
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

3D Object Reconstruction using Multi-View Calibrated Images 3D Object Reconstruction using Multi-View Calibrated Images

Mohammad R. Raeesi N.
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Raeesi N., Mohammad R., "3D Object Reconstruction using Multi-View Calibrated Images" (2010).
Electronic Theses and Dissertations. 8044.
https://scholar.uwindsor.ca/etd/8044

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8044?utm_source=scholar.uwindsor.ca%2Fetd%2F8044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

3D Object Reconstruction using
Multi-View Calibrated Images

by

Mohammad R. Raeesi N.

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2 0 1 0 Mohammad R. Raeesi N.

1 * 1
Library and Archives
Canada

Published Heritage
Branch

Bibliothgque et
Archives Canada

Direction du
Patrimoine de I'gdition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62747-1
Our file Notre reference
ISBN: 978-0-494-62747-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

M

Canada

Author's Declaration of Previous Publication

This thesis includes one original paper that has been previously submitted for

publication in peer reviewed conference, as follows:

Thesis Chapter Full Citation Publication Status

Chapter 4 Mohammad R. Raeesi N., Q. M. Jonathan Wu, "A
Complete Visual Hull Model Using Bounding Edges",
Pacific Rim Conference on Multimedia 2010.

Submitted

I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my thesis. I certify that the above material

describes work completed during my registration as graduate student at the University of

Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iii | P a g e

Abstract

In this study, two models are proposed, one is a visual hull model and another one

is a 3D object reconstruction model. The proposed visual hull model, which is based on

bounding edge representation, obtains high time performance which makes it to be one of

the best methods. The main contribution of the proposed visual hull model is to provide

bounding surfaces over the bounding edges, which results a complete triangular surface

mesh. Moreover, the proposed visual hull model can be computed over the camera

networks distributedly. The second model is a depth map based 3D object reconstruction

model which results a watertight triangular surface mesh. The proposed model produces

the result with acceptable accuracy as well as high completeness, only using stereo

matching and triangulation. The contribution of this model is to playing with the 3D

points to find the best reliable ones and fitting a surface over them.

iv | P a g e

Dedication

This thesis is dedicated to my beloved parents, who have raised me to be the

person I am today. You have been with me every step of the way, through good times

and bad. Thank you for all the unconditional love, guidance, and support that you have

always given me, helping me to succeed and instilling in me the confidence that I am

capable of doing anything I put my mind to. Thank you for everything. I love you!

v | P a g e

Acknowledgements

I would like to thank all people who have helped and inspired me during my

graduate study.

I especially want to thank Dr. Jonathan Wu, my supervisor, for his support and

guidance throughout this entire thesis process and for believing in my abilities. Dr.

Shervin Erfani and Dr. Nader Zamani deserve special thanks as my thesis committee

members. Thank you for your support and guidance.

I am indebted to all of my roommates during past two years for their friendship,

care and support. I would like to thank Abbas Ghaei, Amir Hassannejadasl, Ali

Aryanpour, and especially Esmaeal Navaei. Good luck to each of you in your future

endeavors.

My deepest gratitude goes to my family for their unflagging love and support

throughout my life; this dissertation is simply impossible without them. I am indebted to

my parents, for their care and love. I cannot ask for more from them, as they are simply

perfect. I have no suitable word that can fully describe their everlasting love to me. I

remember their constant support when I encountered difficulties. I feel proud of my

family, for their support and care in my whole life.

Last but not least, thanks to God for my life through all tests in the past two years.

You have made my life more bountiful. May your name be exalted, honored, and

glorified.

vi | P a g e

Table of Contents

Author's Declaration of Previous Publication iii

Abstract iv

Dedication v

Acknowledgements vi

List of Figures x

List of Tables xiii

1. Introduction 1

2. Fundamental Concepts 5

2.1. Distributed Vision Network 5

2.2. Distributed Computing 6

2.3. Silhouettes 6

2.4. Visual Hull 9

2.4.1. Voxel Based Visual Hulls 12

2.4.2. Polyhedral Visual Hulls 14

2.4.3. Image-Based Visual Hulls 17

2.4.4. Bounding Edge Visual Hull 18

2.5. Visual Hull across Time 20

2.6. Comparison 23

2.7. Stereo Vision 25

3. Implementation Platform 28

3.1. Implementation Methodology 28

3.2. Datasets 30

vii | P a g e

3.3. Silhouette Images Computation 34

4. Proposed Visual Hull Model 38

4.1. The Algorithm 38

4.1.1. Modified Bounding Edge Model 40

4.1.2. Bounding Surfaces 45

4.1.3. Merging Bounding Surfaces 45

4.1.4. Re-Meshing 46

4.2. Experiments 47

4.2.1. Results 47

4.2.2. Comparison and Evaluation 51

4.3. Conclusion 53

5. The Proposed 3D Object Reconstruction Model 54

5.1. Existing Models 54

5.1.1. 3D Volumetric Approaches 57

5.1.2. Surface Evolution Techniques 57

5.1.3. Feature Extraction and Expansion Algorithms 58

5.1.4. Depth Map based Methods 59

5.2. Surface Reconstruction Methods 60

5.3. The Proposed Algorithm 62

5.3.1. Producing Depth Maps 62

5.3.2. Merging 3D Points 67

5.4. Experiments 69

5.4.1. Results 69

5.4.2. Comparison and Evaluation 72

6. Conclusions 78

viii | P a g e

7. References 80

Appendix A: Implementation using Java 88

Appendix B: Comparison of the 2nd Proposed Model 94

VITA AUCTORIS 98

ix | P a g e

List of Figures

Figure 1-1. Sample views of DinoSparseRing dataset [2] 2

Figure 1-2. 3D convex hull for DinoSparseRing dataset 2

Figure 1-3. Visual hull model of DinoSparseRing dataset 3

Figure 1-4. Surface points for DinoSparseRing dataset 4

Figure 2-1. Sample view (a) of Dinosaur dataset and its silhouette image (b) [7] 7

Figure 2-2. The polyhedron representation of a plastic horse produced by Baumgart [6]. 7

Figure 2-3. Sample application of chromakeying 8

Figure 2-4. Intersection of silhouette cones 9

Figure 2-5. Two different images with the same silhouette set 10

Figure 2-6. The division of Laurentini of the object surfaces [12] 11

Figure 2-7. Reconstructed visual hull based on different number of views [13] 11

Figure 2-8. A simple octree structure to model the 3D object [16] 13

Figure 2-9. The synthetic objects and their octree models produced by R. Szeliski [16]. 13

Figure 2-10. Two rims intersecting at a frontier point [19] 15

Figure 2-11. The silhouette image and the corresponding edge-bin structure [20] 16

Figure 2-12. The results of the proposed algorithm in [13] on a torus in different number

of views with the processing time 16

Figure 2-13. A sample slice of the image based visual hull [21] 17

Figure 2-14. The rays and their corresponding projected rays [22] 18

Figure 2-15. A bounding edge through the first camera [23] 18

Figure 2-16. A sample view of a 3D object and corresponding bounding edge model from

two views [11] 19

Figure 2-17. A sample view of a 3D object and the corresponding colored surface points

from two different views [11] 21

Figure 2-18. Forward and backward moving of the colored surface points have been

shown as well as the corresponding errors [11] 22

x | P a g e

Figure 2-19. Combining silhouette images from different time instances, by moving the

center of the cameras backward [11] 23

Figure 2-20. Sample image pairs for stereo vision [24] 27

Figure 2-21. The ideal depth map for sample pairs [24] 27

Figure 3-1. A sample view ofMeshLab application 29

Figure 3-2. Images of Dinosaur dataset 31

Figure 3-3. Images of Predator dataset 32

Figure 3-4. DinoSparseRing dataset images 33

Figure 3-5. Resulted silhouette images for Dinosaur dataset 35

Figure 3-6. Resulted silhouette images for Predator dataset 36

Figure 3-7. Resulted silhouette images for DinoSparseRing dataset; sample images (1st

row), results of providers suggestion (2nd row), manually refined results (3rd row) 37

Figure 4-1. (a) The bounding edge model for the 1st view of Dinosaur dataset and (b)

corresponding contour map 42

Figure 4-2. The silhouette of the 1st view of Dinosaur dataset (left) and the inconsistent

pixels which are the difference between the input silhouette and the consistent one (right).

44

Figure 4-3. Intersection of the occupancy intervals form different viewpoints 46

Figure 4-4. Bounding surfaces resulted for the first 8 views of Dinosaur dataset 48

Figure 4-5. Bounding surfaces resulted for the first 8 views of Predator dataset 48

Figure 4-6. Bounding surfaces resulted for the first 8 views of DinSparseRing dataset.. 49

Figure 4-7. Final triangular meshes for Dinosaur datasets 49

Figure 4-8. Final triangular meshes for Predator datasets 50

Figure 4-9. Final triangular meshes for DinoSparseRing dataset 50

Figure 5-1. Ground truth for DinoSparseRing dataset [2] 56

Figure 5-2. Dinosaur sample image pair 63

Figure 5-3. Rectified Dinosaur image pair 63

Figure 5-4. Rectified silhouette image pairs 64

Figure 5-5. Left-to-right (left image) and right-to-left (right image) depth maps produced

for the sample image pairs of Dinosaur dataset 65

xi | P a g e

Figure 5-6. Left-to-right depth map (left image) and resulted depth map after LRC check

(right image) for the sample image pairs of Dinosaur dataset 66

Figure 5-7. Reconstructed 3D points for the first view of Dinosaur dataset 66

Figure 5-8. Refined 3D points for the first view of Dinosaur dataset 68

Figure 5-9. Resulted 3D surface points for Dinosaur dataset 70

Figure 5-10. Resulted 3D surface points for DinoSparseRing dataset 70

Figure 5-11. The inconsistent image of DinoSparseRing dataset 71

Figure 5-12. Final 3D triangular mesh for DinoSparseRing dataset 71

Figure 5-13. Final 3D triangular mesh for DinoSparseRing dataset from different views.

72

Figure B-l . Accuracy comparison among all the state-of-the-art methods 94

Figure B-2. Completeness comparison among all the state-of-the-art methods 95

Figure B-3. Accuracy comparison among the depth map based methods 95

Figure B-4. Completeness comparison among the depth map based methods 96

Figure B-5. Accuracy comparison among the methods which are not published yet 96

Figure B-6. Completeness comparison among the methods which are not published yet.

97

xii | P a g e

List of Tables

Table 2-1. The comparison of different visual hull models 24

Table 4-1. Numbers of inconsistent points for the first 8 views of the Dinosaur dataset. 43

Table 4-2. Number of vertices in the all surfaces versus the merged surfaces before re-

meshing 51

Table 4-3. Execution time of the final visual hull model produced by different models in

second 51

Table 4-4. Execution time sequentially versus distributedly in second 53

Table 5-1. Evaluation results of both proposed models on Middlebury benchmark for

DinoSparseRing dataset. The accuracy is in millimeter and completeness is percentage. 73

Table 5-2. Comparison of accuracy of the state-of-the-art models. The accuracy threshold

is 90% 74

Table 5-3. Comparison of completeness of the state-of-the-art models. The completeness

threshold is 1.25mm 75

Table 5-4. Comparison of accuracy of the state-of-the-art depth map based models. The

accuracy threshold is 80% 76

Table 5-5. Comparison of completeness of the state-of-the-art depth map based models.

The completeness threshold is 1.5mm 77

Table A-l . Class files implemented in Java with number of physical and logical lines of

code as well as number of implemented methods 89

xiii | P a g e

1. Introduction

There are many applications such as obstacle avoidance in robotics, 3D modeling

in inverse engineering, assisted living, security and surveillance which need to localize,

recognize, reconstruct and track the 3D objects. There are many approaches for these

applications, such as marker-based tracking which attaches some markers to the

interesting objects. Some of the existing approaches are not applicable in many

environments; for example, it is not possible to use the marker-based approaches for

surveillance applications in public places. The best, applicable approach is vision

network, because it is relatively cheaper, and it can be configured easily [1].

The area of these applications is quite wide, including Electrical Engineering,

Computer Science, Mechanical Engineering, Medicine, and Security. The goal of all of

these applications is to reconstruct the 3D object, but each of them needs the geometric

information of the 3D object in different level of details. In obstacle avoidance

applications in robotics, for example, moving robot gets the information from the

environment using its sensors, and based on the received information it chooses a path to

reach the destination without hitting the existing obstacles. Since the robot only needs the

location and the course information of the shape of the 3D objects just to move along the

objects, there is no need to recover the exact shape of the 3D object. Controversially, in

3D modeling for inverse engineering, the shape of the object and all geometrical

information of it should be reconstructed as accurate as possible. Considering the

processing time, the reconstruction should be real time for moving robots, while there is

no limitation for 3D modeling applications.

In vision networks, there are different algorithms which will result in different 3D

reconstructed shape of the object, from a coarse model to the most precise one. The

applications in this field recover the 3D shape of the objects based on the captured

images from different views of the object. Most of them use the silhouette images to do

so. All the applications in this field have the three steps including getting geometrical

information from each image, computing a model of the objects in the scene, representing

the objects and making decision about the situation of the objects in the scene.

The inputs used for vision network applications are multi-view calibrated images.

Camera calibration is a part of vision network applications which is out of the scope of

this study. Figure 1-1 shows sample images from DinoSparseRing dataset [2].

c

Figure 1-1. Sample views of DinoSparseRing dataset [2].

The coarsest model in camera networks is 3D convex hull. The 3D convex hull of

a set of 3D points is the smallest subset of the space such that for any two points u and v,

the segment joining them is completely in the subset. Consider DinoSparseRing dataset,

for example, the resulted 3D convex hull has been shown in Figure 1-2.

Figure 1-2.3D convex hull for DinoSparseRing dataset.

2 | P a g e

A better 3D model for the reconstructed object is visual hull model which is

described in the next section as a fundamental concept in 3D reconstruction field. As an

overall view, visual hull is the best approximation of the object based on the binary

images of the object without any color information. Figure 1-3 shows the resulted visual

model for the DinoSparseRing dataset. As it can be seen clearly, the visual hull model is

more precise than the convex hull. In other words, visual hull is much more similar to the

3D object than the convex hull model.

Figure 1-3. Visual hull model of DinoSparseRing dataset.

The 3D reconstructed object is the name of the best model for representing an

interesting 3D object, which shows all the concavities of the 3D objects. This model

represents all geometric information of the object as accurate as possible. To produce 3D

reconstructed object, all the information captured by the cameras will be used including

color information. A sample view of the best reconstructed surface points of

DinoSparseRing dataset has been shown in Figure 1-4.

The 3D reconstructed object model is the most similar model to the 3D object. As

providing more detailed information needs more processing, the execution time of the 3D

reconstructed object is much higher than the visual hull and convex hull models.

3 | P a g e

Figure 1-4. Surface points for DinoSparseRing dataset

In this thesis, I propose two new algorithms, one is a visual hull model and the

other one is a 3D reconstructed object model. The proposed visual hull model produces a

complete triangular mesh based on the bounding edge model, which is the fastest visual

hull model in the existing approaches. The time performance of the proposed model is

better than the most existing approaches which provide the same type of results. For the

second model, I used depth maps to reconstruct the 3D surface points of the object. To

have the reliable depth map, I did a survey in stereo vision to select the best way to do so.

Before describing the proposed models, fundamental concepts are reviewed in

section 2. Implementation platform including programming methodology and datasets are

mentioned in section 3. Section 4 describes the proposed visual hull model and the

obtained results and evaluation. The 3D reconstructed object model is described in

section 5, followed by the conclusions in section 6. The last part, Appendix A, describes

the implemented codes in Java programming language.

I used Matlab and Java programming languages to implement the codes of the

proposed algorithms. Because Matlab is much faster than Java for matrix manipulation, I

used Matlab for image processing tasks, such as window matching. For the 3D

computation, Java is used which is faster than Matlab in this case. The Matlab version

used is 7.0.0.19920(R14), and the Java version is 1.6.0_12.

4 | P a g e

2. Fundamental Concepts

W. N. Martin and J. K. Aggarwal [3] first described the volumetric description

from multiple views. Later, other researches defined the fundamental concepts of the 3D

model approximation, such as silhouette and visual hull. These concepts are used in all of

the corresponding algorithms.

To provide the multi-view calibrated images, as the input for 3D object

reconstruction, there are two approaches. The first one is to use a turntable to rotate the

object and a camera to capture images. The second approach is to configure a camera

network on the environment under study. If a processing unit is available for the camera

nodes in the network, the computation of the algorithms can be distributed over the

network. Otherwise, there is a server which processes the captured images from different

cameras.

