective visual hull model and the last two versions of Exact Polyhedral 

Visual Hulls [13] are selected for comparison. The results for other models are taken 

from Lazebnik et al. [25] which are produced by running the algorithms on an Intel 

Pentium IV desktop with a 3.4GHz processor and 3GB of RAM. To have a consistent 

comparison, the proposed model is executed on the same machine. 

The results have been shown in Table 4-3. It should be mentioned here that the 

images are the results of model of first 8 views of the datasets, while the times mentioned 

in Table 3 are the execution time of the model over all views of the datasets to make the 

comparison possible. As it can be seen clearly, the proposed model is faster than the 

Projective Visual Hull and the first version of EPVH, while it is not as fast as EPVH 1.1. 

Table 4-3. Execution time of the final visual hull model produced by different models in second. 

Dataset EPVH 1.0 EPVH 1.1 Projective Proposed 

Dinosaur 6,329.5 138.0 513.4 479.3 

Predator 5,078.2 136.0 737.2 647.9 

Since there is not any ground truth for the ideal visual hull model, it is not 

possible to compare the results quantitatively, but it can be said that the results of the 
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proposed model are qualitatively as accurate as the mentioned existing algorithms. This is 

evaluated by checking the critical parts of the interesting objects which are so complex. 

One of these critical parts is the connection of the dinosaur's hand to its body. It should 

be mentioned again that the figures are resulted based on only the first 8 views of each 

datasets, while other algorithms used all views. 

Comparing the required time, the proposed model is similar to the Projective 

Visual Hull model. The main step of Projective model which takes much amount of time 

is calculating the first generation of information, producing the 1-skeleton of the 3D 

object. For Dinosaur dataset, for instance, producing 1-skeleton takes 318.9 seconds, 

while the time needed for the triangulation step is 76.8 [25]. The proposed model works 

the same as Projective Visual Hull representation. The execution time for producing the 

3D mesh surfaces and merging them takes only 6.8 seconds for Dinosaur dataset, which 

is much less than 472.5 seconds for the first step. Another issue is that our merging step 

is much faster than the merging step for Projective model. 

The most important advantage of our model is that it can be computed in 

distributed manner. If the camera nodes have processor units, they can participate in the 

first step of the algorithm. Because the first step is based on each viewpoint independent 

to other views, it can be done by each camera node. So the execution time for producing 

the bounding surfaces will be divided to the number of camera nodes. In this case, the 

overall execution time will be decreased dramatically. For instance, the final result of 

Dinosaur dataset will be obtained in less than 30 seconds. The merging step can be 

executed by the main server for centralized camera networks or by any of the camera 

nodes in the network or by all of them simultaneously, which depends on the application. 

The communication over the network is not an issue because the input for the first step is 

silhouette images and the output is the occupancy intervals for contour pixels of the 

silhouettes which are so efficient for network communication. 

The results of the distributed programming are compared with the sequential 

programming in Table 4-4. The big difference between the execution time of 
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DinoSparseRing dataset and others is because of the number of images for each dataset 

and the size of the images shown in Table 4-4. 

Table 4-4. Execution time sequentially versus distributedly in second. 

Datasets 
Dinosaur 

24 views-2000x1500 
Predator 

24 views - 1800x1800 
DinoSparseRing 

16 views - 640x480 Datasets 
Sequential Distributed Sequential Distributed Sequential Distributed 

Bounding 
Surfaces 479.3 21.97 647.9 28.58 37.92 2.87 

Merging 
Surfaces 6.8 6.8 7.6 7.6 2.8 2.8 

Overall 486.1 28.77 655.5 36.18 40.72 5.67 

4.3. Conclusion 

A new simple yet versatile model for visual hull representation is proposed. It is 

based on bounding edge model which is one of the fastest available models. The 

execution time of the proposed model is close to the time required for bounding edge 

model. Although the storage requirements are more than what needed for the bounding 

edge model, the final result is compact relatively. It only keeps vertices and faces 

information of the triangular mesh. 

In comparison to the state-of-the-art algorithms, the execution time and storage 

space is satisfactory. In most cases, our model is faster. Moreover, the final result is 

qualitatively as accurate as modern approaches. The main advantage of our model is that 

its computation can be divided to the camera nodes over the camera network, while it 

does not need high communication bandwidth. By computing this job in parallel, the 

execution time is decreased dramatically. 
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5. The Proposed 3D Object Reconstruction Model 

The goal of the 3D object reconstruction models is to reconstruct a 3D shape of 

the object using multi-view calibrated images. In recent years, many high quality models 

have been proposed that are more sophisticated than the early algorithms. Early 

algorithms match and reconstruct the 3D points of the object surface independently, 

while recent methods define the problem as a global energy minimization function, which 

leads to a better quality and performance. Because the existing algorithms in this field use 

stereo vision to find the depth value for each pixel, this field is also called Multi-View 

Stereo (MVS). 

5.1. Existing Models 

The existing methods are surveyed by S. M. Seitz et al. [30]. In this survey, six 

fundamental properties are defined to categorize the existing approaches which are as 

follows: 

1. Scene Representation: The 3D reconstructed object can be represented in 

many geometrical ways such as voxel representation, triangular meshes, 

and depth maps. 

2. Photo-Consistency Measure: The reconstructed object should be 

compatible with the input images. Existing approaches evaluate the 

compatibility by different measures which are called photo-consistency 

measures. These measures include the correlation measures used for 

comparing pixels of different images. For example, Sum of Squared 

Differences (SSD) and Normalized Cross Correlation (NCC) are photo-

consistency measures. 

3. Visibility Model: The visibility issue is very important in multi-view 

framework, since to use the photo-consistency measures, only those views 

that the 3D point is visible for them should be considered. 



4. Shape Prior: Some existing approaches uses shape priors to reconstruct the 

3D model with some appropriate specification. 

5. Reconstruction Algorithm: This property is very important, which is the 

base of each model. The existing algorithms are divided into four 

categories including 

a. 3D Volumetric Approaches 

b. Surface Evolution Techniques 

c. Feature Extraction and Expansion Algorithms 

d. Depth Map based Methods 

These categories are described in details in following subsections. 

6. Initialization Algorithms: Some models need more information of the 

object. For example, many algorithms need only a bounding box or 

volume of the object. Some algorithms use the silhouette information in 

their algorithm, so they require the high quality silhouette images. 

