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Abstract

Matching points between images is difficult because of the many pos-
sible variations between images of the same scene or 3D feature. This
includes different viewpoints, changing lighting conditions, occlusion
and noise. In this work, I demonstrate that the use of a local descriptor
which is individual to each interest-point improves matching perform-
ance over using one globally.

I propose two different approaches. The first is to use a pool-
ing operation, based on geometric blur, which is individual to each
interest-point. This is achieved by estimating how each interest-point
will appear in other images through generating synthetic warps. The
second is to learn an optimal combination of base-descriptors for each
interest-point so as to obtain an optimal descriptor for each interest-
point. This is achieved through supervised learning based on having
multiple instances of the same interest-point.

Another difficult problem is detecting people in images of artwork,
because of the huge variation in the ways people are depicted. This
included the media used (e.g. pencil, paint and sculpture) and the
range of poses and projections, including Cubism at the extreme. I
demonstrate that state-of-the-art CNN based methods yield improved
performance if the models are fine tuned on artwork, however their
performance on photos is subsequently reduced. This shows that these
approaches cannot simultaneously generalise over and perform well on
both photos and artwork.

The underlying theme of this dissertation is the proposition that
these and other algorithms lack generalisation because their invari-
ance is at too low a level, lacking high level semantic information.
For further work, I suggest the incorporation of high level semantic
information into interest-point matching and better modelling of the
structure of people which is shown to be essential for detecting people
across different depictive styles.
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unknown, used under fair dealing . . . . . . . . . . . .

1.12 Left: Public Domain (https://www.wikiart.org/en/claude-
monet/houses-of-parliament) ; right: “Palace of West-
minster at dusk” (https://en.wikipedia.org/wiki/Palace_
of_Westminster#/media/File:Palace_of_Westminster,
_London_-_Feb_2007.jpg) by David Iliff is licensed
under CC BY-SA 2.5 . . . . . . . . . . . . . . . . . .

1.13 ©Google, Getmapping plc, used under fair dealing . .

1.14 ©Google, Getmapping plc, used under fair dealing . .

1.15 ©Google and others, used under fair dealing . . . . .

1.16 “Bath - Roman Baths” (https://commons.wikimedia.
org/wiki/Category:Roman_Baths_(Bath)#/media/File:
Bath_-_Roman_Baths_(17087314158).jpg) by Paul Steph-
enson is licensed under CC BY 2.0 . . . . . . . . . . .

1.17 “Bath - Roman Baths” (https://commons.wikimedia.
org/wiki/Category:Roman_Baths_(Bath)#/media/File:
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(https://commons.wikimedia.org/wiki/File:Smile2.svg)
; ©Pablo Picasso (https://www.pablopicasso.org/seated-
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“Bora, Labrador Retriever” (https://en.wikipedia.org/
wiki/Labrador_Retriever#/media/File:BoraDK20050331.
JPG) by Michael Schreck is licensed under CC BY-SA
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1.19 Open Government Licence v1.0 . . . . . . . . . . . . .

1.20 ©Salvador Dalí (https://www.wikiart.org/en/salvador-
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1.21 Left: “Seeley Library from the southeast” (https://en.
wikipedia.org/wiki/Seeley_Historical_Library#/media/
File:History_Faculty_University_of_Cambridge.jpg) by
Andrew Dunn is licensed under CC BY-SA 2.0 ; right:
“Sydney Operate House” (https://en.wikipedia.org/wiki/
Sydney_Opera_House#/media/File:Sydney_Opera_
House,_botanic_gardens_1.jpg) by Adam J. W. C. is
licensed under CC BY-SA 2.5 . . . . . . . . . . . . . .

1.22 “Logitech Unifying Receiver” (https://commons.wikimedia.
org/wiki/Category:Pareidolias#/media/File:Logitech_
Unifying_Receiver,_Logitech_Wireless_Mouse_M235.
jpg) by MK2010 is licensed under CC BY-SA 4.0 . . .

1.23 “Bath - Roman Baths” (https://commons.wikimedia.
org/wiki/Category:Roman_Baths_(Bath)#/media/File:
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enson is licensed under CC BY 2.0 . . . . . . . . . . .

1.24 Left: “A DeLorean DMC-12 from the front with the
gull-wing doors open” (https://en.wikipedia.org/wiki/
DeLorean_DMC-12#/media/File:DeLorean_DMC-12_
with_doors_open.jpg) by Kevin Abato is licensed un-
der CC BY-SA 3.0 ; right: “1909 Touring - Second-
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1.25 Left: “Duck” (https://www.flickr.com/photos/ptc24/3309603761/)
by Peter Corbett is licensed under CC BY 2.0 ;
right: Public Domain (https://commons.wikimedia.org/
wiki/File:Setting_sun_at_the_lake.jpg) . . . . . . .

1.26 Top left: “Dunsfold Wheels and Wings 2007” (https://
commons.wikimedia.org/wiki/Category:Morris_Minor_
Traveller#/media/File:Morris_Traveller_(1241914442)
.jpg) by Allen Watkin is licensed under CC BY-SA
2.0 ; top right: “smart Fortwo cabriolet” (https://en.
wikipedia.org/wiki/Smart_(marque)#/media/File:Smart_
fortwo_52_mhd_cabrio_-_Flickr_-_David_Villarreal_
Fern%C3%A1ndez_(16).jpg) by Hohum is licensed un-
der CC BY-SA 2.0 ; bottom left: “British Rolls Royce
1920 Mk1 Armoured Car at Bovington Tank Museum”
(https://en.wikipedia.org/wiki/Rolls-Royce_Armoured_
Car#/media/File:Rolls_Royce_1920_Mk1_1_Bovington.
jpg) by Hohum is licensed under CC BY 3.0 ; bottom
right: “f1” (https://en.wikipedia.org/wiki/McLaren_MCL32#
/media/File:2017_British_Grand_Prix_(35127471353)
.jpg) by Stephen Grimes is licensed under CC BY-SA
2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.27 Top left: “Women’s high jump” (https://commons.wikimedia.
org/wiki/Category:High_jump#/media/File:Womens_
high_jump_3.jpg) by ScottRay is licensed under CC
BY 2.0 ; top right: “A horse free jumping.” (https://en.
wikipedia.org/wiki/Free_jumping#/media/File:Dirkhan.
jpg) by Artur Baboev is licensed under CC BY-SA 3.0 ;
bottom left: Public Domain (https://en.wikipedia.org/
wiki/Jumping#/media/File:Tursiops_truncatus_01.jpg)
; bottom right: “An Emperor Penguin (Aptenodytes
forsteri) in Antarctica jumping out of the water.” (https:
//commons.wikimedia.org/wiki/File:Penguin_in_Antarctica_
jumping_out_of_the_water.jpg) by Christopher Michel
is licensed under CC BY 2.0 . . . . . . . . . . . . . . .
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Figure Copyright Attributions

1.28 From left to right: “SOUTHPORT, UNITED KING-
DOM - JULY 27: Suzann Pettersen of Norway reads
her putt on the 8th green during pro-am round before
2010 Ricoh Women’s British Open held at Royal Birk-
dale on July 27, 2010 in Southport, England.” (https://
commons.wikimedia.org/wiki/Category:Sitting#/media/
File:2010_Women%27s_British_Open_%E2%80%93_
Suzann_Pettersen_(3).jpg) by Wojciech Migda is li-
censed under CC BY-SA 3.0 , “Sunset” (https://commons.
wikimedia.org/wiki/Category:Sitting_with_bent_knees#
/media/File:Sunset_02489.jpg) by Nevit Dilmen is li-
censed under CC BY-SA 3.0 , “Chilly on the Cam”
(https://commons.wikimedia.org/wiki/Category:Punting_
in_Cambridge#/media/File:Winter_punting_in_Cambridge_
(8385466954).jpg) by James Petts is licensed under CC
BY-SA 2.0 , “Ballerina” (https://commons.wikimedia.
org/wiki/Category:En_pointe_dancers#/media/File:Ballet-
Ballerina-1853.jpg) by David R. Tribble is licensed un-
der CC BY-SA 3.0 , “An acro dancer (Daria L) pauses
in a handstand during a competitive dance performance
before proceeding to hand walk across the stage” (https:
//commons.wikimedia.org/wiki/Handstand#/media/File:
AcroDanceHandstand.jpg) by Jim Lamberson is licensed
under CC BY 3.0 . . . . . . . . . . . . . . . . . . . . .

1.29 “A man running. Photogravure after Eadweard Muy-
bridge, 1887” (https://commons.wikimedia.org/wiki/File:
A_man_running._Photogravure_after_Eadweard_Muybridge,
_1887._Wellcome_V0048619.jpg) by Welcome Trust
is licensed under CC BY 4.0 . . . . . . . . . . . . . . .

1.30 Images from the Shadow Removal Dataset by Han Gong
and Darren Cosker, used under fair dealing . . . . . . .

1.31 Images from K. Mikolajczyk’s “Feature Detector Eval-
uation Sequences”, used under fair dealing . . . . . . .

1.32 “1930s model railway layout, Brighton Toy and Model
Museum” (https://commons.wikimedia.org/wiki/File:1930s_
model_railway_layout,_Brighton_Toy_and_Model_
Museum_(~177_Megapixel).jpg) by Eric Baird is li-
censed under CC BY-SA 4.0 . . . . . . . . . . . . . .

1.33 Images from K. Mikolajczyk’s “Feature Detector Eval-
uation Sequences”, used under fair dealing . . . . . . .
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1.34 Vector graphics of people made by Freepik are licensed
by CC 3.0 BY; original cartoon design unknown . . .

1.35 Photographed by myself . . . . . . . . . . . . . . . . .
1.36 From left to right: Public Domain (https://commons.

wikimedia.org/wiki/Category:Human_body_symbols#
/media/File:Blue_person_pictogram.svg) , “child art,
intentional portrait of mother” (https://commons.wikimedia.
org/wiki/Category:Drawings_by_children#/media/File:
Child_art,_mom.jpg) by Lexi is licensed under CC
BY-SA 3.0 , Public Domain (https://en.wiktionary.org/
wiki/%E4%BA%BA#/media/File:%E4%BA%BA-oracle.
svg) , “A drawing of a guy on a chair with a book
in Light Painting during the Wikimedia meeting in
Hermalle-sous-Huy.” (https://commons.wikimedia.org/
wiki/Category:Stick_figures#/media/File:Guy_Light_
Painting_with_a_book.JPG) by Ludovic Péron is li-
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1.37 Images from MNIST, used under fair dealing . . . . . .
1.38 Images from MNIST, used under fair dealing . . . . . .
1.39 Images from MNIST, used under fair dealing . . . . . .
1.40 Image: “Sofagarnitur mit einem Hocker anstelle eines

Tisches oder eines Sesels” (https://commons.wikimedia.
org/wiki/File:Sofagarnitur-salento1.jpg) by http://moebel-
lega.de is licensed under CC BY-SA 3.0 DE ;
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3.1 “Bath Abbey, City of Bath, England” (https://commons.
wikimedia.org/wiki/File:Bath_Abbey,_City_of_Bath,
_England..jpg) by JKMMX is licensed under CC BY-
SA 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 “Bath Abbey, City of Bath, England” (https://commons.
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1 Introduction

Sometimes the same thing looks very different. Consider standing
in the same place and looking at the same building: perhaps the
base of the Eiffel Tower or the entrance to St Paul’s Cathedral. The
appearance will change over time. This may be due to changes in
the weather, changes in the position of sun or the presence of other
light sources. This may also be due to the interaction of other items,
whether visible in the scene or casting a shadow on the scene. Despite
these changes, the identity of the building remains the same. However,
its description might change: perhaps one might add the label “at
night” or “at dawn”.

As one walks around and views the building from a different position
or orientation, the appearance changes further still. Some parts of the
building appear to be located in different places relative to us. Other
parts of the building disappear while new parts of the building become
visible. In spite of this, however, the identity of the building remains
the same. However, one might use a different description for different

Figure 1.1: Left and middle: the same view of the Eiffel Tower at
different times of the day; right: a different view of the
Eiffel Tower
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1 Introduction

parts of the building: the front, the rear, the inside, the base, the top,
the nave, the transepts.
Matching is an important tool for Computer Vision problems. The

aim of matching is to discern whether two instances of an object or
feature have the same identity: they are different instances of the same
thing. The ability to match locations between 2D images enables the
building of a 3D reconstruction and enables tracking changes through
time, whether caused by movement or change in appearance.

However, matching is difficult because of the large amount of vari-
ation in direct visual appearance. The two instances being matched
may be far from identical. Perhaps the two instances are the same
scene, photographed at two different angles. A successful matching al-
gorithm must allow for differences which do not prevent two instances
being the “same” for the given task. However, in doing so it must re-
ject differences which results in two non-matching instances, otherwise
false matches will result. This makes matching a difficult Computer
Vision problem in its own right.

Another task is classification, the aim of which is discern to which
class, or classes, an images belongs. Yet another task is object de-
tection, which requires not only classifying objects but finding where
they are within an image. The variation within a same class can be
huge. Consider four classes: cars, cats, buses and dogs. A success-
ful classification algorithm must be able to handle the vast variation
within these classes: the many different breeds of cats and dogs and
the many different models of buses and cars. Yet it must be able to
discern between a car and bus, a cat and a dog. Though the differ-
ences between them may not seem subtle to human observers, who
excel at such classification, this task remains difficult to implement

Figure 1.2: Three photos of St Paul’s Cathedral in different weather
conditions; left: in sun; middle: in rain; right: in snow

28



1.1 Theses

Figure 1.3: Left: “The River Thames With St. Paul’s Cathedral” by
Canaletto; Right: Egyptian sarcophagus of a cat

with computers.
In all these problems, there are some properties which do not af-

fect the identity and some which do. These properties vary with the
particular matching or classification task: the presence of rain does
not change the identity of a building, though it could change the de-
scription of the weather conditions. For optimal performance, Com-
puter Vision algorithms for these tasks must be invariant to properties
which do not change the identity for given the task. Yet, they must
remain discriminant to properties which do change the identity.
On top of all the properties mentioned, there is another property:

depiction. As well as natural images, formed by taking photographs
of natural scenes, there are other ways objects can be depicted, such
as paintings and line drawings. Yet the depiction does not change
the identity. Canaletto’s painting of St Paul’s Cathedral is not a
natural image, however it is still identifiable as St Paul’s cathedral; a
sarcophagus of a cat is not a natural image but it is still a cat. Likewise
many artists have produced different paintings of the Eiffel Tower,
many of which differ greatly from natural images, even exchanging
straight lines for curves. However these paintings all share the same
identify: the Eiffel Tower.

1.1 Theses

In this dissertation, I show a portfolio of research work which supports
the following proposition:

The invariance of state-of-the-art algorithms is at too low
a level for generalised interest-point matching and gener-
alised object detection.

Chapters 3 and 4 proves the following thesis:
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Figure 1.4: Left: “The Eiffel Tower” by Georges Seurat; middle: “Eiffel
Tower” by Ivan Generalic; right: “Eiffel Tower And The
Seine” by Pierre Bonnard

A local descriptor can be optimised per interest-point rather
than globally to improve matching accuracy.

Chapter 5 proves the following thesis:

It is not yet possible to train or tune state-of-the-art object
detectors to simultaneously perform optimally on artwork
and photos.

Some of the terms require further definition and are outlined in the
sections identified in the following table:

Term Section Page

generalised interest-point matching 1.3 37
generalised object detection 1.3 37

invariance 1.5 47
low level 1.4 40

interest-point matching 1.2.3 33
local descriptor 1.2.3.2 36
object detector 1.2.2 32

artwork and photos 1.3 37
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1.2 Image Classification, Object Detection
and Interest-Point Matching

I begin by describing the Computer Vision tasks, image classification,
object detection and interest-point matching. For each of these tasks,
I assume that optimal performance occurs when the computer matches
the opinion of one or more or a consensus of humans supervisors on
new or previously unseen examples. The objective of maximising per-
formance on new or unseen examples, exclusively, matches the liter-
ature for supervised learning (Bishop, 2006; Valiant, 1984; Weiss and
Kulikowski, 1991). As noted in Ginosar et al. (2014), human super-
visors can often disagree on annotations; however the consensus of the
majority forms the target for optimal performance.

1.2.1 Image Classification

Image classification is the act of assigning a class or label to an image.
Consider a digital image, as a function, I(x),

I : P→ NN
0 , (1.1)

which maps 2D coordinates, as a variable, x =
[
x y

]> to pixels
composed of tuples, length N, e.g. a single intensity value (N = 1),
red, green and blue (RGB) (N = 3) or another tuple of values. Since
images have a finite width, w, and height, h, I(x) is defined only for
a subset of heights and widths, all natural numbers,

P ⊂ N2 : 0 < x ≤ w, 0 < y ≤ h. (1.2)

Consider an image classifier as an operator,

C{I(x)} = θ, (1.3)

Figure 1.5: Images from the PASCAL VOC classification challenge
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which operates on an image, I(x), and outputs a class, θ ∈ Θ. Altern-
atively consider the classifier as a function or mapping from the set of
all possible images, I, to the set of possible classes, Θ:

C : I → Θ (1.4)

The class could represent the dominant object in an image, e.g. person,
car, cat or dog. Alternatively, a class could represent a more abstract
label, such as “landscape” or “building”.
Figure 1.5 shows some examples of the PASCAL Visual Object

Classes (VOC) classification challenge (Everingham, Van Gool et al.,
2012), by way of example. In this challenge, the task is to identify the
presence or lack of each class in an image. Therefore each image can
have multiple classes. In the above framework, this could correspond
to having many classifiers, C{I(x)}, which output either positive or
negative for each class of object in the challenge. Alternatively, one
could modify (1.3) to return a set of classes, {θ1, θ2, . . .} ⊂ Θ.

1.2.2 Object Detection

Object detection involves not just identifying the presence of objects,
as in classification. Instead, object detection involves localising each
object instance. An object detector may have different outputs in-
cluding the following:

1. The centre of the object

2. A rectangular box, the bounding box, whose sides are vertical
and horizontal and which covers the entire object with minimal
area (see Figure 1.6 for examples)

3. A binary image mask, Zh×w2 : Z2 = {0, 1} , where h and w are
the height and width, respectively, of the input image: the mask
indicates which pixels form the object; however, this would typ-
ically be considered segmentation on top of detection (Romera-
Paredes and Torr, 2016).

Consider an object detector, which outputs a rectangular bounding
box (item 2 above) as an operator,

D{I(x)} = (θ,xTL,xBR) , (1.5)
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Figure 1.6: Images from the PASCAL VOC detection challenge with
bounding box labellings; each class has a different colour

which operates on an image, I(x), and outputs a tuple, (θ,xTL,xBR),
containing a class, θ ∈ Θ, and the coordinates, xTL ∈ P and xBR ∈ P.
These coordinates represent the top-left and bottom-right coordinates,
respectively, of the detection bounding box, whose sides are horizontal
and vertical. The coordinates lie within the image, i.e. the space, P
(see (1.2)). More generally, the object detector may return a set of
tuples,

{(θ1,xTL1,xBR1) , (θ2,xTL2,xBR2) , . . . , (θN ,xTLN ,xBRN)} , (1.6)

corresponding to multiple object instances.
Figure 1.6 shows some examples of the PASCAL Visual Object

Classes (VOC) detection challenge (Everingham, Van Gool et al.,
2012). In this challenge, the task is to identify and locate all in-
stances of a set of classes within an image. An ideal object detector
should return bounding boxes which match those in Figure 1.6 and
with the correct class labels (corresponding to colours in the figure).

1.2.3 Interest-Point Matching

Many Computer Vision tasks require a set of matching points between
images, for example 3D reconstruction (Agarwal et al., 2009; Brown
and Lowe, 2002), image stitching (Brown and Lowe, 2007), image
search (Philbin et al., 2007) and object detection (Brown and Lowe,
2005; Lowe, 1999). Though it would be possible, in theory, to match
every pixel with every other pixel across images, this is not common
practice as a first step due to inefficiency.

Likewise, it would, in theory, be possible to use the outputs of an
object detector, however this would require a sufficient number of ob-
ject instances for a given class to exist in each image, to generate
a sufficient number of matching points between images. Moreover,
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Figure 1.7: ORB interest-points extracted from an image of Bath Ab-
bey: the interest-points are drawn so as to show their
relative size and orientation.

this task usually requires matching of identical instances rather than
identical objects. Hence an object detector would not be appropri-
ate. Finally, many objects often move around in the 3D world, e.g.
people and vehicles, while background elements such as buildings and
landscape do not. The latter elements are more useful for matching
between images as they provide a constant reference but these may
not be identified by object detectors because they form a continuum
rather than a single object instance.
One alternative is to extract a subset of pixel locations in each

image which are expected to be useful for matching between images.
These locations are known as interest-points and are detected using
an interest-point extractor. (Interest-points can also be referred to as
“features”. However due to the potential for confusion, I always refer
to these as interest-points.) Figure 1.7 shows an example of interest-
points extracted from an image. The use of interest-points represents
a technique for data reduction, reducing the huge amount of data
contained in a single image into a much smaller amount of pertinent
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information for further processing (e.g. image registration).

1.2.3.1 Interest-Points and Interest-Point Extractors

An interest-point extractor processes an image and returns a number
of interest-points, consisting of pertinent locations (and possibly other
parameters such as rotation and scale) in the image. Consider an
interest-point extractor as an operator,

DIP{I(x)} = {p1,p2, . . . ,pN} , (1.7)

which operates on an image, I(x), and outputs a set of interest-points,
pn ∈ P . The use of the term extractor rather than detector follows
from the argument that interest-points do not exist a priori in the
image (Tuytelaars and Mikolajczyk, 2008). Hence no detection takes
place and there are no missed detections; instead, they are extracted
from the image based on an algorithm. This is in contrast to objects
which do exist a priori and, therefore, are either detected in an image
or result in missed detections.
An interest-point must be well defined, often mathematically, how-

ever the definition varies depending on the extractor. At the min-
imum, each interest-point, pn, must be parametrised by a pixel loca-
tion within the image, x ∈ pn∩P. Since the purpose of interest-points
is for matching the same points between difference images, the defin-
ition of an interest-point must be independent of location within an
image: this is known as location covariance. (However, the interest-
point extractor may not be able to extract interest-points too close to
an edge of an image, as a practical limitation.)
In addition, an interest-point may also parameterise a region or

neighbourhood (Tuytelaars and Mikolajczyk, 2008) surrounding x.
As an example, each interest-point could contain a scale parameter,
s, which indicates the size of a region centred on the location, x. The
reasons for this will become apparent later.
An interest-point should have the following attributes (Farinella,

Battiato and Cipolla, 2013; Tuytelaars and Mikolajczyk, 2008):

distinctiveness In order to permit the matching of interest-points
between images, each interest-point should lie on or represent a
distinct part of the image. As an example, areas of sky tend not
to be distinct between photographs.
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ubiquity Interest-points should be extractable, in sufficient quantit-
ies, from any image used for any task requiring interest-points.

repeatability Where different images contain an identical region, per-
haps photographs of the same points in 3D photographed from
a different viewing angle, the same interest-point should be ex-
tracted.

In addition, the interest-point extractor should ideally be efficient.