2.1. Distributed Vision Network

The most significant concept to be defined is the Distributed Vision Network. In

this study, the definition of the Distributed Vision Networks is the same as the definition

of A. Mavrinac [4]. Distributed Vision Networks are networks of dispersed camera

nodes. Each node has (i) a camera module for image acquisition, (ii) a processor to

process the raw image locally, and (iii) a communication module to send and receive

information. This type of network can either use a central device to perform collective

processing of the data or perform the processing collaboratively by the nodes. The

cameras are calibrated over the network. Camera calibration, also called camera

resectioning, is the process of finding the true parameters of the cameras that produced a

given photograph or video. Camera parameters include the focal length, point of view,

global position, global direction, and global rotation. Camera calibration may be done

automatically over the network, or as a preprocess step in network configuration.

The field of distributed vision networks is a new and growing field, which is still

in the beginning stages of research. This field is a combination of several fields including

computer vision, image processing, distributed computing, embedded systems, data

networks and communications. This combination adds new opportunities from the union

of the fields and new limitations imposed by their intersections [4].

It this study, I consider distributed computing as well as centralized one. The

performance of the proposed visual hull model is evaluated on the both types of

networks. For the 3D reconstructed object model, all the computations are done

sequentially on a centralized server. In this case, a set of camera stations send their

captured images to the server and server reconstructs the 3D shape of the objects based

on the received images and camera parameters.

2.2. Distributed Computing

Using the distributed computing network environment is beneficial for the Vision

Networks in some ways. Distributed computing makes the networks to be scalable. It

avoids transmitting the raw images, which have so huge amount of data. In addition, it

can preserve the privacy of the network users in some applications such as assisted living.

Also, it enhances the flexibility on the type of feature and level of exchanging data. So

we will have the fusion across the three dimensions; 3D space (different camera views),

time (collecting the data over time) and feature levels (selecting and fusing different

feature subsets) [5]. As mentioned before, I consider distributed computing only for the

evaluation of the proposed visual hull model. In this case, the first step of the algorithm is

computed over the camera nodes in parallel, while the next step which is the merging step

is done on a centralized server.

2.3. Silhouettes

All of the existing algorithms use the silhouette concept to get the information

from the images. Silhouette is a binary image in which the pixels are labeled either

6 | P a g e

foreground or background. The scene background pixels are most often colored as white,

while the foreground pixels are colored as black. These foreground pixels are related to

the interesting objects in the scene. Baumgart [6] first considered silhouettes to

approximate a polyhedron representation of the objects. He called his work as inverse

computer vision, because computer vision generates synthetic images from the real

world, while 3D object reconstruction uses the captured images to reconstruct the real

object with all the geometric information. A sample silhouette image with its

corresponding image has been shown in Figure 2-1.

Baumgart [6] used three captured images from a plastic horse on a turntable to

draw the silhouette images. Then by using the silhouette cone intersection, he produced a

polyhedron model of the object. He mentioned that silhouette cone intersection looks like

carving a statue by cutting away everything not related to the object. Figure 2-2 shows

the 3D reconstructed object using Baumgart techniques. His result polyhedron looks like

a statue of a horse which is not completed yet. It seems to be cut by knife.

(a) (b)
Figure 2-1. Sample view (a) of Dinosaur dataset and its silhouette image (b) [7].

Figure 2-2. The polyhedron representation of a plastic horse produced by Baumgart [6].

7 | P a g e

There are two common ways to produce the silhouette from the captured images

which include chromakeying and background subtraction. However, in some recent

work, the silhouettes are computed manually using Adobe Photoshop, just to

segmentation of the foreground and background pixels.

The first approach, chromakeying, also called bluescreen matting. In this

approach the background is a single uniform color which does not appear in the

foreground objects. So by checking the color and compare it with the background color, it

is possible to compute the silhouette of the object. This method can not be used in many

applications, because of its limitation on the background color, but it is applicable in

cinematic special effect and television weather forecasts [8]. A sample application of

bluescreen matting has been shown in Figure 2-3. The selected color for the background

is green, while there is no green pixel for the foreground object. So only by a comparison

of the color of the pixels, it is possible to detect the background pixels and change their

value to provide a special effect.

Figure 2-3. Sample application of chromakeying.

Another common way is background subtraction. In this method, first the

statistical model of the background is produced by capture many images from the

background. So it is possible to detect the foreground objects by comparing the new

image with the statistical model of the background. If the difference for any pixel of the

8 | P a g e

new image is greater than the corresponding threshold, that pixel will be considered as a

foreground pixel [9].

For some datasets, the dataset providers provide the contour information of the

silhouettes as well as the image data. The contour information is a set of pixels which are

not connected. The connected version of these pixels represents the silhouette contour. I

implement a function to produce the best connected version of these pixels. Then based

on the resulted silhouette contours, the silhouette image is produced. Other datasets

suggest the best way to produce the silhouette information. These methods will be

described later.

Silhouette images are very efficient for vision networks in case of

communication, because their size is much smaller than the size of the raw images. For

example, a 2000x1500 color image is approximately 400KB, while a silhouette image

with the same resolution (without any compression) is less than 8KB.

2.4. Visual Hull

The constructed objects of the silhouettes is called visual hull. Visual hull concept

was first defined by A. Laurentini [10]. Visual hull is the intersection of the silhouette

cones, which are the cones started from the camera positions and goes through the

silhouette contours. Figure 2-4 shows the silhouette cones from different viewpoints with

different colors. The intersection of all the silhouette cones is called visual hull model of

the object.

A

Figure 2-4. Intersection of silhouette cones.

9 | P a g e

Based on the silhouettes information, visual hull is the best approximation of the

interesting object. Because visual hull is constructed from the silhouette images, it is also

called Shape from Silhouette (SFS). Visual hull is the maximal one of the objects which

has the same set of silhouettes as the given one. In other word, it is possible for many

objects to have the same set of silhouettes; visual hull represents the maximal object. So,

it is not possible to identify the objects only based on the silhouette, especially for the

non-convex objects. Figure 2-5 shows two different objects which have the same set of

silhouettes. So based on the silhouette information, there is no way to recognize any of

them.

The visual hull applications and the resulted models are very sensitive to

silhouette noise and camera calibration errors.

G. Cheung et al. [11] defined a consistency concept for the set of silhouette

images. The set of silhouette images is consistent, if there is at least one non-empty

volume that exactly explains all the silhouette images. Because there are many objects

that have the same set of silhouettes, G. Cheung defined the visual hull as the largest

possible volume which exactly explains the silhouette images.

A. Laurentini [12] divided the surfaces of a volume into two categories,

silhouette-active surface and silhouette-inactive surface. The former is what can be

reconstructed by the silhouette cone intersection, while the latter one is what can have

any shape without affecting the silhouettes of the object. The following figure shows an

example of this division. Figure 2-6(a) and (b) shows the two categories of surfaces. The

shape of the object in the pentahedron P can not be identified only based on the silhouette

10 | P a g e

images. So the resulted visual hull in the best situation is what has been shown in Figure

2-6(c), while the real object is one has been shown in Figure 2-6(d).

• -p.
• I silhouette-active surface
• silhouette-inactive surface

(») 0) («) (<)

Figure 2-6. The division of Laurentini of the object surfaces [12].

The accuracy of the visual hull mainly depends on the number of silhouette

images and their corresponding camera positions. The visual hull will be tighter if the

number of silhouette images is increased. The greater the number of the views, the more

precise the approximated visual hull. Figure 2-7 shows different reconstructed visual

hulls based on different number of views. It also shows the execution time of

reconstruction for each set. The execution time is increased by increasing number of

views more rapidly.

i ti:
4 views 119 ma

1
 \

' • ' ' J/
12 vfcnra I tit at* 16 views / 217 na 42 view« / 1.44 s I view* J7ins

Figure 2-7. Reconstructed visual hull based on different number of views [13].

Based on the survey I did in this field, there are four main categories of visual hull

models. In existing approaches for modeling the visual hull, two categories are popular,

voxel based approaches and surface based (polyhedron) ones. Other categories are image-

based visual hull and bounding edge visual hull. Main existing models are described in

the following subsections.

11 | P a g e

2.4.1. Voxel Based Visual Hulls

The first category is modeling the objects by a collection of elementary 3D cells.

These cells are called voxels (volumetric pixels), which are first introduced by W. N.

Martin and J. K. Aggarwal [3]. Voxels are classified into two categories, the inside and

the outside one. If voxels are positioned completely outside the visual hull, in other word,

if they have not any intersection at least with one silhouette, they will be classified as

outside voxels. Otherwise, if they intersected partially or completely with all the

silhouette images, they will be classified as inside voxels. Because voxel based model

uses the discrete volumetric representation, it generates some quantization and aliasing

artifacts on the resulting model.

The voxel based approaches improved by introducing octrees. Octrees have been

first introduced by C. L. Jackins and S. L. Tanimoto as an efficient geometric

representation [14]. Then octrees have been used for modeling the objects from three

orthographic projections by C. H. Chien and J. K. Aggarwal [15].

Octrees are tree-structured representations which are used to model the volumetric

data. The octree is constructed by recursively dividing each cube to eight sub-cubes to

cover the interesting volume as accurate as possible. There are three possible locations

for the cubes including inside the volume, outside the volume and on the boundary. If a

cube is completely inside the volume, it will be labeled as inside and its color will be

black. If it is completely outside the volume, it will be labeled as outside and it will be

colored as white. Otherwise, it will be labeled as boundary and be colored as gray. Based

on the application, the gray cubes will be recursively divided to reach the desired

accuracy for modeling the object. Figure 2-8 shows the structure of a sample octree

model [16].

Figure 2-8 represents an octree model by 6 cubes of two consecutive levels. Each

cube has a color, and the gray cubes of the first level has been divided their sub-cubes.

12 | P a g e

C MM, 2 4 ^Jtk

10 «0 6i

Figure 2-8. A simple octree structure to model the 3D object [16].

R. Szeliski used the octree representation to model the objects. To have an

efficient algorithm, he first produced a coarse model of the objects and then by dividing

the gray cubes, he refined the model. By using this approach, the number of the trimmed

cubes was decreased. To check the location of the cube, it is necessary to project the cube

to each image plane to check whether it is inside the silhouette or not. The simplest way

is to project the corners of the cube to the image plane and then check the situation of the

projected hexagon against the silhouette. This method is accurate, but it is very time

consuming. R. Szeliski proposed to convert the cube to a bounding square instead of

project its corners. The resulted reconstructed visual hulls of his model have been shown

in Figure 2-9 [16].

Figure 2-9. The synthetic objects and their octree models produced by R. Szeliski [16].

The octree model performs voxel model. With the same storage space, the

precision of the octree model is better than the voxel one. In terms of processing time, the

13 | P a g e

time needed to construct a voxel model is greater than what the octree model needs,

because it evaluates more geometric cells. For representing the reconstructed 3D shape of

the object, octree model is also faster, since the number of its geometric cells is less than

voxel model.

K. Kutulakos and S. Seitz [17] proposed a voxel based algorithm to model the

visual hull. They called it space carving. Space carving algorithm starts on the initial

volume and recursively checks the surface voxels to decide whether to carve them or not.

It continues checking until no voxels is carved in an iteration.

If the silhouette images are noise free, the smaller voxel size results the better

approximation of the visual hull. Otherwise, if the silhouette images are noisy, smaller

voxel size causes more errors in classification. So, the best size of the voxels is highly

dependent to the error of silhouette images [18].

2.4.2. Polyhedral Visual Hulls

The second category of the popular visual hull modeling is surface based one. In

this category, a polyhedron model of the object is produced by intersecting the silhouette

cones. The surfaces of the polyhedron are the visual cone patches, the edges of it are the

intersection curve between two silhouette cone, and the vertices are the points where

more than two silhouette cones intersect. To generalize the polyhedron, it is assumed that

the contour of the object has been oriented counterclockwise, so the object is always at

the left of the contour.

S. Lazebnik et al. [19] proposed two representations for the visual hull of a 3D

object, the rim mesh and the visual hull one. Rim is the surface points of the object where

a ray through the viewing point intersects the object. The projection of the rim to the

corresponding image plane is the silhouette contour. The intersection of two rims could

be isolated points which are called frontier points. The rim concept has been shown in the

following image. They defined the rim mesh by its vertices (the frontier points), edges

(the segment between successive frontier points), and the faces (the surfaces bounded by

14 | P a g e

the edges). Figure 2-10 shows two rims from two different points of view which intersect

at a frontier point.

Besides, S. Lazebnik et al. [19] described the difference between the rim mesh

and the visual hull one. Because the rim mesh depends only on the ordering of the

frontier points, it is topologically more stable. While the visual hull meshes recover the

geometry information in a more reliable manner.

* » / ;?
_ . ; frontierpoiat

intersection curve

J. '' i ;
S • ' ' V

/
/ ; X

4. >

„" apparent contours '* r>.
J

Figure 2-10. Two rims intersecting at a frontier point [19].

C. Buehler et al. [20] proposed the real time representation of the polyhedral

visual hulls. Their representation is view independent, so it does not need to be

reproduced for a set of silhouette images. It is suited to be computed by the graphics

hardware. They assumed each silhouette is a 2D polygon. For each edge of the polygon,

they compute the face of the silhouette cone. By using the intersection of the face and

other silhouette images, the face of the polyhedron is determined which itself is a

polygon. To intersect the face of the silhouette cone by the other silhouette images, the

edges of the face of the silhouette cone have been projected to the silhouette images. To

accelerate this process, preprocess has been done for each silhouette images. In the

preprocessing step, each silhouette has been divided to the bins. Based on these bins, a

table of the edges-bins is computed. Figure 2-11 shows the divided silhouette image and

the corresponding edge-bins table. The algorithm uses this table to respond as quickly as

possible to the intersection problem. This edge-bin structure can be used for the visibility

issue as well.

15 | P a g e

Figure 2-11 shows an example of an edge-bin structure. The silhouette image is

divided into seven bins. The cells of the edge-bin table contain the intersecting edges

which are sorted ascendingly, based on the distance to the epipole increasingly.

bill i / /Mtt5X^ hmi
/ t x X

Em I 2 S 4 5 6 1
Edges 0 1*4 €2- 9

Figure 2-11. The silhouette image and the corresponding edge-bin structure [20].

J. S. Franco and E. Boyer [13] proposed a fast algorithm to represent the best

polyhedral visual hull. They first computed a coarse approximation of the visual hull by

retrieving the viewing edges. Then, they generated the surfaces of the mesh. Finally, they

identified the faces of the polyhedron. They applied their algorithm on a torus for

different number of views. The greater the number of the views, the more precise the

approximated visual hull. Their results have been shown in Figure 2-12. The time needed

to compute each result has been shown as well, which is increased faster than the number

of views.

4 views /19 m* 8 views 175 mi 12 views 1125 us 16 views /217 ms 41 views / 1.44s

Figure 2-12. The results of the proposed algorithm in [13] on a torus in different number of views
with the processing time.

16 | P a g e

2.4.3. Image-Based Visual Hulls

On of the compact representations of the visual hull is image-based visual hull. C.

Buehler et al. [21] defined the image-based representation as a two dimensional, sampled

representation. For example, a color image is a 2D color samples, or a disparity map in

stereo vision is a 2D disparity samples.

The image-based visual hull is a two dimensional, occupancy intervals samples.

The visual hull is represented by the rays from view points through the image plane.

Instead of storing either foreground or background, the samples are the intervals of the

rays which are inside the visual hull. In other word, the intervals of the ray which

intersect all the other silhouette images are stored in the samples. So for each pixel, the

list of its corresponding intervals is stored. If a pixel is a background pixel, its list will be

empty. Figure 2-13 shows a slice of the image-based visual hull [21].

Figure 2-13. A sample slice of the image based visual hull [21].

The image-based representation has many advantages in comparison to other

models. Its storage requirements and computational complexity are very low, which is

much less than the aforementioned algorithms. It has a simple and fast computation. The

rendering is too simple as well. Because it has two discrete dimensions and one

continuous dimension, it has a higher resolution than the resolution of the voxel based

representation.

W. Matusik et al. [22] proposed an image-based approach to represent the visual

hull. Based on the Calculatus Eliminatus principle, they said that the visual hull

approximation is carving away the regions of space where the object is not. Calculatus

Eliminatus principle states that we should look everywhere that an object is not located,

17 | P a g e

and it must be in the place we haven't looked. Their algorithm contains three steps. It first

projects the rays from a desire viewing point to the silhouette images. Then, in the second

step, by intersecting the projected rays and the silhouettes, it computes the interesting

intervals. Finally, the intervals are returned to the 3D space. The intersected parts of these

intervals from all the silhouettes will be saved for each pixel. A plot of the projected rays

is shown as follows. Figure 2-14 shows the rays from the point of view of an image

through the interesting pixels and their corresponding projected lines on the plane of

another image. All the projected lines intersect at the epipole, the projected point of the

corresponding point of view.