Moreover, S. M. Seitz et al. [30, 2] provided benchmark datasets to evaluate and 

compare the existing models. For each dataset, the ground truth 3D mesh model is 

provided which was capture using a Cyber-ware Model 15 laser strip scanner by a 

resolution of 0.25mm and an accuracy of 0.05-0.2mm. Based on the provided ground 

truth, the results of all models can be evaluated and compared with each other. They get 

the result of any model, compare it with the ground truth, evaluate their measures, and 

upload to a website, which is provided to compare the existing models. The most 

important issue here is that they only accept the results as a 3D triangular mesh. The 

ground truth for the DinoSparseRing dataset has been shown in Figure 5-1. 

S. M. Seitz et al. [30] defined two measures to evaluate the results quantitatively, 

accuracy and completeness. The definition of these measures is as follows. 

1. Accuracy: Like the other accuracy measures, it shows the difference 

between the real object which is the ground truth and the calculated result 

which is reconstructed object. In other words, it determines how close the 

reconstructed object is to the ground truth. 
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To compute the accuracy measure, first the distance between the 

points of the reconstructed object and the nearest points of the ground 

truth is calculated. Then a statistical summary of the distances is provided, 

which computes distance d such that X% of the points of the reconstructed 

object are within distance d of points of ground truth. For example, we can 

use 90% as variable X. 

Figure 5-1. Ground truth for DinoSparseRing dataset [2]. 

2. Completeness: This measure determines how much of the ground truth is 

reconstructed by the model. In this case, the distance from the ground truth 

to the reconstructed object is calculated, which is opposite of measuring 

accuracy. 

Now, the statistical summary of the distances computes the 

fraction X of the points of the ground truth which are with in distance d of 

the points of reconstructed model. 

Before describing the proposed model, the existing approaches are reviewed in 

the following subsections, and the next subsections show the results and the evaluation of 

the proposed model. Existing approaches are divided to four categories which are 

described in details. 

56 | P a g e 



5.1.1. 3D Volumetric Approaches 

3D volumetric approaches first define a cost function over a 3D volume, followed 

by the surface extraction. Voxel coloring algorithm is a sample of these approaches 

which is introduced by S. Seitz and C. Dyer [31]. In voxel coloring, first scene is 

discretized into a set of voxels which are traversed and colored in depth order. The 

problem is to assign colors to the voxels in a 3D volume to maximize photo integrity with 

the input calibrated images. 

P. Song et al. [32] proposed a 3D volumetric method, which is not published yet, 

but the results are available in Middlebury benchmark. 

5.1.2. Surface Evolution Techniques 

The second category of the 3D object reconstruction is surface evolution 

techniques, which iteratively evolve a surface to minimize the cost function. This 

category can be divided into three classes itself, based on their geometric entity including 

voxels, level sets, and surface meshes. Space carving methods, which are voxel-based, 

consider an initial volume, and try to carve the inconsistent voxels. Level set methods 

define a set of partial deferential equations on a volume, and by shrinking and expanding 

the volume; they try to minimize the equations. The last class works on the evolving 

mesh by defining the internal and external forces. 

A. Auclair et al. [33] proposed a surface evolution method which drives the 

deformation of a mesh towards using Scale Invariant Features Transform (SIFT) 

descriptor. The proposed method uses SSD to recover the small scale details. Y. 

Furukawa and J. Ponce [34] used rims over the surface of the object to propose a surface 

evolution approach. They first initialized the 3D shape of the object by its visual hull. 

Then, the resulted model is carved by maximizing a photometric consistency score. C. 

Hernandez and F. Schmitt [35] proposed an algorithm to reconstruct the 3D geometry as 

well as the texture. To evolve the surface, two external forces are defined which are a 

texture driven force and a silhouette driven force. 
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A. Zaharescu at al. [36] proposed TransforMesh which is a mesh based surface 

evolution method capable of handling topology changes in evolution as well as removing 

the self intersection of the reconstruction. 

K. Kolev et al. [37] proposed a surface evolution method which uses a continuous 

global optimization of an energy function. A. Ladikos et al. [38] proposed a graph cut 

method which avoids the local minima in narrow band around the current surface 

estimate. Method proposed by J.-P. Pons et al. [39] minimizes the prediction error of the 

shape and motion estimates. Other graph cut approaches are proposed by S. Tran and L. 

Davis et al. [40] and G. Vogiatzis et al. [41]. 

Two other surface evolution approaches [42, 43] are proposed, the results of 

which are available in Middlebury benchmark without the name of the authors. 

5.1.3. Feature Extraction and Expansion Algorithms 

In this category, first a set of features is extracted based on the input images. After 

feature matching among the images, features are reconstructed, which is followed by 

providing a surface to fit the reconstructed features. 

Y. Furukawa and J. Ponce [44, 45] proposed a 3D object reconstruction model 

using feature extraction, expansion and filtering. First, a sparse set of patches are 

produced using matching the extracted features found by Harris feature extraction [46] 

and Difference-of-Gaussians operator. Then using expansion, the initial matches are 

spread to the nearby pixels, followed by a filtering step which removes the incorrect 

matches. 

M. Jancosek et al. [47] proposed a scalable method which is able to produce the 

3D reconstruction using large amount of data. The result of the algorithm is obtained in 

acceptable time and required accuracy. However, it is not the optimal result in case of 

accuracy. The basis of the algorithm is like other methods in this category. It finds the 

matches between the extracted features of different images, and produces the 3D 
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geometry of each match which is called 3D seed. The expansion of the 3D seeds is called 

growing which is followed by the fdtering step. 

J. Starck and A. Hilton [48] proposed a surface capture system which produces 

animated content automatically from multiple video cameras from different viewpoints. 

For each time instance, the visual hull of the object is created, followed by matching 

extracted feature from different viewpoints. Then a surface reconstruction method 

produces 3D reconstructed shape of the object. Finally, merging 3D reconstructed shapes 

provides a 3D video representation which is also called free-viewpoint video. In free-

viewpoint videos, users have the control over the camera viewpoint. 

A. Delaunoy et al. [49] and P. Gargallo et al. [50] proposed a surface evolution 

model which minimizes the reprojection error. Reprojection error is the difference 

between the input images and the images produced by projecting the reconstructed 3D 

object into the all image planes from different viewpoints. Another surface evolution 

method is proposed by C. Strecha et al. [51] which models visibility and depth issues as a 

hidden Markov Random Field jointly. 