1.2.3.2 Local Descriptors

Matching interest-points between images can be achieved by match-
ing the neighbourhood of the image local to or parameterised by the
interest-point. This region, used to calculate the local descriptor, is
known as the support region (Mikolajczyk and Schmid, 2005; Mikola-
jczyk, Tuytelaars et al., 2005). Consider a local descriptor extractor
as an operator,

ELD{I(x),p} = d, (1.8)

which operates on an image, I(x), and outputs a local descriptor, d ∈
RN , a vector of length, N , for a given interest-point, p ∈ P . In general,
the local descriptors exist in the same normed vector space,

(
RN , ‖·‖

)
,

where the norm, ‖·‖, allows comparison between two local descriptors,
by calculating the distance between two descriptors, d1,d2 ∈ RN as

d(d1,d2) = ‖d1 − d2‖. (1.9)

In Chapter 4, however, I demonstrate the use of different distance
functions for each interest-point.
There are many possible local descriptor extractors. Perhaps the

simplest is to extract a square region centred on the location of an
interest-point, xn ∈ pn, with horizontal and vertical sides of length,
l. The intensity values of each pixel within the square could then be
rearranged to form a vector for use as a local descriptor. Alternatively,
if the interest-point also includes a scale parameter, sn ∈ pn, a square
region of size, snl, could be used. As a result, scaling of the image
would have no effect on the descriptor: such a descriptor is scale
invariant providing that the interest-point extractor is scale covariant.
In practice, neither method alone is robust enough for general match-

ing tasks due to insufficient invariance to the differences between im-
ages, which are explored in greater detail in Section 1.5. In addition to
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invariance, the local descriptor must maintain its discriminative power
so as not to result in the matching of interest-points which should not
match. This makes interest-point matching a challenging problem.

1.3 Generalised Object Detection and
Generalised Interest-point Matching

The majority of existing Computer Vision algorithms typically per-
form well for a limited subset of problems. In the case of object
detection, existing algorithms typically perform well on photos and
other, photo-realistic, images. In the case of interest-point matching,
existing algorithms typically also perform well on photographs, and
for changes in viewpoint or viewing conditions rather than changes
over time, e.g. building construction progress. However, the universe
of possible images includes more than photographs. One interpreta-
tion is to consider the universe of possible images as including natural
images (photos) and non-natural images (artwork), as in Figure 1.8.

Westlake, Cai and Hall (2016) argue that, though linguistically con-
venient, this is a false dichotomy. A more accurate interpretation is to
allow photos and artwork to intersect, as in Figure 1.9, to cover fine
art photos such as Alfred Stieglitz’s “The Hand of Man” and Philippe
Halsman “Marilyn Monroe”. It is worth noting that the boundary for
artwork is subjective and based on the observer’s frame of reference.

In addition to photos and artwork, and the intersection between
these two groups, there are images which fall into neither. This in-
cludes random noise images and images which are specifically designed
to fool state-of-the-art object detectors (Nguyen, Yosinski and Clune,
2015).

While photographs of actual objects may be more abundant than
other images, they form only one depictive style. Other styles include
paintings, drawings, sculptures and symbols. A famous example of
this is “The Treachery of Images” by René Magritte (see Figure 1.10),
an oil panting which represents a pipe. The painting can therefore
be recognised as a pipe, even if it can not be smoked as a pipe. In
addition, Figure 1.11 shows five images of bicycles: only one is a
photograph of a bicycle however the rest are clearly identifiable as
bicycles.

Generalised object detection refers to the ability to detect objects
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Universe of images

Photos Artwork

Figure 1.8: In this interpretation, the “Universe of Images” includes
two non-overlapping subsets: photos and artwork.

Universe of images

Random
Noise

Synthetic
Images

(Nguyen, 2015)Photos Artwork

Figure 1.9: In this interpretation, the “Universe of Images” includes
two overlapping subsets: photos and artwork, as well as
images which do not fall into either.
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Figure 1.10: “The Treachery of Images” by René Magritte: The text
says “this is not a pipe”—indeed it is an oil paining which
represents a pipe and can be recognised as a pipe, even
if it can not be smoked as a pipe.

Figure 1.11: Five images of a bicycle: though only the leftmost is a
photo, the rest are still identifiable as bicycles

Figure 1.12: Left: Claude Monet’s “Parliament in London—Stormy
day, 1904”; right: photo of the river front of the Palace
of Westminster at dusk; although one is an impressionist
painting and the other a photo, it is possible to match
points between the two images
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no matter how they are depicted. Similarly, generalised interest-point
detection refers to the ability to extract and match interest-points
between two images, even if they have different depictions. These are
instances of the cross-depiction problem (Hall et al., 2015). Figure 1.12
shows an example of this: points between the impressionist painting
and the photograph have been matched by hand between the two
images, a task possible for a human annotator in spite of the different
depictive types.

1.4 From Low to High Level

There is no universal definition of low and high level in Computer
Vision, or of what constitutes different level of vision. A useful analogy
might be viewing the ground from above, from a low level to a high
level. At a low level, one can observe minute details such as individual
trees and buildings (see Figure 1.13). At a higher level, one can only
observe areas of earth with less detail, e.g. fields and built-up areas
(see Figure 1.14). At an even higher level, one would only be able to
observe different terrain, e.g. mountains, sea and plains (see Figure
1.15).

1.4.1 Closeness to Pixels

The basic building block of Computer Vision is the pixel, with images
formed from combinations of them in a regular grid. As a result,
pixels form the lowest level of vision. A linear sum or convolution
over pixels in the image results in a new image, containing low level
features (see Section 1.6.1), for example images showing the oriented
gradients of the image as in Figure 1.17. Although this operation still
remains close to the pixels, and hence is still low level, the result is
at a higher level then the pixels; multiple images could produce the
same gradient images.
Another example of low level features includes appearance-based

edges, such as those generated using the Canny edge detector (Canny,
1986). Figure 1.16 shows edges extracted using the Canny detector
for the same image. Since this resulted in further processing of the
gradient images, it is at a higher level than them.

The mid level includes details about geometry and motion such
as object depths, surface-normals, motion trajectories and primitive
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Figure 1.13: Low-level: an aerial view of the University of Bath

Figure 1.14: Higher level: an aerial view of Bath

Figure 1.15: Even higher level: an aerial view of UK
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Figure 1.16: Left: A photo of the Roman Baths, Bath; right: the
result of running the Canny edge detector on the photo

Figure 1.17: The result of converting to greyscale the photograph in
Figure 1.16 followed by convolution with a kernel: left
convolution with

[
−1 0 1

]
as the kernel; right: convo-

lution with
[
−1 0 1

]> as the kernel

object structures such as wheels and faces. These are further removed
from the pixels, requiring more processing such as successive rounds of
non-linear operations and convolution of low level features. The mid
level results in more interpretation of the image, however falls short
of a semantic interpretation. Figure 1.18 demonstrates an example
of this: at low sensitivity (first row) the face detector only detects a
single face; at high sensitivity, the detector also detects a second face,
with many false positives. Even at low sensitivity, the detector fails
to identify the “smiley” face and the dog face, suggesting it falls short
of semantic interpretation.
The high level involves a semantic interpretation. This would in-

cludes object detectors, which apply a semantic label to part of an
image, such as “a person”. However, it would also include other se-
mantic details including “looking to the right”, “sitting down”, “angry”,
etc. High levels of Computer Vision would also include association
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Figure 1.18: A face detector forming an example of mid level vision:
the face detections are shown as red rectangles. The top
row shows detectors when run with high sensitivity and
the bottom row shows detections when run with low sens-
itivity. The images are as follows from left to right: “Por-
trait of William Wilberforce” by Karl Anton Hickel; a
“smiley”, “Seated Woman with Green Shawl” by Pablo
Picasso and a photograph of a Chocolate Labrador

between symbols and real-life objects: an example of this would be
the semantic interpretation of road signs (see Figure 1.19).

The highest level includes cases in which an object resembles an-
other, for example a cloud resembling a person. Though the class of
the object is clear, it resembles another object. The resemblance may
be intentional or a case of pareidolia—perceiving a pattern in ran-
domness. One famous example is “The Metamorphosis of Narcissus”
by Salvador Dalí (see Figure 1.20), in which the head of Narcissus
also appears as an egg from which a flower has sprouted. Figure 1.21
shows two examples in buildings: the Seeley Historical Library (with
the appearance of a book) and the Sydney Opera House (with the
appearance of sails). Figure 1.22 shows an example of pareidolia in a
product.

There is a clear trend between the lower and higher levels of Com-
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Figure 1.19: Although all the objects in road signs are black and white
silhouettes, the semantic meaning is clear.

Figure 1.20: “The Metamorphosis of Narcissus” by Salvador Dalí

puter Vision. However, the boundaries between levels of Computer
Vision, from low level to high level are subjective. Importantly, the
level of a feature ought to be reflect practice rather than theory. An
edge which corresponds to a true object boundary, therefore resulting
in a semantic interpretation of the image, ought to be considered high
level, while an edge based on appearance which cannot distinguish
between a shadow and an object boundary ought to be considered low
level. Figure 1.23 shows a high level segmentation performed using
Badrinarayanan, Kendall and Cipolla (2017). The algorithm is highly
accurate but confuses parts of the reflection in the pool for building,
suggesting that it is not sufficiently high level in practice to identify
the distinction between the actual building and mere reflection.
Similarly, an object detector which can only detect cars from a
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Figure 1.21: Left: Seeley Historical Library, Cambridge; right:
Sydney Opera House

Figure 1.22: A face is apparent in the Logitech Unifying Receiver

Figure 1.23: Left: The previously seen photograph of the Roman
Baths, Bath; right: the result of a semantic segment-
ation of the photo using Badrinarayanan, Kendall and
Cipolla (2017) (blue corresponds to sky, red corresponds
to building and yellow corresponds to pavement)
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Figure 1.24: Left: a DeLorean DMC-12; right: a 1909 Ford Model T

frontal view ought to be considered lower level than one which can
identify cars from all angles. Furthermore, an object detector which
can detect both a DeLorean DMC-12 and Ford Model T (see Figure
1.24) ought to be considered higher level than one which can only
detect a smaller range of cars, perhaps modern, conventional cars.

1.4.2 Vision as “inverse graphics”

Another principle is to consider Computer Vision as “inverse Graph-
ics”. Under this principle, high level Computer Vision corresponds to
the initial (application) stage of the Computer Graphics pipeline (Shir-
ley and Marschner, 2009): beginning with the configuring of objects
based on their parameters, which could relate to high level semantics
such as a “person sitting down” showing a “happy face”.
The next stage, involves the transformation of the geometry of these

objects, and the primitives which form them, relative to each other
within the “world”, which then includes the calculation of depth and
surface normals. This stage correspond to the mid level of computer-
vision: it no longer concerns the semantics but is not yet concerned
with intensity values at each pixels. It involves the configuration of
lighting and texture, which can be controlled independently of the
geometry.

The final stage, rasterisation, results in fragments which corres-
ponds to the low level Computer Vision. The fragments are close
to forming pixels, missing only the fragment processing and blending
steps to result in actual pixels. This stage includes information about
the colour and texture.
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1.5 Invariance

I will use the term invariance in both the mathematical sense and
the more general sense. The mathematical sense is defined as follows
(Oxford English Dictionary, 2018):

The character of remaining unaltered after a linear trans-
formation; the essential property of an invariant. Hence
applied to a similar property with respect to any trans-
formation or operation.

The general sense is defined as follows (Oxford English Dictionary,
2018):

The property of remaining unaltered or of being the same
in different circumstances; an instance of this, an invariant.

1.5.1 Translation Invariance

Invariance can be expressed in both mathematical and general terms:
here, I demonstrate using translation invariance as an example. I
begin with a demonstration using mathematical terms.
As an extension to consideration of a digital image as a function,

I(x) (1.1), consider a digital image, J(x,o), which contains an object
centred on o as a function,

J : P,P→ NN
0 , (1.10)

which maps the image coordinates as a variable, x, and the object
centre as a parameter,

o =
[
ox oy

]>
, (1.11)

to pixel intensity values.
If a classifier, whose task is to classify the object centred on o, is

translation invariant, that is, invariant to a translation by a vector t,

T : P→ P (1.12)[
ox
oy

]
7→
[
ox + tx
oy + ty

]
, (1.13)

applied to the object at o, then

C{J (x,T (o))} = C{J (x,o)} = θ; (1.14)
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Figure 1.25: Left: a photo of a duck in a lake; right: a photo of the
sun setting over a lake

the class of the dominant object, output by the classifier, remains
invariant under translation of the dominant object.

Alternatively, translation invariance can be expressed in more gen-
eral terms: the class of the image is the same even if the dominant
object is located in a different place within the image. In the context
of a 3D scene in front of a camera: moving an object relative to the
camera such that it lies in a different position in the image does not
change its identity or class.
However, translation invariance is not universal, as the two photos

in Figure 1.25 demonstrate. In the left photo, the identity of the photo
would remain a duck on the lake, irrespective of the location of the
duck in the image. Assuming that the duck is the dominant object, a
classifier which outputs the dominant object should classify the image
as “a duck” irrespective of where the duck is located on the water’s
surface. Hence the classifier should have translation invariance across
the whole image.

In the right photo, it is difficult to select a dominant object, so
imagine a classifier which should output one of four classes,

θ ∈ {sun, reflection, sun and reflection, none} , (1.15)

indicating whether the sun, a reflection of the sun are present, or both,
or none. Due to over-exposure, both the sun and the reflection are
indistinguishable in the image, except for their surroundings. Instead
the location(s) of the sun with respect to the horizon determine(s)
whether or not it is the sun or a reflection of the sun. Hence a classifier
should not have translation invariance across the whole image.
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1.5.2 Other Examples of Invariance

There are many examples of cases in which invariance is desirable,
that is, where variance of a property has no bearing on the class.
I categorise invariance into two categories: intrinsic invariance and
extrinsic invariance. The distinction is based on whether the variance
for which the class remains invariant is intrinsic or extrinsic to the
objects, actions or phenomenon which are members of the same class.
The final category, depiction invariance, deserves special consideration
as it may involve both intrinsic and extrinsic variance.

1.5.2.1 Intrinsic Invariance

A given class may represent a class of objects, e.g. people, cars, tables,
chairs or cats. It may also represent an action, such as sitting, walking,
running, jumping, working, studying and seeing; it may also repres-
ent phenomena such as darkness, rain, shadow or even something as
abstract as beauty or inelegance. Within this same class, there is
variation which is not related to the viewing or observation of class
instance: it belongs to the class itself. I refer to this as intrinsic
invariance.

Intra-class variation There can be a huge variance between in-
stances of a single class. Consider the number of different cars made
over the years and for different purposes. All of them, if in working
order, can carry one or more people under their own power, and have
wheels (though this may change in the future). Yet there is substantial
variation between them, as Figure 1.26 shows.

A similarly large level of variation applies to actions. As Figure
1.27 shows, there is a huge variation of possibles images which could
be classified as “jumping”.

Pose Invariance Another example of variance is pose or configura-
tion invariance. This refers to the arrangement or state of the object
itself, hence being an intrinsic property. There is a link between pose
and viewpoint in that both pose and viewpoint impact upon which
parts of the object are visible, however, pose invariance specifically
refers to the intrinsic state of the object.
In many cases pose has no bearing on class, for example, a person

is a person whether sitting, standing or kneeling (see Figure 1.28).
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Figure 1.26: Top left: a Morris Minor Traveller; top right: a Smart
car; bottom left: a Rolls Royce armoured car; bottom
right: a McLaren MCL32 Formula One racing car; all of
these are cars, but are built for different use cases and
there is a substantial variation between them
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Figure 1.27: These four images all show an object jumping: there is
a huge variation between the objects and images though
this does not change the action, demonstrated by the ob-
jects momentarily having no contact with anything ex-
cept from the air.
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Figure 1.28: These images all contain people, however each person has
a different pose.

Likewise, as a runner progresses, he or she will occupy many poses as
Figure 1.29 demonstrates. A successful classifier for person or “run-
ning” must be invariant to these different poses. On the other hand,
the pose itself my dictate the class: a person who is standing is not
sitting. Clearly, pose invariance is task dependent.

1.5.2.2 Extrinsic Invariance

When observing an instance of a class, there will be variation which
is not intrinsic the class, but rather the circumstances of the observa-
tion. I refer to this as extrinsic invariance. This includes the lighting
conditions, the viewpoint from which the scene or object is observed
(extrinsic camera parameters) and intrinsic camera parameters.

Illumination Invariance Vision is the interpretation of light and
therefore the lighting conditions or illumination of an object or scene
result in different images. This includes the placement, spectrum and
intensity of light sources and the interaction of other objects, e.g.
causing shadows by blocking a light source as in Figure 1.30. It may
also include parameters intrinsic to the camera, such as exposure time
or sensitivity to the light, which is the probable cause of the different
images of Figure 1.31.
Many interpretations of the light are invariant to the lighting con-

ditions. The presence of an object is unaffected by changes in its
lighting condition, and therefore algorithms must be invariant to these
changes. On the other hand, some interpretations, such as “day” v.
“night”, rely on exact illumination (in the absence of other visual cues
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Figure 1.29: A sequence of photographs of a person running, captured
by Eadweard Muybridge: the many different poses still
correspond to the same activity—running.

such as a visible night sky) and are not illumination invariant.

Scale Invariance Objects and scenes appear at different scales in
images. As well as viewing from an object or scene from closer or
farther away, this could also be caused by lenses, such as a zoom lens
or magnifying glass. Figure 1.33 shows an example of the same scene
taken from the same viewpoint but with different levels of zoom (as
well as camera orientation). In addition, images can be scaled through
resizing.

Often the class of an object or scene is invariant to scale, for example
all the top images of Figure 1.33 are of the same scene containing a
boat and all the bottom images of Figure 1.33 of the same scene
containing bark. This is in spite of them being photographed with the
camera at different zoom levels. It is also possible to match parts of
the scene between images, for example the funnel of the boat. On the
other hand, the scale of an object, relative to other objects, can alter
the class in other circumstances. Figure 1.32 shows a model railway
layout. Here, the scale of the objects, compared to the bricks of the
building housing it, is indicative of the objects being scale models of
the original objects.
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Figure 1.30: Shadows, caused by the interaction of other objects, res-
ult in changes in illumination conditions. This figure
shows five different scenes; each scene has two images
with different shadows.

Figure 1.31: The same scene with a different illumination, perhaps
cause by changes to the camera’s exposure time rather
than changes to the lighting of the scene itself.
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Figure 1.32: 1930s model railway layout at Brighton Toy and Model
Museum: objects are still recognisable in this images des-
pite being at a small scale, though are clearly recognisable
as models.

Figure 1.33: Two scenes taken with the camera at different zoom levels
and orientations
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6 9

Figure 1.34: The class of a “6” or a “9” is not rotation invariant over
a 180° rotation.

Rotation Invariance In addition, objects may appear at different
orientations within different images as a result of the relative orienta-
tion between the camera and the object. Typically, this has no bearing
on the class: the top scenes in Figure 1.33 all contain a boat in spite of
the different orientations. However, one would probably identify the
left-most image as being the “right way up” or canonical orientation.
Likewise, the label “upside down” would be based on the orientation
being the opposite of the canonical orientation. Clearly rotation in-
variance is also task dependent. Another example is the numbers “6”
and “9”, which are rotations of each other, and hence only rotation
invariant to an extent (see Figure 1.34).

Viewpoint Invariance With a few exceptions, such as a table tennis
ball or ball bearing, objects and scenes typically have a different ap-
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Figure 1.35: In these two images of the same chair, the same parts
of the chair appear in different locations relative to each
other between images.

pearance from different viewpoints. This also typically has no bearing
on the class: a bicycle is still a bicycle whether it is observed from
the front or side-on. Likewise for a scene, a kitchen remains a kitchen
whether the cameras is focused on the oven or the refrigerator. On
the other hand, the viewpoint itself, relative to the scene or object,
can itself determine the class, e.g. the “front” or “back” of the object.

Another result of viewing objects or scenes from different viewpoints
is that the same parts or features within appear in different locations
relative to each other between images of the same object or scene.
One example of this is parallax (see Figure 1.35).

1.5.2.3 Depiction Invariance

Depiction invariance deserves special consideration as the way a class
is depicted in an image may arguably involve variation which is both
intrinsic and extrinsic to the class. The choice of depicting a person
for a portrait in watercolours, oil paint, acrylic paint, pencil, char-
coal or another medium would appear to be extrinsic to the person
class. On the other hand, a representation of a person which is more
symbolic than lifelike may represent variation which is intrinsic to the
class. For a human observer, a representation of a person goes bey-
ond photographs and photo-realistic depictions: symbols, pictograms
and sketches can also represent people in images and be recognised as
such. Figure 1.36 shows examples of such depictions of people.
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Figure 1.36: From left to right: a pictogram of a person, a portrait
by a three-year-old child, a Chinese character in ancient
oracle script representing a side view of a person, a light
painting of a person in a chair

1.5.3 Sources of Invariance in Algorithms

The previous section identified examples of invariance within images.
This section outlines the sources of invariance in Computer Vision
algorithms. In my framework, there are three, which I present in the
next subsections:

1. Implicit invariance

2. Invariance from a priori knowledge

3. Invariance from learning

1.5.3.1 Implicit Invariance

I consider implicit invariance to be invariance which cannot be at-
tributed to knowledge, either a priori or a posteriori. An image
classifier (see (1.3)) will always have invariance because a classifier
is non-injective: it can only return one of a fixed number of outputs,
θ ∈ Θ. Hence, for a given class, θ, there will be many images,

I(x) ∈ Iθ : C{I(x)} = θ, (1.16)

which are classified the same. Similarly, for a given class, θ, and image,
I(θ), there will be many transformations,

T : I(x) ∈ Iθ 7→ I ′(x) ∈ Iθ, (1.17)
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Figure 1.37: Images with the digit two from the the MNIST database:
the 1-nearest neighbour classifier was able to correctly
classify images in the top row but not the bottom row.

for which the classifier is invariant, i.e.

C{T (I(x))} = C{I(x)} (1.18)

As an example, consider a nearest neighbour image classifier, which
operates on images of a fixed size, w × h. The classifier first uses the
image vectorisation operator (1.43), vec(I(x)), to generate a vector, v.
Next, the image classifier operates as a nearest neighbour classifier us-
ing the generated vector. Prior to classification, the classifier requires
a list of class labels and vectors, {(v1, θ1, ) , (v2, θ2, ) , . . .} from a set
of images with known class labels, the training set, {I1(x), I2(x)} . To
return the class of an unseen image, Iunseen(x), the classifier returns
the class label of the nearest vector in the training set, using Euclidean
distance, to the vector of the new image, vunseen, i.e.

θi, i = arg min
i
‖vunseen − vi‖ (1.19)

As a result, the training set image images result in decision boundaries
in the vector space and the classifier is implicitly invariant within these
decision boundaries.
An example of using such a classifier is to classify images in the

MNIST database. All the images are the same size, 28 × 28 pixels.
Each image contains a single digit from zero to nine. Hence, the
classification task is to identify which digit (the class) is present in
each image. There are 60 000 images in the training set and 10 000
in the test set. To perform well, the classify must be invariant to the
different handwriting styles and slight differences in the orientation
and position of each digit.
The nearest neighbour image classifier achieves an error rate of

3.1 %. Figure 1.37 shows ten images of the digit two which were cor-
rectly classified (top row) and ten which were not (bottom row). The
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implicit invariance in the classifier yields some invariance to different
styles of handwriting but is not optimal for the task.