2.4.4. Bounding Edge Visual Hull

The next visual hull representation is bounding edges. This representation has

been first introduced by G. Cheung [18, 23, 11, 1]. He defined the bounding edge

representation as the parts of the rays from the viewing point through the contour of the

corresponding silhouette image which intersect all the other silhouette images.

Target Image

Figure 2-14. The rays and their corresponding projected rays [22].

Figure 2-15. A bounding edge through the first camera [23]

18 | P a g e

Figure 2-15 shows a bounding edge of first camera for a sample pixel which is

located on the 3D ray from the camera position through the pixel, and is intersected with

other three silhouettes. The starting point SV and finishing point F F will be saved for the

pixel as the endpoints of a bounding edge. To have a better performance, instead of

saving the 3D position of each endpoint, its distance to the camera position will be saved

[23].

Bounding edges are very similar to the image-based representation. Like image-

based model, it calculates the intervals of the rays from the view point through the

silhouette pixels. However, in contrast to image-based representation, it considers only

the silhouette contour pixels instead of all the silhouette pixels. Image based

representation is view dependent, since it produces the interval samples for only one

view, but bounding edge model produces the edges for all viewpoints. An example of

bounding edge representation has been shown in Figure 2-16 [11].

Figure 2-16. A sample view of a 3D object and corresponding bounding edge model from two views
[Hi-

Bounding edges lie exactly on the surface of the visual hull. They intersect the

real object at least at one point. The drawback of this representation is that it is

incomplete. A visual hull is complete, if it has all the geometrical information of its

shape. If visual hull has any holes on its surface, it will be considered as incomplete

model. Since the small amount of accurate data is better than the large amount of the

approximated data, in many applications, an exact visual hull is preferred than the

complete one.

19 | P a g e

It is not necessary for the bounding edges to be continuous. They can consist of

many parts. It exactly depends on the shape of the silhouette images. If all the silhouette

images are convex, the bounding edges will be continuous. The important usage of the

bounding edge representation is refinement of the visual hull across time. G. Cheung et

al. [11] proposed an algorithm to increase the number of silhouettes by capturing more

images of the interesting objects over the time.

2.5. Visual Hull across Time

As mentioned before, the visual hull accuracy depends mainly on the number of

silhouette images. To increase the precision of the visual hull, the number of silhouette

images should be increased. There are two ways to increase the silhouettes number. The

first one is to increase the number of cameras to produce more silhouette images which

has the financial cost and the limitation for the camera positions. The second approach is

using the same cameras across time. G. Cheung et al. [11] proposed an algorithm to

increase the number of silhouette by capturing more images of the interesting objects

over the time. If there are K cameras in the environment, and J frames of each camera are

used, the effective number of silhouette images will be JK instead of K. To apply this

approach, first it is necessary to calculate the motion of the interesting object between the

time instances. Then silhouette images in different time instances can be combined based

on the computed motion over the time. The task of estimating the motion of the object is

called visual hull alignment, and the task of combining the silhouette images is called

visual hull refinement.

G. Cheung et al. [23, and 11] considered two fundamental properties of the visual

hull. The first one, called 1st FPVH (First Fundamental Property of Visual Hull), is that

the 3D object which produces the silhouette images lies completely inside the visual hull.

This property can be used for many applications such as obstacle avoidance in robotic

navigation. The second one, called 2nd FPVH, is that each bounding edge touches the real

object at least at one point. This property is very important, such that it makes the

20 | P a g e

construction of the colored surface points (CSP) possible. To construct the colored

surface points, they combined the 2nd FPVH with the stereo vision concept.

Colored surface points have been first introduced by G. Cheung [18]. CSPs are

the 3D points on the bounding edge which touch the object. The information needed to

find the position of the CSPs through the bounding edge comes from the color

consistency check algorithm. It finds the best point on the bounding edge, the color of

which is consistent in all other color images for which the point is visible. The visibility

is another important issue to refine the visual hull across time. Because at least one point

exists on the bounding edge to touch the object, there is no need to define any threshold.

An error measurement algorithm is applied to find the best point. This error is the

variance of the color of the point from different visible point of view. In noise free

environment, the color variance of a 3D point in all the points of view should be zero.

But in real environment, it is necessary to find the best point with least color variance.

Figure 2-17 represents the visual hull by its colored surface points. These CSPs are on the

surface of the visual hull. In contrast to all other representation, CSPs are colored 3D

points.

Figure 2-17. A sample view of a 3D object and the corresponding colored surface points from two
different views [11].

To estimate the motion of the object, G. Cheung et al. [11] used the 3D CSPs. The

algorithm starts with an initial motion, followed by the refinement step. To decrease the

complexity of the algorithm, CSPs are moved forward from the first time instance to the

next one based on the initial motion, and then projected to the images in the second time

instance which is followed by the 3D consistency check. This approach is done in inverse

direction; the 3D CSPs from the second time instance are moved backward to project to

21 | P a g e

the silhouettes of first time instance. Figure 2-18 shows the forward and backward

movement of the 3D CSPs through the time instances.

To refining the motion, G. Cheung et al. [11] used two error measurements

including photometric error and geometric one in both directions, forward and backward.

The forward photometric error is the color difference between the CSPs in the first time

instance and the projected moved points in the second time instance. If the moved points

project in the background section of the corresponding silhouette, the photometric error

will be considered as zero. Because the images may be noisy and there are some errors in

camera calibration in practical cases, they considered valid. For these cases, geometric

error is defined, which is the distance of the projected moved CSPs to the silhouettes.

This error is zero, when the points project inside the silhouette [11].

: Till

Colored SmisMie
Touching taint*
{"3D limtgti*")

In l t in l m o t i o n e s i i m m o (R . 1) t, ^ t,

Error between ihu
projected color* on .
2D images at t. «»<! M ; KT W,1 - H T T

lienor becwtxti tfc
projected cotors on
2t> image* sit vt and p ,

Figure 2-18. Forward and backward moving of the colored surface points have been shown as well as
the corresponding errors [11].

After finding the best approximation of the motion, it's time to combine the

silhouette images, called visual hull refinement. To do so, first a reference time instance

should be set. The first time instance is the best candidate for the reference. The

silhouette images from other time instances are effective silhouette images in reference

time instance, whose points of view are moved, based on the corresponding refined

motion. Figure 2-19 shows the visual hull refinement algorithm.

22 | P a g e

lime i, 'time t. i
i ,. . • C

(R \ - R T t)

R (C"- I)

R T (C I t

<R r , -R*t)

Figure 2-19. Combining silhouette images from different time instances, by moving the center of the
cameras backward [11].

G. Cheung et al. [11] applied the proposed algorithm on the rigid objects as well

as the articulated objects. The articulated objects are the objects that have many parts

which can move in different directions. The best example of an articulated object is

human body. The joint estimation is separated from the motion estimation to decrease the

complexity of the algorithm. The shape and the motion of all the object parts are

computed individually, and then the position of the joints are localized.

2.6. Comparison

The four different representations of visual hull have been described. The entities

of the representations are different. The voxel-based one represents the visual hull by the

cube cells, while the polyhedral representation models it by the faces, edges and vertices

of the polyhedron. The image-based visual hull consists of a two dimensional interval

samples, and the bounding edge model represents the visual hull by the bounding edges

from different viewpoint.

The comparison of the visual hull models has been shown in Table 2-1. Two

factors of the comparison should be defined here which are completeness and exactness.

As it mentioned before, a visual hull is complete, if it has all the geometrical information

of its shape. If visual hull has any holes on its surfaces, it will be considered as

incomplete model [18]. Exactness is a term which refers to the quantization and

discretization issues. If a visual hull model uses any type of quantization, it will be

considered as an inexact model. Otherwise, it is an exact representation.

23 | P a g e

Considering exactness, it should be mentioned that only the voxel-based

representation is not exact because it uses discretization for classification of the voxels.

Because surface-based and voxel-based models produce all the geometric information of

the resulted 3D shape, they are complete, while the others are not.

However, it is not possible to select the one representation as the best model

because each model has its own strengths and weaknesses. Deciding about the best model

only depends on the intended application.

Table 2-1. The comparison of different visual hull models.

Model Voxel-Based Surface-Based
(Polyhedral)

Image-Based Bounding Edge

Geometric
Entity

Cube Cells
Polyhedron

Faces, Edges and
Vertices

Two
Dimensional

interval samples

Bounding
Edges

Number of
Dimension 3D 2D ID ID

Exactness Inexact Exact Exact Exact

Completeness Complete Complete Incomplete Incomplete

Computational
Complexity

Low High Low Moderate

Storage
Requirement Moderate-High High Low Low-Moderate

24 | P a g e

2.7. Stereo Vision

To reconstruct a 3D shape of the object, the second suggested model is proposed

based on Depth Maps. Depth map is a map which contains the depth information for each

pixel. Depth value is the amount of shifting between the positions of the corresponding

pixels between two images from different views. The shifting amount is called disparity,

and the depth map is also called disparity map. Depth maps can be shown as grayscale

images, in which the nearer objects to the camera look lighter. The top performers of the

existing methods in 3D object reconstruction are depth map based methods, which

usually have two steps, producing depth maps and merging them.

The main step of depth map based methods is to produce the reliable depth maps,

which influences the quality of the final reconstructed object. To produce the depth maps,

two images of the scene from different viewpoints are used. Because of using a pair of

images, it is called stereo vision or stereopsis. Stereo vision gets two rectified images

from different viewpoints, and calculates the disparity for each pixel. Disparity value is

the shifted amount between the two views for each pixel. In other words, disparity value

is the difference between the position of each pixel in one view and its best match in

another view. Because to provide the depth maps, the disparity value is calculated for all

pixels of the image, it is called dense stereo matching.

In stereo matching, the view for which the depth information is calculated is

called reference view, and another view is called the target view. To find the best match

for each pixel of the reference view, first a neighborhood window is considered, which is

usually a square window. Then a measurement is applied to find the best match pixel

from the target view. There are two types of measurement including the error

measurement and correlation measurement.

1. Error Measurement: It measures the errors between the reference pixel and

the target one over the neighboring window. Finally, the target pixel

which has the minimum amount of error is selected as the best match. Sum

25 | P a g e

of Absolute Differences (SAD) and Sum of Square Differences (SSD) are

the error measurement functions which have been shown as follows.

771-1 771—1
2 V 2 m-1£ .=_m-ilR{x+i,y+n- C(x+i+s*d,y+j)\

SAD(x,y,d) = ——-———1 (1) v J J mxm

m-l 77t-l ,.\2 £._2
 m-iE,_2 m-i(R(x+i,y+;)- C(x+i+s*d,y+j))

SSD (x, y, d) = " 2 2 — (2)

where the neighboring window i s m x m square window, and R(x,y) and

C(x,y) mean the pixel value of the reference image and target image for

row x and column y, correspondingly.

2. Correlation Measurement: It measures the correlation between two

windows, and selects the pixel with the highest correlation value as the

best match. Normalized Cross Correlation (NCC) is a correlation equation

which has been shown as follows.

m-l rn—l
Z.J2 TO-jS .1 m - 1 (« Q + t , y + - ?) - «)x(C(.x+i+s*d,y+n- C)

NCC (x, y,d)= , 2 J" 2 — — — — (3) v ' J m-l m-l m-l m-l v '
2 zm-iZ 2 m-i(R(x+i'y+j)-R)2xZ 2 TO-2

 m_1(c(*+i+s*d,y+;)- c)2
i=—J- ;=—J- ' = - — ——

where R and C are the average of the pixel values over the neighboring

window of the pixels of the reference image and target image,

correspondingly.

Sample image pairs of Middlebury stereo vision datasets [24] have been shown in

Figure 2-20. As it can be seen clearly, the objects which are nearer to the cameras have

larger amount of shifting between two views.

26 | P a g e

Figure 2-20. Sample image pairs for stereo vision [24].

The ideal depth map for the sample image pairs which have been shown in Figure

2-20 has been shown in Figure 2-21. Because the disparity values for the nearer objects

are higher, they look lighter in depth map.

Figure 2-21. The ideal depth map for sample pairs [24].

The depth map based models have been reviewed in depth because the proposed model is

a depth map based model. The proposed model uses the surface reconstruction methods

to provide a triangular mesh surface to evaluate the results by Middlebury benchmark.

27 | P a g e

3. Implementation Platform

In this thesis, two models to reconstruct the 3D object have been proposed. The

proposed algorithms are implemented using Java programming language and Matlab.

Matlab is used because it is very fast for matrix manipulation which is very important in

computer vision; images are considered as matrices. However, Matlab is very slow for

other computations such as ray projection. In these computations, the algorithms are

implemented in Java.

To test and evaluate the proposed models, the algorithms are applied on existing

datasets, which are popular in this field. The selected datasets will be described in the

following subsections. For one of the datasets, Adobe Photoshop is used to produce the

high quality silhouette images as a semi-automatic process, like what S. Lazebnik et al.

[25] did.

3.1. Implementation Methodology

As it mentioned before, matrix manipulations is implemented in Matlab, which

include the silhouette production, image rectification, and stereo matching process. The

codes for mentioned computation are implemented as the Matlab functions. For each

dataset, a final script is implemented which performs all the steps for all the images

sequentially. However the number of implemented functions in Matlab is great, all the

implemented functions in Matlab have small number of Lines of Code (LOC).

Source line of code (LOC) is a software metric which is used to measure the size

of an implemented application, by counting the number of lines in the source code of the

implementation. There are two types of this measure, physical and logical. Physical line

of code which is referred by LOC counts the number of line in the text file of the source

code. It counts the comment lines and also blank lines as lines of code, which is not

accurate enough to estimate application size. In contrast, logical line of code, referred as

LLOC, counts the number of statements in the code. Logical measure is more appropriate

for size estimation of the application.

However, all the other computations of the proposed methods are implemented in

Java using Object Oriented Programming (OOP). I defined 31 different classes which are

described in Appendix A. Just to show the estimation of the implemented codes, it should

be mentioned that the number of logical lines of code (LLOC) for all the java codes is

4252 lines, and the number of physical lines of code (LOC) is 6380. For detailed

information of the implemented classes, please refer to Appendix A.

Another important issue here is that there is no graphical user interface

implemented in Java, and codes are just implemented to calculate the final results and

save it as a file with PLY format. Finally, MeshLab software [26] is used to show the

final result. MeshLab is an advanced mesh processing application for automatic and user

assisted editing, painting, converting, cleaning, remeshing, coloring, filtering, measuring,

scanning, and rendering of large unstructured 3D triangular meshes.

Implementation of MeshLab is started as a university project with small group of

core developers at Visual Computing Lab of the Italian National Research Council

Institute. Now, there are many plug-in developers for MeshLab around the world. Figure

3-1 shows a sample view of MeshLab application showing the final result of the proposed

visual hull model on Dinosaur dataset.

Figure 3-1. A sample view of MeshLab application.

29 | P a g e

PLY file format is developed at Stanford University [27]. PLY file format has two

different types, binary and ASCII. An ASCII PLY file is a text file which first determines

the number of vertices and surfaces of a mesh, following by the information of all

vertices and surfaces. Vertices are defined by their x, y, and z parameters and their color

if applicable. Surfaces are determined by the lists of their vertices which are defined by

their indices in vertices section.

3.2. Datasets

To show the performance of the proposed models, complex 3D datasets have been

selected. These datasets are the 3D Photography datasets [7] and Middlebury datasets [2].

3D Photography datasets are produced using three fixed cameras (Canon EOS ID Mark

II) and a motorized turn table in Beckman Institute and Department of Computer Science

at University of Illinois at Urbana-Champaign. Each dataset of 3D Photography

collection has 24 images from 24 points of view, which are calibrated using Intel's

OpenCV package [28]. The calibration information is provided in the format of the

Camera Calibration Toolbox for Matlab [29]. Moreover, the contour information of the

interesting object has been provided as unconnected 2D pixels.

Middlebury datasets are provided by support of Middlebury College, Microsoft

Research, and the National Science Foundation. They used the Stanford Spherical Gantry

to capture images, which enables moving a camera on a sphere to specified latitude and

longitude angles. The cameras are calibrated by capturing the images of a planar grid

from different points of view.

From 3D Photography datasets, Dinosaur dataset and Predator dataset are

selected, each of which has 24 images from different viewpoint. The intrinsic parameters

and the image size are the same for the first 8 views. They are the same for next 8 ones as

well as the last 8 ones. These intrinsic parameters include the focal length, principal

point, skew coefficient and distortion coefficients. It is easy to provide the matrix of the

intrinsic parameters to map the camera coordinate system to the pixel coordinates of the

image. The extrinsic parameter for each camera is provided as a 3x4 matrix. This matrix

30 | P a g e

can be used to map a world point in homogeneous coordinate to the corresponding

camera coordinate. The images for Dinosaur dataset have been shown in Figure 3-2.

m / t v

pe»
i

t

f ' s

Figure 3-2. Images of Dinosaur dataset.