5.1.4. Depth Map based Methods 

The last category includes depth map based approaches. Depth map is a map 

which includes the depth information for each pixel. Depth maps can be shown as a 

grayscale image, such that the nearer objects to the camera look lighter. Depth map based 

methods usually have two steps including producing depth maps from different viewpoint 

and merging them. Most of the top performer algorithms for Middlebury benchmark [2] 

are depth map based methods. 

R. Szeliski [52] proposed a depth map based method especially to predict the 

appearance of a novel view of the scene, and reconstruct the occlusions by comparing the 

depth maps of different views. P. Gargallo and P. Sturm [53] proposed a Bayesian 3D 

modeling which is also a depth map based model and uses an energy minimization 

method. Occlusion and outliers are managed by defining hidden visibility variables. 
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Bradly et al. [54] proposed a method which produces 3D points using binocular stereo 

matching, followed by point filtering. Another depth map based method is proposed by 

Liu at al. [55] which uses the visual hull information, frontier points and implicit points 

to merge the depth maps. 

The depth map based algorithm proposed by M. Goesele et al. [56] uses a window 

based voting approach to produce the depth maps and a volumetric approach to merge 

them. Instead of using the disparity values between the images, the depth variable is 

defined as the distance between the point and the camera position, and based on each 

depth value, the correlation measurement is done between neighboring camera views to 

find the best depth value for each pixel. 

Y. Liu et al. [57] proposed a continuous depth estimation method, instead of a 

discrete counterpart. Moreover, the patch based NCC measurement is applied to find the 

best matches between different views. K Li et al. [58] and Deng et al. [59] proposed 

another depth map based method which is not published yet, but their results are 

available in Middlebury benchmark. There is the result of another depth map based 

method [60] on Middlebury benchmark without the name of the authors. 

The results of most of the reviewed existing models on Middlebury benchmark is 

available online which are denoted by the last name of the main author. There is one 

more method on Middlebury benchmark which is denoted by NIPS_829 [61]. However 

there is no information about the proposed model. 

5.2. Surface Reconstruction Methods 

Some existing algorithms first provide the 3D points with normal direction 

information, called oriented points, over the surface of the object, and then at final step 

they provide a mesh surface over the existing points. The critical issues in surface 

reconstruction are mentioned as follows. 

1. The points are not distributed uniformly. 
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2. The position and direction of the points are noisy. 

3. No information is provided for some parts of the surface. 

Surface reconstruction methods should accurately fit the input points as well as 

removing the outliers and filling the existing holes. Delaunay triangulations and Voronoi 

diagrams are two samples of surface reconstruction. A Delaunay triangulation is a 

triangulation for a set of n-dimensional points, such that no point in the set is inside the 

circum-hypersphere of any simplex in the triangulation [62]. 

R. Kolluri et al. [63] proposed the spectral surface reconstruction. In this 

approach, first a Delaunay tetrahedralization is performed, followed by the spectral graph 

partitioning which decides about the position of the tetrahedrons. H. Hoppe [64] proposed 

a local method for the nearby points to estimate the tangent planes. M. Kazhdan [65] 

proposed a method based on Poisson problem. Poisson equation is a partial differential 

equation which is used widely in many areas such as computer graphics, electrostatics, 

mechanical engineering and theoretical physics. Because Poisson surface reconstruction 

considers all the points at once, it is robust to noise and non-uniform point cloud. The 

implementation of Poisson Surface Reconstruction is freely available online [66]. 

B. Curless and M. Levoy [67] proposed a volumetric surface reconstruction 

method, which is called Vrippack [68]. Vrippack is originally implemented for range 

images, whose implementation is freely available online. M. Goesele et al. [56] used 

Vrippack for merging depth maps. They obtained a good accuracy for their method on 

Middlebury benchmark, while in case of completeness, their results are so worse. 

I used Poisson surface reconstruction as the final step of the proposed model 

which is described completely in following subsection, followed by its results and 

evaluation. 
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5.3. The Proposed Algorithm 

Like other depth map based approaches, my proposed algorithm has two main 

steps; producing depth maps and merging them. Each step includes three parts which are 

as follows. 

1. Producing Depth Maps 

a. Image Rectification for each pair 

b. Stereo Matching 

c. Producing 3D Points 

2. Merging 3D Points 

a. Refine the Position of the 3D Points 

b. Remove Inconsistent Points 

c. Providing a Surface over the Points based on the Normal 

Directions 

Each step is described in details in the following subsections. 

5.3.1. Producing Depth Maps 

This step is done for each image pair independent to the other views. The results 

of this step are the 3D points calculated for each viewpoint, which will be combined in 

the next step. First of all, the nearest camera for each view is selected as the target view 

for stereo matching. 

The stereo matching is also called correspondence problem between two views, 

which is a problem of finding a corresponding point displayed by one view in the image 

of the other view. In most camera configurations, finding correspondence pixels requires 

a search in two dimensions. However, if the two cameras are aligned to have a common 

image plane, the search is simplified to one dimension; a line that is parallel to the line 

between the cameras (the baseline). Image rectification determines a transformation of 
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each image plane such that pairs of conjugate epipolar line become collinear and parallel 

to one of the image axes, usually the horizontal one. 

The two sample views of Dinosaur dataset are selected as an image pair for stereo 

matching which have been shown in Figure 5-2. Because the image planes of the cameras 

are not on the same plane, the epipolar line for each pixel of reference view in target view 

is not parallel to the horizontal axes of the image which leads to in false matching results. 

Lett image Right image 

200 400 600 600 1000 1200 1400 1000 1600 2000 200 400 600 600 1000 1200 1400 1600 1800 

Figure 5-2. Dinosaur sample image pair. 

So before starting the matching step, the images should be rectified. A. Fusiello et 

al. [69] proposed a simple method to rectify the image pairs. I implemented their method 

in Matlab, the results of which have been shown in Figure 5-3. The epipolar lines are 

parallel to the horizontal axes of the images. 

Figure 5-3. Rectified Dinosaur image pair. 
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The size of the rectified images is greater than the size of input images. For 

example, for the sample image pair of Dinosaur dataset which have been shown in Figure 

5-2, the image size is 2000x1500, while the size of the rectified images which have been 

shown in Figure 5-3 is 2481x1881. The empty parts of the new image pair do not make 

any inconsistency because the rectified silhouette images will be used to fasten the stereo 

matching algorithm. 