1.5.3.2 Invariance from A Priori Knowledge

I consider “invariance from a priori knowledge” to be invariance which
can be attributed to knowledge used in the design of the classifier,
prior to the algorithm having access to the training data. This may
involve a human observer applying their own prior knowledge of the
world, including knowledge of what objects look like and how they can
vary in appearance. It may also involve a human observer examining
the dataset an making inferences about the invariance using his or her
own vision, with the intention of creating a computer algorithm with
a similar ability. Finally, it may also involve pragmatism, combining
visual and object knowledge with that of how to implement computer
algorithms in an efficient manner.
In the previous section, a Euclidean distance metric was chosen as

a convenience. Other distance metrics could be used, for example
Manhattan distance. However, the distance metric does not alter the
vector space, which is formed by each pixel intensity as a result of the
convenient use of the image vectorisation operator. This vector space
is not ideal: it is not the value of individual pixels in themselves which
cause an image to represent a digit but the relations between pixels.
Therefore, no distance metric in this vector space will yield optimal
performance.
Instead, with reference to the task, handwritten digit recognition,

one can reason about what invariance the classifier should have. One
way to do this is to consider what changes one could make to an image
of a digit which do not change the identity of a digit (Simard, LeCun
and Denker, 1993). Making the digit larger or smaller, i.e. scaling
the image, does not change the identity unless the digit becomes so
large as to not fit in the image or so small as to converge into too few
pixels. Likewise, rotating the digit does not change its identity, with
an exception of “6” and “9” which are rotated versions of each other.
However, one could decide that a sensible cap on rotation would be
15° as one would not expect the digits to be rotated too much in this
task. Finally, the digit could be translated within the image and as
long as parts of it were not lost outside the image, the digit would still
be recognisable.
One way to make the previous classifier invariant to these trans-
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formations is to augment the test image with transformed versions
at test time, including scaling rotation and translation. As a result,
the Euclidean distance metric would measure the shortest distance
not just from the test image but the rotated, scaled and translated
versions: the classifier will be invariant to such transformations. I
transform the image as follows:

1. a rotation by α, centred on the image,

2. a scaling of s, centred on the image, and

3. a translation of t.

In order to generate a finite number of images from a test image, I ran-
domly and uniformly sample from the infinite range of possible trans-
formations; the range of transformations is the Cartesian product,

(α, s, t) = A× S × T (1.20)
A = {−5°,−4°, . . . , 5°, } (1.21)
S = {0.95, 1.00, 1.05} (1.22)

T =

{[
−2
−2

]
,

[
−2
0

]
,

[
−2
2

]
,

[
0
−2

]
,

[
0
0

]
,

[
0
2

]
,

[
2
−2

]
,

[
2
0

]
,

[
2
2

]}
.

(1.23)

The new classifier performs with an error rate of 2.4 %, an improve-
ment from the 3.1 % of the previous classifier. This suggests that
augmenting the test image with many transformed versions results in
a better invariance for the classifier. This is understandable: in the
previous classifier, transformations such as a small rotation or scaling
of the digit could result in a large distance between the original and
transformed version. Under this classifier, the addition of transformed
versions results in the distance between much closer to zero for such
transformations. Figure 1.38 shows a similar figure to Figure 1.37 for
this classifier, i.e. ten images of the digit two which were correctly and
incorrectly classified respectively.

1.5.3.3 Invariance from Learning

I consider invariance from learning to be invariance resulting from
machine learning, “a set of methods that can automatically detect
patterns in data” (Murphy, 2012). The knowledge comes a posteriori :
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Figure 1.38: Images with the digit two from the the MNIST database:
the 1-nearest neighbour classifier with augmented images
at test time was able to correctly classify images in the
top row but not the bottom row.

the learning algorithm itself learns from the training data, hopefully
accurately, the required invariance for the task.

By learning patterns in the data, machine learning methods can
automatically learn the required invariance for the task. In the earlier
example, using a nearest neighbour image classifier to classify hand-
written digits, the training set was stored in memory. Therefore, some
learning took place, known as “lazy learning”, since no generalisation
took place until a new image was seen. With a large enough training
set, the classifier would achieve the right level of invariance. However,
if the right level of invariance could be instead be learnt from a small
dataset, it would lead to improved performance.

One example of a learning algorithm is a convolutional neural net-
work (CNN), a neural network with convolutional layers. Although
the CNN involves a learning stage, the training, the design of the
CNN is specified a priori. As with any learning algorithm, a CNN
will operate no better than a random classifier over all possible clas-
sification problems (see Section 1.5.7). It is vital for the CNN or any
learning algorithm to be designed with the problem in mind, in this
case, relying on a priori knowledge.
As a specific instance, consider a feed-forward CNN with three con-

volutional layers, one fully connected layer and a final inner product
layer. Each convolutional layer convolves the input of the previous
layer with a number of kernels, producing a new images, with one
channel per kernel. Between each pooling layer is a rectified linear
unit (ReLU) layer, a normalisation layer and a pooling layer. The
ReLU layers add non-linearity, the normalisation layer has an effect
of “lateral inhibition” and the pooling (max-pooling) layers (see Sec-
tion 1.6.2) takes the maximum response in a pixel region.
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1.5 Invariance

It should be noted that this is also an example of invariance from a
priori knowledge. As Section 1.5.7 proves, the design of any learning
algorithm for any task must either be based on a priori knowledge.
Otherwise it has no guarantee of performing any better than random
on another dataset. In this case, the design is based on the following
a priori knowledge or estimates:

1. The digits are formed by a (generally) continuous line, so small
convolutional kernels are appropriate: here the kernels are size
3× 3.

2. Small translations locally have no significant bearing on the di-
gits: the pooling layers achieve this.

3. The digits may have small local variations, such as the very bot-
tom of the digit two, and larger variations across the whole digit,
e.g. a slight slant: the choice of three layers allows a gradually
increasing receptive field and for the invariance achieved by the
pooling layers to double in size for each successive pooling layer.

4. After the final pooling layer, the output is a 3 × 3 pixel image
with each pixel having a receptive field of 18× 18 and 128 chan-
nels. There is a fully connected layer with 128 outputs, which
ensures that the image is considered as a whole. The choice of
128 outputs is practical as a power of two, and allows just over
ten channels per digit to allow for variations in how the digits
are drawn.

5. After this layer, there is a fully connected layer with ten outputs,
to correspond to each of the digits. This is followed by a Softmax
layer, which applies the Softmax function (Bishop, 2006) to the
ten outputs, such that the output is a valid discrete probability
distribution over the ten possible digits.

The CNN learns weights for each of the convolution kernel using
back-propagation (Goodfellow, Bengio and Courville, 2016; Rumel-
hart and Hinton, 1986) and stochastic gradient descent (SGD) on the
training set. As well as the a priori invariance yielded from the design
of the CNN, the CNN learns invariance through the learning of the
weights. Therefore, this is an example of invariance from learning.
The resulting classifier has an error rate of under 0.37 %, smaller

than the previous two classifiers. Figure 1.39 shows a similar figure
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Figure 1.39: Images with the digit two from the the MNIST database:
the CNN classifier was able to correctly classify images
in the top row but not the bottom row

to Figures 1.37 and 1.38 for this classifier, i.e. ten images of the digit
two which were correctly and incorrectly classified respectively.

1.5.4 Invariance from Covariance

One method of achieving invariance is to use an operator with cov-
ariance, followed by an additional operator. Both operators take an
image as an input. The operator with covariance yields an output
which is covariant to a transformation. The additional operator takes
this output as an input, in addition to the to the image, and yields a
result which is invariant to the transformation.

The operator may achieve covariance by its design, originating from
a priori knowledge or reasoning. Alternatively the operator may be
learnt. As such the source of invariance may be a priori or from
learning, as outlined in the previous section. Here, I demonstrate the
covariance of both object detectors and interest-point detectors. In
addition, I show how to use covariance to yield invariance.

1.5.5 Translation Covariance in Object Detectors

Consider an image containing an object centred on o, J(x,o). As
with the classification case, consider translating the object’s centre by
a vector, t,

T : P→ P (1.24)[
ox
oy

]
7→
[
ox + tx
oy + ty

]
. (1.25)
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Assume that the object detector, Equation (1.5), yields a correct out-
put,

D{J(x,T (o))} =

(
θ,T(o)− 1

2

[
w
h

]
,T(o) +

1

2

[
w
h

])
. (1.26)

Here the class, θ, remains invariant under translation of the object
o. On the other hand, the coordinates of bounding box rectangle, xTL

and xBR, are covariant to the object centre, o. This is an example of
translation covariance.
Covariance may be used to yield invariance. Consider a rectangular

cropping operator,

R(I(x),xTL,xBR) = Icropped(x), (1.27)

which outputs a cropped image, such that

Icropped(x) = I(x + xTL). (1.28)

In addition, the domain of Icropped(x), Pcropped ⊂ P ⊂ N2, is reduced
such that the width and height of the new image match that of the
bounding box,

wcropped = xBRx − xTLx, hcropped = xBRy − xTLy. (1.29)

By applying R(I(x),xTL,xBR) to the image containing an object,
centred on o and translated by vector t, J(x,T (o)), and using the
coordinates, output by the object detector D{J(x,T (o))}, which are
covariant to o, as arguments, xTL and xBR for the cropping func-
tion, R(I(x),xTL,xBR), the resulting image, Icropped(x), is invariant
to the translation of the object, o. Hence, the translation covariance
of the detector bounding box output has been used to obtain a image
containing the object, which is translation invariant. In more general
terms, cropping an image to the bounding box of the object yielded by
the object detector obtains the same image of the object, irrespective
of the location of the object in the original image.
In practice, the object will typically not occupy the whole bounding

box. Therefore only pixels in the image, Icropped(x), which are part of
the object will be invariant. The other pixels will vary based on the
background, as Figure 1.40 demonstrates.
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Figure 1.40: Left: A silhouette of a cat has been placed in two differ-
ence places in a living room; right: the cropped images
for both silhouettes

1.5.6 Covariance in Interest-Point Extractors

The same principle is used for obtaining local descriptors from interest-
points (Section 1.2.3.2). Consider, for example, a local descriptor
extractor which outputs a set of interest-points each containing a loc-
ation,

pn ∈ P. (1.30)

Consider applying an interest-point extractor, DIP , to an image I(x),

DIP : P→ NN
0 , (1.31)

yielding interest-points,

P = DIP{I(x)}. (1.32)

Consider also the image formed by translating this image by a vector
t, i.e. a translation,

T : P→ P (1.33)[
xx
xy

]
7→
[
xx + tx
xy + ty

]
. (1.34)
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The translated image,

Itranslated(x) = I
(
T−1(x)

)
, (1.35)

T−1(x) = x− t, (1.36)

however not all pixels, T−1(x), are defined, as they lie outside the
original image. One solution is to set any pixel for which T−1(x) lies
outside the original image, i.e. the domain of I(x), P, to a fixed value,
e.g. 0. Therefore let the translated image be as follows:

Itranslated(x) =

{
I(T−1(x)), if T−1(x) ∈ P,
0, otherwise.

(1.37)

In addition, the width, w′, and height, h′, of the translated image will
change as follows:

w′ = w + tx, h
′ = h+ ty. (1.38)

Applying the interest-point detector to the translated image yields
a new set of interest-points,

P ′ = DIP{Itranslated(x)}. (1.39)

Both P and P ′ are unsorted. If both interest-point sets were sorted,
e.g. first by the first dimension then by the second dimension, it would,
in theory, be possible to relate interest-points between the two sets as
follows:

pn + t = p′n. (1.40)

In practice, there are two caveats:

1. When tx < 0 or ty < 0, some pixels in the original image, I(x),
do not appear after translation. Therefore, some interest-point
in the original image, I(x),may not exist in the translated image
Itranslated(x), i.e. interest-points p ∈ P for which p + t /∈ P ′.

2. The introduction of new pixels, x : T−1(x) /∈ P, may result in
additional interest-points in the translated image, Itranslated(x)(x),
which were not in the original image, i.e. interest-points p ∈ P ′
for which p− t /∈ P .

In addition, if the local descriptor is defined for interest-points,
pm ∈ P ′, pn ∈ P , i.e. both ELD{I(x),pn} and ELD{Itranslated(x),pm}
are defined and

pm = pn + t. (1.41)
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then,
ELD{I(x),pn} = ELD{Itranslated(x),pm}. (1.42)

Hence, through the translation covariance of the interest-point ex-
tractor, the local descriptor is translation invariant. (The local descriptor
operator operates on the region or neighbourhood or the interest-
points. Therefore, the local descriptors may not be defined for a given
interest-point if it lies too close to the edge of the image and the equa-
tion only holds if the local descriptor is defined at both locations.)
The result is that the local descriptor will be identical for the same

point no matter what the location is. A similar principle applies for
interest-point extractors with other covariance such as scale, rotation
or affine. This allows interest-points to be matched between other
images, through the use of the local descriptor, in spite of such trans-
formations. Since the interest-point extractor is not covariant to all
possible changes between images, e.g. viewpoint changes, the local
descriptor must still be designed to allow for such variations in ap-
pearance, to be useful for matching the same 3D feature between two
images (see Section 1.2.3.2).

1.5.7 Motivation for Considering Invariance

It is reasonable to ask whether it is necessary or useful to consider
invariance for Computer Vision tasks. Consider classifying an image,
I(x), with fixed size, w×h. Any such image can be turned into a fixed
size vector using an image vectorisation operator,

vec(I(x)) =



I
([

1 1
]>)

· · ·
I
([
w 1

]>)
I
([

1 2
]>)

· · ·
I
([
w 2

]>)
I
([

1 h
]>)

· · ·
I
([
w h

]>)



(1.43)

As a short hand let v = vec(I(x)).
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1.5.7.1 Assume the aim is to maximise accuracy

Assume that every classification is considered either correct or incor-
rect, i.e. there is the same penalty for a similar classification (cat v.
dog, both being animals) as for a dissimilar one (car v. dog). In ad-
dition, assume that every class, θ ∈ Θ, and image I(x), has equal
weighting for a misclassification. This corresponds to using a “zero-
one” loss,

L(θ, θH) =

{
0, if θ = θH ,

1, if θ 6= θH ,
(1.44)

where θ is the true class and θH is the classifier hypothesis. In addition,
minimising this loss corresponds to maximising overall accuracy.

1.5.7.2 Optimal classification requires knowledge of the true
distribution

The optimal classification, Cv, for a vector, v, is the one which min-
imises the expected loss (Bishop, 2006),

E[L] =

∫
v

∑
θ∈Θ

L(θ, Cv)P (θ,v)dv (1.45)

=

∫
v

∑
θ∈Θ

L(θ, Cv)P (θ|v)P (v)dv. (1.46)

Therefore, this is the classification, Cv, which minimises L(θ, Cv)P (θ|v)
for a given v.With a “zero-one” loss (1.44), the loss is unity except for
a correct classification, where it is zero. Hence, optimal classification,
Cv, is the class, θ ∈ Θ, which maximises the posterior and therefore
the joint probability,

arg max
θ∈Θ

P (θ|v) = arg max
θ∈Θ

P (θ,v). (1.47)

Optimal classification, therefore, requires knowledge of either the true
posterior distribution or the true joint distribution.

1.5.7.3 It is impossible to obtain the true distribution

If either the posterior distribution or joint probability distribution
were known, it would be trivial to yield an optimal image classifier,
without reference to invariance. This is consistent with the analysis
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of X. Shi and Manduchi (2004), showing that the use of invariants is
suboptimal from a Bayesian perspective.
However, digital images are the product of a vast range of inputs,

including photographs of natural scenes, scans of paintings produced
by artists and digital processes. Moreover, these processes and inputs
evolve over time. Therefore, I assume that it is impossible to obtain
the true probability distribution. Consequently, I assume that image
classification relies on learning either an appropriate model of the
distribution or a suitable decision function.

1.5.7.4 Training examples alone are insufficient

The “no free lunch” (NFL) theorems of Wolpert (1996) prove that
simply using a set of training examples alone, for example 1000 im-
ages of each class, is insufficient to design an image classifier. Such
an approach, specifically learning without any assumptions about the
posterior, here P (θ|v), is known as agnostic learning (Kearns, Scha-
pire and Sellie, 1994; Valiant, 1984). However, Wolpert (1996) demon-
strates that such an approach, averaged across all possible targets,
performs no better or worse than a random classifier.
Wolpert’s second NFL theorem is as follows:

NFL Thorem Two. Assuming off-training set (OTS) error, a ver-
tical P (d|f), and a homogeneous loss, the uniform average over all
targets f, of P (c|f,m) is Λ(c)

r
, where Λ(c) is a function independent of

yh and yf (having been summed over yf). This result is independent
of the learning algorithm used.

In Wolpert’s terminology, the input space, X, corresponds to the
set of all possible images, I, vectorised,

X = {vec(I(x))|I(x) ∈ I} (1.48)

and the output space, Y, is the set of possible classes, Θ. The training
set, d, corresponds to the training examples, a set of m X–Y pairs,
which corresponds to a set of images and class label pairs,

{(I1(x), θ1) , (I2(x), θ2) , . . . , (Im(x), θm)} . (1.49)

The target, f(x ∈ X, y ∈ Y) = P (y|f, x), corresponds to the true pos-
terior, P (θ|v), while the hypothesis, h(x ∈ X, y ∈ Y), shares the same
form as f and corresponds to a particular hypothesis of the posterior,
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1.5 Invariance

P (θ|v). A given learning algorithm produces a hypothesis, h, based
on the training data, d; since the algorithm may not be deterministic,
it is expressed as a distribution, P (h|d). A loss function is expressed
as c = L(yF , yH) where, yF is the sample of the target f, for a given
test point, q, and yH is the sample of the hypothesis at the same test
point. The NFL theorems hold for a homogeneous loss, a loss for
which ΣyF δ[c, L(yH , yF )] is some function, Λ(c), independent of yH .

Each of the assumptions are justified as follows:

OTS error As noted in Section 1.2, I assume that the objective is to
maximise the performance on unseen examples, hence minim-
ising the OTS error.

Vertical P (d|f) I assume that the same process is used to generate
the test and training set, typically random assignment of all
labelled images into the respective training, test and validation
sets. P (d|f) would not be vertical if a different process was used
to generate the test set, e.g. the addition of noise not applied to
the training set.

Homogeneous loss The zero-one loss (see Section 1.5.7.1) is homo-
geneous. See Section 1.5.7.9 for a discussion of other perform-
ance metrics.

The result of this theorem is that using an learning algorithm which
places no assumption on the target, i.e. the true posterior, P (θ|v), and
which considers only the training examples, on average performs no
better or worse than a random classifier!
In addition, consider Wolpert’s first NFL corollary:

NFL Corollary One. Assuming OTS error, a vertical P (d|f), a
uniform P (f) and a homogeneous loss, P (c|m) = Λ(c)

r

This corollary demonstrates that, assuming a uniform prior for the
target (i.e. no preference for one distribution, P (θ|v), over another)
also yields performance which is no better or worse than random.

1.5.7.5 One can justify assumptions about the true distribution

The previous section argued that, without making assumptions about
the true distribution (the target in Wolpert’s terminology), a given
learning algorithm will perform no better than a random one. Yet,
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in spite of this, one observes that many Computer Vision learning
algorithms perform significantly better than random. It follows that
these algorithms must be predicated upon largely correct assumptions
about the distribution or target, either by design or by selection of al-
gorithms that perform well on previous tasks. Even though one cannot
obtain the true distribution (see Section 1.5.7.3), one can use observa-
tions and interactions with the world to attain reasonable assumptions
about the true distribution.

1.5.7.6 The proportion of sensical images is small

One observation is that the fraction of the set of all images, I, which
are sensical (e.g. those resemble a real-world class) is small (Goodfel-
low, Bengio and Courville, 2016). The empirical evidence for this is to
sample images from a uniform distribution, as demonstrated in Fig-
ure 1.41. All these images are 400 by 400 pixels in size and each pixel
intensity value is sampled from a uniform distribution spanning the
full range of values; the sampling is independent for each RGB colour
channel. As a result, every pixel and colour channel is uncorrelated.
Despite the images being very different from each other, the im-

ages appear indistinguishable from each other. Indeed, though one
can identify such an image as coloured and uncorrelated noise, the
images are otherwise non-sensical in terms of not representing classes
encountered in the real-world. Since the sampling of these images
could produce any 400 by 400 pixel image, it could produce an im-
age visibly containing a person or a landscape. Yet even over a large
number of samples, no sensical images are produced, suggesting that
the majority of the images in I are non-sensical. Indeed, under the
assumption of a uniform prior, P (f), and N classes, two images from
Figure 1.41 would be N − 1 times more likely not to belong to the
same class than to not do so. This does not fit the perceived indis-
tinguishability of the images. This demonstrates the invalidity of a
uniform prior on targets for image classification.

1.5.7.7 One can observe class invariance under transformations

In addition to the observation that the space of sensical images is a
small fraction of all possible images, another observation is invari-
ance: there are many transformations under which the class remains
invariant (see Section 1.5.2). These observations provide partial prior

72
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Figure 1.41: Twenty images sampled from a random uniform distribu-
tion (the RGB channels of every pixel are sampled inde-
pendently); although it is possible for these to produce
any 400 by 400 image, the images appear as random col-
oured noise and indistinguishable from each other
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knowledge of the true distribution or target and enable one to design
or select algorithms which perform better than random.
In conclusion, there is no universal classifier. Achieving better than

random performance in classification requires forming correct assump-
tions about the true class posterior distribution; training example im-
ages alone are insufficient (see Section 1.5.7.4). While the true distri-
bution cannot be obtained (see Section 1.5.7.3), invariance provides
partial knowledge about the true class posterior distribution. Hence, it
is useful and perhaps even necessary to consider invariance to achieve
high performance for Computer Vision algorithms.

1.5.7.8 Beyond classification

In principle, it is possible to cast an object detector (1.5) to a clas-
sification problem. For every possible bounding box, specified by
(xTL,xBR), the image can be cropped and resized to form a new im-
age suitable for classification. As such, one might expect the NFL
theorems to apply. In practice, detection involves classifying and loc-
alising individual object instances. Although there is often tolerance
in terms of how close the predicted bounding box must be compared
to the ground truth bounding box, duplicate detections of the same
ground truth object instance typically result in a penalty.

If a perfect object localiser could be used, i.e. a detector which local-
ises objects perfectly without outputting a class, requiring a separate
classifier, the NFL theorem would still apply to the classification step.
However, in the task of localisation, it is possible for one algorithm
to have an a priori advantage over another. To understand this, note
that there cannot be more objects than pixels within an image and
in practice objects span multiple pixels. However the number of pos-
sible bounding boxes exceeds the number of pixels. As a result, an
algorithm which favours a sparse number of object predictions will
outperform one which does not. One such example of an a priori
benefit in localisation is Lenc and Vedaldi (2015).
A similar principle applies for the ideal interest-point matching al-

gorithm: this too can be cast to a classification problem. Two outputs
of a local descriptor extractor (1.8), d1 and d2, can be concatenated
to form a single vector,

v =

[
d1

d2

]
. (1.50)

The vector, v, can then be classified as a match or non-match. As a

74



1.5 Invariance

result, the NFL theorems apply here too.

1.5.7.9 Performance metrics other than accuracy

The arguments so far, based on the NFL theorems, have assumed a
homogeneous loss. One performance metric, accuracy, i.e. the ratio,

True Negatives + True Positives
Negatives + Positives

(1.51)

is equivalent to minimising the homogeneous zero-one loss, for which
the NFL theorems are defined, i.e.∑

yH ,yF ,q

δ[yH , yF ]P (yH |q, d)P (yF |q, f)P (q|d). (1.52)

Hence the NFL theorem apply when using accuracy as a performance
metric.
Other performance metrics include the area under an ROC curve

(ROC-area) and average precision (AP), which is an approximation
of the area under a Precision-Recall (PR) curve (Manning, Raghavan,
Schütze et al., 2008). These metrics evaluate ranked retrieval tasks,
however are often used to evaluate the performance of image clas-
sification, detection and matching. These metrics are used when the
algorithm outputs a confidence value, possibly a predicted probability,
for each input. This circumvents the need to specify a threshold (Szeliski,
2010).

In the PASCAL VOC classification challenge (Everingham, Van
Gool et al., 2012), for instance, for every image, the presence or ab-
sence of each class must be predicted independently with a confidence
value. This allows the images to be ranked independently for every
class, allowing the calculation of the AP for each class.

The use of these metrics is to obviate the need to specify a threshold
for evaluation purposes. However actual image classification, detec-
tion or matching requires a decision and hence a threshold to be spe-
cified for such algorithms. These performance metrics are not ap-
propriate for measuring the ultimate goal which can be measured by
accuracy or the zero-one loss. Therefore, the use of these performance
metrics, in practice, does not undermine the arguments.