The Predator dataset specification is similar to Dinosaur dataset. The images for

Predator dataset have been shown in Figure 3-3.

31 | P a g e

Figure 3-3. Images of Predator dataset.

From Middlebury datasets, the DinoSparseRing dataset is selected which has 16

images from different viewpoint. The intrinsic parameters and image size is the same for

all 16 views. Figure 3-4 shows the images for DinoSparseRing dataset.

32 | P a g e

Figure 3-4. DinoSparseRing dataset images.

The contour information is provided for each image of 3D Photography dataset in

a text file in the following structure. The file starts with "Contour" name, followed by the

number of contours. It contains the number of pixels and the pixel information for each

contour. In all of the datasets, it is considered that there is only one contour. As it can be

seen in some images of Dinosaur dataset, the images have some holes, so the silhouette

33 | P a g e

information of this object should not be a connected part. However, they consider the

contour of the object as a part without any hole.

A sample file is as follows.

1. CONTOUR
2.

3. 1
4.
5. 951
6 .

7. 1276.27 871.568
8. 1280.03 871.535
9. 1283.78 871.377

As it is clear, the pixels coordinate information is not discrete, it is in float format.

Prior to computing a connected version of the image contour, the numbers should be

discretized.

3.3. Silhouette Images Computation

This section is divided into two parts. The first one is for the 3D Photography

datasets, and the second one is for the DinoSparseRing dataset.

For 3D Photography datasets, the contour information is provided. I use this

information to compute the silhouettes. I first convert the pixel information of the contour

to the discrete values. Using these discrete values, I produce a binary image which is

black in the mentioned pixels, while other pixels are white. I connect each pixel to the

consecutive pixel by finding the best discrete connection throw four neighboring pixels.

This algorithm works based on the slope of the connecting line between the current pixel

and the consecutive one. In each iteration, it selects the best of its four neighbors. The

best neighbor is one for which the slope of the connecting line throw the current pixel is

close to the slope of the line connecting the current pixel and the consecutive one.

After producing the closed silhouette contour, the silhouette image can be

produced. In other words, the pixels which are located in the contour should be

34 | P a g e

considered as foreground pixels. To do so, I implement another algorithm which

classifies pixels based on the class of its neighbors. If one of the eight neighboring pixels

of a pixel is classified as foreground, the pixel will be classified as foreground too. This is

the same for the background pixels. If all the neighboring pixels are not classified yet or

they are the contour pixels, the pixel will be classified based on the class of the pixels in

the other side of the contour pixels, inversely.

These two mentioned algorithm is implemented in Matlab as a parser function

which gets the text file as an input and produces the silhouette images. Resulted

silhouette images for Dinosaur dataset have been shown in Figure 3-5, and Figure 3-6

shows the produced silhouette images for Predator dataset.

T, H

Figure 3-5. Resulted silhouette images for Dinosaur dataset.

As it can be seen clearly, silhouette images do not have any holes, because there

is no information provided for the exiting holes. To apply the proposed models, the same

silhouette images as ones shown in Figure 3-5 and Figure 3-6 are used.

35 | P a g e

For Middlebury dataset, there is no contour information, but dataset providers

suggest doing three steps to get a good set of silhouettes. However, the results of their

suggestion are not good enough to get appropriate results from the proposed models. I

refine these results using Adobe Photoshop as a semi-automatic process to get high

quality silhouette images. Using the new silhouette images, many of the wrong holes

produced by the previous silhouette images are removed from the 3D reconstructed

object. Like how S. Lazebnik [25] used Adobe Photoshop, I use it as a segmentation of

the foreground and background pixels.

7 V 0 0 $ ' • %

s 4 ̂ ^
Figure 3-6. Resulted silhouette images for Predator dataset.

Figure 3-7 shows the results of the suggested method as well as the refined

results. The silhouettes resulted of the suggested method has many errors, especially for

dark shadows on the object. However, the object is partially outside the field of view in

some images, which makes some inconsistency to the final results.

36 | P a g e

The suggestion of the providers of Middlebury dataset [2] includes following

steps:

1. Threshold the gray images at 0.19 (where intensity values range

from 0 to 1).

2. Dilate the result by 10 pixels.

3. Erode the result of dilation by 7 pixels.

Figure 3-7. Resulted silhouette images for DinoSparseRing dataset; sample images (1st row), results
of providers suggestion (2nd row), manually refined results (3rd row).

37 | P a g e

4. Proposed Visual Hull Model

In this section, a complete visual hull model is introduced. The proposed model is

based on bounding edge representation which is one of the fastest visual hull models.

However, the bounding edge model has fundamental drawbacks, which make it

inapplicable in some environments. The proposed model produces a refined result which

represents a complete triangular mesh surface of the visual hull. Further, comparison of

the results by the state-of-the-art methods shows that the proposed model is faster than

most of modern approaches, while the results are qualitatively as precise as theirs. Of

interest is that proposed model can be computed in parallel distributively over the camera

networks, while there is no bandwidth penalty for the network. Consequently, the

execution time is decreased by the number of the camera nodes dramatically.

The goal of all the algorithms in this field is to construct a visual hull H from the

input set of silhouette images from different points of view {Sk\k — 1,..., K), where K is

the number of cameras in the network.

Camera calibration is an important issue in vision network which is out of the

scope of this study. There are many works done to calibrate the cameras. It is considered

that the cameras are calibrated, and there is a function /7fc(P): R 3 —» Z2, which maps a

3D space point P to a 2D pixel coordinatep in the kfh image plane.

The proposed visual hull model is described in the following subsection in details.

The resulted visual hull model has been shown in next subsection, followed by the

evaluations and comparison of the results by modern approaches.

4.1. The Algorithm

As it can be seen clearly in the comparison of existing models in previous

sections, every visual hull model has some weaknesses. The volumetric models are not

applicable in some application because of the quantization errors. The surface-based

models suffer from the complexity of the computation it needs as well as the run time.

The bounding edge and image-based models are incomplete. Moreover, the image-based

model is view dependent. Fortunately, it is possible to overcome disadvantages by

applying other algorithms to improve the final results. We found that it is possible to

produce a complete visual hull model based on the bounding edge visual hull. This

section describes the ideas and algorithms which are used in the new model.

The base contribution for the proposed model is to provide a complete visual hull

representation based on the incomplete representation fundamentals. The bounding edge

representation is an incomplete representation, but it is not view dependent because it is

applied on all points of view. Based on the bounding edge model, we can provide an

incomplete, but accurate visual hull representation of the 3D object. As mentioned

before, the bounding edge model is efficient in execution time as well as storage space

requirement. Our contribution is to provide a surface mesh over the incomplete visual

hull model, which results in a complete and accurate 3D triangular mesh representation of

the object in an acceptable time instance.

Our proposed visual hull algorithm consists of the following four steps:

1. Applying a modified bounding edge model on the set of the

silhouettes.

2. Provide bounding surfaces based on bounding edges for each

viewpoint.

3. Merge the bounding surfaces to produce the final visual hull mesh.

4. Applying a re-meshing algorithm to improve the quality of the

final mesh.

All the mentioned steps are described in the following subsections.

The idea for this work is motivated by Projective Visual Hulls which is published

by Lazebnik et al. [25]. They considered the cone strips of the surface of the cones as the

boundaries of the visual hull. They provide a mesh based on the edges and points they

recover from the visual cones. The edges are intersection curves between two visual

39 | P a g e

cones, and the points are frontier points and intersection ones. As the first step of their

work, they provide the surface of the cone strips from each point of view. Then the cone

strips provide the final visual hull as a triangular mesh. Their work is based on oriented

projective differential geometry, which transfers the data from the 3D space to 2D one.

The idea taken from the projective visual hull model is to provide a final visual

hull mesh based on the bounding surfaces. The bounding surfaces are the surfaces

produces based on the information from bounding edge model. In overall view, our

model is similar to Projective Visual Hull. The outputs of the steps are similar to each

other, but not the same. The outputs of the first steps for both models are the geometrical

information recovered from silhouette images. In our model, the information are

bounding edges, while in Projective model, it is the intersection curves and points. More

important, the details of each step are completely different. For example, the merging

step merges the surfaces provided from each point of view for both models, but in

different way, because their input information are not the same. However, the last step

which is refining the final model is the same for both models.

4.1.1. Modified Bounding Edge Model

The first step of the algorithm is to apply the bounding edge model to the

silhouette set. The bounding edge model which is used in the proposed algorithm is

different from the main bounding edge model in only one part. The difference between

these two types is the information they record for each contour pixel. The method used to

calculate the occupancy intervals are the same as what Matusik et al. [22] used for their

image-based model.

The main bounding edge model works as follows. Each contour pixel pf of the

silhouette Sk is back projected to a 3D ray Rf which starts from camera center C* and

goes through the 3D position of the mentioned pixel coordinate p f . The 3D ray R? is the

position of all the 3D points P which are mapped to the corresponding contour pixel pf

of the silhouette Sk by function /7fc(P).

40 | P a g e

Rf = {.p\nk(p) = P f } (4)

The algorithm starts with a contour pixel and continues to its neighbor

recursively, until algorithm reaches the start point. The index i for the contour pixels is

based on the mentioned order, which can be clockwise or counterclockwise. In our

experiment, we consider the counterclockwise order, in which the map of the object is

always at the left hand side of the direction of traversing the contour points. In the next

step, the 3D rays are projected to the all other silhouette planes, and intersected with the

silhouettes. Finally, the intersection parts of the rays with all other silhouettes are

returned to the 3D space. These returned intersection parts are the occupancy intervals.

It is not necessary for the occupancy intervals to be complete. The occupancy

intervals can consist of more than one segment, if there is at least one non-convex

silhouette image. The intervals are saved for each contour pixel, as a set of segments.

Each segment is considered as a pair of its endpoints, start and finish points. For each

endpoint, only the distance to the corresponding camera center is saved which is a ID

value (real number). Bounding edge Ef is shown by

E i = { { S P t m . F P t m) \ m = { 1 M } } (5)

where M is the number of segments of the bounding edge. SP^m and FP*m are the

distance from the start point and finish point of the mth segments to the camera center Ck,

correspondingly.

The difference between our proposed model and the main bounding edge model is

the information recorded for each occupancy interval. The main model records only ID

value (real number) for each endpoint of each occupancy interval. In our model more

information is recorded for each endpoint of occupancy intervals. It includes the ID

value, the silhouette which intersects the occupancy interval at the corresponding

endpoint and the pixel of the silhouette which cuts the occupancy interval at the position

of endpoint. Consider an occupancy interval(5P^m,FP^m). When a 3D ray Rf is

projected to a silhouette plane Sk„ the endpoints of the intersection parts of the projected

41 | P a g e

ray with the silhouette Skl are its contour pixels. The SP£m and FP^m are back-projection

of the contour pixels to the 3D ray Rf. In our model, we record references to the

silhouette Sk, and to its corresponding contour pixels.

This modification does not affect the run time of the main model, because it is

similar to the main bounding edge model and only keeps more information. So it needs

more storage space than the main model. For each endpoint in the main model, there is

only a ID value, but in the modified model, each endpoint needs to have sufficient space

for the ID value, the silhouette reference, and the pixel position. Like the main bounding

edge model, the modified bounding edge information should be produced based on each

point of view.

Figure 4-1. (a) The bounding edge model for the 1st view of Dinosaur dataset and (b) corresponding
contour map.

Figure 4-1 shows the resulted bounding edge model and the corresponding

contour map for the first view of the Dinosaur dataset. The contour map is a diagram for

which the x-axis is the contour pixels in their order and the y-axis is the occupancy

intervals in term of their distance to the camera center.

There are two types of discontinuities in contour map. The first one is the

discontinuity for inconsistent contour pixels. Cheung et al. [11] defined a consistency

concept for the set of silhouette images. The set of silhouette images is consistent, if there

is at least one non-empty object O that exactly explains all the silhouette images

m m" ̂ W""""*! "m m m UK to: to: to;: to: to
Contour Pixels

6}

42 | P a g e

which means that the projections of the volume to the silhouette planes fit the silhouettes,

that is

3 0 V f c e { l K} n k (0) = 5 f e . (6)

The inconsistent pixels are those pixels whose back-projected 3D ray has no

intersection with all the other silhouettes. This type of discontinuity is removed for the

final visual hull automatically, because the rays from different points of view cover the

discontinuity.

However, the inconsistent pixels can be removed as a preprocess step for the

model. The preprocess step first finds the inconsistent pixels and removes them from the

silhouettes. Like bounding edge step, the preprocess algorithm starts from a contour

pixel, and traverses the contour pixels in a way that the silhouette is located on the left

hand side. In processing each pixel, it checks whether the corresponding 3D ray has

intersection with all the other silhouettes. If there is any intersection, it goes for the

successor contour pixel. Otherwise, it removes the current pixels from the silhouette and

then finds a new successor for the preceding pixel. This routine is continued until the

starting point is reached.

Table 4-1 shows the result of applying preprocess algorithm on the first 8

silhouettes from the Dinosaur dataset. The result shows that the percentage of

inconsistent pixels is less than 0.5% for each point of view. After the preprocess step, the

proposed algorithm will apply to the consistent silhouette set.

Table 4-1. Numbers of inconsistent points for the first 8 views of the Dinosaur dataset.

View 1 2 3 4 5 6 7 8
Silhouette
Points No. 604,566 429,018 378,636 588,082 627,430 480,970 394,818 622,285

Inconsistent
Points No. 2,444 949 608 977 1,150 315 917 1,310

Percentage
(%)

0.40 0.22 0.16 0.16 0.18 0.06 0.23 0.21

43 | P a g e

Figure 4-2 shows the input silhouette and the differences between the input

silhouette for the first view and the consistent one resulted by applying preprocess. The

difference image contains the inconsistent pixels which are 2444 for the first point of

view. It has the greatest number of inconsistent pixels because of the relative position of

the object to the corresponding camera center.

Figure 4-2. The silhouette of the 1st view of Dinosaur dataset (left) and the inconsistent pixels which
are the difference between the input silhouette and the consistent one (right).

The second type of discontinuity is due to the self-occlusion. Since the interesting

object here, dinosaur toy, is a self-occluded object, some parts of its body are occluded in

some point of view. The occlusion causes some discontinuities in the bounding edge

model. As it can be seen clearly in the 3D representation of the resulted bounding edge

model, Fig. la, the hands of the dinosaur, for example, are not connected to its body, and

also there is no information for the part of its stomach which is occluded by hands. These

discontinuities can be seen in the contour map as well. Actually, these discontinuities are

due to the fact that the occluded parts of this view are visible from other points of view.

So the discontinuities are recovered for the final visual hull by the occupancy intervals

from the other points of view. It should be mentioned here that the occluded parts of the

3D object which are not visible in all views do not make any discontinuity in contour

map.

44 | P a g e

4.1.2. Bounding Surfaces

After computing the bounding edge information, it is time to produce the mesh

over the computed bounding edges. This job is done for each point of view individually.

A surface is generated using a triangular mesh algorithm for each point of view. These

surfaces are bounding surfaces which cover parts of the object which are invisible for the

corresponding point of view. The input for this step is a contour map, and the output is

3D triangular mesh surfaces. The algorithm for this step considers the gap between

occupancy intervals of two successive contour pixels as the surface of the visual hull, if

they have any intersection with each other. If a gap between two occupancy intervals are

considered as a part of surface, then two triangles will be generated which have one

occupancy interval as a side and one endpoint from other occupancy interval as a vertex.

Consider two successive contour pixels pf and pf+ 1 . For each segment of their

occupancy intervals, the endpoints are evaluated. Consider the m'h segment of the

occupancy interval for point pf and the nth segment of the occupancy interval for the next

pixel. If one of the endpoints of each of them is located between the endpoints of the

other one, the gap between these two segments is considered as a part of the strip mesh

surface. For instance, if S P ^ which is a ID value (real number) is greater than

SPj<
+ln and smaller than F P f + l n , then two triangles are added to the strip mesh surface.

These triangles are triple points (SP^m, FP*m, FP;+ l j n) and (SP/^, FPf-+ln, 5P(+l n) . To

have the best triangular mesh, based on the positions of the endpoints, the new points

may be added. To select the occupancy intervals for providing the surfaces, only the ID

value of the endpoints are used. The other information will be used for the next section to

merge the surfaces.

4.1.3. Merging Bounding Surfaces

The next step is merging the resulted bounding surfaces. To merge the surfaces,

the extra information recorded in the first step is used. We call both the start point SP*m

and finish point FPj^m as the endpoints EPfm . As mentioned before, an endpoint EPj^m

45 | P a g e

of any segments of any occupancy interval has a reference to the silhouette Sk, which has

an intersection with one of its contour pixels p f ' . Because pf ' i s a contour pixel of

silhouette Sk„ it should have an occupancy interval f f ' for the bounding edges of the

silhouette Sk,. This interval crosses the endpoint EP^m. Endpoint EP^m can be positioned

on an endpoint of a segment of Ef'or on the middle of a segment.