Using silhouette information decreases the computation time in two ways. By 

using the silhouette of the reference image, the number of pixels for which the matching 

search is processed is decreased. Inversely, silhouette information of target image 

decreases the number of pixels which are searched to find the best match. As it can be 

seen clearly in Figure 5-4, the number of foreground pixels is much less than the number 

of background ones. 

After rectifying the image pairs, the depth maps are produced using stereo 

matching application. For matching measurement, I used normalized cross correlation 

which is a correlation measure. 

Figure 5-4. Rectified silhouette image pairs. 

Because in my model, I need the reliable depth information, I applied the Left-

Right Consistency (LRC) check to remove the inconsistent depth information from two 

directions. In left-right consistency check, first a depth map is produced based on the 

reference and target image pairs, which is referred as left-to-right depth map. Then 
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another depth map is produced based on the reference and target images as the new target 

and reference images, correspondingly. The second depth map is called right-to-left depth 

map. Figure 5-5 shows the resulted depth maps for the sample image pairs of Dinosaur 

dataset. 

Figure 5-5. Left-to-right (left image) and right-to-left (right image) depth maps produced for the 
sample image pairs of Dinosaur dataset. 

The last step of LRC check is to find the consistent disparity values between two 

produced depth maps. For each pixel of the left-to-right depth map, which is denoted as 

the reference pixel, the matched pixel of the right-to-left is selected, which is denoted as 

the target pixel. If the matched pixel for the target pixel of the target image is the 

reference pixel in the reference image, the depth value for the reference pixel is 

consistent from two views. Otherwise, the depth value is inconsistent and will be 

removed from the depth map. 

Usually a threshold is used in LRC check, which defines the valid shifting 

between two views depth map. In my experiments, no threshold is used, and the depth 

values which are not exactly the same are removed. Figure 5-6 shows the resulted depth 

map after left-right consistency check. Comparison of the depth maps before and after the 

consistency check shows that the invalid depth values are removed, and the resulted 

depth values are reliable for the next steps of the algorithm. For example, the lighter 

pixels on the right leg of Dinosaur have invalid values because the left leg is nearer to the 

camera position. So they have been removed from the depth map. 
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Figure 5-6. Left-to-right depth map (left image) and resulted depth map after LRC check (right 
image) for the sample image pairs of Dinosaur dataset. 

Each pixel of the depth map has a depth value, which is zero if there is no reliable 

depth value. After producing the reliable depth maps, the resulted maps are back 

transformed to the image planes before rectification, which is called the back 

rectification. Back rectification produces two maps, the x-map and the y-map. Based on 

the x-map and y-map, the corresponding pixel for each pixel of the reference image is 

identified. Using a triangulation, the position of the 3D point corresponding for each 

pixel is determined. The triangulation is done using intersecting the 3D ray from the 

reference pixel of the reference image with the 3D ray from the corresponding pixel of 

the target image. The resulted 3D points for the first view of Dinosaur dataset have been 

shown in Figure 5-7. 

Figure 5-7. Reconstructed 3D points for the first view of Dinosaur dataset. 
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As it can be seen clearly in this figure, there are many invalid 3D points which 

should be removed from the point cloud. Refining 3D points will be done in the next step 

over all the camera views. 

5.3.2. Merging 3D Points 

After producing the 3D points, based on the individual image pairs, the position 

of the 3D points will be refined using images from different views. Finally, all the 3D 

points from different viewpoints are combined to produce a point cloud. A surface fitting 

step provides a triangular mesh over the 3D point cloud, which is done to provide the 

appropriate type of results for Middlebury benchmark to evaluate the proposed model. 

The first step of the merging process is to refine the position of the produced 3D 

points, followed by removing the inconsistent points. The position of the constructed 3D 

points is changed along its corresponding viewing ray to find the best position. For each 

viewpoint, k nearest cameras are selected. Then another window matching is done 

between the reference image and the k nearest camera images to measure the different 

positions of the 3D point. 

This window matching process is a little bit different. For each pixel of the 

reference image, the position of the corresponding 3D point is moved along the viewing 

ray. For each new position, the 3D point is projected to the nearest cameras. The 

correlation value between the reference window and the window of the projected pixel is 

calculated for each nearest camera, using normalized cross correlation measurement. The 

overall correlation values for the new positions are the average NCC values over the k 

nearest cameras. 

NCCW = (7 ) 

where p and P denote the reference pixel and its corresponding 3D point with the new 

position, respectively, pj denotes the projection of the 3D point P into the camera i. R and 
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Ci denote the neighbor window of the points in reference image and the nearest camera /, 

correspondingly. 

To have the better time performance, I first move position of the 3D point along 

the viewing ray by Ad to do a coarse refinement, and then move it near the coarse 

position by Ad/10 to do the final refinement. 

The next step is to remove the refined 3D points which are inconsistent for all 

viewpoints. The inconsistency here is defined by the following criteria. 

1. The projection of the point is mapped to the background segment of the 

silhouette image for at least one viewpoint. 

2. The NCC value for the new position of the point is less than a threshold. 

3. The distance between the point and the camera position is much greater or 

less than the average of the neighbor distances, using a threshold. 

The points which have at least one of the mentioned criteria will be removed from 

the point cloud. Then for the pixels whose corresponding 3D point is removed a new 3D 

point from the point cloud which is mapped to those pixels will be selected. The 

inconsistency criteria are computed for the new 3D points. If the new 3D points are also 

inconsistent, they will be removed again without any substitutions. Figure 5-8 shows the 

refined 3D points for the first view of Dinosaur dataset. Comparison of Figure 5-7 and 

Figure 5-8 shows the quality of refinement. 

Figure 5-8. Refined 3D points for the first view of Dinosaur dataset. 
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The final step is to provide a surface mesh over the 3D points. Because Poisson 

surface reconstruction [65] is robust to the noisy data of the point cloud and non-

uniformity distribution of the 3D points, it is used as the final step of the proposed model. 

Moreover, Poisson surface reconstruction produces a watertight mesh as a final result 

which is valuable for the Middlebury evaluation. The implementation code and binary 

executable version of the code is provided by the authors. 

Because Poisson surface reconstruction gets an oriented point cloud as an input, 

the normal direction for each 3D point should be calculated. I used the information of the 

neighbor pixels in each viewpoint to estimate the normal direction for each 3D point. For 

each pixel, the normal directions of the planes which contain the corresponding 3D points 

of the pixel and two consecutive neighbors are calculated. The interesting normal 

direction for the 3D point is the average of calculated normal directions. 