75



1 Introduction

1.5.7.10 Conclusion

It follows from all the arguments that simply using training examples
alone results in a performance no better than random for the classific-
ation part of object detection and for interest-point matching. There-
fore, it is necessary to consider invariance in the design and advance
of these Computer Vision algorithms.

1.6 Features and Spatial Pooling

Throughout this document, I consider a feature to be defined as fol-
lows (Farinella, Battiato and Cipolla, 2013):

“a property by which real or abstract elements or objects
can be distinguished”

1.6.1 Low Level Features

Just as there is no universal definition of low level and high level
in Computer Vision, there is no universal definition for a “low level
feature”. However, I define low level features to be features meeting
the following criteria:

1. Low level features must have the ability to be calculated through-
out the image, with the possible exception of locations too close
to the edge of the image. (At larger scales, the features may
be calculated by down-sampling the image first, explicitly or in
effect.)

2. Low level features are not as a result of a spatial pooling: this is
to provide a more concrete distinction between low level features
and those at other levels.

In practice, the second criteria is subjective and there is no mathem-
atically expressed distinction between the “levels” of features.

1.6.1.1 Examples of low level features

There is a vast number of low level features used for various Computer
Vision tasks (Farinella, Battiato and Cipolla, 2013; Rui, T.S. Huang
and Chang, 1999). The simplest low level feature is the pixel intens-
ity values for grayscale images, and the individual values of each pixel
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channel for colour images. These have been used for template match-
ing through normalised cross-correlation since before 1969 (Rosenfeld,
1969).
Multiple representations exist for describing colour, which can be

used as low level features. The de facto RGB colour model dates
from the work of Young (1802) on trichromatic colour vision in the
19th century. The hue, saturation and value (HSV) and hue, satura-
tion and luminance (HSL) perceptual colour spaces were introduced
to more correctly represent how humans perceive light (Joblove and
Greenberg, 1978). These representations have been used to assist nu-
merous Computer Vision tasks (Chebbout and Merouani, 2012; Ojala
et al., 2001; Smith and Chang, 1995). Many other colour spaces have
since been proposed such as normalised RGB (Cavallaro, Salvador and
Ebrahimi, 2005), other perceptual colours spaces such as TSL (Terril-
lon, David and Akamatsu, 1998) and orthogonal colour spaces such as
YUV (which aims to reduce the statistical dependence between colour
channels) (Kakumanu, Makrogiannis and Bourbakis, 2007).

Many algorithms simply discard the chrominance (colour inform-
ation), as it is difficult to use reliably for in many circumstances
and often contains less useful information than the luminance. Such
algorithms including the Viola-Jones framework (Jones and Viola,
2003), the original Histograms of Oriented Gradients (HOG) frame-
work (Dalal and Triggs, 2005) and Scale-Invariant Feature Transform
(SIFT) (Lowe, 2004).

Gradient (finite difference) operators have been used in Computer
Vision for some time (Birk et al., 1979) to yield low level gradient
features. They are commonly used for edge detection, e.g. the Canny
edge detector (Canny, 1986) and are used in more recent algorithms,
such as HOG (Dalal and Triggs, 2005) and local descriptors (Lowe,
2004; Simonyan, Vedaldi and Zisserman, 2012; Tola, Lepetit and Fua,
2010). These features have the advantage of being invariant to low
frequency distortion, i.e. the level of illumination in part of an image—
indeed, even if half the image had a global increase or decrease in
the intensity values, only the features located at the boundary of the
global change would be affected.

In addition, the small region used to calculate a single low level
feature at one point in the image (the support region) of the gradient
operator minimises the amount of high-frequency information lost in
the process: in fact, Dalal and Triggs (2005) report that centred 1× 3
gradient operators, and their transpose, outperform larger gradient
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Figure 1.42: Max-pooling (left) and mean-pooling (right): the values
have been pooled within the red area of the two channel
image resulting in a two output values.

operators since more high-frequency information is retained; similarly
the authors report that it is best not to include Gaussian smoothing.

1.6.1.2 Low Level Features from Descriptor Extractors

Under my definition, “low level features” are those produced after the
smoothing and filtering operations (any of which may be omitted), as
defined by the descriptor extraction framework proposed by Winder
and Brown (2007). Features produced after the pooling step will be
referred to as pooled low level features. There is some confusion in
terminology between this definition and other literature: Boureau,
F. Bach et al. (2010) refer to SIFT (Lowe, 2004) and HOG (Dalal
and Triggs, 2005) as low level descriptors and propose that mid level
features are those from a subsequent coding and additional spatial
pooling step. Under my definition, the “low level descriptors” would
be said to be composed of pooled low level features (with a subsequent
normalisation step) as both descriptors encompass a rectangular spa-
tial pooling operation.

1.6.2 Spatial Pooling

Spatial pooling refers to the collation of the values from multiple fea-
tures in different locations within an image (the pooling region) and
replacement with a summary statistic. This could be carried out by
taking the maximum value (max-pooling), mean value (mean-pooling)
or simply summing the values. Figure 1.42 shows an example on
an image with two channels, one brown and one green. This results
in spatial invariance: different inputs can produce the same output
when translated slightly. The result of a small local pooling region is
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to provide invariance to small translations, which is useful when such
small translations do not affect the class.
The size of the pooling region influences the trade-off between in-

variance and the discriminative power from locational information.
SIFT (Lowe, 2004) and HOG (Dalal and Triggs, 2005) use small pool-
ing regions, achieving robustness to small misalignments in the loca-
tion of a gradient feature. Bag-of-words models (see Section 2.2.1.3),
on the other hand, pool medium or high level features across the whole
image, resulting in the loss of locational information (for features at
these levels) and spatial invariance across the whole image.

CNNs often use pooling layers and the order of layers at the convo-
lutional stage is typically as follows:

1. A convolutional layer, followed by

2. An activation layer, for which a non-linear function, R → R,
operates on every pixel independently, followed by

3. A pooling layer

A pooling layer contains pooling regions, often square, which are ap-
plied across the image generating a new image. The pooling regions
can overlap, tessellate or be sparse, creating different sized outputs.
A pooling layer might have very small pooling regions, perhaps 2× 2.
A repeated sequence of these layers can result in a large amount of
spatial invariance without too great a loss of discriminative ability,
unlike a single layer with large pooling regions.
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2 Literature Review

The theses cover both interest-point matching and object detection
and so I present a review of the pertinent literature for each. Object
detection is similar to image classification, but with localisation, and
hence many developments in image classification have led to improve-
ments in object detection. As a result, I additionally cover relevant
literature for image classification which led to improvements in object
detection.

2.1 Interest-Point Matching

The origin of interest-points is in corner detection. The earliest corner
detector may have been that of Pingle and Thomas (1975). The au-
thors first use a variance operator, operating on 16 × 16 pixel win-
dows within the images. This operator estimates the variance in pixel
intensity values within the window. Windows with an insufficient
value are rejected, improving efficiency. Next the authors use a corner
finder, on windows found to have sufficient variance. This applies
a 3 × 3 vector gradient operator at every point in the window and
builds a gradient histogram. At all points containing a sufficiently
large gradient magnitude, the corner finder increments the compon-
ent of a histogram which refers to the direction of the gradient, in
terms of the half-quadrant the direction falls within.
The next step is to count the number of directions with a respected

count greater than or equal to three. The corner finder retains win-
dows for which between two and six directions have a sufficient count.
Finally, the corner finder uses the points which led to these counts to
estimate the location of line segments. The intersection of these lines,
subject to merging and reliability tests, yield the centres and hence
the locations of corners.

Moravec (1980) presents a more efficient version of Pingle and
Thomas (1975)’s corner detector. Firstly, the detector uses a dir-
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ectional variance detector. The detector operates on small square
windows and calculates the sum of squared differences (SSD) of pixel
intensity values between each pixel and the neighbouring pixel, sep-
arately over four different directions: horizontal, vertical and the two
diagonals. The detector uses the minimum measurement over these
four directions. The windows used to estimate the directional variance
are spaced half a window length apart, and the algorithm retains only
windows whose variance is a maximum over a 5 × 5 grid of windows
centred on the window. These windows are deemed to be the locations
of “corners”.

Harris and Stephens (1988) present the most popular corner de-
tector, known as the Harris and Stephens detector. The authors aimed
to detect corners in addition to edges, to solve issues caused by track-
ing using edges alone. They identify shortcomings of the Moravec
corner detector: the anisotropic response, noise caused by uniform
weighting over each window and too high a response to edges. For
their detector, the authors use approximated partial derivatives from
the pixel intensity values yielding a 2 × 2 matrix at every point in
this image. Corner locations are those with a large eigenvalue in both
directions, which can be determined efficiently using the determinant
and trace of the matrix, yielding a measure of “cornerness”.
Many other corner detectors have since been produced: see Rosten,

Porter and Drummond (2010) for an outline.

2.1.1 Introduction of scale space

While corner detectors provide a location, the corner, it is useful to
be able to locate interest-points not just by position but by scale too,
leading to the idea of scale space. This begins with Marr and Hildreth
(1980), who present a theory of edge detection in human vision based
on the ability to detect intensity changes over many scales. Since there
exists no filter suitable for operating on all scales simultaneously, the
authors present a two stage approach:

1. Blur the image to a desired resolution

2. Detect the changes in intensity at this resolution

The optimal filter for blurring the image is the one which is both
band-limited in the spatial frequency domain, to pick out a particular
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resolution, and spatially local, to pick out a particular location within
the image. These considerations are conflicting, however the optimal
filter is a Gaussian filter, whose Fourier Transform is also Gaussian.
The authors show that a large intensity change in an image results

in a peak in the derivative of image intensity and a zero-crossing in
the second derivative: the Laplacian, ∇2, the orientation-independent
second derivative operator. In addition, they show another important
result: blurring the image with the Gaussian followed by applying
the Laplacian is equivalent to convolving with the Laplacian of the
Gaussian filter. The authors also propose to approximate this using
the difference of two Gaussians.
The authors’ approach is to turn lines of zero-crossings into small

line segments and to extract an amplitude, calculated as the direc-
tional derivative perpendicular to the line segment. They then aim
to combining these into a symbolic representation, a difficult task, in
particular dealing with isolated edges, parallel edges, and term

Witkin (1984) identifies the need to obtain a compact and mean-
ingful description of a signal rather than process raw numerical values
directly. The author identifies the problem of scale, noting that pro-
cesses which generate signals such as images often have events which
occur over many scales. Instead of calculating descriptors at many
scales, the author present the idea of “scale-space”: convolving a signal
with a Gaussian kernel leads to the scale-space image. The contours
of the second partial derivatives of a 1D signal converge at a point in
scale-space. The scale at the point of convergence provides a scale for
the entire contour. The two other ends of a contour reach two loca-
tions in the x axis as the scale tends to zero, allowing localisation of
the event. Together, these locations across all contours can be mapped
as tessellating rectangles in scale-space. to provide a description.)

Koenderink (1984) also recognises the issue of scale within images
and the desire to treat an image on all levels of resolution simultan-
eously. Analogous to the scale-space of Witkin (1984), the author
proposes the idea of 3D scale space, based on the 2D image and a
scale parameter. The requirements for the scale space are as follows:

causality a larger scale feature affects the finer scale, the reverse must
not necessarily be true
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homogeneity and isotropy the resolution depends only on the scale
parameter, not the location within the image

This scale space is shown to be the solution of the diffusion equation.
It is shown that the solution can be achieved by blurring an image
with a Gaussian kernel.
Since the use of points of inflexion (Witkin, 1984) is not easily

adapted for 2D, the author instead uses the family of equiluminance
curves in scale space. As an image is successively blurred, saddle-
points of these curves merge with extrema and are annihilated. An
image is therefore structured in scale-space as “blobs” of light and dark
which exist between the scale at which the saddle-point and extremum
merge. This naturally justifies the use of “different of Gaussians” by
Marr and Hildreth (1980), who overlooked the relation to the diffusion
equation.

Lindeberg (1991) presented a formulation of scale-space for dis-
crete signals, aiming for a solely bottom-up approach, with no need
for a priori information. The approach for 1D signals begins with the
following axioms:

1. Every representation should be a linear and shift-invariant trans-
formation of the original signal, i.e. a convolution.

2. Increasing values of the scale parameter should produce signals
with less structure.

3. All signals should be real and lie on the same grid.

In 1D, there exists such a kernel, which provides a true scale-space
transformation, unlike a sampled Gaussian. In 2D, there is no way
to transform the axioms of Koenderink (1984) into discrete space,
however one method is to apply a separable convolution of the kernel
used for 1D.

Lindeberg (1993a, 1993b, 1994, 1998) provides a methodology
for automatically selecting locations in scale-space which are likely
to correspond to “interesting structures” (interest-points), for use in
higher level algorithms. The authors prove that, where one image is
a scaled version of another, the m-th order derivatives correspond in
scale space. Consequently, by localising minima or maxima of these
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derivatives, interest-points which contain location and scale paramet-
ers can be identified between images of different scales.
This result does not specify which differential expressions to use

to find interest-points in scale space, however the author proposes
two differential expressions for blob interest-points, based on these
expressing having been used in previous work:

1. the trace of the scale-space Hessian (also the Laplacian of Gaus-
sian), and

2. the determinant of the scale-space Hessian

The author also analyses other differential expressions for corners,
edges and ridges, as well as an approach for localising these over a
finer detection scale.

2.1.2 Development of local descriptors

Z. Zhang et al. (1995) provide a framework for matching points
between two images when the motion between the images is unknown.
The authors improve on previous methods which are either based on
global template matching (Chou and Chen, 1990; Goshtasby, Gage
and Bartholic, 1984), which may suffer with occlusion boundaries,
or feature matching (Shapiro and Haralick, 1981; Weng, Ahuja and
T.S. Huang, 1992), which rely on reliable detection of features such
as edges. The approach has three steps:

1. Establish matches between interest-points in the absence of epi-
polar geometry.

2. Estimate the epipolar geometry robustly.

3. Establish correspondences as in stereo matching.

The authors use Harris corners (Harris and Stephens, 1988) as
interest-points, and perform matching by extracting a 15 × 15 pixel
patch or sub-image centred on each corner, which in effect forms a
local descriptor, perhaps the simplest “descriptor” for an interest-
point. This patch is matched against interest-points in the other im-
age through convolution with a much larger window (half the image
in both dimensions). Locations with high enough correlation form
potential matches.
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To improve matching, the authors used a metric based on neigh-
bouring matching pairs, relative distances and relative orientations.
In addition, they use a heuristic to remove outliers, estimate the
Fundamental matrix and establish correspondences using the epipolar
constraint. The approach is shown to work in limiter circumstances,
however it seems doubtful that it would work over changes in scale,
or larger changes in orientation or viewpoint.

Schmid and Mohr (1997) were perhaps the first to introduce the
concept of local descriptors, i.e. a replacement for matching with a
sub-images or patches located at each interest-point. Their aim is
to match a new (query) image with a set of existing images. At the
time, previous approaches either relied on either geometric models,
which were unsuitable for objects like trees, or luminance approaches
which were calculated globally and suffered from partial visibility and
background clutter. Their approach is instead to calculate a local
descriptor at every interest-point in the image. The authors use the
Harris & Stephens corner detector (Harris and Stephens, 1988), which
was shown to be the most repeatable at the time (Schmid, 1996).
To form local descriptors, the authors extract a nine dimensional

vector based on (Gaussian) differential invariants (rotation invariant)
computed from the “local jet” at the interest-point (Koenderink and
Doorn, 1987). These include the average local luminance, the square
of the gradient magnitude and the Laplacian. Since this descriptor
is not scale invariant, the descriptor is calculated at different scales
(by changing size of the Gaussian), for the query image. Compar-
ison between the descriptors occurs using the Mahalanobis distance
(Mahalanobis, 1936).
Each descriptor in the query image votes on a database image set

if its closest descriptor is from an image within that set, and the im-
age set with the most votes is used as the label for the query image.
The performance can be improved further by applying geometric con-
straints and removing votes which do not satisfy this. This approach
is shown to be entirely rotation invariant, and successful over scale
changes of up to an octave.

2.1.3 Arrival of SIFT

Lowe (1999) builds upon the work of Schmid and Mohr (1997),
seeking to detect objects in scenes with background clutter and partial
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occlusion, by introducing the famous Scale-Invariant Feature Trans-
form (SIFT) keypoint. The main improvements over Schmid and
Mohr (1997) are as follows:

1. Scale-invariance in the interest-point extractor (compared to the
Harris & Stephens corner detector)

2. An orientation assignment process which can be used alongside
an orientation-dependent descriptor to improve matching accur-
acy

3. A local descriptor which is more robust to illumination and view-
point changes

2.1.3.1 Extracting interest-point

Instead of using a corner detector, SIFT extracts interest-points by
locating maxima and minima in both position and scale, using a dif-
ference of two Gaussians function applied to image. This function is
an approximation of the Laplacian of Gaussian (Marr and Hildreth,
1980) and includes the required normalisation i.e.

L(x, y, kt)− L(x, y, t) ≈ (k − 1)t∇2L (2.1)

The required outputs of this function over many scales can be pro-
duced efficiently through repeated separable Gaussian convolutions to
produce many images, L(x, y, t), for a given t an then by subtraction
of each image from its adjacent to achieve the result of (2.1). For
additional efficiency, images can be downsampled to half the width
and height after each blur, resulting in an image pyramid. Extrema
or “keypoints” are defined as pixels in each of the images for a given
t) which are smaller or larger than all of the eight surrounding pixels,
i.e. the result of non-maximal suppression. Each keypoint is also local
maximum or minimum across scale which occurs by removing keypo-
ints from any scale for which this does not apply. (The term keypoint
and interest-point is interchangeable.)
This results in a number of keypoints which have a location and

scale but no orientation. To assign an orientation to each keypoint,
the gradients at pixels in the neighbourhood of the keypoint are ac-
cumulated into a 36-bin histogram, based on the orientation of the
gradient at each pixel. The magnitude of the gradient at each pixel,
weighted by a Gaussian distribution centred on the keypoint, is added
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to the value for each bin; there is also a thresholding process on gradi-
ents to minimise the impact of illumination differences on the keypoint
orientation. The orientation bin with the largest value provides the
canonical orientation for the keypoint.

2.1.3.2 Calculating the local descriptor

The SIFT local descriptor is produced from the gradient magnitudes
and orientations in a square neighbourhood of the keypoint. The
principle is to bin the gradient magnitudes and orientations into eight
orientation channels, relative to the canonical orientation. This oc-
curs first by assigning the gradient for each pixel to the two closest
orientation channels for each pixel using interpolation (see left in Fig-
ure 2.2) and then summing the gradient magnitudes for each channel
across a 4×4 grid (see right in Figure 2.2). A similar approach occurs
at a level of the pyramid one octave higher, using a 2× 2 grid, which
is not shown in Figures 2.1 and 2.2. The result is a vector of size
8× 4× 4 + 8× 2× 2 = 160, which forms the local descriptor.

Matching between keypoints in different images occurs using the
best-bin-first search method (Beis and Lowe, 1997) and searching the
likely affine transformation between images occurs using a generalised
Hough transform (Ballard, 1981). Matches located in the modal bin
can then be used to obtain the optimal affine transform through the
least-squares solution.

2.1.3.3 Later improvements

Lowe (2004) introduces a number of improvements to SIFT, closer
resembling more commonly used version, including the following:

1. Instead of downscaling using bilinear interpolation after each
blur, the images are downscaled (to half width and height) by
taking every other pixel, forming octaves. In addition, repeated
Gaussian blurring is used to achieve multiple scale intervals
between octaves.

2. Images are initially doubled in size, followed by an immediate
Gaussian blur, allowing interest-points to be extracted more re-
liably at the smallest scale.
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Figure 2.1: Left: the original patch used to calculate the SIFT
descriptor; right: the patch with the histograms overlaid

Figure 2.2: Left: the gradients orientations at each pixel interpolated
between the two orientation bins; right: the histograms
produced after sampling over the grid
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3. The Hessian is used in scale-space both to better localise keypo-
ints, as proposed by Brown and Lowe (2002), and to eliminate
keypoints lying on edges, based on Harris and Stephens (1988).

4. Keypoints with a poor contrast are removed to improve reliab-
ility.

5. Keypoints are assigned a second orientation if the second highest
bin is within 80% of the highest, essentially forming two keypo-
ints for matching. This improve reliability.

6. Orientation assignment occurs by the fitting of a parabola to
improve the precision.

7. Gradients used in the descriptor are weighted using a Gaussian
over the patch.

8. The descriptor no longer uses binned gradients at a higher scale;
the new descriptor size is 4× 4× 8 = 128 dimensions.

2.1.4 Later interest-point extractors

Mikolajczyk and Schmid (2002, 2004) propose a new interest-
point extractor based on the Harris & Stephens detector for scale
space, using a scale-adapted version the original detector. The authors
also replace the associated “cornerness” metric with the maxima of
the Laplacian-of-Gaussian for scale-selection. Note that the maxima
of the multi-scale Harris detector vary in location across scale, for the
same corner.
This detector struggles with affine transforms, in which the scale

change is greater in one direction than the other. This results in
interest-points being detected at the wrong scale and hence in the
wrong location. The authors propose an iterative solution which in-
cludes a shape adaptation matrix. This matrix applies an affine trans-
form to the detector, with the largest eigenvalue set to unity to ensure
correct scaling. Each iteration involves optimising the following para-
meters in turn:

shape adaptation matrix This is initially set to the identity matrix
corresponding to a circular region.
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integration scale This is the scale which maximises the Laplacian
of Gaussian as before, though on the image transformed by the
shape adaptation matrix.

differentiation scale This can simply be a fixed multiple of the in-
tegration scale, however a better value improves convergence.

spatial location This is determined as the local maximum of the Har-
ris function as before, though in the image transformed by the
shape adaptation matrix.

The authors show that their interest-point detector performs better
than previous interest-point extractors, particularly for large view-
point angle changes (approaching wide-baseline), however at the cost
of computational complexity. However, Mikolajczyk, Tuytelaars et
al. (2005) provides an in-depth comparison of affine interest-point ex-
tractors, showing that no single extractor performs best in all circum-
stances, and that a combination is preferable.

Bay, Tuytelaars and Van Gool (2006) introduce the Speeded Up
Robust Features (SURF) interest-point extractor and local descriptor,
which aims to perform comparably to or better than SIFT. Whereas
SIFT uses an approximation of the Laplacian of Gaussian, SURF uses
an approximation of the determinant of the Hessian. This is achieved
by turning the discrete and truncated second order partial derivatives
of the Gaussian function into box filters. The advantage is that con-
volutions involving box filters can be rapidly calculated using integral
images (Viola and Jones, 2001). Convolution over multiple scales
is achieved not by repeated convolution, as in SIFT, but by simply
increasing the size of the box filters. The keypoints are generated as
extrema in this scale-space, using a 3×3×3 non-maximal suppression,
and their location is improved using a similar approach to SIFT.
The orientation assignment occurs through using Haar wavelet re-

sponses in the vicinity and at the scale of the keypoint, which approx-
imate gradient orientations as used in SIFT. These too can be calcu-
lated efficiently using integral images. (There is a version, “upright”-
SURF, which skips this step.) SURF also includes a local descriptor,
outlined in the next section.
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2.1.5 Later hand-crafted local descriptors

Lazebnik, Schmid and Ponce (2005) present two new descriptors
which are rotationally invariant, the spin image and the Rotation In-
variant Feature Transform (RIFT) descriptor. The spin image is based
on earlier work (Johnson and Hebert, 1999), and involves building a
2D histogram based on distance from the centre of the patch and
the pixel intensity value. The RIFT descriptor is based on SIFT but
using concentric circular pooling regions. During histogram binning,
the gradient orientation is compared not with the canonical orienta-
tion but with the direction from the centre of the patch. This results
in rotational invariance.