Figure 4-3. Intersection of the occupancy intervals form different viewpoints.

Figure 4-3 shows a part of the final triangular mesh, in which some endpoints are

the endpoints for another point of view (right hand side of the figure) and others are the

middle points (left hand side of the figure). Based on the concept mentioned above, it can

be concluded that each endpoint of occupancy intervals at least exists in one bounding

edge model from different point of view. So by finding these points, it is possible to

merge the surfaces. By this algorithm, the number of the points of the merged surface is

much less than the points of the overall strip surfaces. The experiments show that the

number of the points is decreased by 30 to 40 percent. At first glance, it seems it should

be decreased by more than 50 percent, but it is not. Some endpoints are located on the

middle of another occupancy interval. Since middle points are not counted as endpoints,

the decreasing amount of the point number is less than 50 percent. The decreasing

percentage of the point number depends on the 3D object and the relative positions of the

cameras.

4.1.4. Re-Meshing

The final step of the proposed model is refining the resulted mesh. Because of the

lack of the vertices along the occupancy intervals, which are used to produce the

46 | P a g e

triangular bounding surface mesh, the triangles are thin and long. To refine the triangles,

a set of edge split, collapse and swap operations are applied on the final mesh. Edge split

operation is considered for too long edges, while edge collapse operation is performed for

too short edges. The edge swap operation guarantees that each vertex has a degree close

to six. After applying the re-meshing step, we will have a refined complete triangular

mesh of the visual hull.

4.2. Experiments

To show the quality of the proposed model, it is applied to some datasets which

are describe in previous section. The results have been shown in the next subsection

followed by an evaluation part. There is one step before applying the proposed model

which is producing consistent silhouette set for each dataset based on provided

information, which is described completely in previous section.

4.2.1. Results

Figure 4-4 shows the bounding mesh surfaces resulted from the first 8 views of

Dinosaur dataset. Each image shows the bounding surface from one viewpoint. As it can

be seen clearly, the strip surfaces are not connected and there are some discontinuities in

them.

47 | P a g e

Figure 4-4. Bounding surfaces resulted for the first 8 views of Dinosaur dataset.

The bounding surfaces resulted for the Predator dataset has been shown in Figure

4-5, and Figure 4-6 shows the same type of results for DinoSparseRing dataset.

Figure 4-5. Bounding surfaces resulted for the first 8 views of Predator dataset.

48 | P a g e

1

J
* «•

: i

i •
\

! 1

/ s

. 'i
<

. F % 1
- 1 1 , , .

f \

> fi jBfc-
r s \

J \ \ >

, v V -
"i
1...

i
j i
/ 7 \

Figure 4-6. Bounding surfaces resulted for the first 8 views of DinSparseRing dataset.

Figure 4-7 and Figure 4-8 show the merged surface of the bounding surfaces for

Dinosaur and Predator datasets. The final triangular mesh for DinoSparseRing dataset has

been shown in Figure 4-9. As it can be seen clearly, the surfaces are connected and the

discontinuities have been removed from the mesh.

Figure 4-7. Final triangular meshes for Dinosaur datasets.

49 | P a g e

Figure 4-8. Final triangular meshes for Predator datasets.

Number of vertices in the overall surface and merged surface before re-meshing

for each dataset has been shown in Table 4-2. By merging surfaces, number of vertices is

decreased significantly. For example, for Dinosaur dataset, it has been decreased by 40%.

It is true that some points in the final mesh are removed because they are identical in two

or more viewpoints.

j l i W f e ,

Figure 4-9. Final triangular meshes for DinoSparseRing dataset.

50 | P a g e

Table 4-2. Number of vertices in the all surfaces versus the merged surfaces before re-meshing.

Dataset All Surface Merged Surface Percentage (%)

Dinosaur 432,422 261,017 60.36

Predator 388,406 258,726 66.61

DinoSparseRing 126,772 80,063 63.16

4.2.2. Comparison and Evaluation

Since the proposed model is complete and has a triangular mesh surface, to

compare and evaluate the results, complete triangular models should be considered. For

this study, the projective visual hull model and the last two versions of Exact Polyhedral

Visual Hulls [13] are selected for comparison. The results for other models are taken

from Lazebnik et al. [25] which are produced by running the algorithms on an Intel

Pentium IV desktop with a 3.4GHz processor and 3GB of RAM. To have a consistent

comparison, the proposed model is executed on the same machine.

The results have been shown in Table 4-3. It should be mentioned here that the

images are the results of model of first 8 views of the datasets, while the times mentioned

in Table 3 are the execution time of the model over all views of the datasets to make the

comparison possible. As it can be seen clearly, the proposed model is faster than the

Projective Visual Hull and the first version of EPVH, while it is not as fast as EPVH 1.1.

Table 4-3. Execution time of the final visual hull model produced by different models in second.

Dataset EPVH 1.0 EPVH 1.1 Projective Proposed

Dinosaur 6,329.5 138.0 513.4 479.3

Predator 5,078.2 136.0 737.2 647.9

Since there is not any ground truth for the ideal visual hull model, it is not

possible to compare the results quantitatively, but it can be said that the results of the

51 | P a g e

proposed model are qualitatively as accurate as the mentioned existing algorithms. This is

evaluated by checking the critical parts of the interesting objects which are so complex.

One of these critical parts is the connection of the dinosaur's hand to its body. It should

be mentioned again that the figures are resulted based on only the first 8 views of each

datasets, while other algorithms used all views.

Comparing the required time, the proposed model is similar to the Projective

Visual Hull model. The main step of Projective model which takes much amount of time

is calculating the first generation of information, producing the 1-skeleton of the 3D

object. For Dinosaur dataset, for instance, producing 1-skeleton takes 318.9 seconds,

while the time needed for the triangulation step is 76.8 [25]. The proposed model works

the same as Projective Visual Hull representation. The execution time for producing the

3D mesh surfaces and merging them takes only 6.8 seconds for Dinosaur dataset, which

is much less than 472.5 seconds for the first step. Another issue is that our merging step

is much faster than the merging step for Projective model.

The most important advantage of our model is that it can be computed in

distributed manner. If the camera nodes have processor units, they can participate in the

first step of the algorithm. Because the first step is based on each viewpoint independent

to other views, it can be done by each camera node. So the execution time for producing

the bounding surfaces will be divided to the number of camera nodes. In this case, the

overall execution time will be decreased dramatically. For instance, the final result of

Dinosaur dataset will be obtained in less than 30 seconds. The merging step can be

executed by the main server for centralized camera networks or by any of the camera

nodes in the network or by all of them simultaneously, which depends on the application.

The communication over the network is not an issue because the input for the first step is

silhouette images and the output is the occupancy intervals for contour pixels of the

silhouettes which are so efficient for network communication.

The results of the distributed programming are compared with the sequential

programming in Table 4-4. The big difference between the execution time of

52 | P a g e

DinoSparseRing dataset and others is because of the number of images for each dataset

and the size of the images shown in Table 4-4.

Table 4-4. Execution time sequentially versus distributedly in second.

Datasets
Dinosaur

24 views-2000x1500
Predator

24 views - 1800x1800
DinoSparseRing

16 views - 640x480 Datasets
Sequential Distributed Sequential Distributed Sequential Distributed

Bounding
Surfaces 479.3 21.97 647.9 28.58 37.92 2.87

Merging
Surfaces 6.8 6.8 7.6 7.6 2.8 2.8

Overall 486.1 28.77 655.5 36.18 40.72 5.67

4.3. Conclusion

A new simple yet versatile model for visual hull representation is proposed. It is

based on bounding edge model which is one of the fastest available models. The

execution time of the proposed model is close to the time required for bounding edge

model. Although the storage requirements are more than what needed for the bounding

edge model, the final result is compact relatively. It only keeps vertices and faces

information of the triangular mesh.

In comparison to the state-of-the-art algorithms, the execution time and storage

space is satisfactory. In most cases, our model is faster. Moreover, the final result is

qualitatively as accurate as modern approaches. The main advantage of our model is that

its computation can be divided to the camera nodes over the camera network, while it

does not need high communication bandwidth. By computing this job in parallel, the

execution time is decreased dramatically.

53 | P a g e

5. The Proposed 3D Object Reconstruction Model

The goal of the 3D object reconstruction models is to reconstruct a 3D shape of

the object using multi-view calibrated images. In recent years, many high quality models

have been proposed that are more sophisticated than the early algorithms. Early

algorithms match and reconstruct the 3D points of the object surface independently,

while recent methods define the problem as a global energy minimization function, which

leads to a better quality and performance. Because the existing algorithms in this field use

stereo vision to find the depth value for each pixel, this field is also called Multi-View

Stereo (MVS).

5.1. Existing Models

The existing methods are surveyed by S. M. Seitz et al. [30]. In this survey, six

fundamental properties are defined to categorize the existing approaches which are as

follows:

1. Scene Representation: The 3D reconstructed object can be represented in

many geometrical ways such as voxel representation, triangular meshes,

and depth maps.

2. Photo-Consistency Measure: The reconstructed object should be

compatible with the input images. Existing approaches evaluate the

compatibility by different measures which are called photo-consistency

measures. These measures include the correlation measures used for

comparing pixels of different images. For example, Sum of Squared

Differences (SSD) and Normalized Cross Correlation (NCC) are photo-

consistency measures.

3. Visibility Model: The visibility issue is very important in multi-view

framework, since to use the photo-consistency measures, only those views

that the 3D point is visible for them should be considered.

4. Shape Prior: Some existing approaches uses shape priors to reconstruct the

3D model with some appropriate specification.

5. Reconstruction Algorithm: This property is very important, which is the

base of each model. The existing algorithms are divided into four

categories including

a. 3D Volumetric Approaches

b. Surface Evolution Techniques

c. Feature Extraction and Expansion Algorithms

d. Depth Map based Methods

These categories are described in details in following subsections.

6. Initialization Algorithms: Some models need more information of the

object. For example, many algorithms need only a bounding box or

volume of the object. Some algorithms use the silhouette information in

their algorithm, so they require the high quality silhouette images.

Moreover, S. M. Seitz et al. [30, 2] provided benchmark datasets to evaluate and

compare the existing models. For each dataset, the ground truth 3D mesh model is

provided which was capture using a Cyber-ware Model 15 laser strip scanner by a

resolution of 0.25mm and an accuracy of 0.05-0.2mm. Based on the provided ground

truth, the results of all models can be evaluated and compared with each other. They get

the result of any model, compare it with the ground truth, evaluate their measures, and

upload to a website, which is provided to compare the existing models. The most

important issue here is that they only accept the results as a 3D triangular mesh. The

ground truth for the DinoSparseRing dataset has been shown in Figure 5-1.

S. M. Seitz et al. [30] defined two measures to evaluate the results quantitatively,

accuracy and completeness. The definition of these measures is as follows.

1. Accuracy: Like the other accuracy measures, it shows the difference

between the real object which is the ground truth and the calculated result

which is reconstructed object. In other words, it determines how close the

reconstructed object is to the ground truth.

55 | P a g e

To compute the accuracy measure, first the distance between the

points of the reconstructed object and the nearest points of the ground

truth is calculated. Then a statistical summary of the distances is provided,

which computes distance d such that X% of the points of the reconstructed

object are within distance d of points of ground truth. For example, we can

use 90% as variable X.

Figure 5-1. Ground truth for DinoSparseRing dataset [2].

2. Completeness: This measure determines how much of the ground truth is

reconstructed by the model. In this case, the distance from the ground truth

to the reconstructed object is calculated, which is opposite of measuring

accuracy.

Now, the statistical summary of the distances computes the

fraction X of the points of the ground truth which are with in distance d of

the points of reconstructed model.

Before describing the proposed model, the existing approaches are reviewed in

the following subsections, and the next subsections show the results and the evaluation of

the proposed model. Existing approaches are divided to four categories which are

described in details.

56 | P a g e

5.1.1. 3D Volumetric Approaches

3D volumetric approaches first define a cost function over a 3D volume, followed

by the surface extraction. Voxel coloring algorithm is a sample of these approaches

which is introduced by S. Seitz and C. Dyer [31]. In voxel coloring, first scene is

discretized into a set of voxels which are traversed and colored in depth order. The

problem is to assign colors to the voxels in a 3D volume to maximize photo integrity with

the input calibrated images.

P. Song et al. [32] proposed a 3D volumetric method, which is not published yet,

but the results are available in Middlebury benchmark.

5.1.2. Surface Evolution Techniques

The second category of the 3D object reconstruction is surface evolution

techniques, which iteratively evolve a surface to minimize the cost function. This

category can be divided into three classes itself, based on their geometric entity including

voxels, level sets, and surface meshes. Space carving methods, which are voxel-based,

consider an initial volume, and try to carve the inconsistent voxels. Level set methods

define a set of partial deferential equations on a volume, and by shrinking and expanding

the volume; they try to minimize the equations. The last class works on the evolving

mesh by defining the internal and external forces.

A. Auclair et al. [33] proposed a surface evolution method which drives the

deformation of a mesh towards using Scale Invariant Features Transform (SIFT)

descriptor. The proposed method uses SSD to recover the small scale details. Y.

Furukawa and J. Ponce [34] used rims over the surface of the object to propose a surface

evolution approach. They first initialized the 3D shape of the object by its visual hull.

Then, the resulted model is carved by maximizing a photometric consistency score. C.

Hernandez and F. Schmitt [35] proposed an algorithm to reconstruct the 3D geometry as

well as the texture. To evolve the surface, two external forces are defined which are a

texture driven force and a silhouette driven force.

57 I P a g e

A. Zaharescu at al. [36] proposed TransforMesh which is a mesh based surface

evolution method capable of handling topology changes in evolution as well as removing

the self intersection of the reconstruction.

K. Kolev et al. [37] proposed a surface evolution method which uses a continuous

global optimization of an energy function. A. Ladikos et al. [38] proposed a graph cut

method which avoids the local minima in narrow band around the current surface

estimate. Method proposed by J.-P. Pons et al. [39] minimizes the prediction error of the

shape and motion estimates. Other graph cut approaches are proposed by S. Tran and L.

Davis et al. [40] and G. Vogiatzis et al. [41].

Two other surface evolution approaches [42, 43] are proposed, the results of

which are available in Middlebury benchmark without the name of the authors.

5.1.3. Feature Extraction and Expansion Algorithms

In this category, first a set of features is extracted based on the input images. After

feature matching among the images, features are reconstructed, which is followed by

providing a surface to fit the reconstructed features.

Y. Furukawa and J. Ponce [44, 45] proposed a 3D object reconstruction model

using feature extraction, expansion and filtering. First, a sparse set of patches are

produced using matching the extracted features found by Harris feature extraction [46]

and Difference-of-Gaussians operator. Then using expansion, the initial matches are

spread to the nearby pixels, followed by a filtering step which removes the incorrect

matches.

M. Jancosek et al. [47] proposed a scalable method which is able to produce the

3D reconstruction using large amount of data. The result of the algorithm is obtained in

acceptable time and required accuracy. However, it is not the optimal result in case of

accuracy. The basis of the algorithm is like other methods in this category. It finds the

matches between the extracted features of different images, and produces the 3D

58 | P a g e

geometry of each match which is called 3D seed. The expansion of the 3D seeds is called

growing which is followed by the fdtering step.

J. Starck and A. Hilton [48] proposed a surface capture system which produces

animated content automatically from multiple video cameras from different viewpoints.

For each time instance, the visual hull of the object is created, followed by matching

extracted feature from different viewpoints. Then a surface reconstruction method

produces 3D reconstructed shape of the object. Finally, merging 3D reconstructed shapes

provides a 3D video representation which is also called free-viewpoint video. In free-

viewpoint videos, users have the control over the camera viewpoint.

A. Delaunoy et al. [49] and P. Gargallo et al. [50] proposed a surface evolution

model which minimizes the reprojection error. Reprojection error is the difference

between the input images and the images produced by projecting the reconstructed 3D

object into the all image planes from different viewpoints. Another surface evolution

method is proposed by C. Strecha et al. [51] which models visibility and depth issues as a

hidden Markov Random Field jointly.

5.1.4. Depth Map based Methods

The last category includes depth map based approaches. Depth map is a map

which includes the depth information for each pixel. Depth maps can be shown as a

grayscale image, such that the nearer objects to the camera look lighter. Depth map based

methods usually have two steps including producing depth maps from different viewpoint

and merging them. Most of the top performer algorithms for Middlebury benchmark [2]

are depth map based methods.