5.4. Experiments 

For this proposed model, I applied the algorithm on two datasets, Dinosaur dataset 

from 3D Photography datasets and DinoSparseRing dataset from Middlebury benchmark. 

The results have been shown in the next subsections, followed by an evaluation 

subsection. For evaluating the results of my proposed model qualitatively, I sent the 

results to Middlebury College, and I got the evaluation results including accuracy and 

completeness. Based on these metrics, the proposed method is compared with the state-

of-the-art approaches. 

5.4.1. Results 

The main results of the proposed model are the 3D surface points. For Dinosaur 

dataset, the results of each step of the proposed method have been shown in previous 

subsections. However, the final results which are the 3D surface points for Dinosaur 

dataset is presented in Figure 5-9. Figure 5-10 shows the 3D surface points resulted for 

DinoSparseRing dataset. The result of Dinosaur dataset looks denser than the result of 
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DinoSparseRing, because size of Dinosaur images is much more than DinoSparseRing 

image size, 2000x1500 for Dinosaur dataset versus 640x480 for DinoSparseRing dataset. 

Figure 5-9. Resulted 3D surface points for Dinosaur dataset. 

As it can be seen clearly in Figure 5-10 left, some parts of the Dino object is 

missing, since in one of the provided images of DinoSparseRing dataset, the mentioned 

parts are located out of the scope of the image. The inconsistent image is the second 

image of DinoSparseRing dataset with dinoSR0002.png filename, which has been shown 

in Figure 5-11. However, the proposed algorithm is designed to remove all the 

reconstructed parts of the 3D object which are inconsistent with at least one of the 

calibrated images. 

Figure 5-10. Resulted 3D surface points for DinoSparseRing dataset. 
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Figure 5-11. The inconsistent image of DinoSparseRing dataset. 

To evaluate the proposed method on Middlebury benchmark, the result should be 

submitted to Middlebury College as a triangular surface mesh. As it mentioned in the 

steps of the proposed algorithm, I used Poisson Surface Reconstruction to provide the 

surface over the resulted 3D surface points. The 3D triangular final result for 

DinoSparseRing dataset has been shown in Figure 5-12 from different viewpoints. 

Figure 5-12. Final 3D triangular mesh for DinoSparseRing dataset. 

Two other views of the final triangular mesh are presented in Figure 5-13. 
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Figure 5-13. Final 3D triangular mesh for DinoSparseRing dataset from different views. 

5.4.2. Comparison and Evaluation 

The final 3D triangular surface mesh for the DinoSparseRing dataset has been 

sent to Middlebury College for evaluation. The evaluation results are available online 

[70]. The result of the proposed visual hull model is also evaluated by Middlebury 

benchmark. On Middlebury evaluation webpage, the evaluation of the proposed models 

is usually denoted by the last name of the main author. So, my proposed visual hull 

model is denoted by Raeesi, and the proposed 3D object reconstruction model is denoted 

by Raeesi!. 

Table 5-1 shows the evaluation of both models for DinoSparseRing dataset. The 

values mentioned for accuracy are the fraction threshold, and the values determined for 

completeness are the distance threshold. It means, for example, 90 percent of the surface 

points of the visual hull result are within the distance 4.84mm of the ground truth and 

38.8% of the ground truth surface points are within distance 1.25mm of the visual hull 

result. 
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Table 5-1. Evaluation results of both proposed models on Middlebury benchmark for 
DinoSparseRing dataset. The accuracy is in millimeter and completeness is percentage. 

Proposed Models 
Accuracy Completeness 

Proposed Models 
90% 80% 1.25mm 0.75mm 

Visual Hull Model 4.84 3.44 38.8 19.0 

3D Object Reconstruction 0.63 0.42 95.0 86.0 

As it was expected, the result of the visual hull model is much coarser than the 3D 

object reconstruction model. Table 5-1 shows that the accuracy of the 3D reconstruction 

model is 8 times more than the accuracy of the visual hull model. 

The comparison of the result of proposed 3D object reconstruction model is 

compared with the state-of-the-art models in two steps. The first one is the overall 

comparison which compares all the models, regardless of their category. The second one 

compares my model with the modern depth map based approaches. 

It should be mentioned that the name presented in the following tables are the 

same as the names displayed on Middlebury evaluation webpage, which is usually the 

last name of the author. In some cases, the methods are denoted by anonymous, but the 

title of submitted paper and the corresponding conference or journal is determined. These 

cases are called Submitted. Besides, the category of a model is unknown, because there is 

no information about the proposed algorithm. 

Table 5-2 and Table 5-3 show the accuracy and completeness results of all the 

state-of-the-art models. The result of my proposed model has been shaded in both tables. 

My model obtained rank 16 out of 28 for accuracy where its fraction threshold is 90% 

and rank 17 for completeness where the its distance threshold is \25mm. For both 

accuracy and completeness metric, the top performer is Furukawa3 which is proposed by 

Y. Furukawa and J. Ponce [45]. 
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Table 5-2. Comparison of accuracy of the state-of-the-art models. The accuracy threshold is 90%. 

No Algorithms Year Category Accuracy 

1 Furukawa3 [45] 2008 Feature Extraction 0.37 

2 Bradley [54] 2008 Depth Map Based 0.38 

3 ECCV_216 [60] Submitted Depth Map Based 0.42 

4 Furukawa2 [44] 2007 Feature Extraction 0.42 

5 Deng [59] Submitted Depth Map Based 0.43 

6 Zaharescu [36] 2007 Surface Evolution 0.45 

7 Kun Li [58] Submitted Depth Map Based 0.47 

8 ECCV642 [421 Submitted Surface Evolution 0.48 

9 Liu2 [57] 2009 Depth Map Based 0.51 

10 Kolev2|37| 2009 Surface Evolution 0.53 

11 Song [32] Submitted 3D Volumetric 0.54 

12 Goesele [56] 2006 Depth Map Based 0.56 

13 Furukawa [34] 2006 Surface Evolution 0.58 

14 Liu [551 2009 Depth Map Based 0.59 

15 Hernandez [35] 2004 Surface Evolution 0.60 

16 Raeesi2 Proposed Depth Map Based 0.63 

17 Jancosck-3DIM09 [47] 2009 Feature Extraction 0.66 

18 SurfEvolution [43] Submitted Surface Evolution 0.66 

19 Pons [39] 2005 Surface Evolution 0.71 

20 Auclair [33] 2008 Surface Evolution 0.74 

21 Gargallo [50] 2007 Surface Evolution 0.76 

22 Delaunoy [49] 2008 Surface Evolution 0.89 

23 Ladikos [38] 2008 Surface Evolution 0.89 

: i Starck [48] 2007 Feature Extraction 1.01 

25 N1PS 829 [61] Submitted - 1.07 

26 Vogiatzis [41] 2005 Surface Evolution 1.18 

27 Trail [401 2006 Surface Evolution 1.26 

28 Strecha [51] 2006 Surface Evolution 1.41 
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Table 5-3. Comparison of completeness of the state-of-the-art models. The completeness threshold is 
1.25mm. 