Mikolajczyk and Schmid (2005) present a performance evaluation
of local descriptors for greyscale images, as in earlier work (Mikola-
jczyk and Schmid, 2003). In addition, the authors propose a new
descriptor called the Gradient Location and Orientation Histogram
descriptor (GLOH), which is an extension of SIFT. GLOH differs
from SIFT in using a log-polar rather than rectangular grid for spatial
pooling (gradient histogram binning) There are a total of 17 pooling
regions compared to the 16 of SIFT, and there are 16 rather than 8
orientation bins for each pooling region, resulting a 17× 16 = 272 di-
mension vector (compared to 128 for SIFT), which is reduced in size
using principal component analysis (PCA). In the majority of experi-
ments, GLOH outperforms SIFT; the exceptions are scale changes for
which SIFT performs best and JPEG compression for which PCA-
SIFT (Ke and Sukthankar, 2004) performs best.

Bay, Tuytelaars and Van Gool (2006) (as well as introducing the
SURF interest-point extractor) also introduce a new local descriptor.
Whereas SIFT bins gradient orientations over 4 × 4 sub-regions of a
square grid, SURF uses Haar wavelet responses, as in the orientation
assignment stage, i.e. a horizontal and vertical wavelet. Instead of
assigning them into a histogram based on orientation, SURF simply
sums the horizontal and vertical wavelet responses and absolute ver-
sions of these two responses, over each sub-region, resulting in a 4D
vector for each sub-region. This yields a descriptor with 64 dimen-
sions. The authors show that SURF performs comparably or better
than SIFT, yet runs about three times quicker.
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Tola, Lepetit and Fua (2010) develop a descriptor which builds
upon the robustness of GLOH and SIFT, designed to improve the
performance of wide-baseline matching. The descriptor is named
“DAISY” due to the appearance of its pooling regions. All pooling
regions are isotropic Gaussian distributions, which permits efficient
computation through separable convolution, and through repeated
convolution to cover a range of standard deviations. The descriptor
shape is close to the learnt descriptor of Winder and Brown (2007) (see
next section), with identically sized Gaussian pooling regions lying on
concentric circles, however hand-crafted for computational efficiency
rather than learnt for matching performance. The descriptor is also
strongly connected to geometric blur (Berg and Malik, 2001) (see Sec-
tion 3.0.1), as the pooling regions increase in size with distance from
the centre.
The authors demonstrate that the “DAISY” descriptor performs

better than SIFT and SURF on two datasets. In addition to devel-
oping a descriptor, the authors use occlusion masks estimated by ex-
pectation–maximisation (EM) to improve the depth map estimation
using the graph-cut based reconstruction algorithm due to Boykov,
Veksler and Zabih (2001). The authors demonstrate that this shows
visually similar results to a leading algorithm (Strecha, Fransens and
Van Gool, 2006), even when using lower resolution images.

Calonder, Lepetit, Strecha et al. (2010) produce a method for
generating a binary descriptor for an interest-point, a descriptor com-
posed of a collection of bits rather than floating point numbers. The
authors’ descriptor is known as the Binary Robust Independent Ele-
mentary Features (BRIEF) descriptor. This allows faster comparison
through the Hamming distance (Hamming, 1950), rather than metrics
such as the L2 norm which are slower to calculate.
Differing from other binary descriptor methods which take an ex-

isting descriptor such as SIFT, SURF or “DAISY” and then compact
it into a binary descriptor (Brown, Hua and Winder, 2011; Calonder,
Lepetit, Fua et al., 2009; Tuytelaars and Schmid, 2007), the authors
aim to build a binary descriptor directly, by comparing the pixel in-
tensity values between pairs of points (as used by Ozuysal et al. (2010)
for corner detection). The authors show that the resulting descriptor
outperforms SIFT and SURF in image sequences for which rotation
invariance is not required (since BRIEF is orientation sensitive), and
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can be calculated and matched many times faster.

Leutenegger, Chli and Siegwart (2011) introduce the Binary Ro-
bust Invariant Scalable Keypoints (BRISK) binary descriptor. The
overall pipeline first uses the Adaptive and Generic Accelerated Seg-
ment Test (AGAST) corner detector (Mair et al., 2010), which is
an improvement upon the Features from Accelerated Segment Test
(FAST) corner detector. Whereas the FAST corner detector uses a
ternary tree, the AGAST corner detector uses a binary tree, with
an enhanced configuration space and the ability to use adaptive tree
switching. In addition, the optimisation includes a cost based on CPU
access times (register vs cache vs main memory) for each node. The
authors show the AGAST corner detector to be more efficient than
FAST.
The BRISK interest-point extractor is based on AGAST but also

provides non-maximal suppression over scale, to provide scale invari-
ant interest-points. As with the BRIEF descriptor, the authors use
simple pixel intensity value comparisons. These intensity values are
used both to estimate the orientation of the interest-point, through
estimating the dominant gradient orientation, and to provide the bin-
ary descriptor. The authors show that BRISK performs competitively
to SIFT and SURF, while running over three times faster.

Arandjelović and Zisserman (2012) propose a slight variation on
SIFT, RootSIFT. Since the vectors forming the SIFT descriptor have a
unit L2 norm, comparison between descriptors is dominated by larger
histogram values. To address this, the authors propose to replace use
the Hellinger Kernel,

H(x,y) =
n∑
i=1

√
xiyi (2.2)

This can be achieved by simply using the element-wise square root of
L1 normalised SIFT descriptors as drop-in replacement descriptors,
in any framework which already uses the Euclidean distance. The
authors show that results in a performance boost over the original
descriptors.
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2.1.6 Learning local descriptors

Ke and Sukthankar (2004) modify the final stage of SIFT, the
calculation of the local descriptor, to produce PCA-SIFT. The local
descriptor is formed by lifting horizontal and vertical gradients over a
39×39 grid over the image region specified by the interest-point. This
results in a vector of length 2 × 39 × 39 = 3042, which is normalised
to a magnitude of unity to reduce the effects of varying illumination.
Finally, the descriptor is formed by applying PCA to reduce the vector
to a much smaller size e.g. 20 dimensions. The eigenspace for PCA is
calculated from patches across a wide range of images, therefore the
descriptor is learnt on an unsupervised basis. PCA-SIFT shows better
matching accuracy than SIFT in many circumstances, though is less
robust to scale and orientation assignment errors.

Rublee et al. (2011) improve upon the BRIEF descriptor, produ-
cing a binary descriptor known as the Oriented FAST and Rotated
BRIEF (ORB) descriptor. The pipeline detects corners using the
FAST corner detector (Rosten and Drummond, 2006; Rosten, Porter
and Drummond, 2010), which uses machine learning to produce a
faster detector than previous work (Rosten and Drummond, 2005;
Rosten, Reitmayr and Drummond, 2005), building a ternary decision
tree. Since the FAST corner detector does not produce a measure
of “cornerness”, the authors use the Harris corner measure (Harris
and Stephens, 1988) to filter the corner detections. In addition, since
FAST does not offer scale detection, the authors run the detector on
many levels of an image pyramid. Furthermore, to generate an ori-
entation the authors use the method due to Rosin (1999). ORB is
an orientation invariant version of the BRIEF descriptor: the pixel
locations are in effect rotated based on the orientation, using a pre-
calculated lookup table.

Whereas the pixel pairs used for the binary tests in the original
BRIEF descriptor were randomly sampled, ORB benefits from the
use of learning. The authors show that ORB performs better than or
comparably to SIFT and SURF, while running much faster.

Brown, Hua and Winder (2011) and Winder and Brown (2007)
build upon the previous machine learning techniques and aim to learn
optimal low level transformations for interest-point matching. In con-
trast to previous approaches, the authors use a labelled dataset of 3D
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patches, centred on interest-points, for the learning task. In order to
learn parametric descriptors, the authors minimise the area under an
ROC curve (ROC-area) using Powell’s method (Press et al., 1992).
For non-parametric descriptors, the authors use different objective

functions, which they minimise over a vector of weights. The min-
imum can be found through solving a generalised eigenvalue problem,
though requires regularisation due to the high dimensionality of the
vector. The authors find that the best parametric pooling regions
resembles those of the “DAISY” descriptor (Tola, Lepetit and Fua,
2008, 2010). The best non-parametric embedding results in a slightly
inferior performance, however fewer dimensions. The overall best per-
formances comes from combining the optimal parametric spatial pool-
ing with learnt dimensionality reduction, in this case either GLOH or
“DAISY-like” pooling regions followed by PCA.

Trzcinski and Lepetit (2012) aim to improve the performance of
binary descriptors such as BRIEF, BRISK and ORB, producing a new
binary descriptor known as Discriminative BRIEF (D-Brief). The au-
thors calculated each binary bit from projections of intensity values of
a patch. The projection is limited to a dictionary of projections which
can be applied to the image patch efficiency, e.g. through box rectangle
and Gaussian filters, through integral images and convolution.
The authors optimise the descriptor on sets of training data so as to

encourage the binary bits to be equal for matching patches and non-
equal for non-matching patches, with a sparsity inducing L1 norm
term to minimise the number of projections used. They show that
descriptor outperforms other binary descriptors, while having a very
short length of only 32 bits.

Trzcinski, Christoudias, Fua et al. (2013), Trzcinski, Christoud-
ias and Lepetit (2015) and Trzcinski, Christoudias, Lepetit and
Fua (2012) present a new binary descriptor, BinBoost, learnt using
Boosting (Schapire, 1990). Boosting is an algorithm which combines
many “weak learners” (efficient but inaccurate classifiers) into a strong
classifier based on training data. In this case, the weak learners are
pixel intensity differences as in BRIEF, ORB and BRISK, as well as
oriented gradient based learners based on Ali et al. (2012)’s object
detector. These are close to those used in SIFT but can be calculated
rapidly using integral images.
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The authors using a modified form of boosting (compared to Adapt-
ive Boosting (AdaBoost) (Freund and Schapire, 1995)) which is more
suited to minimise correlation between the weak learners and hence to
learn an effective binary descriptor. They find gradient-based learners
to be the most discriminative and show BinBoost to be the best per-
forming binary descriptor, an that it also outperforms SIFT.

Simonyan, Vedaldi and Zisserman (2012, 2014) use convex op-
timisation to learn local descriptors, specifically regularised dual aver-
aging (RDA) (L. Xiao, 2010). This is in contract to earlier approaches
(Brown, Hua and Winder, 2011; Trzcinski, Christoudias, Fua et al.,
2013; Trzcinski, Christoudias and Lepetit, 2015; Trzcinski, Christoud-
ias, Lepetit and Fua, 2012) which are not guaranteed to reach a global
optimum. Once a patch, covariant with an interest-point, has been
lifted, the descriptor is calculated as follows:

1. Apply a Gaussian blur, as used by Brown, Hua and Winder
(2011)

2. Extract local intensity gradients at each pixel, following by a
binning into eight orientation channels, as first used in SIFT

3. Normalise gradient magnitudes across the entire patch extrac-
ted from an interest-point support region (patch), based on the
authors’ novel quartile statistic

4. Spatially pool the gradient magnitudes, independently for each
orientation channel, using isotropic Gaussian pooling regions, as
in Tola, Lepetit and Fua (2010) and Brown, Hua and Winder
(2011): each pooling region forms an eight-dimensional feature
set, i.e. one for each orientation channel.

5. Apply a linear weighting to each pooling regions, or a matrix for
dimensionality reduction

The Gaussian pooling regions are selected from a large number of
candidates, which are reflection-symmetric. They also lie on rings, as
in the “DAISY” descriptor, but are not necessarily rotation symmetric.
The first objective, that used to learn a weights set of weights, w, over
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pooling region candidate rings, is

arg min
wn≥0∀n


∑

(x,y)∈P
(u,v)∈N

`
(
w>φ(x,y)−w>φ(u,v)

)
+ µ‖w‖1

 (2.3)

where P is the set of positive matches, with (x,y) being two matching
patch pairs, N is the set of negative matches, with (u,v) being two
non-matching patch pairs,

`(z) = max(0, z + 1), (2.4)

is a hinge loss function aiming to force the distance between two
non-patching pairs to be at least unity distance greater than between
two matching pairs and φ(x,y) returns a vector of squared distances
between the spatially pooled gradient magnitudes, one for each ring of
pooling regions. The final term, µ‖w‖1, is an L1 regularisation term,
designed to induce a large fraction of zero values in w. In effect, this
selects a small subset of pooling region rings from a large candidate
set.
The authors apply a similar optimisation on the subset of pool-

ing region rings to learn a matrix for dimensionality reduction, using
the nuclear norm as a convex surrogate. The authors show that the
local descriptor outperforms all previous local descriptors in terms of
accuracy.

Han et al. (2015) introduce a convolutional neural network (CNN)-
based approach for interest-point or patch matching, MatchNet, which
utilises a two-tower structure. This comprises of two AlexNet like
CNNs (Krizhevsky, Sutskever and Hinton, 2012) known as “feature
networks”, with tied weights, each of which has as an input a separate
patch. The output of both is input to a single “metric Network” which
outputs a probability that the two patches match and is composed of
three fully connected layers and a softmax output. The whole network,
consisting of the features networks and metric network, is trained
using stochastic gradient descent (SGD) and cross-entropy loss.
At run-time (for prediction), the feature network can be used in

isolation to generate a local descriptor for each interest-point or patch,
with the metric network then used to match the pre-calculated local
descriptors. The network outperforms previous local descriptors in
terms of matching performance.
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Zagoruyko and Komodakis (2015) test multiple CNN based ap-
proaches including an architecture similar to Han et al. (2015). For
training, the authors use a hinge-based loss rather than cross-entropy
loss and introduce an L2 regularisation term. The authors find the
best network to be a CNN without separate “feature networks” but
simply with two channels, one for each patch of the two patch input,
or alternatively a two-tower structure in which both towers have both
patches as in input, but the towers differ in the scale of the patches.
These networks also outperform previous local descriptors.

Simo-Serra et al. (2015) differ from Han et al. (2015) and Za-
goruyko and Komodakis (2015) in their use of a CNN to produce
descriptors and Euclidean distance for matching, rather than a non-
linear network. This is important for facilitating the use of existing
efficient methods for local descriptor matching that use (approxim-
ate) Euclidean distance. Instead the authors use Euclidean distance
trained with a hinge embedding (or contrastive) loss (Mobahi, Col-
lobert and Weston, 2009). In addition to a different loss function, the
authors use hyperbolic tangent units rather than rectified linear units
(ReLUs) to achieve non-linearity.
The authors train using SGD, however at each epoch, the authors

use “mining” of difficult patch pairs to improve training, inspired by
the “hard negative mining” approach of Felzenszwalb, Girshick et al.
(2010). As with the networks of Han et al. (2015) and Zagoruyko
and Komodakis (2015), the network outperforms all previous non-
CNN local descriptors, in terms of matching performance. However
this network has the benefit of providing a drop-in replacement for
descriptors using Euclidean distance matching.

Paulin et al. (2015) introduces a local descriptor based on a con-
volutional kernel network (CKN) (Mairal et al., 2014). In contrast to
a CNN in which the convolutional layers use filters composed of learnt
weights for the convolution, the CKN layers use kernels for the con-
volution. Since such kernels is intractable, the authors do not use this
kernels directly. Instead they learn a CNN embedding which approx-
imates this kernel, using SGD, which enables two separate networks
to operate on the two patches independently.
The patches used in training need not be labelled and hence this is

a form of unsupervised learning. The output of a layer implementing
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the approximation can either be vectorised to form a descriptor or
input into another layer to produce a multi-layer CKN, with the final
output producing a descriptor. The authors experiment with different
inputs: raw red, green and blue (RGB) values, pre-processed RGB
values and oriented gradients. The authors show comparable or better
performance compared to supervised CNNs.

Balntas, Riba et al. (2016) introduce a triplet loss for training a
CNN to produce local descriptors, in contrast to the pair based loss
functions in earlier work. This is inspired by Hoffer and Ailon (2015),
who shows that a CNN can learn more effectively using triplets rather
than pairs. The triplet loss involves three patches, an anchor patch, a
positive patch which matches the anchor patch, and a negative patch
which does not match the anchor patch. There are two such triplet
losses, a margin ranking loss and a ratio loss.
The authors use a simple CNN with only two convolutional lay-

ers, improving efficiency over earlier CNNs used to produce local
descriptors. Nevertheless, the authors show improved performance
over all previous local descriptors in all but one case using both loss
functions, and in spite of running at least 10 times faster than the
previous CNNs, and at a comparable speed to BRIEF. Training with
a margin based loss generally results in better performance than the
ratio loss for nearest neighbour matching, while the ratio loss performs
better for match/non-match classification.

Yi et al. (2016) introduce the Learnt Invariant Feature Transform
(LIFT). Compared to previous work which uses CNNs for descriptor
calculation alone, or in one case (Moo Yi et al., 2016), for orientation
assignment, LIFT provides a back-to-back CNN pipeline consisting of
detection of interest-points, orientation assignment and descriptor cal-
culation, while still allowing back-propagation for end-to-end training.
The network is trained as a four-branch siamese network, with four
patch inputs: two matching patches, one non-matching patch and one
patch without an interest-point (for training the detector stage only).
The branches include a detector network which generates orientations
of interest-points, an orientation estimator which predicts their ori-
entations and a descriptor network, which outputs a descriptor. The
authors show that their overall pipeline outperforms all previous ap-
proaches in terms of matching score.
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2.1.7 A new benchmark and a note on previous
benchmarks

Balntas, Lenc et al. (2017) highlight the issues of previous local
image descriptor benchmarks, which are as follows:

1. Lack of diversity in the images and patches

2. Problems of reproducibility and fairness, e.g. due to different
choices of interest-point extractors and patch extraction scales
which often results in conflicting results on the same data sets

3. Lack of the diversity in the tasks used for benchmarking, i.e.
classifying patch pairs as matching or non-matching, matching
images and patch retrieval

The authors create a new benchmark using image sequences either
taken from a camera or from previous datasets. They generate patches
from each reference image using multiple interest-point extractors, and
map them to other images in the image sequences using the ground
truth homography. To simulate the noise of interest-point extraction
process, the authors perturb the mapping i.e. they apply a random
transformation including rotation, anisotropic scaling, and transla-
tion.

2.1.8 Per interest-point learning

In addition to the approaches in the previous section, which seek to use
learning globally to improve performance, there are other approaches
which seek to use learning per interest-point. Furthermore, this is the
approached used my work in Chapters 3 and 4.

Lepetit and Fua (2006) formulate interest-point matching as a
classification problem. Their aim is to achieve a multi-class classifier
which is efficient at run-time, through effective training. The au-
thors use randomised trees (Amit and Geman, 1997) for this purpose
because of their suitability for handling multi-class classification ef-
ficiently. The purpose is to classify interest-points and hence find a
number of interest-points at test-time associated with a given object,
which can then be used to identify that object’s pose.
The authors use a small number of images of the given object, aug-

mented by a number of synthesised views, for training the classifier. In
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addition, they only train and classify the most reliable interest-points.
The authors train many trees and the of the output of the many trees
is averaged at test-time, with the maximum average output providing
the classification. The tests used for each node of a tree are based
on binary tests involving intensity values (as used in, but pre-dating,
BRIEF, BRISK and ORB) following Gaussian smoothing of the patch.
The authors show that this approach is suitable for identifying the
pose of an object in real-time, in a manner which is computationally
more efficient than storing a multitude of SIFT descriptors and using
efficient methods based on the Euclidean distance.

Ozuysal et al. (2010) build upon this earlier work, replacing trees
with flat structures referred to as “ferns”. Whereas in the earlier work,
the probabilities were based on the average over trees, the authors here
use a Semi-naive Bayesian approach (Zheng and Webb, 2005): the
dependencies between binary tests are modelled within a fern, but
assumed to be independent between ferns. Each fern is composed of
a number of binary tests, which are all evaluated (unlike randomised
trees where the tests performed depend on the path through each
tree) to provide a single binary string. This string is used to provide a
probability of a given class based on the classical probability yielded
from interest-points and their associated binary strings at train time
(the likelihood), with a uniform Dirichlet prior for regularisation. A
similar approach to the earlier work is used to provide a synthetic
training set.
The authors show comparable performance to SIFT for detecting

planar and 3D objects, while being able to run faster. In addition,
the authors show the suitability of their system for simultaneous loc-
alisation and mapping (SLAM).

Gupta and Mittal (2008) recognise that the SIFT description is
robust to misalignment (localisation error) and to linear changes in
pixel intensity, but is not robust to non-linear changes in intensity.
They aim to provide a descriptor which is robust to these, while still
remaining robust to misalignment. The approach begins by discov-
ering regions which are sufficiently light or dark in the patch, known
as extremal regions. Next the authors calculate the distance trans-
form (Fabbri et al., 2008) from the region boundaries and find point
pairs between light and dark extremal regions which lie sufficiently far
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from a boundary, or existing points, using a greedy algorithm. These
point pairs are used at run-time to match interest-points. Using this
per interest-point approach, the authors show a performance improve-
ment over SIFT, particularly under illumination changes, image blur
or compression.

Balntas, Tang and Mikolajczyk (2015) proposes a method for
generating a binary descriptor which is optimised for each image patch
independently and online. The authors demonstrate that performance
can be improved by using a different binary descriptor for each image
patch, however storing multiple descriptors for each patch is imprac-
tical. Instead the authors proposed to store for a given patch, a binary
descriptor (based on BRIEF) (as in earlier work) and a bit mask of
equal length. Matching is then performed using a modified and sym-
metric Hamming distance.
The authors combine a global offline optimisation of the binary

descriptor, with run-time learning of the binary mask. The offline
optimisation of the descriptor involves taking many possible binary
tests, as in BRIEF, ranking each test based on the inter-class variance
(variance between non-matching patch pairs), and finding an uncor-
related set o highly ranked tests. At run-time, the learning occurs
for each patch using descriptors calculated from geometrically trans-
formed versions of the patch: this can be achieved efficiency using
a fixed number of affine transformations and lookup tables. The bit
mask is then set to include only binary tests which remain invariant
under all the geometric transformations.

The authors show performance improvements over the BRIEF and
ORB descriptors, while still remaining competitive in terms of effi-
ciency. In addition, the performance is comparable with that of SIFT,
despite the much faster runtime.

Uzyıldırım and Özuysal (2016) propose a two step approach for
matching interest-points with binary descriptors. The first step is to
find, for a given interest-point, the top N nearest neighbours based on
the Hamming distance with other binary descriptors, instead of only
the nearest neighbour. The second step is to use the random “ferns”
approach of Ozuysal et al. (2010) using the existing binary tests, i.e.
those that represent individual bits in the descriptor for the probabil-
ity look-ups, which are learnt as part of the offline learning. Whereas
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in the earlier work, the match score is based on the probability alone,
here, the match score is the sum of the negative Hamming distance
and the logarithm of the probability. The authors show that the use
of the two-step approach improves matching performance, in terms of
improving the number of correct matches between two images, with
an overhead of around 5% above using the nearest neighbour alone.

2.2 Image Classification and Object
Detection

The many different approaches to image classification and object de-
tection can, practically but perhaps arbitrarily, be split into those
that use deep learning and those that do not and are said to use “shal-
low learning”. Deep learning is a form of machine learning involving
the learning of a model or function which is hierarchical (Goodfellow,
Bengio and Courville, 2016) and has many layers in the hierarchy.
The is no standard definition of “many”, hence the border between

shallow and deep learning is not well-defined. Within Computer
vision, many authors make a distinction between the use of “hand-
crafted” features and those generated through end-to-end training,
assigning the former features as belonging to “shallow learning” meth-
ods (Chatfield, Simonyan et al., 2014; LeCun, Bengio and Hinton,
2015; Szegedy, Toshev and Erhan, 2013). I follow that distinction
within this section and commence with a review of shallow learning
methods.

