775 research outputs found

    An Overview of Advances of Pattern Recognition Systems in Computer Vision

    Get PDF
    26 pagesFirst of all, let's give a tentative answer to the following question: what is pattern recognition (PR)? Among all the possible existing answers, that which we consider being the best adapted to the situation and to the concern of this chapter is: "pattern recognition is the scientific discipline of machine learning (or artificial intelligence) that aims at classifying data (patterns) into a number of categories or classes". But what is a pattern? A pattern recognition system (PRS) is an automatic system that aims at classifying the input pattern into a specific class. It proceeds into two successive tasks: (1) the analysis (or description) that extracts the characteristics from the pattern being studied and (2) the classification (or recognition) that enables us to recognise an object (or a pattern) by using some characteristics derived from the first task

    DTW-Radon-based Shape Descriptor for Pattern Recognition

    Get PDF
    International audienceIn this paper, we present a pattern recognition method that uses dynamic programming (DP) for the alignment of Radon features. The key characteristic of the method is to use dynamic time warping (DTW) to match corresponding pairs of the Radon features for all possible projections. Thanks to DTW, we avoid compressing the feature matrix into a single vector which would otherwise miss information. To reduce the possible number of matchings, we rely on a initial normalisation based on the pattern orientation. A comprehensive study is made using major state-of-the-art shape descriptors over several public datasets of shapes such as graphical symbols (both printed and hand-drawn), handwritten characters and footwear prints. In all tests, the method proves its generic behaviour by providing better recognition performance. Overall, we validate that our method is robust to deformed shape due to distortion, degradation and occlusion

    SketchSynth: Cross-Modal Control of Sound Synthesis

    Get PDF
    This paper introduces a prototype of SketchSynth, a system that enables users to graphically control synthesis using sketches of cross-modal associations between sound and shape. The development is motivated by finding alternatives to technical synthesiser controls to enable a more intuitive realisation of sound ideas. There is strong evidence that humans share cross-modal associations between sound and shapes, and recent studies found similar patterns when humans represent sound graphically. Compared to similar cross-modal mapping architectures, this prototype uses a deep classifier that predicts the character of a sound rather than a specific sound. The prediction is then mapped onto a semantically annotated FM synthesiser dataset. This approach allows for a perceptual evaluation of the mapping model and gives the possibility to be combined with various sound datasets. Two models based on architectures commonly used for sketch recognition were compared, convolutional neural networks (CNNs) and recurrent neural networks (RNNs). In an evaluation study, 62 participants created sketches from prompts and rated the predicted audio output. Both models were able to infer sound characteristics on which they were trained with over 84% accuracy. Participant ratings were significantly higher than the baseline for some prompts, but revealed a potential weak point in the mapping between classifier output and FM synthesiser. The prototype provides the basis for further development that, in the next step, aims to make SketchSynth available online to be explored outside of a study environment

    Improving Bags-of-Words model for object categorization

    Get PDF
    In the past decade, Bags-of-Words (BOW) models have become popular for the task of object recognition, owing to their good performance and simplicity. Some of the most effective recent methods for computer-based object recognition work by detecting and extracting local image features, before quantizing them according to a codebook rule such as k-means clustering, and classifying these with conventional classifiers such as Support Vector Machines and Naive Bayes. In this thesis, a Spatial Object Recognition Framework is presented that consists of the four main contributions of the research. The first contribution, frequent keypoint pattern discovery, works by combining pairs and triplets of frequent keypoints in order to discover intermediate representations for object classes. Based on the same frequent keypoints principle, algorithms for locating the region-of-interest in training images is then discussed. Extensions to the successful Spatial Pyramid Matching scheme, in order to better capture spatial relationships, are then proposed. The pairs frequency histogram and shapes frequency histogram work by capturing more redefined spatial information between local image features. Finally, alternative techniques to Spatial Pyramid Matching for capturing spatial information are presented. The proposed techniques, variations of binned log-polar histograms, divides the image into grids of different scale and different orientation. Thus captures the distribution of image features both in distance and orientation explicitly. Evaluations on the framework are focused on several recent and popular datasets, including image retrieval, object recognition, and object categorization. Overall, while the effectiveness of the framework is limited in some of the datasets, the proposed contributions are nevertheless powerful improvements of the BOW model

    Using moment invariants for classifying shapes on large scale maps

    Get PDF
    Automated feature extraction and object recognition are large research areas in the field of image processing and computer vision. Recognition is largely based on the matching of descriptions of shapes. Numerous shapes description techniques have been developed, such as scalar features (dimension, area, number of corners etc.), Fourier descriptors and moment invariants. These techniques numerically describe shapes independent of translation, scale and rotation and can be easily applied to topographical data. The applicability of the moment invariants technique to classify objects on large-scale maps is described. From the test data used, moments are fairly reliable at distinguishing certain classes of topographic object. However, their effectiveness will increase when fused with the results of other techniques

    Topographic Object Recognition Through Shape

    Get PDF
    Automatic structuring (feature coding and object recognition) of topographic data, such as that derived from air survey or raster scanning large-scale paper maps, requires the classification of objects such as buildings, roads, rivers, fields and railways. The recognition of objects in computer vision is largely based on the matching of descriptions of shapes. Fourier descriptors, moment invariants, boundary chain coding and scalar descriptors are methods that have been widely used and have been developed to describe shape irrespective of position, orientation and scale. The applicability of the above four methods to topographic shapes is described and their usefulness evaluated. All methods derive descriptors consisting of a small number of real values from the object's polygonal boundary. Two large corpora representing data sets from Ordnance Survey maps of Purbeck and Plymouth were available. The effectiveness of each description technique was evaluated by using one corpus as a training-set to derive distributions for the values for supervised learning. This was then used to reclassify the objects in both data sets using each individual descriptor to evaluate their effectiveness. No individual descriptor or method produced consistent correct classification. Various models for the fusion of the classification results from individual descriptors were implemented. These were used to experiment with different combinations of descriptors in order to improve results. Overall results show that Moment Invariants fused with the minfusion rule gave the best performance with the two data sets. Much further work remains to be done as enumerated in the concluding section

    Artificial neural networks for image recognition : a study of feature extraction methods and an implementation for handwritten character recognition.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1996.The use of computers for digital image recognition has become quite widespread. Applications include face recognition, handwriting interpretation and fmgerprint analysis. A feature vector whose dimension is much lower than the original image data is used to represent the image. This removes redundancy from the data and drastically cuts the computational cost of the classification stage. The most important criterion for the extracted features is that they must retain as much of the discriminatory information present in the original data. Feature extraction methods which have been used with neural networks are moment invariants, Zernike moments, Fourier descriptors, Gabor filters and wavelets. These together with the Neocognitron which incorporates feature extraction within a neural network architecture are described and two methods, Zernike moments and the Neocognitron are chosen to illustrate the role of feature extraction in image recognition

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition
    corecore