No Algorithms Year Category Completeness 

1 Furukawa 3 [45] 2008 Feature Extraction 99.2 

2 Furukawa 2 [44] 2007 Feature Extraction 99.2 

3 Zaharescu [36J 2007 Surface Evolution 99.2 

4 Liu2 [57] 2009 Depth Map Based 98.7 

5 ECCV_642 [42] Submitted Surface Evolution 98.6 

6 Hernandez [35] 2004 Surface Evolution 98.5 

7 Kolev2 [37] 2009 Surface Evolution 98.3 

8 Liu [55] 2009 Depth Map Based 98.3 

9 ECC V_216 [601 Submitted Depth Map Based 97.8 

10 Deng [59] Submitted Depth Map Based 97.8 

11 Pons [39] 2005 Surface Evolution 97.7 

12 SurfEvolution [43] Submitted Surface Evolution 97.6 

13 Kun Li [58] Submitted Depth Map Based 97.4 

14 Furukawa [34] 2006 Surface Evolution 96.9 

15 Auclair [33] 2008 Surface Evolution 96.8 

16 Song [32] Submitted 3D Volumetric 95.5 

17 Raeesi2 Proposed Depth Map Based 95.0 

18 Ladikos [38] 2008 Surface Evolution 95.0 

19 Bradley [54] 2008 Depth Map Based 94.7 

20 Delaunoy [49] 2008 Surface Evolution 93.9 

21 Strecha [51] 2006 Surface Evolution 91.5 

22 NIPS829 [61J Submitted - 91.0 

23 Vogiatzis [41] 2005 Surface Evolution 90.8 

24 Gargallo [50] 2007 Surface Evolution 90.7 

25 Slarck [48] 2007 Feature Extraction 90.7 

26 Tran [40] 2006 Surface Evolution 89.3 

27 Jancosck-3DLY109 [47] 2009 Feature Extraction 74.9 

28 Goesclc [56] 2006 Depth Map Based 26.0 
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By changing the threshold, the ranking will be changed. The best rank of my 

model for accuracy is 13 with threshold 99% and the best rank for completeness is 17 

with distance thresholds 1.25, 1.5, 1.75, and 2mm. 

As it can be seen clearly, the results are so close to each other, such that the 

difference less than 0.1mm can change the rank of a model by many steps. However, to 

show the small differences more clearly, all the comparisons in this section are presented 

in bar charts in Appendix B. 

The next comparisons are among the depth map based models. Table 5-4 shows 

the comparison of the depth map based models for DinoSparseRing dataset. Considering 

accuracy metric, the best method is Bradley which is published by D. Bradley et al. [54] 

in 2008. The most recent approaches do not obtain better accuracy than Bradley 

accuracy. However the rank of my model is one of the latest ranks, the obtained accuracy 

is acceptable and comparable with the published models. 

Table 5-4. Comparison of accuracy of the state-of-the-art depth map based models. The accuracy 
threshold is 80%. 

No Algorithms Year Accuracy 

19 Bradley [54] 2008 0.27 

9 ECCV_216 [60] Submitted 0.27 

10 Deng [59] Submitted 0.30 

13 Kun Li [58] Submitted 0.34 

28 Goesele [56] 2006 0.36 

4 Liu2 [57] 2009 0.36 

17 Raeesi2 Proposed 0.42 

8 Liu [551 2009 0.47 

The comparison of completeness metric has been shown in Table 5-5. The top 

performer approach in case of completeness is Liu2 which is proposed by Y. Liu et al. 

[57]. Like accuracy comparison, this comparison shows that the new proposed methods 

do not obtained better completeness than Liu2 completeness. However, my proposed 

model obtains an acceptable completeness as well. The most interesting issue between 
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Table 5-4 and Table 5-5 is that for completeness metric the rank of Bradley method 

which is the top performer in case of accuracy is one of the latest ranks. In opposite 

cases, Liu and Liu2 obtain the best completeness, while their accuracy results are the 

worst among the modern approaches. 

Table 5-5. Comparison of completeness of the state-of-the-art depth map based models. The 
completeness threshold is 1.5mm. 

No Algorithms Year Completeness 

4 Liu2 [57] 2009 99.4 

8 Liu [55] 2009 99.0 

10 Deng [59] Submitted 98.9 

13 Kun Li [58] Submitted 98.6 

9 ECCV216 [60] Submitted 98.4 

17 Raeesi2 Proposed 96.8 

19 Bradley [54] 2008 95.0 

28 Goesele [56] 2006 26.1 

Among the published depth map based methods, only Liu2 has better results for 

both accuracy and completeness metrics than my proposed model. However, the 

comparison shows that the proposed model obtains an acceptable accuracy as well as an 

acceptable completeness which are comparable with the modern approaches in this field. 
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6. Conclusions 

There are many applications from different areas which need to localize, 

recognize and reconstruct the 3D objects. The desired quality of the resulted 3D shape of 

the object and the acceptable time performance of the reconstruction process depends 

only on the applications. Some applications need to reconstruct a coarse shape of the 

object in acceptable time. In robotics, for example, it is very important for robot to find 

the positions of the obstacle at the real time, while the quality of the reconstructed shape 

of the object does not matter. In contrast, some other applications need to reconstruct the 

object as accurate as possible, for which the time performance is not important. For 

instance, in inverse engineering, the goal is to provide an accurate model of the existing 

object. 

Vision network is one of the solutions for all of these applications. Generally, 

vision network is one of the cheapest existing solutions, which is easily configurable. 