2.2.1 Shallow Learning Methods

Prior to 1963, algorithms focused on detecting 2D patterns. Roberts
(1963), on the other hand presents an algorithm for detecting 3D
objects composed of planar faces from line drawings. The output
of the algorithm is a 3D descriptor of all the models, which can be
visualised in 3D.
Line extraction from line drawings occurs by calculating differen-

tials in the image and thresholding the result to generate a rough
edge image. Through local regression of these points, the algorithm
generates longer lines. The algorithm also uses heuristics to connect
adjacent lines to create longer lines, splitting lines into sections and
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to complete the line drawing. Next, the algorithm discovers the poly-
gons within the image and identifies parts of the 3D model with the
assumption that all parts either lie on the ground plane or in each
other. The output of the algorithm can be visualised as a line draw-
ing, and for this, the author includes a novel algorithm for projecting
the objects and removing hidden lines, based on volume intersection
tests. This algorithm relies on strong assumptions about the objects,
e.g. all objects having planar polygon faces.

Fischler and Elschlager (1973) proposes a part-based embedding
for objects such as faces, which has fewer assumptions. The embed-
ding is based on two metrics:

1. a metric for evaluating a score for locating a part at a given
location in an image (the local embedding cost), e.g. based on
the pixel intensity values

2. a metric for evaluating a score for the relative location of two
parts (the “spring” embedding cost), is akin to placing springs
between the two parts which have an increasing cost as the
spring is stretched or compressed.

In general, the computational time to determine the part locations
which minimise the cost grows exponentially with the number of parts.
However, the computational time grows linearly if all the parts are
connected in an acyclic chain such that all parts are connected by only
two springs each, with two ends of the chain being unconnected to each
other. Other springs can be added to this acyclic chain to serve as
heuristics, which improves the approximate solution but cannot yield
the global optimal.
The authors demonstrate the algorithm using experiments in which

human annotators label parts of a face and the spring embedding
was set to be either infinite cost or zero cost based on the feasibility
of positioning. This further reduces the computational expense as
infinite distance edges can be removed from the graph as it is being
built.

Simard, LeCun and Denker (1993) identify a weakness in using
K-nearest neighbour classification with Euclidean distance, in a metric
space based on pixel intensity values, for classifying handwritten digits
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(as in Section 1.5.3.1). The Euclidean distance is highly sensitive
to simple transformation such as translating or scaling the digits, or
rotating by a small amount. Therefore, the authors propose a distance
metric which is invariant to such transformations.
Transforming an image of a handwritten digit results in a new image

which lies on an manifold in the metric space used for classification.
The dimensionality of the manifold is equal the number of paramet-
ers which specify the transformation. When calculating the distance
between two images, the authors propose the use the shortest distance
between the two respective manifolds rather than Euclidean distance.
When the transformations include rotation, scaling and translation,
the new distance is rotation, translation and scale invariant.

Unfortunately, there is no analytical expression for these manifolds.
Therefore, the authors approximate the manifold by using the tan-
gent spaces of the manifolds. The shortest distance between the tan-
gent spaces can be obtained by solving a least squares problem. This
provides a distance metric, with an efficient analytical solution, which
yields approximate invariance to the transformations. The tangent
distance provides a better level of invariance for the task compared to
the Euclidean distance and therefore improves accuracy.

2.2.1.1 Later approaches using statistical models

Many approaches for object detection rely on statistical models. Be-
longie, Malik and Puzicha (2001, 2002) recognise objects by matching
shapes through co-ordinate transforms. This is inspired by D’Arcy
Thompson’s On Grown and Form (Thompson, 1942).
The algorithm first obtains uniformly sampled locations along a

“shape” (for general images, this can be yielded through use of an edge
detector), yielding a set of points. The authors then calculate a shape
context descriptor for every point, by binning the relative location
of every other point into a histogram using a log-polar grid. This
forms a descriptor for matching two points and the authors use the χ2

statistic as the distance metric. The total cost between shapes is the
sum of all these distances for a permutation of point matches which
minimises the total cost. To achieve scale invariance, the descriptor
can be calculated based on distances normalised by the mean distance
between all point pairs in the grid. Additionally, rotational invariance
can be achieved by rotating the grid based on the tangent of the shape
at each point.
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To allow for some deformation, the authors use the thin plane
spline (TPS) model (Duchon, 1977; Meinguet, 1979). Having iden-
tified matching point locations, the authors find a transform which
minimises the bending energy of the transform. To match one shape
against another, the authors use the shape context descriptor matches
and TPS model for three iterations, using transformed point loca-
tions for the pair matching after the first iteration. The final cost is
the weighted sum of the shape descriptor costs between the shapes
(in both directions for symmetry), after the transformation, plus the
bending energy and (optionally) a local appearance cost.
The authors use K nearest neighbour classification and show state-

of-the-art performance on the MNIST database of handwritten di-
gits (LeCun, Bottou, Bengio and Haffner, 1998) (the MNIST data-
base) and a shape silhouette database. In addition, they show its use
for 3D object recognition and trademark retrieval.

Fergus, Perona and Zisserman (2003) build upon earlier part-
based models (Burl, Weber and Perona, 1998; Weber, Welling and
Perona, 2000a, 2000b), additionally modelling the variability of ap-
pearance, which is learnt simultaneously with the relative positioning
of parts. The benefit is that the model can handle objects with high
variability of appearance compared to geometric arrangement, or vice
versa. In addition, parts are discovered using an interest-point ex-
tractor (Kadir and Brady, 2001).
An object is modelled to have a number of parts, each with appear-

ance, relative positioning (shape), relative scale and possible occlusion.
The desired calculation is the ratio of the posterior of an object detec-
tion over a background detection for a given set of interest-points and
their local descriptors. With equal priors, this collapses to likelihood
ratio of a positive detection over a background “detection”.

The probability terms involve various distributions including Gaus-
sian for appearance and shape, uniform for scale and a Poisson distri-
bution over interest-points for each part. The authors perform train-
ing using EM, with an efficient search method for handling the O

(
NP
)

possible hypotheses for N interest-points and P parts. Similar effi-
cient search techniques are used for recognition. The authors show
that their method is superior to previous methods for object detec-
tion, despite no tuning for a specific dataset.
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Crandall, Felzenszwalb and Huttenlocher (2005) present a stat-
istical model framework for part-based object recognition. An object
is considered to have a number of parts lying at respective locations
in an image, modelled by a probability distribution. The appearance
model assumes independence between pixels and that every pixel is
either an edge or not, based on the output of the Canny edge de-
tector. The authors assign a fixed probability for an edge to lie in a
background and a location and part specific probability for the object
itself.
The authors split the parts into two groups for each object, refer-

ence and non-reference parts. The spatial prior assumes conditional
independence of non-reference part locations given the location of the
reference parts. All probabilities are modelled as Gaussian distribu-
tions, enabling efficient detection of objects through convolutions and
distance transforms. The authors train the models using six parts of
fixed size, hand labelled per object class, and show favourable results
over Fergus, Perona and Zisserman (2003), at the time, the leading
local descriptor based approach.

Felzenszwalb and Huttenlocher (2005) provides an efficient al-
gorithm for solving the energy minimisation problem presented by
Fischler and Elschlager (1973) in the following case:

1. The connections between vertices (parts) form an acyclic graph
(i.e. a tree).

2. The cost between two parts is based on a normalised Euclidean
distance from the ideal relative part locations.

In contrast to previous work (Burl and Perona, 1996; Burl, Weber and
Perona, 1998), the authors’ method finds a global minimum.
The original minimisation can be cast into an undirected graph or a

maximum a posteriori (MAP) problem. Whereas solving the general
problem would still be NP-hard, the tree structure means that the
problem can be solved in polynomial time for the number of possible
locations for each part, by tracing from each leaf node to the root.
Furthermore, because the authors restrict the deformation costs to
be the normalised Euclidean distance, the problem can be solved in
linear time using distance transforms (Karzanov, 1992).
The authors also demonstrate how learning can be performed us-

ing training images with parts already labelled using maximum like-
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lihood estimation (MLE). This includes learning the graph structure.
Furthermore, other (non-minimal solutions) can be sampled from the
posterior efficiently using Gaussian convolution to handle the norm-
alised Euclidean distance in the (negative exponential) space of the
MAP solution. The authors demonstrate efficient matching of faces,
even when two parts of the face are occluded.

Amit and Trouvé (2007) introduce the concept of patchwork of
parts (POP) models. The features used by the authors are binary
oriented edge features (Amit and Geman, 1999) which are robust to
changes in lighting conditions and small deformations. An instance
of a deformable POP model, is composed of a number of parts which
can be shifted relative to the object and combined using a “patchwork”
like operation in which the parts are averaged together in areas close
enough to the centre of the part.
The authors use a joint Gaussian prior for modelling the shifts and

classification occurs by finding the class and shifts which maximises
the posterior. Object detection occurs by looping over all possible
locations and training of individual POP models occurs using EM,
with a greedy algorithm for learning mixtures of POP models. The
authors show state-of-the-art performance on the MNIST database
and high performance for zip code recognition and face detection.

2.2.1.2 Local descriptor based approaches

Other approaches use local descriptors to assist object detection, some
of which also use statistical models. A special class of local descriptor
based approaches, known as bag-of-words methods, are outlined in
Section 2.2.1.3.

Leibe, Leonardis and Schiele (2004, 2008) and Leibe and Schiele
(2004) provide an interleaved object detection and segmentation
framework. The object detector works as follows:

1. Extract interest-points and their local descriptors within the im-
ages

2. Match each local descriptor to a codebook of previously found
interest-points and local descriptors by finding any cluster which
is within a given threshold distance (the clusters are built using
an efficient version of agglomerative clustering.)
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3. Use every entry in the cluster to assign a vote for the object
centre in 3D space (location and scale)

Each entry of the codebook, previously learnt from training ex-
amples, contains a relative location and scale between the interest-
point an the centre of the object it was trained on. In the event
of multiple clusters matching the training example with a threshold,
these are both stored with the appropriate weighting. In a voting pro-
cedure is known as Probabilistic Hough Voting, each entry casts one
or more weighted votes into a 3D voting space of location and scale
and this is used to locate the likely location and scale of the object.
Once the most probable location has been found, the interest-points

which resulted in a vote for this location can be used to determine
a rough segmentation of the object, thus identifying the bounds of
the object. In addition, if the patches in the codebook all contain
segmentation masks, the segmentation masks can be overlaid on each
interest-point to provide a pixel-wise segmentation.
The authors show that their algorithm performs well for object de-

tection, surpassed by one or two other algorithms such as Mutch and
Lowe (2006). The main contribution, however, is the use of segment-
ation to improve object detection and localisation.

Tombari, Franchi and Di Stefano (2013) introduce a new local
descriptor, the Bunch of Lines Descriptor (BOLD), for detecting tex-
tureless objects. BOLD features are calculated from a collection of line
segments, which have already been extracted from an image using the
LSD algorithm (Von Gioi et al., 2010). The base local descriptor is cal-
culated for a pair of nearby line segments based on the angles between
each line segment, and a third line connecting their midpoints. Every
line segment has a descriptor, which is the combination of the base
descriptor the that line segment and a number of the closest line seg-
ments. This local descriptor is a 2D histogram calculated from binning
the value of the angles across the line segments.
The authors use an object detection pipeline close to that of Lowe

(2004). They show that their local descriptor, used in this pipeline,
outperforms all others on their own textureless dataset and performs
favourably on a 3D textureless object dataset.
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2.2.1.3 Bag-of-words Methods

Bag-of-Words (bag-of-words (BoW)) methods in Computer Vision
are analogous to bag-of-words models for text document classifica-
tion (Joachims, 1998; McCallum, Nigam et al., 1998; Nigam, Lafferty
and McCallum, 1999). Just as the presence of certain words in a
document, regardless of their ordering or position, can indicate the
topic of the document, so the presents of “visual words” in an image
can identify the object present, without any reference to the spatial
positioning of the visual word.

Sivic and Zisserman (2003, 2006) introduce the use of BoW
methods for searching for objects in videos. The pipeline operates
as follows:

1. Identify interest-points from video frames using both the “Shape
Adapted” (SA) extractor of Mikolajczyk and Schmid (2002) and
MSER (Matas et al., 2004)

2. Track interest-points between frames

3. Extract SIFT descriptors for each interest-point

4. Produce a histogram by assigning each descriptor based on the
closest of a number of cluster cluster centres, formed using k-
means clustering

5. Average the histogram over each interest-point track and apply
“term frequency-inverse document frequency” (tf-idf ) weighting
to produce a descriptor

As in document classification, the authors remove the 5% most com-
mon and 10% least common visual words.
At run-time (searching), a user specifies a sub-part of the frame

which is used to create a query descriptor. Ranking with the database
tracks is based on the normalised scalar produce between query and
database descriptors. In addition, the authors perform reranking while
enforcing spatial consistency to remove spurious matches. The authors
demonstrate efficient retrieval of objects within a video, using their
methods.
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Csurka et al. (2004) similarly introduce the use of BoW meth-
ods for classifying objects in images. The pipeline operate in similar
fashion, as follows:

1. Identify interest-points in an image using the affine-invariant
extractor of Mikolajczyk and Schmid (2002)

2. Extract SIFT descriptors for each interest-point

3. Produce a histogram by assigning each descriptor based on the
closest of a number of cluster centres

4. Classify the histogram using a support vector machine (SVM)
or a Naive Bayes classifier

The authors provide a new benchmark and show that the SVM out-
performs the Naive Bayes classifier.

Grauman and Darrell (2005) provide an alternative approach to
the use of k-means clustering, providing a kernel which can be used to
match two unordered sets of interest-point descriptors, which may also
differ in cardinality. The kernel, knows as the Pyramid Match Kernel
(PMK), accounts for matching between individual features without an
intractable matching step. The authors demonstrate the use of their
kernel in an SVM for object recognition and result in performance
comparable to the state-of-the-art, however much more computation-
ally efficient.

Lazebnik, Schmid and Ponce (2006) also use the PMK and an
SVM for classification, however they operate in the 2D image space
rather than the descriptor space. The authors assign the descriptors
to clusters, as common in previous work, and calculate the PMK in 2D
space for each cluster based on the location in the image. The authors
do not use interest-points, instead they use two feature types: oriented
edge points (points where the gradient magnitude for a given orienta-
tion exceeds a threshold) and SIFT descriptors calculated densely over
the image. The authors demonstrate state-of-the-art performance on
scene category recognition and performs competitively to best per-
forming object recognition methods.
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Nister and Stewenius (2006) provide a more scalable version of
Sivic and Zisserman (2003) through the use of a vocabulary tree. As
in the earlier work, the authors use MSER interest-point and SIFT
descriptors. However, the authors build a tree using hierarchical k-
means clustering.
At run-time (searching), all descriptors traverse the tree and each

provides a score based on the weighted number of descriptors which
pass through each node. The weighting is set so as to result in the
a tf-idf . The resulting vector is compared to those in the database
based on the L1 norm between the normalised query and database
descriptor. The authors demonstrate real-time performance searching
over 50 000 CD album covers.

J. Zhang et al. (2007) present a comprehensive study of object
category classification using interest-point detectors, local descriptors,
clustering and SVM classification. The authors achieve state-of-the-
art performance on many object recognition datasets such as PAS-
CAL Visual Object Classes (VOC) 2005 (Everingham, Zisserman et
al., 2006) using both Harris-Laplace and Laplacian interest-point ex-
tractors, SIFT and spin image local descriptors and a one-vs-one SVM
with an Earth Mover’s Distance (EMD) kernel (Rubner, Tomasi and
Guibas, 2000) for classification. They also discover that the use of
affine-invariant interest-point extractors does not improve perform-
ance and that the use of background features does not improve clas-
sification using their approach however the use of varied backgrounds
in the training set improves generalisation.

2.2.1.4 SVM based methods

The next set of approaches use SVMs for classification. A linear SVM
seeks to learn a linear decision boundary which divides feature space
into two so as to maximise the margin between the boundary and
the closest training example of each class, the support vectors. In
the event that this is not possible, the algorithm seeks to provide the
best possible compromise. Extensions to the linear SVM allow it to
handle classification of more than two classes and to create non-linear
decision boundaries by using kernels to transform the feature space
into a higher dimensionality.
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Papageorgiou and Poggio (2000) develop a classier which uses
filters based on Haar wavelets (Mallat, 1989). These filters are square
and each pixel of a square is set to either −1 or 1 throughout. A
combination of many such filters can provide a orthonormal basis for
an image, however the authors do not limit the number of filters to
those forming an orthonormal basis but also translated versions of
them, resulting in an overcomplete dictionary. In addition, the au-
thors remove filters which yield information at too coarse or too fine
a scale, as these are uninformative. The authors use many of these
filters to extract a feature vector for classification in an SVM, chosen
because of its high performance on a small training set, forming an
object detector. The kernel used is quadratic. To locate objects, the
authors run the detector at many locations in the image and at mul-
tiple scales, i.e. it is a sliding-window detector. The detector performs
well but takes 20 minutes per frame. To improve the speed, the au-
thors propose to select only a subset of the wavelet features and to
reduce the number of support vectors used in the classification.

Mohan, Papageorgiou and Poggio (2001) build upon Papageor-
giou and Poggio (2000). They too use Haar wavelet features and
SVMs for person detection, however they first use a number of in-
dividual component classifiers to independently locate parts, e.g. the
head, legs, left arm and right arm, followed by a combination clas-
sifier. The component classifiers, SVMs with quadratic kernels, are
independently trained on sub-images containing each respective part.
The authors use an overall sliding window, specifying the position and
scale of the possible human. The component filters are then only run
at locations and scales relative this window for which a correct detec-
tion is feasible (based on the set of training images), which results in
more efficient detection.
The maximum scores for each component, i.e. the distance from

the decision boundary output for each SVM, form the vector for the
combination classifier, a linear SVM. If a given part is not found,
leading to a negative output from the SVM, a zero is inserted into
the vector to make the classifier robust to occlusion of a part. This
SVM is trained based on pre-processed positive examples and neg-
ative examples from applying the component classifiers over images
containing no people. The authors compare the two-tier classifier to
Papageorgiou and Poggio (2000) and show that it outperforms the
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latter system.

Uijlings et al. (2013) develop a method, known as selective search
for generating possible bounding box locations within an image. The
aim is to achieve a high recall rate, as missing an object will prevent it
from being detected in the image. On the other hand, false positives
can be ruled out by a subsequent class-based classifier. The primary
purpose is to reduce detection time, however selective search also im-
proves object localisation and possibly improves training by narrowing
down training inputs to the bounding box proposals.
Selective search has a hierarchical design because objects often exist

as a hierarchy: as an example, wheels are objects but can be part of
another object such as a car. To achieve this, the authors use bottom-
up segmentation: they begin with small regions and recursively group
smaller regions into larger regions, based on their similarity, until the
whole image becomes a single region. The authors then use regions
at every scale to produce rectangular bounding box proposals.

In order to support a large variety of objects and images, select-
ive search uses a diverse set of strategies to assess the similarities
between regions. The similarity measure between two regions is a
weighted combination of four measures, which measure the following,
respectively:

colour similarity of colours between the two regions

texture similarity of the texture using SIFT-like features between re-
gions

size fraction of image left outside the two regions: this means that the
similarity measure prefers to merge smaller rather than larger
regions to avoid one region dominating

fill how well the regions fit into each other: if two regions wrap around
each other (or indeed, if one is fully surrounded by another) they
will both predict a similar (rectangular) object bounding box;
this similar measure favours merging such regions

Regions are produced from a combination of different strategies, i.e.
the algorithm is run multiple times with different weightings over
measures and using different colour spaces, to provide robustness to
different images.
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As well as the selective search algorithm, the authors demonstrate
the use of the selective search proposals for object recognition using
an SVM based classifier. The authors use BoW features and the PMK
as in Lazebnik, Schmid and Ponce (2006) but with a finer pyramid
division and with colour-SIFT descriptors (Van De Sande, Gevers and
Snoek, 2010), making use of the efficiency gains from selective search.

2.2.1.5 SVM based methods using HOG

Dalal and Triggs (2005) introduce the concept of Histograms of Ori-
ented Gradients (HOG) for human detection. The HOG detector uses
oriented histograms, similar to those of SIFT (see Section 2.1.3), to
detect humans in images. However, whereas the SIFT framework
provides a spare representation, the HOG descriptor is calculated over
a dense grid composing the whole image. The detector operates on
a sliding window composed of cells, with each cell corresponding to a
sub-region of the SIFT descriptor. Within each cell, the values of local
gradients are summed within a histogram, based on their orientation,
as in SIFT. However, normalisation occurs over a collection of cells,
known as a block, rather than throughout the window.

The authors use two arrangements for cells, rectangular (R-HOG)
and circular (log-polar) cells (C-HOG). They use an SVM classifier to
classify the descriptor for each window. The authors show that the
HOG detectors outperform previous detectors.

Felzenszwalb, Girshick et al. (2010) and Felzenszwalb, McAllester
and Ramanan (2008) build on earlier deformable part model work
(Felzenszwalb and Huttenlocher, 2005), which is often outperformed
by simpler models such as HOG and BoW models. The authors
identify the success of HOG in terms of providing effective features
and develop a part based model composed of a “root” HOG filter and
a number of part HOG filters. The authors aim to perform train-
ing using only object (and not part) bounding boxes, hence the loc-
ations of parts form latent variables in the training. For this pur-
pose, the authors use a latent-SVM (LSVM) which is equivalent to
the SVM formation of Andrews, Tsochantaridis and Hofmann (2003)
for multiple-instance learning.
To extract features at multiple scales, the authors use a feature pyr-

amid, which is based on lifting HOG features from an image pyramid.
In all cases, the part features are computed at twice the resolution
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of the root features. The resulting model is known as a Deformable
Part-based Model (DPM) The overall matching score for the DPM is
the sum of the appearance cost, from comparing HOG features, and
the (spring like) deformation costs between the root and part filters.
In order to perform matching, the authors calculate the score in a

given image for many possible root filter locations. Given the location
of the root filter, is possible to efficiently calculate the best placement
for every part filter (and hence the matching score) using distance
transforms as in the authors’ earlier work (Felzenszwalb and Hutten-
locher, 2005). In the case of a mixture model, an object is specified
with multiple models (components), and their match score is calcu-
lated independently. This step is followed by bounding box prediction,
using a linear least squares regression between the part locations and
the overall bounding box.

The authors use their LSVM algorithm for training. This algorithm
alternates between learning the parameters of the SVM given the lat-
ent variables (part locations) for a positive training instances and
relabelling the positive training instances. This requires careful ini-
tialisation since it is no longer convex. To improve training efficiency
the authors use data-mining: the algorithm retains a cache of hard
examples to use for training and refreshes this periodically using the
latest trained model. The authors test their performance on PASCAL
VOC 2006–2008, achieving top performance in nine out of twenty cat-
egories and second best in eight.

Farhadi, Endres and Hoiem (2010) aim to provide an object de-
tection system that can identify unseen objects based on their simil-
arity to other seen objects, for example, an unseen four-legged animal
based on having seen other four-legged animals. The authors train
DPMs (Felzenszwalb, Girshick et al., 2010; Felzenszwalb, McAllester
and Ramanan, 2008) for both parts (e.g. leg and wheel), categories
(e.g. four-legged animal or vehicle part) and basic objects (e.g. dog or
cat) and show a fair degree of generalisation to unseen objects based
on the trained category detectors.
The authors then train two localisers: one for parts and one for

animals. They do this by storing the scale and locational difference
between each object, part or category detection and the ground truth,
e.g. the scale and locational offset for both a “head” and “dog” detec-
tion compared to the ground truth bounding box for the dog.
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At test time, all the stored offsets allow for probabilistic voting of
the animal or vehicle bounding box. The authors combine the votes
using a clustering-based algorithm and logistic regression. In addition
to localising objects, the authors use a graphical model, learnt by EM,
to infer attributes on objects based on the detections. The authors
show improved performance for detection animals and vehicles (in-
cluding unseen animals and vehicles) using their framework compared
to simply using object detectors trained on basic objects.