R. Szeliski [52] proposed a depth map based method especially to predict the

appearance of a novel view of the scene, and reconstruct the occlusions by comparing the

depth maps of different views. P. Gargallo and P. Sturm [53] proposed a Bayesian 3D

modeling which is also a depth map based model and uses an energy minimization

method. Occlusion and outliers are managed by defining hidden visibility variables.

59 | P a g e

Bradly et al. [54] proposed a method which produces 3D points using binocular stereo

matching, followed by point filtering. Another depth map based method is proposed by

Liu at al. [55] which uses the visual hull information, frontier points and implicit points

to merge the depth maps.

The depth map based algorithm proposed by M. Goesele et al. [56] uses a window

based voting approach to produce the depth maps and a volumetric approach to merge

them. Instead of using the disparity values between the images, the depth variable is

defined as the distance between the point and the camera position, and based on each

depth value, the correlation measurement is done between neighboring camera views to

find the best depth value for each pixel.

Y. Liu et al. [57] proposed a continuous depth estimation method, instead of a

discrete counterpart. Moreover, the patch based NCC measurement is applied to find the

best matches between different views. K Li et al. [58] and Deng et al. [59] proposed

another depth map based method which is not published yet, but their results are

available in Middlebury benchmark. There is the result of another depth map based

method [60] on Middlebury benchmark without the name of the authors.

The results of most of the reviewed existing models on Middlebury benchmark is

available online which are denoted by the last name of the main author. There is one

more method on Middlebury benchmark which is denoted by NIPS_829 [61]. However

there is no information about the proposed model.

5.2. Surface Reconstruction Methods

Some existing algorithms first provide the 3D points with normal direction

information, called oriented points, over the surface of the object, and then at final step

they provide a mesh surface over the existing points. The critical issues in surface

reconstruction are mentioned as follows.

1. The points are not distributed uniformly.

60 | P a g e

2. The position and direction of the points are noisy.

3. No information is provided for some parts of the surface.

Surface reconstruction methods should accurately fit the input points as well as

removing the outliers and filling the existing holes. Delaunay triangulations and Voronoi

diagrams are two samples of surface reconstruction. A Delaunay triangulation is a

triangulation for a set of n-dimensional points, such that no point in the set is inside the

circum-hypersphere of any simplex in the triangulation [62].

R. Kolluri et al. [63] proposed the spectral surface reconstruction. In this

approach, first a Delaunay tetrahedralization is performed, followed by the spectral graph

partitioning which decides about the position of the tetrahedrons. H. Hoppe [64] proposed

a local method for the nearby points to estimate the tangent planes. M. Kazhdan [65]

proposed a method based on Poisson problem. Poisson equation is a partial differential

equation which is used widely in many areas such as computer graphics, electrostatics,

mechanical engineering and theoretical physics. Because Poisson surface reconstruction

considers all the points at once, it is robust to noise and non-uniform point cloud. The

implementation of Poisson Surface Reconstruction is freely available online [66].

B. Curless and M. Levoy [67] proposed a volumetric surface reconstruction

method, which is called Vrippack [68]. Vrippack is originally implemented for range

images, whose implementation is freely available online. M. Goesele et al. [56] used

Vrippack for merging depth maps. They obtained a good accuracy for their method on

Middlebury benchmark, while in case of completeness, their results are so worse.

I used Poisson surface reconstruction as the final step of the proposed model

which is described completely in following subsection, followed by its results and

evaluation.

61 | P a g e

5.3. The Proposed Algorithm

Like other depth map based approaches, my proposed algorithm has two main

steps; producing depth maps and merging them. Each step includes three parts which are

as follows.

1. Producing Depth Maps

a. Image Rectification for each pair

b. Stereo Matching

c. Producing 3D Points

2. Merging 3D Points

a. Refine the Position of the 3D Points

b. Remove Inconsistent Points

c. Providing a Surface over the Points based on the Normal

Directions

Each step is described in details in the following subsections.

5.3.1. Producing Depth Maps

This step is done for each image pair independent to the other views. The results

of this step are the 3D points calculated for each viewpoint, which will be combined in

the next step. First of all, the nearest camera for each view is selected as the target view

for stereo matching.

The stereo matching is also called correspondence problem between two views,

which is a problem of finding a corresponding point displayed by one view in the image

of the other view. In most camera configurations, finding correspondence pixels requires

a search in two dimensions. However, if the two cameras are aligned to have a common

image plane, the search is simplified to one dimension; a line that is parallel to the line

between the cameras (the baseline). Image rectification determines a transformation of

62 | P a g e

each image plane such that pairs of conjugate epipolar line become collinear and parallel

to one of the image axes, usually the horizontal one.

The two sample views of Dinosaur dataset are selected as an image pair for stereo

matching which have been shown in Figure 5-2. Because the image planes of the cameras

are not on the same plane, the epipolar line for each pixel of reference view in target view

is not parallel to the horizontal axes of the image which leads to in false matching results.

Lett image Right image

200 400 600 600 1000 1200 1400 1000 1600 2000 200 400 600 600 1000 1200 1400 1600 1800

Figure 5-2. Dinosaur sample image pair.

So before starting the matching step, the images should be rectified. A. Fusiello et

al. [69] proposed a simple method to rectify the image pairs. I implemented their method

in Matlab, the results of which have been shown in Figure 5-3. The epipolar lines are

parallel to the horizontal axes of the images.

Figure 5-3. Rectified Dinosaur image pair.

63 | P a g e

The size of the rectified images is greater than the size of input images. For

example, for the sample image pair of Dinosaur dataset which have been shown in Figure

5-2, the image size is 2000x1500, while the size of the rectified images which have been

shown in Figure 5-3 is 2481x1881. The empty parts of the new image pair do not make

any inconsistency because the rectified silhouette images will be used to fasten the stereo

matching algorithm.

Using silhouette information decreases the computation time in two ways. By

using the silhouette of the reference image, the number of pixels for which the matching

search is processed is decreased. Inversely, silhouette information of target image

decreases the number of pixels which are searched to find the best match. As it can be

seen clearly in Figure 5-4, the number of foreground pixels is much less than the number

of background ones.

After rectifying the image pairs, the depth maps are produced using stereo

matching application. For matching measurement, I used normalized cross correlation

which is a correlation measure.

Figure 5-4. Rectified silhouette image pairs.

Because in my model, I need the reliable depth information, I applied the Left-

Right Consistency (LRC) check to remove the inconsistent depth information from two

directions. In left-right consistency check, first a depth map is produced based on the

reference and target image pairs, which is referred as left-to-right depth map. Then

64 | P a g e

another depth map is produced based on the reference and target images as the new target

and reference images, correspondingly. The second depth map is called right-to-left depth

map. Figure 5-5 shows the resulted depth maps for the sample image pairs of Dinosaur

dataset.

Figure 5-5. Left-to-right (left image) and right-to-left (right image) depth maps produced for the
sample image pairs of Dinosaur dataset.

The last step of LRC check is to find the consistent disparity values between two

produced depth maps. For each pixel of the left-to-right depth map, which is denoted as

the reference pixel, the matched pixel of the right-to-left is selected, which is denoted as

the target pixel. If the matched pixel for the target pixel of the target image is the

reference pixel in the reference image, the depth value for the reference pixel is

consistent from two views. Otherwise, the depth value is inconsistent and will be

removed from the depth map.

Usually a threshold is used in LRC check, which defines the valid shifting

between two views depth map. In my experiments, no threshold is used, and the depth

values which are not exactly the same are removed. Figure 5-6 shows the resulted depth

map after left-right consistency check. Comparison of the depth maps before and after the

consistency check shows that the invalid depth values are removed, and the resulted

depth values are reliable for the next steps of the algorithm. For example, the lighter

pixels on the right leg of Dinosaur have invalid values because the left leg is nearer to the

camera position. So they have been removed from the depth map.

65 | P a g e

Figure 5-6. Left-to-right depth map (left image) and resulted depth map after LRC check (right
image) for the sample image pairs of Dinosaur dataset.

Each pixel of the depth map has a depth value, which is zero if there is no reliable

depth value. After producing the reliable depth maps, the resulted maps are back

transformed to the image planes before rectification, which is called the back

rectification. Back rectification produces two maps, the x-map and the y-map. Based on

the x-map and y-map, the corresponding pixel for each pixel of the reference image is

identified. Using a triangulation, the position of the 3D point corresponding for each

pixel is determined. The triangulation is done using intersecting the 3D ray from the

reference pixel of the reference image with the 3D ray from the corresponding pixel of

the target image. The resulted 3D points for the first view of Dinosaur dataset have been

shown in Figure 5-7.

Figure 5-7. Reconstructed 3D points for the first view of Dinosaur dataset.

66 I P a g e

As it can be seen clearly in this figure, there are many invalid 3D points which

should be removed from the point cloud. Refining 3D points will be done in the next step

over all the camera views.

5.3.2. Merging 3D Points

After producing the 3D points, based on the individual image pairs, the position

of the 3D points will be refined using images from different views. Finally, all the 3D

points from different viewpoints are combined to produce a point cloud. A surface fitting

step provides a triangular mesh over the 3D point cloud, which is done to provide the

appropriate type of results for Middlebury benchmark to evaluate the proposed model.

The first step of the merging process is to refine the position of the produced 3D

points, followed by removing the inconsistent points. The position of the constructed 3D

points is changed along its corresponding viewing ray to find the best position. For each

viewpoint, k nearest cameras are selected. Then another window matching is done

between the reference image and the k nearest camera images to measure the different

positions of the 3D point.

This window matching process is a little bit different. For each pixel of the

reference image, the position of the corresponding 3D point is moved along the viewing

ray. For each new position, the 3D point is projected to the nearest cameras. The

correlation value between the reference window and the window of the projected pixel is

calculated for each nearest camera, using normalized cross correlation measurement. The

overall correlation values for the new positions are the average NCC values over the k

nearest cameras.

NCCW = (7)

where p and P denote the reference pixel and its corresponding 3D point with the new

position, respectively, pj denotes the projection of the 3D point P into the camera i. R and

67 | P a g e

Ci denote the neighbor window of the points in reference image and the nearest camera /,

correspondingly.

To have the better time performance, I first move position of the 3D point along

the viewing ray by Ad to do a coarse refinement, and then move it near the coarse

position by Ad/10 to do the final refinement.

The next step is to remove the refined 3D points which are inconsistent for all

viewpoints. The inconsistency here is defined by the following criteria.

1. The projection of the point is mapped to the background segment of the

silhouette image for at least one viewpoint.

2. The NCC value for the new position of the point is less than a threshold.

3. The distance between the point and the camera position is much greater or

less than the average of the neighbor distances, using a threshold.

The points which have at least one of the mentioned criteria will be removed from

the point cloud. Then for the pixels whose corresponding 3D point is removed a new 3D

point from the point cloud which is mapped to those pixels will be selected. The

inconsistency criteria are computed for the new 3D points. If the new 3D points are also

inconsistent, they will be removed again without any substitutions. Figure 5-8 shows the

refined 3D points for the first view of Dinosaur dataset. Comparison of Figure 5-7 and

Figure 5-8 shows the quality of refinement.

Figure 5-8. Refined 3D points for the first view of Dinosaur dataset.

68 | P a g e

The final step is to provide a surface mesh over the 3D points. Because Poisson

surface reconstruction [65] is robust to the noisy data of the point cloud and non-

uniformity distribution of the 3D points, it is used as the final step of the proposed model.

Moreover, Poisson surface reconstruction produces a watertight mesh as a final result

which is valuable for the Middlebury evaluation. The implementation code and binary

executable version of the code is provided by the authors.

Because Poisson surface reconstruction gets an oriented point cloud as an input,

the normal direction for each 3D point should be calculated. I used the information of the

neighbor pixels in each viewpoint to estimate the normal direction for each 3D point. For

each pixel, the normal directions of the planes which contain the corresponding 3D points

of the pixel and two consecutive neighbors are calculated. The interesting normal

direction for the 3D point is the average of calculated normal directions.

5.4. Experiments

For this proposed model, I applied the algorithm on two datasets, Dinosaur dataset

from 3D Photography datasets and DinoSparseRing dataset from Middlebury benchmark.

The results have been shown in the next subsections, followed by an evaluation

subsection. For evaluating the results of my proposed model qualitatively, I sent the

results to Middlebury College, and I got the evaluation results including accuracy and

completeness. Based on these metrics, the proposed method is compared with the state-

of-the-art approaches.

5.4.1. Results

The main results of the proposed model are the 3D surface points. For Dinosaur

dataset, the results of each step of the proposed method have been shown in previous

subsections. However, the final results which are the 3D surface points for Dinosaur

dataset is presented in Figure 5-9. Figure 5-10 shows the 3D surface points resulted for

DinoSparseRing dataset. The result of Dinosaur dataset looks denser than the result of

69 I P a g e

DinoSparseRing, because size of Dinosaur images is much more than DinoSparseRing

image size, 2000x1500 for Dinosaur dataset versus 640x480 for DinoSparseRing dataset.

Figure 5-9. Resulted 3D surface points for Dinosaur dataset.

As it can be seen clearly in Figure 5-10 left, some parts of the Dino object is

missing, since in one of the provided images of DinoSparseRing dataset, the mentioned

parts are located out of the scope of the image. The inconsistent image is the second

image of DinoSparseRing dataset with dinoSR0002.png filename, which has been shown

in Figure 5-11. However, the proposed algorithm is designed to remove all the

reconstructed parts of the 3D object which are inconsistent with at least one of the

calibrated images.

Figure 5-10. Resulted 3D surface points for DinoSparseRing dataset.

70 I P a g e

Figure 5-11. The inconsistent image of DinoSparseRing dataset.

To evaluate the proposed method on Middlebury benchmark, the result should be

submitted to Middlebury College as a triangular surface mesh. As it mentioned in the

steps of the proposed algorithm, I used Poisson Surface Reconstruction to provide the

surface over the resulted 3D surface points. The 3D triangular final result for

DinoSparseRing dataset has been shown in Figure 5-12 from different viewpoints.

Figure 5-12. Final 3D triangular mesh for DinoSparseRing dataset.

Two other views of the final triangular mesh are presented in Figure 5-13.

71 I P a g e

Figure 5-13. Final 3D triangular mesh for DinoSparseRing dataset from different views.

5.4.2. Comparison and Evaluation

The final 3D triangular surface mesh for the DinoSparseRing dataset has been

sent to Middlebury College for evaluation. The evaluation results are available online

[70]. The result of the proposed visual hull model is also evaluated by Middlebury

benchmark. On Middlebury evaluation webpage, the evaluation of the proposed models

is usually denoted by the last name of the main author. So, my proposed visual hull

model is denoted by Raeesi, and the proposed 3D object reconstruction model is denoted

by Raeesi!.

Table 5-1 shows the evaluation of both models for DinoSparseRing dataset. The

values mentioned for accuracy are the fraction threshold, and the values determined for

completeness are the distance threshold. It means, for example, 90 percent of the surface

points of the visual hull result are within the distance 4.84mm of the ground truth and

38.8% of the ground truth surface points are within distance 1.25mm of the visual hull

result.

72 | P a g e

Table 5-1. Evaluation results of both proposed models on Middlebury benchmark for
DinoSparseRing dataset. The accuracy is in millimeter and completeness is percentage.

Proposed Models
Accuracy Completeness

Proposed Models
90% 80% 1.25mm 0.75mm

Visual Hull Model 4.84 3.44 38.8 19.0

3D Object Reconstruction 0.63 0.42 95.0 86.0

As it was expected, the result of the visual hull model is much coarser than the 3D

object reconstruction model. Table 5-1 shows that the accuracy of the 3D reconstruction

model is 8 times more than the accuracy of the visual hull model.

The comparison of the result of proposed 3D object reconstruction model is

compared with the state-of-the-art models in two steps. The first one is the overall

comparison which compares all the models, regardless of their category. The second one

compares my model with the modern depth map based approaches.

It should be mentioned that the name presented in the following tables are the

same as the names displayed on Middlebury evaluation webpage, which is usually the

last name of the author. In some cases, the methods are denoted by anonymous, but the

title of submitted paper and the corresponding conference or journal is determined. These

cases are called Submitted. Besides, the category of a model is unknown, because there is

no information about the proposed algorithm.

Table 5-2 and Table 5-3 show the accuracy and completeness results of all the

state-of-the-art models. The result of my proposed model has been shaded in both tables.

My model obtained rank 16 out of 28 for accuracy where its fraction threshold is 90%

and rank 17 for completeness where the its distance threshold is \25mm. For both

accuracy and completeness metric, the top performer is Furukawa3 which is proposed by

Y. Furukawa and J. Ponce [45].

73 | P a g e

Table 5-2. Comparison of accuracy of the state-of-the-art models. The accuracy threshold is 90%.