Moreover, vision networks are able to reconstruct the 3D shape of the object in different 

level of details within different amount of time. It captures some images from different 

views, and produces the 3D shape of the object. The first issue in vision network is 

camera calibration, which can be done as an automatic process in network configuration 

step. 

The coarsest, while fastest model of the vision network models is the convex hull 

of the object. So, convex hulls can be the solution for the real time applications such as 

obstacle avoidance. Reconstruction of the accurate 3D shape of the object, which is 

called 3D object reconstruction, requires much amount of time. In 3D modeling, for 

instance, the accuracy of the model is very important, and the goal of the application is to 

produce a model as accurate as possible, while the time performance does not matter. So, 

the 3D object reconstruction can be the solution for these applications. 

Like in the other fields, there is a trade-off between time and accuracy for 

reconstructing the 3D shape of the object. Visual hull model is a model which produces 



an acceptable shape of the object in acceptable time. However, it depends on the 

application to select the best existing models in the area of vision networks. 

In this thesis, I proposed two different models, a visual hull model and a 3D 

object reconstruction model. For the visual hull model, the contribution is to provide the 

bounding surfaces over the bounding edge model of the object, and merging them. 

Because bounding edge model is one of the fastest visual hull models, the proposed 

model is faster than most of the existing approaches. The evaluation of the results of the 

proposed visual hull model has been describes in section 4. Moreover, the proposed 

method can be computed in distributed manner. In distributed computing, the execution 

time is divided to the number of views, which increases the time performance of the 

reconstruction, dramatically. 

The proposed 3D object reconstruction model is a depth map based model, which 

produces the 3D points for each viewpoint, and merges them to a point cloud. At the final 

step, it fits a triangular surface mesh over the refined 3D point cloud. The evaluation of 

the results shows that the proposed model obtains an acceptable accuracy as well as 

acceptable completeness which are comparable with existing approaches. 
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Appendix A: Implementation using Java 

The main part of the proposed models is implemented in Java programming 

language. I implemented 31 classes in a single package which is called VisualHull. As it 

mentioned in the main context, there is a metric of the size of implemented application 

which is the source lines of code. There are two type of LOC, physical and logical. 

Physical line of code metric counts number of lines in the source code file which includes 

the lines that have statements as well as blank line and comment line, while logical line 

of code metric counts only statements. 

Table A-l shows the implemented class files in Java in alphabetical order, with 

their line of code metrics and number of static and non-static methods. There are two 

main class fdes, one for each proposed model. The functions of each class fde are 

described as follows. 

1. Camera: The camera object models a camera with its intrinsic and 

extrinsic parameters which determine its position and direction. Each 

camera has a captured image with its corresponding silhouette. 

2. Contour: This object finds the contour of a silhouette image, which is 

used to calculate the bounding edges. The contour pixels are traversed in 

counterclockwise order, in which the map of the object is always at the left 

hand side of the direction of traversing the contour points. 

3. ContourElement: The elements of Contour objects are modeled as 

ContourElement which are ordered silhouette pixels with the next and 

previous pointers. 

4. Coordinate2D: The image and plane coordinates are modeled in the same 

way with one different factor which is the fact that the image coordinates 

are integer numbers. 

5. Coordinate3D: The world and camera coordinates are implemented in 

Coordinate3D class. This class implemented all the functions needed for 



3D vector computations such as addition, subtraction, dot production, 

cross production, and normalization. 

Table A-l. Class files implemented in Java with number of physical and logical lines of code as well 
as number of implemented methods. 

No Class File Physical LOG Logical LOC Number of Methods 
1 Camera 671 394 52 
2 Contour 198 160 10 
3 ContourElement 68 56 14 
4 Coordinate2D 215 115 24 
5 Coordinate3D 242 138 20 
6 Curves 20 15 3 
7 DepthCurve 66 24 4 
8 DepthMap 293 223 8 
9 DepthMapImage 731 524 33 
10 DistortionCoefficients 68 44 5 
11 ExtrinsicParameters 192 133 15 
12 FocalLength 42 24 4 
13 Interval ID 313 211 16 
14 Interval lDPoint 62 56 11 
15 IntrinsicParameters 136 87 8 
16 MainClass 361 234 9 
17 MainClassDepthMap 360 210 8 
18 MatchingDriver 113 77 11 
19 MatlabControl 279 155 17 
20 Mesh 312 274 7 
21 Parameters 41 27 0 
22 Point3D 110 102 27 
23 PrincipalPoint 42 24 4 
24 Project3Dray 321 239 3 
25 Ray2D 139 52 11 
26 Ray3D 128 67 11 
27 Raylntervals 62 25 5 
28 RotationMatrix 162 111 12 
29 SkewCoefficient 37 17 4 
30 TranslationMatrix 77 43 7 
31 VisualHull 519 391 24 

Total 6380 4252 387 
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6. Curves: Curves object is used to save the DepthCurve objects as a stack to 

manage Matlab calls. 

7. DepthCurve: To find the best match for each pixel of the depth maps, all 

the correlation values are store as a curve which is implemented in 

DepthCurve class. 

8. DepthMap: The calculated depth maps in Matlab are imported to Java 

using DepthMap object. Each object has a reference view, a target view, 

and two depth maps, x-map and y-map which contain the number of row 

and column of the best match pixel of the target image. Reference and 

target views are instances of the Camera object. 

9. DepthMapImage: 3D points creation, and refinement are implemented as 

the functions of DepthMapImage object. In this object, first based on each 

viewpoints, 3D points are generated, followed by position refinement and 

removing inconsistent points. 

10. DistortionCoefficients: DistortionCoefficients object models the 

distortion coefficients for each camera which is one of the camera intrinsic 

parameters. It is implemented as a vector of five coefficients. 

11. ExtrinsicParameters: Camera extrinsic parameters for each camera are 

modeled in the object of ExtrinsicParameters including the rotation and 

translation matrices. In this object, transformations from world space to 

camera space, from camera space to image plane and vice versa are 

implemented. 

12. FocalLength: The focal length of the cameras is modeled in FocalLength 

object, one of camera intrinsic parameters. 

13. IntervallD: Bounding edges are implemented as the one dimensional 

intervals for each pixel. IntervallD object is the bounding edge with the 

start point and finish point. 