2.2.1.6 Boosting based methods

Boosting (Schapire, 1990) is an algorithm which combines many “weak
learners” (efficient but inaccurate classifiers) into a strong classifier
based on training data. At each iteration, the algorithm seeks to find
the best “weak learner” for all the training examples, adding it to
the classifier. However, the weighting over training examples changes
between each iteration based on those correctly and incorrectly clas-
sified by previous “weak learners”, with the aim that each successive
“weak learner” improves the overall classification performance.

Viola and Jones (2001) build upon the work of Papageorgiou
and Poggio (2000), producing the Viola-Jones framework. They too
use features inspired by Haar wavelets, but allow the set of all two-
rectangle, three-rectangle and four-rectangle features in addition to
Haar wavelet based features. To speed up calculation of these “Haar-
like” features, the authors introduce integral images. The integral
image makes it possible for two-rectangle, three-rectangle or four-
rectangle features to be calculated at a given position using six, eight
or nine image value lookups respectively, rather than by summation
as in Papageorgiou and Poggio (2000).
In addition, the authors use AdaBoost (Freund and Schapire, 1995),

modified so that each weak learner uses only a single rectangular fea-
tures. Training, therefore, results in selecting one feature at a time and
allows much for efficient training over a large set of possible features
(180 000) compared to an SVM. In addition, it results in a classifier
which requires the calculation of only a subset of the possible features.
Although this results in a very efficient classifier, it is not efficient

to use it for object detection as it involves running the classifier over
every possible position and scale in the image. The authors propose
an alternative: a cascade of classifiers. The authors use AdaBoost
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to learn a number of small and efficient classifiers with the threshold
of each test modified to minimise the probability of a false negative.
These resulting classifiers can be stacked in a cascade such that if any
classifier in turn rejects a sub-window, no further processing occurs.
This enables the majority of locations, which are negative windows,
to be eliminated rapidly, while the remaining promising sub-windows
are processed further with the slower but more accurate classifier.
The authors show that their detector operates fifteen times faster

than the fastest known previous detector for face detection, while
performing with similar accuracy. The detector often returns multiple
detections of a given face, but this can be resolved by taking averages
of the bounding box locations across all overlapping detections.

Dollár et al. (2009) add additional feature types to the Viola-Jones
boosting framework. Their framework operates on many channels
which are images computed from linear or non-linear transforms of
the input image such that the output pixels corresponds to the fea-
ture located on each input pixel. The simplest channels are grayscale
intensity value and different colour spaces, while more complex types
include oriented Gabor filters (Malik and Perona, 1990), Canny edges
and gradient features. Each weak learner is based on the sum of a
rectangular region in a given channel, sampled randomly from the
huge space of possibilities.
The channels are translation covariant, which allows for rapid lookup

using integral images, as in the Viola-Jones framework, hence giving
the name integral channel features. Histogram-based features such
as HOG features can also be generated by generating a channel for
each orientation and then using integral images to look up the his-
togram (Porikli, 2005). With a total of ten channels (which include
the CIE 1976 (L* u* v*) colour space (LUV) and HOG based fea-
tures), the algorithm outperforms previous algorithms for detecting
pedestrians, except for DPM, while running much faster.

Benenson, Mathias, Tuytelaars et al. (2013) improve perform-
ance over Dollár et al. (2009) by optimising the design, including ap-
plying the multi-scale approach of Benenson, Mathias, Timofte et al.
(2012). The authors discover that using all available features in the
training (requiring a large computational expense at train time) and
global normalisation of feature channels improves performance, while
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other modifications show little or no performance boost. As a res-
ult of the two successful changes, the authors achieve a significant
performance boost.

Wang et al. (2013) introduces a new feature pool for which to
supply weak learners, known as regions and regionlets. As with other
boosting approaches, these can operate on any integral channel fea-
ture. Each region is rectangular and contains one or more regionlets
and supplies a single feature for which to use as a weak learner. The
regionlets are also rectangular, and are identical in shape across a
given region. The purpose of having multiple regionlets within the
region are to allow a given feature, e.g. perhaps corresponding to a
hand of a person, to be located in different places. In addition, the
size of the regionlet allows for different levels of deformation for the
feature. Instead of obtaining a feature from the rectangular region
alone, the feature is the maximum obtained by any one regionlet.

Compared to previous boosting approaches, which form sliding win-
dow detectors, the authors use selective search (Uijlings et al., 2013),
a class-independent algorithm which generates a large number of can-
didate windows, which hopefully cover all the required objects, for a
given image. These are known as object bounding box proposals and
the detector is run on each of these. To handle the varying aspect ratio
of the bounding box proposals, the regions and hence the regionlets
are always located relatively in position and scale to the bounding
box.

The pool of available regions and their regionlets is huge, how-
ever the authors sample a subset of possible regions and then ran-
domly generate only one set of regionlets for each region. These then
form the candidate weak learners for training. The authors use Real-
Boost (Schapire and Singer, 1999) rather than AdaBoost for training.

The authors show that their regionlets based detector outperforms
all other approaches on PASCAL VOC 2007, where it performs best on
sixteen out of twenty categories, and on VOC 2010, where it performs
best on fourteen out of twenty categories. The authors also show
state-of-the-art performance on the ImageNet dataset (Russakovsky
et al., 2015).
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2.2.1.7 Self-similarity based methods

A special class of classifiers and detectors operate using internal self-
similarity. Whereas other approaches assume that representations
share similar properties such as colour or texture, self-similarity based
approaches aim to identify classes with a similar geometric layout.

Shechtman and Irani (2007) propose a descriptor based on local
self-similarity. This descriptor can be calculated on any pixel loca-
tion and the local descriptor is based on the correlation with a patch
centred on this location and a larger region around the patch. The
result of the correlation is turned into a vector by pooling the max-
imum value over many pooling regions in a log-polar grid to achieve
a 2D descriptor. An extension to the descriptor for matching videos
is calculate the correlation through time as well, resulting in a 3D
descriptor.
The authors do not use the descriptors in isolation, but produce

an ensemble of them using the algorithm of Boiman and Irani (2007),
yielding a “star-graph” model for every template. The authors extract
descriptors over a dense grid, however remove descriptors with little or
too much self-similarity, as these not informative. They also calculate
descriptors over many scales. The authors show that their descriptor
outperforms others such as SIFT and GLOH when detecting objects
using a template such as an image of a flower. The authors also show
the suitability of their approach for matching human poses from a
sketch and for ballet turns in a video from a video template.

Chatfield, Philbin and Zisserman (2009) build upon Shechtman
and Irani (2007) to produce a framework more suitable for image
retrieval in large databases. They use the same descriptor concept
for the pooling region grid) but normalise the descriptor and use
the Probabilistic Hough Voting approach of Leibe, Leonardis and
Schiele (2004) to detect objects from the descriptor instances. The
authors also extract descriptors densely. However, they eliminate
descriptors which are less descriptive by retaining only those whose
nearest neighbour is sufficiently closer than their second nearest neigh-
bour in descriptor space. In addition, they use the BoW architecture
of Sivic and Zisserman (2003) to allow efficient matching of whole
images, before using the Hough voting approach to localise the ob-
ject. The authors show that the self-similarity descriptor outperforms
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traditional local descriptors such as SIFT for some abstract classes,
such as “bottles” and “swans” and propose that the descriptor be used
alongside other descriptors to improve performance.

2.2.2 Deep Learning Methods

Deep learning perhaps began as early as 1943, however the first ap-
proaches were proposed but not realised. McCulloch and Pitts (1943)
proposed a neural network based on theoretical neurophysiology. The
network assumes that all neurons can be connected to other neurons
so as to either to activate or inhibit them and yielding an “all-or-none”
response. Each connection is directed, and the network may be cyc-
lic if the connections form a cyclic graph, akin to a recurrent neural
network (RNN). Such a network is shown to be realisable through the
authors’ framework. The authors note that network can only compute
“such numbers as can a Turing machine”.

Hebb (1949) bridged the gap between neurophysiology and psycho-
logy. Of particular interest is the attempts to understand neurological
function based on the reaction to drawn figures, from humans and
lab animals. The work also includes hypotheses about how learning
takes place based on experiments. Of particular notability is Hebb’s
Rule, which can be summarised as “neurons wire together if they fire
together”, in effect meaning that if one neuron tends to result in excit-
ing another neuron over time, the efficiency that this occurs is likely
to increase. Hebb (1949) and McCulloch and Pitts (1943) did not at-
tempt to construct their proposed neural network using learning but
provided inspiration for later neural networks.

Rosenblatt (1958) proposed the perceptron, devised as a hypothet-
ical nervous system, as an analogue to biological systems. Every
neuron has an “all-or-nothing” response, activating at a fixed threshold.
The perceptron design has four layers: the “retina”, the projection
layer, the association layer and the responses. Connections from the
retina to the projection layer are distributed such that the number
falls exponentially away from the centre, while the rest of the connec-
tions are random. The first three layers’ connections are acyclic, while
the connections between the association layer and the responses form
a cyclic network.
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The author proposes three different learning systems, each involving
the increase in the “gain” of active neurons and possibly a change in
the “gain” of inactive neurons when given stimuli are applied. The
result is that there is more chance of the active neurons activating
connected neurons in future, which follows Hebb’s Rule. This alone
can result in the perceptron converging to produce a stable output for
two classes, and hence it forms an unsupervised learning algorithm.
The author also considers spatial organisation rather than random
assignment of neuron connections, to assist in contour detection.

Ivakhnenko (1968) and Ivakhnenko and Lapa (1965) train neural
networks using the Group Method of Data Handling (Farlow, 1981).
The whole neural networks produce a mapping of continuous data to
a single output,
according to a high order polynomial. Each neuron calculates a

polynomial of a fixed but low order, perhaps second order. Through
building a hierarchical network of neurons, the neurons combine to
model a much higher-order polynomial.

Each layer of the network is constructed by solving many least
squares problems on small subsets of the training data. A number
of solutions which provide the best estimate are retained and used to
form the neurons in the layer. The same procedure takes place on sub-
sequent layers, using the outputs of the previous layer. Consequently,
the depth of the network increases with each iteration, until perform-
ance no longer improves on the validation data. Depending on the
definition of “deep”, this may be considered to be the first example of
deep learning (Schmidhuber, 2015).

Kohonen (1972) considers the idea of “correlation matrix memor-
ies” in which a correlation matrix encodes the relations between data
vector space and a key vector space. This corresponds to a network
in which the key and data vector space form the inputs and every
element of the correlation matrix forms an output. The matrix may
be “incomplete”, yielding a reduced number of outputs. If the key
vectors are orthogonal, perfect recall is achievable, while otherwise
there is cross-talk. The author proposes the use of such a matrix for
supervised and unsupervised learning. In this respect, the incomplete
matrix is similar to an “inner product” layer of an neural network.
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Von der Malsburg (1973) refutes the proposal by Hubel andWiesel
(1963) that the circuitry of the primary visual cortex is genetically
pre-determined. In during so, the author proposes a mechanism for
self-organisation of visual cortex, simulated on a computer, consisting
of 338 neurons. After training the model by exposing it to patterns
of different orientations, individual neurons become sensitive only to
one orientation, reflecting the behaviour shown by Hubel and Wiesel
(1963). The connections between neurons are, for simplification, as-
signed a single “weight” parameter, the strength of a connection or
synapse. The model increases the strength of a connection upon each
activation, and then normalises over all the connections to the cell,
resulting in selectivity and saturation. In this respect, the model per-
forms unsupervised learning.

Fukushima and Miyake (1982) introduces the Neocognitron, per-
haps the first convolutional neural network (CNN). The Neocognitron
is a seven layer neural network, inspired by the work of Hubel and
Wiesel (1962). The first layer is the input layer, and the remaining
layers alternate between layers based on the “simple cells” (s-cells)
of Hubel and Wiesel (1962) and layers based on the “complex cells”
(c-cells). In practice, the s-cell layers act like convolutional layers,
with inhibition. Each layer has a number of planes, corresponding to
channels in modern CNN terminology.
The c-cell layers act like average or Gaussian pooling layers, also

with inhibition. In effect, the layers smooth the input to each c-cell
layer over a broader output, normalised based on the input across all
planes (channels), which variables levels of saturation.

The authors learn the synapse weights for each position and plane
by applying different stimuli, such as different letters to the Neocog-
nitron, and updating the weights. This occurs by selecting the syn-
apse (weight) which leads to the largest output for each plane and
column and increasing the weight by a small amount. Since there is
no supervision when the stimuli are applied, the Neocognitron is an
unsupervised learning algorithm. Initially the weights in are set very
small values and can only increase.

The authors design the network such that the size of each pair of
layers decreases through the network, with the final layer only having
one position. The authors show that, after showing many different
numerical digits, the network results in only one output in the final
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layer for each digit, even if the digit is slightly distorted.

2.2.2.1 Introduction of Backpropagation

Rumelhart and Hinton (1986) introduces a new method for the super-
vised learning of neural networks with multiple layers: backpropaga-
tion. This involves adjusting the weights of a neural network to min-
imise a loss function, e.g. the average sum squared difference between
the desired output vector and the actual output vector, across many
input vectors. Each unit (neuron) in the neural network, operates as a
non-linear function applied to a weighted linear sum over inputs. Hav-
ing calculated the partial derivative of the loss function with regard
to the outputs units, the partial derivatives of the loss with respect to
the weights can be calculated using the chain rule. Moreover, in the
case of networks of many layers, the partial derivative of the loss with
respect to any weight can be calculated through repeated use of the
chain rule, or backpropagation.
Training the network involves a forward and backward pass through

the network. A new input is applied to the network, and this propag-
ates forward through the network, with the output of each unit stored
for later calculation of partial derivatives. Once the loss has been
calculated for the input, the partial derivatives with respect to the
loss propagate back through the network. The network can then be
improved through gradient descent: a simple method is to alter each
weight by an amount proportional to the derivative. A more complic-
ate approach is to use “momentum” and calculate the change for each
time-step and a weighted combination of the partial derivative at the
time step and the change from the previous time-step.

LeCun (1989) and LeCun, Boser et al. (1989) introduce a CNN
for classifying handwritten digits. Input images are sub-sampled to
16 × 16 greyscale pixel images. The first two layers of the CNN are
convolutional, each with 5×5 kernels. On the first convolutional layer,
the stride is two pixels, resulting in downsampling the output width
and height to half of that of the input. Twelve different kernels result
in twelve channel 8 × 8 × 12 output. The second convolutional layer
also has a twelve channel output using convolution from twelve kernels
which are convolved over eight of twelve possible input channels. The
convolutional layers are followed by two fully connected layers. In
every case, non-linearity occurs using tanh units.
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The authors train the CNN using backpropagation, SGD and a
mean squared error loss function. The authors find the rejection rate
(based on the different between the top two outputs) required to yield
99% accuracy is 12%, thus achieving state-of-the-art performance on
digit recognition.

LeCun, Boser et al. (1990) modify the previous network for im-
proved performance with fewer learnt parameters. The first convo-
lutional layer is similar to that before, but with only four different
kernels. Instead of downsampling using a stride, this layer is followed
by a layer which takes an average of across every non-overlapping 2×2
set of pixels. The next convolutional layer is similar to before but has
only four kernels, and is followed by a similar downsampling layer and
a single fully connected output layer. The authors show that, for 99%
accuracy, the rejection rate required is 9%, lower than the previous
network despite the reduction in the number of kernels.

LeCun, Bottou, Bengio and Haffner (1998) describe a CNN
based system for learning to recognise whole strings of text, rather
than just characters, using end-to-end training through backpropaga-
tion. This is in contrast to previous methods which rely on individu-
ally trained modules e.g. separate modules for segmenting characters
and for recognising them. To allow end-to-end training, the entire
system is a feed-forward neural network, and is based on modules
connected together as a directed graph with multiple branches, which
determines the order of the forward and backpropagation stages. The
system allows for modules which are not themselves differentiable, e.g.
a multiplexer with internal switching (based on the input rather than
parameters), as a gradient can still be backpropagated after the for-
ward pass. The system allows training based only on the labelling of
a whole string of characters, without individual segmentation.
The authors initially demonstrate a neural network which inputs

and outputs a graph, known as a Graph Transformer Network (LeCun,
Bottou and Bengio, 1997), which starts with the output of a heur-
istic over-segmentation (HOS) algorithm (Breuel, 1994; Burges et al.,
1992). Such an algorithm outputs many possible segments of hand-
written text, based on applying cuts to the input text in different
positions. The segments are connected as a directed acyclic graph
(DAG) in which every path through the graph represents a feasible
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segmentation. The authors input each possible segment into a CNN
(e.g. as used in LeCun, Boser et al. (1990)), which generates a score
for each class (digit). These scores are transformed into penalties for
interpretation of each segment and combined with the penalties of the
segmentation algorithm, producing an output graph. The string can
then be determined by the lowest cost path through the graph.
The network is trained end to end through backpropagation and

application of the forward penalty (Rabiner, 1989) as loss term. The
authors demonstrate handwriting detection systems, as well as work-
ing system for reading the cash amount (in digits) on a cheque, with a
correct recognition rate of 82%, a reject rate of 17% and an error rate
of 1%. The system was in use at many banks from 1996. They also
describe the use of their network for object detection, as presented in
earlier work on face detection (Vaillant, Monrocq and LeCun, 1994).

Chopra, Hadsell and LeCun (2005) use a siamese CNN archi-
tecture (first used in Bromley et al. (1994)): two CNNs with shared
weights. They use it face verification: matching a new face to a known
face. The training is designed for the situation in which similar pairs
of images are known, in this case faces of the same person, but the
number of classes is large and a future input image might have a
new class, i.e. the face of an imposter. The CNN structure is trained
end-to-end on the using a contrastive loss function, and yields a multi-
dimensional vector output (in the output space) for each input face.
The effect of this loss function is to penalise distances in the output
space of a network for similar images, e.g. faces of the same person,
and to penalise two dissimilar inputs which are too close a distance in
the output space.
The authors use SGD for the training. They demonstrate the sys-

tem for face verification, in which a new face is compared to the mean
output of many known faces of a subject, to verify the identity of the
new face.

Hadsell, Chopra and LeCun (2006) use a similar architecture de-
signed to produce a low dimensionality embedding, fulfilling the role of
other dimensionality reduction techniques such as PCA, but capable
of learning a wide range of non-linear operations. The authors show
the use of the system for learning a shift-invariant low dimensional
embedding which separates the digits 4 and 9, as well as an illumina-
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tion invariant embedding for aeroplane images based on the azimuth
and elevation of each plane (with no labelling except for similar and
dissimilar pairs).

F.J. Huang and LeCun (2006) propose that CNNs, while excellent
at learning features which are invariant, do not learn good decision
surfaces. They also note that SVMs with kernels learn better decision
surfaces but cannot themselves learn sufficient invariance for detect-
ing objects at a high level of accuracy when operating on raw pixel
intensity values. Consequently, the authors propose to combine the
advantages of both CNNs and SVMs.
The authors first train a CNN independently, and then use the

feature output of the final layer to learn an SVM with a Gaussian
kernel. They show an error rate of 5.9% on a jittered version of the
NYU Object Recognition Benchmark dataset (LeCun, F.J. Huang
and Bottou, 2004) (NORB) when using both a CNN and an SVM
compared to 43.3% when using just an SVM and 7.2% when using
just a CNN. In addition, the dimensionality reduction of the CNN
allows the SVM to operate quicker at both train-time and test-time.

Mrazova and Kukacka (2008) propose a “hybrid convolutional
neural network” architecture in which radial basis function (RBF)
neurons, rather than convolutional kernel neurons, form the “feature
detection” layers. Their network is based on LeNet-5 (LeCun, Bottou,
Bengio and Haffner, 1998), but uses Euclidean RBF neurons rather
than a fully connected layer for the output layer. In this case, the main
purpose is to produce an ASCII image output rather than a “1-of-N”
coding output, for combination with a linguistic post-processor.
Another variation, the hybrid CNN, has a fully connected output

layer while the “feature detection” layers uses RBF neurons. These
RBF neurons reflect the distribution of the input data: in the ideal
case, the input data forms clusters in the feature space of each layer
and each RBF neuron lies in the centre of a each cluster. The main
advantage of this is an increase in the rate of convergence and therefore
faster training.
The “hybrid convolutional neural network” show worse performance

than a (slightly modified) LeNet-5 on the MNIST database in all but
one case (Gaussian Noise). However, the network can be trained in a
fraction of the time.
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Cireşan et al. (2010) note that previous benchmarks on the MNIST
database show that multi-layer perceptrons perform worse than other
methods including CNNs and neural networks combined with SVMs.
The authors set out to test whether the poor performance is simply
due to the lack of training of the multi-layer perceptrons as a res-
ult of the large training time requirement. They train a multi-layer
perceptron on a graphics processing unit (GPU), obtaining a factor of
forty increase in training speed. The resulting perceptron outperforms
all other approaches, showing that the simple multi-layer perceptron
can outperform more complex methods with sufficient training.

Ciresan et al. (2011) present a GPU implementation for CNNs.
Differing from previous work which only allowed the forward stage to
occur on the GPU, their implementation allows backpropagation to
occur on the GPU, permitting training to occur wholly on the GPU.
The CNN architecture is similar to that of LeCun, Bottou, Bengio

and Haffner (1998), but with a contrast-extracting layer (Fukushima,
2003) for NORB and max-pooling layers (Boureau, Ponce and LeCun,
2010; Scherer, Müller and Behnke, 2010): layers which return the
maximum value over an area rather than the mean value. The au-
thors show that the CNN architecture is able to achieve the same
performance on the MNIST database as Cireşan et al. (2010) as well
as state-of-art performance on NORB and CIFAR10.

2.2.2.2 Deep Learning Post AlexNet

Krizhevsky, Sutskever and Hinton (2012), showed state-of-the-art per-
formance on ImageNet (Russakovsky et al., 2015) image classification
and led to resurgence of interest in deep learning over shallow learning
methods. The authors use a deep network, later known as AlexNet,
consisting of five convolutional layers and three fully connected layers.
The CNN network was designed to be trained on two GPUs, taking
advantage of the increased memory. As a result, the network is split
in two at the first layer, with interconnections after the second and
fifth convolutional layers.

To increase training speed, the authors use ReLU units to achieve
non-linearity rather than other functions such as tanh . In addition,
the authors normalise the outputs of the ReLU units based on the
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response of N adjacent layers, giving an output for each channel, i,

oi(x) =
ii(x)(

k + α
i+n/2∑
j=i−n/2

ij(x)2

)β
, (2.5)

where ij is the input of the jth channel and k, n, α, and β, are hyper-
parameters. This is known as local response normalisation (LRN).
The authors use overlapping pooling: rather than pooling over non-

overlapping regions, the regions are permitted to overlap. The width
and height reduces through progressive layers due to the pooling: the
size and overlap is such that the number of output units remains
fewer than the number of input units. Finally, the authors use dro-
pout (Srivastava et al., 2014) to reduce overfitting: each hidden neuron
is set to zero 50% of the time which results in it not contributing to
the forward or backwards passes.

The final layer has 1000 outputs with a softmax function corres-
ponding to the 1000 ImageNet classes, and uses a multinomial logistic
regression loss for training. The network is trained using SGD with
momentum. The authors train the network using ImageNet with data
augmentation: the training set is augmented by using many possible
sub-patches within each image, as well as reflected versions and colour
varied versions of the same image using PCA. The authors show state-
of-the-art performance on the ImageNet Large Scale Visual Recogni-
tion Challenge (Russakovsky et al., 2015) (ILSVRC), outperforming
the SIFT based approach.