No Algorithms Year Category Accuracy

1 Furukawa3 [45] 2008 Feature Extraction 0.37

2 Bradley [54] 2008 Depth Map Based 0.38

3 ECCV_216 [60] Submitted Depth Map Based 0.42

4 Furukawa2 [44] 2007 Feature Extraction 0.42

5 Deng [59] Submitted Depth Map Based 0.43

6 Zaharescu [36] 2007 Surface Evolution 0.45

7 Kun Li [58] Submitted Depth Map Based 0.47

8 ECCV642 [421 Submitted Surface Evolution 0.48

9 Liu2 [57] 2009 Depth Map Based 0.51

10 Kolev2|37| 2009 Surface Evolution 0.53

11 Song [32] Submitted 3D Volumetric 0.54

12 Goesele [56] 2006 Depth Map Based 0.56

13 Furukawa [34] 2006 Surface Evolution 0.58

14 Liu [551 2009 Depth Map Based 0.59

15 Hernandez [35] 2004 Surface Evolution 0.60

16 Raeesi2 Proposed Depth Map Based 0.63

17 Jancosck-3DIM09 [47] 2009 Feature Extraction 0.66

18 SurfEvolution [43] Submitted Surface Evolution 0.66

19 Pons [39] 2005 Surface Evolution 0.71

20 Auclair [33] 2008 Surface Evolution 0.74

21 Gargallo [50] 2007 Surface Evolution 0.76

22 Delaunoy [49] 2008 Surface Evolution 0.89

23 Ladikos [38] 2008 Surface Evolution 0.89

: i Starck [48] 2007 Feature Extraction 1.01

25 N1PS 829 [61] Submitted - 1.07

26 Vogiatzis [41] 2005 Surface Evolution 1.18

27 Trail [401 2006 Surface Evolution 1.26

28 Strecha [51] 2006 Surface Evolution 1.41

74 | P a g e

Table 5-3. Comparison of completeness of the state-of-the-art models. The completeness threshold is
1.25mm.

No Algorithms Year Category Completeness

1 Furukawa 3 [45] 2008 Feature Extraction 99.2

2 Furukawa 2 [44] 2007 Feature Extraction 99.2

3 Zaharescu [36J 2007 Surface Evolution 99.2

4 Liu2 [57] 2009 Depth Map Based 98.7

5 ECCV_642 [42] Submitted Surface Evolution 98.6

6 Hernandez [35] 2004 Surface Evolution 98.5

7 Kolev2 [37] 2009 Surface Evolution 98.3

8 Liu [55] 2009 Depth Map Based 98.3

9 ECC V_216 [601 Submitted Depth Map Based 97.8

10 Deng [59] Submitted Depth Map Based 97.8

11 Pons [39] 2005 Surface Evolution 97.7

12 SurfEvolution [43] Submitted Surface Evolution 97.6

13 Kun Li [58] Submitted Depth Map Based 97.4

14 Furukawa [34] 2006 Surface Evolution 96.9

15 Auclair [33] 2008 Surface Evolution 96.8

16 Song [32] Submitted 3D Volumetric 95.5

17 Raeesi2 Proposed Depth Map Based 95.0

18 Ladikos [38] 2008 Surface Evolution 95.0

19 Bradley [54] 2008 Depth Map Based 94.7

20 Delaunoy [49] 2008 Surface Evolution 93.9

21 Strecha [51] 2006 Surface Evolution 91.5

22 NIPS829 [61J Submitted - 91.0

23 Vogiatzis [41] 2005 Surface Evolution 90.8

24 Gargallo [50] 2007 Surface Evolution 90.7

25 Slarck [48] 2007 Feature Extraction 90.7

26 Tran [40] 2006 Surface Evolution 89.3

27 Jancosck-3DLY109 [47] 2009 Feature Extraction 74.9

28 Goesclc [56] 2006 Depth Map Based 26.0

75 | P a g e

By changing the threshold, the ranking will be changed. The best rank of my

model for accuracy is 13 with threshold 99% and the best rank for completeness is 17

with distance thresholds 1.25, 1.5, 1.75, and 2mm.

As it can be seen clearly, the results are so close to each other, such that the

difference less than 0.1mm can change the rank of a model by many steps. However, to

show the small differences more clearly, all the comparisons in this section are presented

in bar charts in Appendix B.

The next comparisons are among the depth map based models. Table 5-4 shows

the comparison of the depth map based models for DinoSparseRing dataset. Considering

accuracy metric, the best method is Bradley which is published by D. Bradley et al. [54]

in 2008. The most recent approaches do not obtain better accuracy than Bradley

accuracy. However the rank of my model is one of the latest ranks, the obtained accuracy

is acceptable and comparable with the published models.

Table 5-4. Comparison of accuracy of the state-of-the-art depth map based models. The accuracy
threshold is 80%.

No Algorithms Year Accuracy

19 Bradley [54] 2008 0.27

9 ECCV_216 [60] Submitted 0.27

10 Deng [59] Submitted 0.30

13 Kun Li [58] Submitted 0.34

28 Goesele [56] 2006 0.36

4 Liu2 [57] 2009 0.36

17 Raeesi2 Proposed 0.42

8 Liu [551 2009 0.47

The comparison of completeness metric has been shown in Table 5-5. The top

performer approach in case of completeness is Liu2 which is proposed by Y. Liu et al.

[57]. Like accuracy comparison, this comparison shows that the new proposed methods

do not obtained better completeness than Liu2 completeness. However, my proposed

model obtains an acceptable completeness as well. The most interesting issue between

76 | P a g e

Table 5-4 and Table 5-5 is that for completeness metric the rank of Bradley method

which is the top performer in case of accuracy is one of the latest ranks. In opposite

cases, Liu and Liu2 obtain the best completeness, while their accuracy results are the

worst among the modern approaches.

Table 5-5. Comparison of completeness of the state-of-the-art depth map based models. The
completeness threshold is 1.5mm.

No Algorithms Year Completeness

4 Liu2 [57] 2009 99.4

8 Liu [55] 2009 99.0

10 Deng [59] Submitted 98.9

13 Kun Li [58] Submitted 98.6

9 ECCV216 [60] Submitted 98.4

17 Raeesi2 Proposed 96.8

19 Bradley [54] 2008 95.0

28 Goesele [56] 2006 26.1

Among the published depth map based methods, only Liu2 has better results for

both accuracy and completeness metrics than my proposed model. However, the

comparison shows that the proposed model obtains an acceptable accuracy as well as an

acceptable completeness which are comparable with the modern approaches in this field.

77 | P a g e

6. Conclusions

There are many applications from different areas which need to localize,

recognize and reconstruct the 3D objects. The desired quality of the resulted 3D shape of

the object and the acceptable time performance of the reconstruction process depends

only on the applications. Some applications need to reconstruct a coarse shape of the

object in acceptable time. In robotics, for example, it is very important for robot to find

the positions of the obstacle at the real time, while the quality of the reconstructed shape

of the object does not matter. In contrast, some other applications need to reconstruct the

object as accurate as possible, for which the time performance is not important. For

instance, in inverse engineering, the goal is to provide an accurate model of the existing

object.

Vision network is one of the solutions for all of these applications. Generally,

vision network is one of the cheapest existing solutions, which is easily configurable.

Moreover, vision networks are able to reconstruct the 3D shape of the object in different

level of details within different amount of time. It captures some images from different

views, and produces the 3D shape of the object. The first issue in vision network is

camera calibration, which can be done as an automatic process in network configuration

step.

The coarsest, while fastest model of the vision network models is the convex hull

of the object. So, convex hulls can be the solution for the real time applications such as

obstacle avoidance. Reconstruction of the accurate 3D shape of the object, which is

called 3D object reconstruction, requires much amount of time. In 3D modeling, for

instance, the accuracy of the model is very important, and the goal of the application is to

produce a model as accurate as possible, while the time performance does not matter. So,

the 3D object reconstruction can be the solution for these applications.

Like in the other fields, there is a trade-off between time and accuracy for

reconstructing the 3D shape of the object. Visual hull model is a model which produces

an acceptable shape of the object in acceptable time. However, it depends on the

application to select the best existing models in the area of vision networks.

In this thesis, I proposed two different models, a visual hull model and a 3D

object reconstruction model. For the visual hull model, the contribution is to provide the

bounding surfaces over the bounding edge model of the object, and merging them.

Because bounding edge model is one of the fastest visual hull models, the proposed

model is faster than most of the existing approaches. The evaluation of the results of the

proposed visual hull model has been describes in section 4. Moreover, the proposed

method can be computed in distributed manner. In distributed computing, the execution

time is divided to the number of views, which increases the time performance of the

reconstruction, dramatically.

The proposed 3D object reconstruction model is a depth map based model, which

produces the 3D points for each viewpoint, and merges them to a point cloud. At the final

step, it fits a triangular surface mesh over the refined 3D point cloud. The evaluation of

the results shows that the proposed model obtains an acceptable accuracy as well as

acceptable completeness which are comparable with existing approaches.

79 | P a g e

7. References

[1]. K.M. Cheung, S. Baker, and T. Kanade. Shape-From-Silhouette Across Time Part II:

Applications to Human Modeling and Markerless Motion Tracking. International Journal

of Computer Vision, 63(3):225 - 245, August 2005.

[2]. Middlebury Multi-View Datasets. Middlebury College, Microsoft Research, and the

National Science Foundation. Available at http://vision.middlebury.edu/mview/.

[3]. W. N. Martin, and J. K. Aggarwal. Volumetric Description of Objects from Multiple

Views. IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), 5(2):

150-158, 1983.

[4]. Aaron Mavrinac. Feature-Based Calibration of Distributed Smart Stereo Camera

Networks. Master of Applied Science Thesis, Electrical and Computer Engineering

Department, University of Windsor, May, 2008.

[5]. Hamid Aghajan, Chen Wu, and Richard Kleihorst. Distributed Vision Networks for

Human Pose Analysis, book chapter, March 23, 2008.

[6]. B.G. Baumgart. A Polyhedron Representation for Computer Vision. In Proc. of

AFIPS National Computer Conference, 1975.

[7]. Y. Furukawa, and J. Ponce. 3D Photography Dataset. Beckman Institute and

Department of Computer Science, University of Illinois at Urbana-Champaign.

Available at http://www-cvr.ai.uiuc.edu/ponce_grp/data/mview/.

[8]. A. R. Smith, and J. F. Blinn. Blue Screen Matting. In Proc. of Computer Graphics

(SIGGRAPH 96), pp. 21-30, August, 1996.

[9] M. Bichsel. Segmenting Simply Connected Moving Objects in a Static Scene. IEEE

Transaction on Pattern Analysis and Machine Intelligence (PAMI), 16(11): 1138-1142,

November, 1994.

http://vision.middlebury.edu/mview/
http://www-cvr.ai.uiuc.edu/ponce_grp/data/mview/

[10]. A. Laurentini. The Visual Hull: A New Tool for Contour-Based Image

Understanding. In Proc. of 7th Scandinavian Conf. Image Analysis, pp. 993-1002, 1991.

[11]. K. Cheung, S. Baker, and T. Kanade. Shape-From-Silhouette Across Time Part I:

Theory and Algorithms. International Journal on Computer Vision, 62(3): 221 - 247,

May 2005.

[12]. A. Laurentini. The Visual Hull Concept for Silhouette-Based Image Understanding.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 16(2): 150—

162, February 1994.

[13]. J.S. Franco and E. Boyer. Exact Polyhedral Visual Hulls. In Fourteenth British

Machine Vision Conference (BMVC), pp. 329-338, Norwich, UK, September 2003.

[14]. C. L. Jackins and S. L. Tanimoto. Oct-trees and Their Use in Representing Three-

Dimensional Objects. In Proc. of Computer Graphics and Image Processing, 14: 249-270,

1980.

[15]. C. H. Chien and J. K. Aggarwal. Volume/Surface Octrees for the Representation of

Three-Dimensional Objects. In Proc. of Computer Vision, Graphics, and Image

Processing archive. 36: 100-113, 1986.

[16]. R. Szeliski. Rapid Octree Construction from Image Sequences. CVGIP, 58(1):23-

32, 1993.

[17]. K. Kutulakos and S. Seitz. A Theory of Shape by Space Carving. International

Journal of Computer Vision, 38(3): 199-218, 2000.

[18]. G. Cheung. Visual Hull Construction, Alignment and Refinement for Human

Kinematic Modeling, Motion Tracking and Rendering. Doctoral dissertation, Technical

Report CMU-RI-TR-03-44, Robotics Institute, Carnegie Mellon University, October,

2003.

81 I P a g e

[19]. S. Lazebnik, E. Boyer, and J. Ponce. On Computing Exact Visual Hulls of Solids

Bounded by Smooth Surfaces. In Proc. of Computer Vision and Pattern Recognition

(CVPR), Dec. 2001.

[20]. C. Buehler,W.Matusik, and L.McMillan. Polyhedral Visual Hulls for Real-Time

Rendering. In Proceedings of Eurographics Workshop on Rendering, 2001.

[21]. C. Buehler, W. Matusik, L. McMillan, and S. Gortler. Creating and Rendering

Image-Based Visual Hulls. Technical Report MIT-LCS-TR-780, MIT, 1999.

[22]. W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-Based

Visual Hulls. In Proc. of Computer Graphics (SIGGRAPH), July 2000.

[23]. G. Cheung, S. Baker, and T. Kanade. Visual Hull Alignment and Refinement

Across Time: A 3D Reconstruction Algorithm Combining Shape-From-Silhouette with

stereo. In Proc. of Computer Vision and Pattern Recognition (CVPR), Madison, MI,

2003.

[24]. Middlebury Stereo Vision Datasets. Middlebury College, Microsoft Research, and

the National Science Foundation. Available at http://vision.middleburv.edu/stereo/.

[25]. S. Lazebnik, Y. Furukawa, and J. Ponce. Projective Visual Hulls. International

Journal of Computer Vision, 74(2): 137 - 165, August 2007.

[26]. MeshLab software. Available at http://meshlab.sourceforge.net/

[27]. The Stanford 3D Scanning Repository. Available at http://www-

graphics.stanford.edu/data/3Dscanrep/.

[28]. Intel's OpenCV library written in C programming language. Available at

http://sourceforge.net/proiects/opencvlibrarv/.

[29]. Camera Calibration Toolbox for Matlab. Available at

http://www.vision.caltech.edu/bougueti/calib doc/.

82 | P a g e

http://vision.middleburv.edu/stereo/
http://meshlab.sourceforge.net/
http://sourceforge.net/proiects/opencvlibrarv/
http://www.vision.caltech.edu/bougueti/calib

[30]. S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A Comparison and

Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 1: 519-526, 2006.

[31]. S. Seitz and C. Dyer. Photorealistic Scene Reconstruction by Voxel Coloring. IJCV,

35(2):151.173, 1999.

[32]. P. Song, X. Wu, and M. Wang. Volumetric Stereo and Silhouette Fusion for Image-

Based Modeling. Submitted to the Visual Computer Journal, 2010.

[33]. A. Auclair, L. Cohen, and N. Vincent. Using Point Correspondences without

Projective Deformation for Multi-View Stereo Reconstruction. In Proc. of International

Conference on Image Processing (ICIP), pp. 193-196, 2008.

[34]. Y. Furukawa and J. Ponce. High-Fidelity Image-Based Modeling. Technical Report

2006-02, UIUC, 2006.

[35]. C. Hernandez Esteban and F. Schmitt. Silhouette and Stereo Fusion for 3D Object

Modeling. Computer Vision and Image Understanding (CVIU), 96(3):367-392, 2004.

[36]. A. Zaharescu, E. Boyer, and R. Horaud. TransforMesh: A Topology-Adaptive

Mesh-Based Approach to Surface Evolution. Asian Conference on Computer Vision

(ACCV), 2: 166-175, 2007.

[37]. K. Kolev, M.Klodt, T. Brox, and D. Cremers. Continuous Global Optimization in

Multi-View 3D Reconstruction. International Journal on Computer Vision (IJCV), 84(1):

80-96, 2009.

[38]. A. Ladikos, S. Benhimane, and N. Navab. Multi-View Reconstruction Using

Narrow-Band Graph-Cuts and Surface Normal Optimization. In Proc. of British Machine

Vision Conference (BMVC), 2008.

[39]. J.-P. Pons, R. Keriven, and O. Faugeras. Modelling Dynamic Scenes by Registering

Multi-View Image Sequences. In Proc. of Computer Vision and Pattern Recognition

(CVPR), 2: 822-827, 2005.

83 | P a g e

[40]. S. Tran and L. Davis. 3D Surface Reconstruction Using Graph Cuts with Surface

Constraints. In Proc. of European Conference on Computer Vision (ECCV), 2: 219-231,

2006.

[41]. G. Vogiatzis, P. Torr, and R. Cipolla. Multi-View Stereo via Volumetric Graph-

Cuts. In Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 391-398, 2005.