14. IntervallDPoint: Each IntervallD object has two IntervallDPoint objects 

which are the start point and finish point of the corresponding bounding 

edge. Each point is stored as distance from 3D point to camera position. 
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15. IntrinsicParameters: Camera intrinsic parameters are implemented in 

IntrinsicParameters object which contains focal length, principal point, 

skew and distortion coefficients. Image plane to image pixel, and image 

pixel to image plane transformations are implemented in this object. 

16. MainClass: The main class for proposed visual hull model is implemented 

in MainClass object. First, it starts by reading the camera information and 

their corresponding silhouette images, and finally at the last step, it calls 

the write function to write the final results to a file with PLY format. 

17. MainClassDepthMap: MainClassDepthMap is the main class for the 

proposed 3D object reconstruction method which is a depth map based 

approach. It gets the camera information as well as the silhouette and color 

images and depth map information, and returns a text file which includes 

the information of the 3D points including their positions and normal 

directions. 

18. MatchingDriver: The interface between Java and Matlab is implemented 

in Matching Driver object. The only Matlab called is considered for the 

implementation is the calculation of normalized cross correlation between 

two windows. 

19. MatlabControl: To call Matlab from Java to do some function, 

MatlabControl object is used, which translates the functions of the 

interface to the Matlab codes. 

20. Mesh: The Mesh object is implemented to produce the bounding surface 

meshes as well as the final mesh for the proposed visual hull model. It 

generates the triangular meshes as the PLY files. 

21. Parameters: All the parameters of the proposed methods are stored in 

Parameters object including the color of the background and foreground 

pixels of the silhouettes, number of k for the nearest cameras for each 

depth map, the window size for stereo window matching, the 

configuration of the Matlab calls, the normalized cross correlation 

threshold, the interesting resolution for the results, and so on. 
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22. Point3D: The 3D points in implementation are modeled by the Point3D 

object, which includes position, normal direction, view direction (direction 

to the viewing camera), neighbor information and pointers to the 3D 

points which are mapped to its corresponding reference pixel. 

23. PrincipalPoint: The PrincipaclPoint object contains the information of the 

camera principal point which is one of the intrinsic parameters. 

24. Project3DRay: The projection of the 3D ray to the silhouette images is 

implemented as a static function in Project3Dray object, which returns the 

intersection parts of the 3D ray with the corresponding silhouette. It first 

project the 3D ray to a 2D ray in silhouette image plane, and then 

calculates the intersection of the 2D ray with the foreground pixels of the 

silhouette. Finally, it back-projects the 2D segments of the 2D ray to the 

3D space. 

25. Ray 2D: The 2D rays are implemented as Ray2D object which is 

determined with the position of the start point of the ray and its direction. 

The position and direction are 2D plane coordinates. 

26. Ray3D: The 3D rays are modeled in Ray3D object. Like the 2D ray, 3D 

rays are determined by their position and direction, while their position 

and direction are 3D space coordinates. The new instances of Ray3D 

object is calculated based on a pixel of an image, for which the start point 

is the position of the corresponding camera and direction is such that the 

ray goes through the 3D position corresponding to the interesting pixel in 

image plane. 

27. Raylntervals: The information of the intersected rays for each contour 

pixel is tracked using Raylntervals, which is a collection of IntervallD 

objects. 

28. RotationMatrix: The rotation matrix of the cameras is one of the extrinsic 

parameters which implemented in RotationMatrix object. Rotation matrix 

is a 3x3 matrix with floating values. 

29. SkewCoefflcient: Skew coefficient is one of camera intrinsic parameters 

which is implemented in SkewCoefflcient object. 
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30. TranslationMatrix: Translation matrix, one of the camera extrinsic 

parameters, is a 3x 1 matrix which determines the translation of the camera 

coordinate with respect to the space coordinate. 

31. VisualHulI: VisualHull object implements the main part of the proposed 

visual hull model. It keeps the bounding edge information as the 2D 

samples. 
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Appendix B: Comparison of the 2nd Proposed Model 

The comparisons of the results of the proposed 3D object reconstruction model, 

which are discussed in Section 5, are presented in the following bar charts. Figure B-l 

shows the comparison of the proposed method with all the state-of-the-art approaches for 

three different thresholds, 80%, 90%, and 99%. As it can be seen clearly, the accuracy 

values are so close to each other. The methods are sorted based on the accuracy for 

threshold 99% which is almost all the points of the result surface mesh. 

7.57 

» Accuracy 80% a Accuracy 90% • Accuracy 99% 

Figure B-l. Accuracy comparison among all the state-of-the-art methods. 

The comparison of completeness metric has been shown in Figure B-2 for two 

different distance thresholds, \25mm and 1.5mm. The completeness values are so close 

to each other as well. The methods in this plot are sorted for completeness for distance 

threshold 1.5mm. 



• Completeness 1 25 mm • Completeness 1.5 mm 

Figure B-2. Completeness comparison among all the state-of-the-art methods. 

Figure B-03 and Figure B-4 show the comparison of accuracy and completeness 

metrics among the existing and submitting depth map based methods for different 

thresholds. 
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1.80 

1.60 

1.40 

1.20 

I 1.00 
e 0 

1 0.80 
o 

0.60 

0.40 

0.20 

0.00 

K ' 

1.64 

1.41 
1.46 

Bradley ECCV 216 Deng Kunl l Liu2(2003) Goesele Raeesl Liu (2008) 
(2008) (SuDniitted) (Submitted) (Submitted) (2009) (Proposed) 

Figure B-03. Accuracy comparison among the depth map based methods. 
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As it can be seen clearly in Figure B-03, the ranking of the accuracy for threshold 

99% is completely different from the ranking for threshold 80%. 

m Completeness 1 5 mm • Completeness 125 mm 

Goesele Bradley Raeesi KunLi Deng ECCV_216 liu(2009) Uu2(2009) 
{2006} (2008) (Proposed) (Submitted) (Submitted) (Submitted) 

Figure B-4. Completeness comparison among the depth map based methods. 

The comparison of the proposed model with the methods which are recently 

submitted and not published yet are presented in Figure B-5 and Figure B-6. 

i Accuracy 80% "Accuracy 90% •Accuracy99% 

Deng KunLI £CCV_642 Raeesi Song SurfEvolution ECCV_210 NIPS_82® 
(Submitted) (Submitted) (Submitted) (Proposed) (Submitted) (Submitted) (Submitted) (Subtitled) 

Figure B-5. Accuracy comparison among the methods which are not published yet. 
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Figure B-6. Completeness comparison among the methods which are not published yet. 
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