[42]. Anonymous. Anisotropic Minimal Surfaces Integrating Photoconsistency and

Normal Information for Multiview Stereo. Submitted to European Conference on

Computer Vision (ECCV), submission 642, 2010.

[43]. Anonymous. An Iterative Surface Evolution Algorithm for Multiview Stereo.

Submitted to EURASIP Journal on Image and Video Processing (EURASIP JIVP).

[44]. Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis. In

Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 1-8, 2007.

[45]. Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 2008.

[46]. C. Harris and M. J. Stephens. A Combined Corner and Edge Detector. In Alvey88,

pp. 147-152, 1988.

[47]. M. Jancosek, A. Shekhovtsov, and T Pajdla. Scalable Multi-View Stereo. IEEE

International Workshop on 3D Digital Imaging and Modeling (3DIM), 2009.

[48]. J. Starck and A. Hilton. Surface Capture for Performance-Based Animation. In

Proc. of Computer Graphics and Applications (CG&A), 27(3):21-31, 2007.

[49]. A. Delaunoy, E. Prados, P. Gargallo, J.-P. Pons and P. Sturm. Minimizing the

Multi-view Stereo Reprojection Error for Triangular Surface Meshes. In Proc. of British

Machine Vision Conference (BMVC) 2008.

84 | P a g e

[50], P. Gargallo, E. Prados, and Peter Sturm. Minimizing the Reprojection Error in

Surface Reconstruction from Images. In Proc. of International Conference on Computer

Vision (ICCV), pp. 1-8, 2007.

[51]. C. Strecha, R. Fransens, and L. Van Gool. Combined Depth and Outlier Estimation

in Multi-View Stereo. In Proc. of Computer Vision and Pattern Recognition (CVPR), 2:

2394-2401,2006.

[52]. R. Szeliski. A Multi-View Approach to Motion and Stereo. In Proc. of Computer

Vision and Pattern Recognition (CVPR), 1:157-163, 1999.

[53]. P. Gargallo and P. Sturm. Bayesian 3D Modeling from Images Using Multiple

Depth Maps. In Proc. of Computer Vision and Pattern Recognition (CVPR), 2:885-891,

2005.

[54], D. Bradley, T. Boubekeur, and W. Heidrich. Accurate Multi-View Reconstruction

Using Robust Binocular Stereo and Surface Meshing. In Proc. of Computer Vision and

Pattern Recognition (CVPR), 2008.

[55]. Y. Liu, Q. Dai and W. Xu. A Point Cloud Based Multi-View Stereo Algorithm for

Free Viewpoint Video. IEEE Transactions on Visualization and Computer Graphics,

16(3): 407-418, 2009.

[56]. M. Goesele, B. Curless, and S. M. Seitz. Multi-View Stereo Revisited. In Proc. of

Computer Vision and Pattern Recognition (CVPR), pp. 2402-2409, 2006.

[57]. Y. Liu, X. Cao, Q. Dai, and W. Xu. Continuous Depth Estimation for Multi-View

Stereo. In Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 2121-2128,

2009.

[58]. K. Li, Q. Dai, and W. Xu. Markerless Shape and Motion Capture from Multi-View

Video Sequences. Submitted to IEEE Transactions on Circuits and Systems for Video

Technology, 2009.

85 | P a g e

[59]. Y. Deng, Y. Liu, Q. Dai, and Z. Zhang. Depth Maps Fusion for Multi-View Stereo

via Matrix Completion. Submitted to IEEE Transaction on Pattern Analysis and Machine

Intelligence (PAMI), 2010.

[60]. Anonymous. An Integrated Depth Fusion Approach for Multi-View Stereo.

Submitted to European Conference on Computer Vision (ECCV), submission 216, 2010.

[61]. Anonymous. Ray-view Markov Random Fields for Image-Based 3D Modeling:

Model and Efficient Inference. Submitted to Neural Information Processing Systems

(NIPS) submission 829, 2009.

[62]. M. Berg, O. Cheong, M. Kreveld, M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag, ISBN 978-3-540-77973-5, 2008.

Available at http://www.cs.uu.nl/geobook/interpolation.pdf.

[63]. R. Kolluri, J. Shewchuk, J. O'Brien. Spectral Surface Reconstruction from Noisy

Point Clouds. Symposium on Geometry Processing, pp. 11-21, 2004.

[64]. H. Hoppe, T. Derose, T. Duchamp, J. McDonald, W. Stuetzle. Surface

Reconstruction from Unorganized Points. In Proc. of Computer Graphics (SIGGRAPH),

26: 71-78, 1992.

[65]. M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface Reconstruction.

Eurographics Symposium on Geometry Processing, pp. 61-70, 2006.

[66]. Poisson Surface Reconstruction Implementation. Available at

http://www.cs.ihu.edu/~misha/Code/PoissonRecon/.

[67]. B. Curless, M. Levoy. A Volumetric Method for Building Complex Models from

Range Images. In Proc. of Computer Graphics (SIGGRAPH), pp. 303-312, 1996.

[68]. Vrippack: Volumetric Range Image Processing Package. Available at

http://grail.cs.washington..edu/software-data/vrip/.

86 | P a g e

http://www.cs.uu.nl/geobook/interpolation.pdf
http://www.cs.ihu.edu/~misha/Code/PoissonRecon/

[69]. A. Fusiello, E. Trucco, and A. Verri. A Compact Algorithm for Rectification of

Stereo Pairs. Machine Vision and Applications, 12(1): 16-22, 2000.

[70]. Evaluation Results of My Proposed Models. Available at

http://vision.middleburv.edu/mview/eval/doAuth.php?aid=raeesi2-may-13-2010.

87 | P a g e

http://vision.middleburv.edu/mview/eval/doAuth.php?aid=raeesi2-may-13-2010

Appendix A: Implementation using Java

The main part of the proposed models is implemented in Java programming

language. I implemented 31 classes in a single package which is called VisualHull. As it

mentioned in the main context, there is a metric of the size of implemented application

which is the source lines of code. There are two type of LOC, physical and logical.

Physical line of code metric counts number of lines in the source code file which includes

the lines that have statements as well as blank line and comment line, while logical line

of code metric counts only statements.

Table A-l shows the implemented class files in Java in alphabetical order, with

their line of code metrics and number of static and non-static methods. There are two

main class fdes, one for each proposed model. The functions of each class fde are

described as follows.

1. Camera: The camera object models a camera with its intrinsic and

extrinsic parameters which determine its position and direction. Each

camera has a captured image with its corresponding silhouette.

2. Contour: This object finds the contour of a silhouette image, which is

used to calculate the bounding edges. The contour pixels are traversed in

counterclockwise order, in which the map of the object is always at the left

hand side of the direction of traversing the contour points.

3. ContourElement: The elements of Contour objects are modeled as

ContourElement which are ordered silhouette pixels with the next and

previous pointers.

4. Coordinate2D: The image and plane coordinates are modeled in the same

way with one different factor which is the fact that the image coordinates

are integer numbers.

5. Coordinate3D: The world and camera coordinates are implemented in

Coordinate3D class. This class implemented all the functions needed for

3D vector computations such as addition, subtraction, dot production,

cross production, and normalization.

Table A-l. Class files implemented in Java with number of physical and logical lines of code as well
as number of implemented methods.

No Class File Physical LOG Logical LOC Number of Methods
1 Camera 671 394 52
2 Contour 198 160 10
3 ContourElement 68 56 14
4 Coordinate2D 215 115 24
5 Coordinate3D 242 138 20
6 Curves 20 15 3
7 DepthCurve 66 24 4
8 DepthMap 293 223 8
9 DepthMapImage 731 524 33
10 DistortionCoefficients 68 44 5
11 ExtrinsicParameters 192 133 15
12 FocalLength 42 24 4
13 Interval ID 313 211 16
14 Interval lDPoint 62 56 11
15 IntrinsicParameters 136 87 8
16 MainClass 361 234 9
17 MainClassDepthMap 360 210 8
18 MatchingDriver 113 77 11
19 MatlabControl 279 155 17
20 Mesh 312 274 7
21 Parameters 41 27 0
22 Point3D 110 102 27
23 PrincipalPoint 42 24 4
24 Project3Dray 321 239 3
25 Ray2D 139 52 11
26 Ray3D 128 67 11
27 Raylntervals 62 25 5
28 RotationMatrix 162 111 12
29 SkewCoefficient 37 17 4
30 TranslationMatrix 77 43 7
31 VisualHull 519 391 24

Total 6380 4252 387

89 | P a g e

6. Curves: Curves object is used to save the DepthCurve objects as a stack to

manage Matlab calls.

7. DepthCurve: To find the best match for each pixel of the depth maps, all

the correlation values are store as a curve which is implemented in

DepthCurve class.

8. DepthMap: The calculated depth maps in Matlab are imported to Java

using DepthMap object. Each object has a reference view, a target view,

and two depth maps, x-map and y-map which contain the number of row

and column of the best match pixel of the target image. Reference and

target views are instances of the Camera object.

9. DepthMapImage: 3D points creation, and refinement are implemented as

the functions of DepthMapImage object. In this object, first based on each

viewpoints, 3D points are generated, followed by position refinement and

removing inconsistent points.

10. DistortionCoefficients: DistortionCoefficients object models the

distortion coefficients for each camera which is one of the camera intrinsic

parameters. It is implemented as a vector of five coefficients.

11. ExtrinsicParameters: Camera extrinsic parameters for each camera are

modeled in the object of ExtrinsicParameters including the rotation and

translation matrices. In this object, transformations from world space to

camera space, from camera space to image plane and vice versa are

implemented.

12. FocalLength: The focal length of the cameras is modeled in FocalLength

object, one of camera intrinsic parameters.

13. IntervallD: Bounding edges are implemented as the one dimensional

intervals for each pixel. IntervallD object is the bounding edge with the

start point and finish point.

14. IntervallDPoint: Each IntervallD object has two IntervallDPoint objects

which are the start point and finish point of the corresponding bounding

edge. Each point is stored as distance from 3D point to camera position.

90 | P a g e

15. IntrinsicParameters: Camera intrinsic parameters are implemented in

IntrinsicParameters object which contains focal length, principal point,

skew and distortion coefficients. Image plane to image pixel, and image

pixel to image plane transformations are implemented in this object.

16. MainClass: The main class for proposed visual hull model is implemented

in MainClass object. First, it starts by reading the camera information and

their corresponding silhouette images, and finally at the last step, it calls

the write function to write the final results to a file with PLY format.

17. MainClassDepthMap: MainClassDepthMap is the main class for the

proposed 3D object reconstruction method which is a depth map based

approach. It gets the camera information as well as the silhouette and color

images and depth map information, and returns a text file which includes

the information of the 3D points including their positions and normal

directions.

18. MatchingDriver: The interface between Java and Matlab is implemented

in Matching Driver object. The only Matlab called is considered for the

implementation is the calculation of normalized cross correlation between

two windows.

19. MatlabControl: To call Matlab from Java to do some function,

MatlabControl object is used, which translates the functions of the

interface to the Matlab codes.

20. Mesh: The Mesh object is implemented to produce the bounding surface

meshes as well as the final mesh for the proposed visual hull model. It

generates the triangular meshes as the PLY files.

21. Parameters: All the parameters of the proposed methods are stored in

Parameters object including the color of the background and foreground

pixels of the silhouettes, number of k for the nearest cameras for each

depth map, the window size for stereo window matching, the

configuration of the Matlab calls, the normalized cross correlation

threshold, the interesting resolution for the results, and so on.

91 I P a g e

22. Point3D: The 3D points in implementation are modeled by the Point3D

object, which includes position, normal direction, view direction (direction

to the viewing camera), neighbor information and pointers to the 3D

points which are mapped to its corresponding reference pixel.

23. PrincipalPoint: The PrincipaclPoint object contains the information of the

camera principal point which is one of the intrinsic parameters.

24. Project3DRay: The projection of the 3D ray to the silhouette images is

implemented as a static function in Project3Dray object, which returns the

intersection parts of the 3D ray with the corresponding silhouette. It first

project the 3D ray to a 2D ray in silhouette image plane, and then

calculates the intersection of the 2D ray with the foreground pixels of the

silhouette. Finally, it back-projects the 2D segments of the 2D ray to the

3D space.

25. Ray 2D: The 2D rays are implemented as Ray2D object which is

determined with the position of the start point of the ray and its direction.

The position and direction are 2D plane coordinates.

26. Ray3D: The 3D rays are modeled in Ray3D object. Like the 2D ray, 3D

rays are determined by their position and direction, while their position

and direction are 3D space coordinates. The new instances of Ray3D

object is calculated based on a pixel of an image, for which the start point

is the position of the corresponding camera and direction is such that the

ray goes through the 3D position corresponding to the interesting pixel in

image plane.

27. Raylntervals: The information of the intersected rays for each contour

pixel is tracked using Raylntervals, which is a collection of IntervallD

objects.

28. RotationMatrix: The rotation matrix of the cameras is one of the extrinsic

parameters which implemented in RotationMatrix object. Rotation matrix

is a 3x3 matrix with floating values.

29. SkewCoefflcient: Skew coefficient is one of camera intrinsic parameters

which is implemented in SkewCoefflcient object.

92 | P a g e

30. TranslationMatrix: Translation matrix, one of the camera extrinsic

parameters, is a 3x 1 matrix which determines the translation of the camera

coordinate with respect to the space coordinate.

31. VisualHulI: VisualHull object implements the main part of the proposed

visual hull model. It keeps the bounding edge information as the 2D

samples.

93 | P a g e

Appendix B: Comparison of the 2nd Proposed Model

The comparisons of the results of the proposed 3D object reconstruction model,

which are discussed in Section 5, are presented in the following bar charts. Figure B-l

shows the comparison of the proposed method with all the state-of-the-art approaches for

three different thresholds, 80%, 90%, and 99%. As it can be seen clearly, the accuracy

values are so close to each other. The methods are sorted based on the accuracy for

threshold 99% which is almost all the points of the result surface mesh.

7.57

» Accuracy 80% a Accuracy 90% • Accuracy 99%

Figure B-l. Accuracy comparison among all the state-of-the-art methods.

The comparison of completeness metric has been shown in Figure B-2 for two

different distance thresholds, \25mm and 1.5mm. The completeness values are so close

to each other as well. The methods in this plot are sorted for completeness for distance

threshold 1.5mm.

• Completeness 1 25 mm • Completeness 1.5 mm

Figure B-2. Completeness comparison among all the state-of-the-art methods.

Figure B-03 and Figure B-4 show the comparison of accuracy and completeness

metrics among the existing and submitting depth map based methods for different

thresholds.

» Accuracy 80% * Accuracy 90% • Accuracy 9®%

1.80

1.60

1.40

1.20

I 1.00
e 0

1 0.80
o

0.60

0.40

0.20

0.00

K '

1.64

1.41
1.46

Bradley ECCV 216 Deng Kunl l Liu2(2003) Goesele Raeesl Liu (2008)
(2008) (SuDniitted) (Submitted) (Submitted) (2009) (Proposed)

Figure B-03. Accuracy comparison among the depth map based methods.

95 I P a g e

As it can be seen clearly in Figure B-03, the ranking of the accuracy for threshold

99% is completely different from the ranking for threshold 80%.

m Completeness 1 5 mm • Completeness 125 mm

Goesele Bradley Raeesi KunLi Deng ECCV_216 liu(2009) Uu2(2009)
{2006} (2008) (Proposed) (Submitted) (Submitted) (Submitted)

Figure B-4. Completeness comparison among the depth map based methods.

The comparison of the proposed model with the methods which are recently

submitted and not published yet are presented in Figure B-5 and Figure B-6.

i Accuracy 80% "Accuracy 90% •Accuracy99%

Deng KunLI £CCV_642 Raeesi Song SurfEvolution ECCV_210 NIPS_82®
(Submitted) (Submitted) (Submitted) (Proposed) (Submitted) (Submitted) (Submitted) (Subtitled)

Figure B-5. Accuracy comparison among the methods which are not published yet.

96 | P a g e

» Completeness 1.25 mm » Completeness 1 5 mm

NIPS 829 Song Raeesl SurfEvolution ECCVJ216 KunLl Deng £CCV_642
(Submitted) (Submitted) (Proposed) (Submitted) (Submitted) (Submitted) (Submitted) (Submitted)

Figure B-6. Completeness comparison among the methods which are not published yet.

97 | P a g e

VITA AUCTORIS

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

Mohammad R. Raeesi N.

Esfahan, IRAN

1985

NODET (National Organization for Development of Exceptional
Talents) High School, Esfahan, IRAN
1989-2002

NODET (National Organization for Development of Exceptional
Talents) Pre-University, Esfahan, IRAN
2002-2003

Sharif University of Technology, Tehran, IRAN
2003-2007 B.Sc.

	3D Object Reconstruction using Multi-View Calibrated Images
	Recommended Citation

	ProQuest Dissertations