Le (2013) uses a deep autoencoder-based network to learn features
using unsupervised learning. The neural network contains three stages
(layers) each with a local filtering sublayer, pooling sublayer and a
local contrast normalisation (LCN) sublayer. The neurons of the local
filter sublayers have connections limited to a local region as in a con-
volutional layer but the weights are not shared over all locations. The
pooling sublayers calculate the L2 norm rather than the maximum or
mean value and the LCN sublayers normalise by subtracting the mean
and dividing by the maximum value over a Gaussian local window.
Since there is no supervision, there is no label based loss. Instead,

each local filter sublayer is trained with both encoding and decoding
weights, based on the reconstruction error, with an additional term
used to encourage sparsity. Training occurs using SGD.
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The author shows that, in spite of the unsupervised learning, the
best performing neuron is able to detect faces with 81.7% accuracy.
The author also show that supervised learning of the same network
achieves state-of-art performance on ImageNet.

Szegedy, Toshev and Erhan (2013) modify the architecture of
AlexNet for localisation by replacing the final layer of the CNN with a
regression layer. This layer produces a binary mask indicating whether
a given pixel lies within the bounding box of an object. The mask is
significantly smaller than the input image, as in the dimensionality of
the later layers in AlexNet.
The network is initially trained for image classification as in AlexNet,

with the weights kept before training for the new task. The loss func-
tion is a weighted L2 distance between the output mask and a ground
truth, and the authors used a variation of SGD (Duchi, Hazan and
Singer, 2011) to minimise this.

The simplest scheme is to set the ground truth to either 0 or 1.
A more complicated scheme is to train five separate networks corres-
ponding to the full bounding box, and the left, top, bottom and right
halves, respectively of the bounding box, and to set the values in the
interval [0, 1] based on how much the bounding box covers the recept-
ive field of each pixel of the mask. In order to obtain more accurate
bounding boxes from the output at test time, the authors’ algorithm
searches all possible bounding boxes and selects the one which best
matches the five mask outputs.
The authors run the networks on three different scales of the im-

age: the full image and two smaller scales. In addition, the authors
use a number of sub-windows for the smaller scales and combine the
output masks. After yielding the bounding boxes, the authors apply
a refinement stage: running the networks on a window corresponding
to these bounding boxes to refine them into more accurate bounding
boxes. In addition, they use a network trained for image classific-
ation as in AlexNet, to ensure the class score is high enough based
on the bounding box, and to apply non-maximal suppression as in
DPM (Felzenszwalb, Girshick et al., 2010). The authors show state-
of-the art performance on PASCAL VOC 2007, outperforming DPM.

Sermanet et al. (2014) present OverFeat, a CNN algorithm which
combines classification, localisation and detection. The authors use a
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network similar to that of AlexNet. However, contrary to AlexNet, in
which max-pooling is performed over the whole of the final convolu-
tional layer, the authors perform max-pooling over a window corres-
ponding to different scales and locations within the input image.
Having trained a network for classification, the authors add a re-

gression network to perform object localisation. This network shares
the output of the convolutional layers used by the classifier layers and
consists of two fully connected layers followed by four fully separate
connected output layers corresponding to the four coordinates for the
bounding-box edges. Only these later layers are altered during regres-
sion training, and an L2 loss is used between output coordinates and
the ground truth coordinates, for each output bounding box which
covers at least half of a ground truth bounding box.
At test-time, the authors use a greedy strategy to merge bound-

ing boxes together, based on averaging coordinates in the cases that
two bounding boxes are sufficiently close in centre and overlap to each
other. This differs from the traditional non-maximal suppression. The
authors show state-of-the-art performance for object detection on ILS-
VRC 2013.

Chatfield, Simonyan et al. (2014) perform an evaluation of tech-
niques for CNN performance and conclude the following:

1. Data augmentation improves the training of CNNs (and shallow
methods): using horizontally flipped and cropped versions of the
images improves classification performance.

2. Using a colour image input results in better performance than
a greyscale input.

3. Fine-tuning a network (pre-training it on a larger dataset and
then further training it on a smaller one using the weights learnt
from pre-training for initialisation) improves performance, even
when using a much smaller dataset for fine-tuning.

The authors also analyse three different CNN structures. The “me-
dium” speed network, based on Zeiler and Fergus (2014), has become
a standard network known as “VGG 1024”.

Girshick et al. (2014) also use a CNN based on AlexNet, pre-
training it for image classification and then fine-tuning it by training
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it on bounding boxes containing objects. Their algorithm is known
as “regions with CNN features” (R-CNN). The authors use selective
search (Uijlings et al., 2013), a hierarchical segmentation method, to
generate bounding box proposals: possible object locations within an
image. At test-time, the input image is cropped to each bounding box
proposal and then warped to fit the input size of the network. The
output of the CNN, followed by a linear SVM, provides a score for
each class and bounding box. Non-maximal suppression follows.

At train-time, the authors also use selective search to generate
bounding box proposals, selecting positive and negatives proposals
for fine-tuning based on the intersection over union (IoU) with the
ground truth bounding box. After fine-tuning the network using the
same loss as in AlexNet, the authors replace the final fully connected
layer with a linear SVM trained on the same input.

The authors show state-of-the art performance on PASCAL VOC
2007 and 2010. As an extension, the authors also implement a regres-
sion model to improve the object bounding box prediction from the
bounding box proposal. Inspired by DPM, they use linear regression,
using the output of the final convolutional layer. This results in a
further performance improvement.

He et al. (2015) improve the run-time performance of CNNs for ob-
ject detection by running the convolutional layers on the whole image
as in LeCun, Bottou and Bengio (1997) and Vaillant, Monrocq and
LeCun (1994). They introduce a new network, the spatial pyramid
pooling network (SPPNet). To handle the transition between the vari-
able size output of the final convolutional layer and the fixed input
size of the first fully connected layer, the authors introduce a new
spatial pyramid pooling (SPP) layer based on Grauman and Darrell
(2005) and Lazebnik, Schmid and Ponce (2006). This layer produces
a fixed size output regardless of the input size. This results both in
efficiency, as the convolutional layers need only be processed once,
and better scale-invariance, as training can occur with the objects at
different scales. The authors show a slight improvement in accuracy
over R-CNN while running over twenty times faster. Alternatively the
single scale version performs slightly worse in accuracy but sixty-four
times faster.
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Lenc and Vedaldi (2015) make R-CNN and SPPNet even faster
and less dependent on selective search. They use a static set of region
proposals, independent of the input image. This relies on the suitab-
ility of the CNN, specifically the final convolutional layer output, to
perform accurate bounding box regression as in R-CNN. In addition,
the authors also streamline the design by replacing the SVM with a
softmax output and operating the SPP layer at a single scale. These
both result in efficiency gains at the cost of a small drop in the CNN’s
performance. The authors demonstrate a sixteen times speed-up com-
pared to SPPNet, mainly due to not using selective search.

Szegedy, Liu et al. (2015) introduces a new network structure,
GoogLeNet inspired by the belief of Arora et al. (2014) the a network
with sparse connections is more desirable than a dense one. Since it is
computationally expensive to evaluate a sparse network compared to
a dense network, the authors aim to approximate it locally using dense
components. The authors introduce the Inception module in which
different layers operate in parallel rather than connected to each other,
with concatenation of the outputs into a single module output. The
belief is that many neurons tend to fire together, and can therefore be
joined together before reaching the next layer.
Since convolutions using larger kernels are expensive in terms of the

number of calculations and weights, it is desirable to precede it with
use dimensionality reduction, using a 1×1 convolution, i.e. convolving
over the channels alone.
The authors use ReLU units to provide non-linearity and the over-

all network is twenty-two layers deep. To assist in the training of
the deep network, the authors put additional classifier outputs mid-
network, which are not used at test-time. For object detection, the
network operates like R-CNN, i.e. using selective search for proposals.
The authors show state-of-the-art performance on the ILSVRC 2014
detection challenge.

Simonyan and Zisserman (2015) introduce deeper networks than
the original AlexNet and VGG 1024. The new networks rely on back-
to-back 3 × 3 convolution layers rather than convolution layers with
larger kernels. This has the result of reducing the number of paramet-
ers compared to larger kernel sizes. The new networks do not have
any LRN, as it is shown to be counter-productive in this network
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structure.
The new networks significantly outperform earlier networks for clas-

sification on ILSVRC-2014. The use of these networks can also lead
to improved object detection, shown in later work.

Girshick (2015) introduces the “Fast Region-based Convolutional
Network” method (Fast R-CNN) based on R-CNN and SPPNet. The
author uses a region of interest (ROI) pooling layer, which is equi-
valent to the SPP layer of He et al. (2015) with a single scale: i.e. it
performs max-pooling over a single W ×H grid. The author also ini-
tialises the weights of the network to those pre-trained on ImageNet,
but additionally fine-tunes the convolutional layers.
The author fine tune the network using a multi-task loss: as well

as an output layer which yields a probability distribution for every
possible class, using a softmax function, an additional output layer
outputs four offsets, t = (x, y, w, h), specifying the offsets between
the centre position, the width and the height of the object location
with reference to the bounding box proposal. At test time, the outputs
are used to refine the bounding box location.
The fine-tuning is performed by using ground truth bounding boxes

with sufficient IoU with an anchor as positives, and those with a suffi-
ciently small IoU as negatives; those whose IoU is neither sufficiently
small or large are not used in training. While the loss over classes
is the multinomial logistic regression loss, there is an additional loss
placed over the offsets, and a hyper-parameter specifies the relative
weighting of each losses. If t is the target offsets and p is the bounding
box proposal, the loss, known as the smooth L1 loss is

∑
i

{
0.5(ti − pi)2 if|ti − pi| < 1,

|ti − pi| − 0.5 otherwise.
(2.6)

The author show state-of-the-art performance on PASCAL VOC
2007, 2010 and 2012. He shows that the bounding box regression is an
important factor in the performance improvement, as is the ability to
fine-tune the convolutional layers. Finally, he notes that for VGG16,
it is better not to train an SVM on the final layer and to simply use
the softmax output.

Ren et al. (2015) replace the bounding box proposal algorithm
(selective search or an alternative) with a CNN called a region proposal
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network (RPN). The resulting algorithm is known as Faster-RCNN.
This is a CNN which, just like a bounding box proposal algorithm,
takes an image input and outputs a number of region proposals.
The classification (object or not) output is trained with a multino-

mial logistic regression loss while the regression output uses the same
smooth L1 loss as Fast R-CNN. The detection network is identical to
Fast R-CNN, using the output of the RPN instead of selective search.
For efficiency, the two networks share the same convolutional layers.

The authors show state-of-the-art performance on PASCAL VOC
2007 and 2012, as well as running much faster than Fast R-CNN due
to the removal of the selective search bottleneck. In addition, they
show that that, although the RPN generates an order of magnitude
fewer proposals than selective search can, these achieve a higher recall
rate than selective search.

Liang and Hu (2015) use a recurrent CNN for object recognition
(classification). The authors use recurrent connections for each convo-
lutional layer such that each convolutional layer is a function of both
the input and the previous time step output. In practice, the authors
use unfolding: duplicating the convolutional layers over the number
of time steps and introducing bypass connections. This turns the re-
current CNN into a feed-forward CNN with the same functionality,
and allows it to be trained as a feed-forward CNN.
The authors show state-of-the-art performance on CIFAR100, the

MNIST database and Google street view house numbers datasets. The
performance on object detection datasets in unclear, and it is possible
that with unfolding, the network would be too large for larger image
sizes.

Redmon et al. (2016) present the “You Only Look Once” (YOLO)
algorithm. This approach differs to earlier approaches (Girshick, 2015;
He et al., 2015; Ren et al., 2015; Sermanet et al., 2014) in that it uses
a single network to output both object bounding box proposals and
class probabilities simultaneously. An input image is divided into a
grid of cells, and each cell is responsible for predicting a number of
bounding boxes and a confidence score that an object centre lies within
the cell. The confidence score is the product of the probability of there
being an object and the IoU. In addition, each grid cell predicts the
probability of a given class conditional on there being an object.
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The CNN is based on GoogLeNet and consists of twenty-four convo-
lutional layers followed by two fully connected layers. The first twenty
layers are pre-trained on ImageNet with a mean-pooling layer and a
fully connected layer. Rather than ReLU the authors use a “leaky
ReLU”, which always yields an output even if the input is negative.

The loss function is a weighted sum of the following L2 losses:

1. The bounding box location and the square root of width and
height (to avoid favouring smaller bounding boxes) compared to
the ground truth

2. The probability of an object for each bounding box

3. The class probabilities, conditioned on the object probability,
for each class and bounding box

The authors network does not achieve the same accuracy as previous
networks, but runs much faster and is suitable for real-time processing.

Szegedy, Vanhoucke et al. (2016) re-examine the Inception archi-
tecture used in GoogLeNet. The authors describe a number of design
principles, to be observed in a new design, as follows:

1. Bottlenecks in the network in terms of dimensionality, a proxy
for information flow, should be avoided; instead, it is best to
gradually reduce the dimensionality through the network.

2. Increasing the number of activations per location yields faster
training.

3. Reducing the dimensionality before convolution over a large
patch can improve efficiency without information loss.

4. The width and depth of the network should be balanced.

The authors also suggest taking advantage of factorisation, e.g. re-
placing a convolutional layer with a large kernel with successive convo-
lutional layers with smaller kernels (as in VGG16). In addition, they
suggest aiming to double the number of filters while downsampling
the width and height by half as a rule of thumb.
Following these principles, the authors produce a new network which

is forty-two layers deep with a computational cost of only two-and-a-
half times that of GoogLeNet. The new network shows state-of-the-art
performance on the classification task of ILSVRC 2012.
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He et al. (2016) show that the reason for the performance plateau
associated with increasing the depth (number of layers) in a CNN is
not due to overfitting, as previously believed, because the training
error increases rather than decreases in this instance. Nevertheless,
they state that depth alone could not be the issue, as identity lay-
ers would not alter the input and allow infinite (though meaningless)
depth. Following this, they propose to introduce a residual building
block which outputs the sum of the input and a collection of other
layers. If the latter layers output zero, the block models the identify
function.
The authors use the new building block design, to build networks

with as many as 152 layers. The new network architecture achieves
state-of-the-art performance on classification on ILSVRC and on ob-
ject detection on PASCAL VOC 2007 and 2012, as well as the “com-
mon objects in context” dataset (Lin et al., 2014) (COCO).

Kong et al. (2016) alter the framework of Faster-RCNN. The au-
thors note from previous work (Ghodrati et al., 2015) that earlier
convolutional layers in a network are better suited for localising ob-
jects, while later layers achieve higher recall than earlier convolutional
layers. The authors therefore aggregate the convolutional outputs at
multiple layers rather than just using the final convolutional layer for
both region proposal generation and classification. Similar to Faster-
RCNN, the authors use an RPN to generate region proposals, in their
case on the multiple layer output “Hyper Feature” space.

The authors use a similar network structure as in Fast R-CNN and
Faster-RCNN for classification, i.e. two fully connected layers with
dropout, however this is applied to the “Hyper Feature” space. In
addition, this network also includes a bounding box region output, as
in Fast R-CNN, to improve upon the regions generated by the RPN.
The authors achieve state-of-the-art performance on PASCAL VOC
2007 and 2012 with a running time on par with Faster-RCNN.

Yang et al. (2016) identify a weakness in previous approaches e.g.
R-CNN and its derivatives. After region proposal generation, there is a
single classifier network (class-1) responsible for determining whether
the proposal corresponds to an object or not has only one class output
for “background”, i.e. not an object. This means that it is difficult for
the single “background” class to effectively cover close the whole range
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of possibilities for background detections.
The authors instead add an additional network (class-2) after the

convolutional layers which is used to classify all non-background ob-
jects classified by class-1 and to remove false-positives. This network
is trained based on positive and negative classifications in the training
data from the class-1 network and is trained to provide a one-vs-rest
output for every object class. At test time, RPN proposals which are
classified as not background by class-1 are then classified by class-2
to remove any false positives.

The authors show that this cascade design, using an additional
one-vs-rest classifier network, improves detection performance. They
too achieve state-of-the-art performance on PASCAL VOC 2007 and
2012.
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3 Interest-Point Specific
Geometric Blur
Descriptors

This chapter involves the task of matching interest-points between im-
ages (see Section 1.2.3). This is achieved by calculating local descriptors
for each interest-point and matching them using a distance metric such
as Euclidean distance (see Section 1.2.3.2). The aim in this chapter
is to improve the local descriptors when matching using the same
distance metric.
Although interest-point extractors (see Section 1.2.3.1) such as Scale-

Invariant Feature Transform (SIFT) offer a high level of repeatabil-
ity (Mikolajczyk and Schmid, 2004), the position of interest-points
extracted in other images (projected to the 2D space of the image)
varies relative to the actual 3D feature. In other words, the position
is only approximately covariant with the projected location of the 3D
feature, as there is some misalignment (Lowe, 2004). The same is true
of the scale and orientation estimated by the interest-point extractor.

Assume the existence of the following:

1. The presence of many source images

2. A method to transform an interest-point between any source
image and a destination image

3. A criteria for two interest-points to be considered matching when
transformed to a destination image

Interest-points extracted from the many source images (point 1) trans-
formed to the destination image (point 2) form samples of a probab-
ility distribution over the destination image, for example Figure 3.2.
By matching these samples to interest-point extracted from the des-

tination image using the criteria (point 3), these samples form a dis-
tribution specific to each interest-point extracted from the destination
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Figure 3.1: Photograph of Bath Abbey

Figure 3.2: The distribution of interest-points when transformed from
other images is indicated by the hue of each pixel
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Figure 3.3:
A set of
interest-
points ex-
tracted from
an image

Figure 3.4:
Sets of
samples of
matching
interest-
points from
other images
transformed
to the image

Figure 3.5:
99% confid-
ence inter-
val ellipses
for the loca-
tional uncer-
tainty distri-
bution (po-
sition only)
modelled as
a 2D Gaus-
sian distribu-
tion
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3 Interest-Point Specific Geometric Blur Descriptors

image. I define this as the locational uncertainty distribution of the
interest-point. In the case of SIFT, this distribution is over four di-
mensions: 2D location (x and y), orientation and scale.
Each interest-point has a unique locational uncertainty distribu-

tion, as Figures 3.3–3.5 show. This is an issue for the calculation of
local descriptors (see Section 1.2.3.2), which must be robust in spite
of the distribution. Many local descriptors use spatial pooling (see
Section 1.6.2) to increase robustness (Bay, Tuytelaars and Van Gool,
2006; Lowe, 2004; Mikolajczyk and Schmid, 2005; Simonyan, Vedaldi
and Zisserman, 2012; Tola, Lepetit and Fua, 2010; Winder, Hua and
Brown, 2009). This includes rectangular or circular pooling regions,
over each of which the algorithms calculate a weighted sum or weighted
average of low level features (see Section 1.6.1).

All the aforementioned methods use an identical pooling strategy for
every interest-point, which means the pooling is not optimal given the
different locational uncertainty distributions between interest-points.
The method which I present uses a different pooling strategy for each
interest-point and is designed to improved performance by allowing
for each interest-point’s individual locational uncertainty, i.e. to ac-
count for the variation which can be seen in Figures 3.3–3.5. My
method aims to estimate the locational uncertainty distribution for
each interest-point in an image, from that single image alone, through
the use of many synthetically warped versions of the image, in a
manner similar to that used to enlarge the test set in Winder and
Brown (2007). The transformations used for the synthetic warping
are samples from a prior distribution, therefore this is an example of
invariance from a priori knowledge (see Section 1.5.3.2).

Having estimated the locational uncertainty distribution for each
interest-point, I use a Monte Carlo method to pool the low level fea-
tures. This pooling is based on geometric blur, which I outline in the
next section. I demonstrate the technique’s performance against the
descriptor used in SIFT for comparison purposes, however my method
is suitable for any interest-point extractor and any low level feature.

3.0.1 Geometric Blur

Berg and Malik (2001) introduce the concept of geometric blur for
template matching. The authors point out that the then standard
strategy for making templates robust to geometric distortion, apply-
ing a uniform Gaussian blur throughout, is not the “right” thing to
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Figure 3.6: Left: original image of Bath Abbey; right: the image pro-
duced by averaging the colour values at each pixel location
when the original image has been warped by a number of
affine transformations centred on the image centre. This
results in locations further from the centre of the image
being more blurred.

do if the distortion is induced through observing the scene at dif-
ferent viewpoints. This is because a Gaussian blur corresponds to
a uniform positional uncertainty throughout the image, whereas the
positional uncertainty increases for points further from the centre of a
window on the image. Figure 3.6 demonstrates this: to approximate
the effect of observing the scene from multiple viewpoints, the original
image has been warped by a number of affine transformations centred
on the image centre (x-axis and y-axis scales independently sampled
from a uniform distribution between 0.5 and 2.0 and rotation sampled
from a uniform distribution between -5.0° and 5.0°). Berg and Malik
(2001) propose an alternative blur: applying a blur which increases
with distance from the centre of the window, which they refer to as
a geometric blur. The authors demonstrate that this enables more
accurate template matching compared to using a Gaussian blur.

Figures 3.7–3.9 demonstrate the principle of geometric blur applied
to a 1D signal. Figure 3.7 demonstrates three signals which are ver-
sions of each other scaled around the x-axis. Consider the task of
matching distorted versions of the sparse signal at the top of Figure
3.7 using normalised cross-correlation (Szeliski, 2010) with a template.
Figures 3.8 and 3.9 shows two possible templates for matching this sig-
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3 Interest-Point Specific Geometric Blur Descriptors

nal, which are versions of the signal blurred along the x-axis. The first
uses a blur which is uniform along the x-axis and the second uses a
geometric blur, which increases with distance from the origin. The
geometric blurred template is better for matching distorted versions
of the signal if the distortion is caused by scaling along the x-axis
rather than translation.
Berg and Malik (2001) show that geometric blur is most effective

when applied to sparse signals. In general, blurring a template results
in a loss of high-frequency information and reduces its discriminative
ability. However, a sparse signal, a signal which is zero-valued in most
locations and whose non-zero locations are far apart from each other,
allows blurring to be carried out to a much larger extent with little or
no loss of information. This is demonstrated in Figures 3.10 and 3.11:
the sparse signal can be reconstructed from its blurred version (with
the assumption that it was sparse) while the dense signal can not. A
similar principle applies to the discriminative ability when using nor-
malised cross-correlation: if sparse candidate signals are blurred prior
to attempting to match them, there is little or no loss of discriminative
ability. However, the matching between signals is much more robust
to errors in alignment and stretching and scaling of the signal.

3.0.2 Sparse Signals in Local Descriptors

Berg and Malik (2001) propose the use of oriented edge filters to gen-
erate sparse signals from images. Similarly, local descriptor extractors
such as the one used in SIFT (Lowe, 2004) use gradient magnitudes
binned into eight different orientations. In effect, this involves pool-
ing eight different sparse 2D signals: the gradient orientation at each
pixel is split into eight orientation channels; since each gradient is in-
terpolated into the two closest orientations of eight, three-quarters (or
more) of locations in each orientation channel will be zero. The use
of pooling over sparse signals (the orientation channels) is crucial to
the robustness of the SIFT local descriptor, compared to using pooled
pixel intensity values.

The principles of geometric blur have already been applied to local
descriptor extractors. The “DAISY” descriptor (Tola, Lepetit and Fua,
2010) uses larger Gaussian kernels for positions further away from the
centre of the descriptor, based on geometric blur. I propose a different
use of geometric blur, which in the case of SIFT spans four dimensions
(2D location, scale and orientation), which I outline next.
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0

0

0

Figure 3.7: A sparse 1D signal (top) and two x-axis scaled versions of
the same signal

0

Figure 3.8: A template for matching the sparse signal using a uniform
blur

0

Figure 3.9: A template for matching the sparse signal using a geomet-
ric blur
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0

0

Figure 3.10: Top: a sparse 1D signal; bottom: a template formed by
a geometric blur of the signal

0

0

Figure 3.11: Top: a dense 1D signal; bottom: a template formed by a
geometric blur of the signal

3.0.3 An Interest-Point Specific Geometric Blur

Berg and Malik (2001) propose the use of geometric blur to provide
robustness to geometric distortion when matching templates across
an entire image. In their approach, there is no locational uncertainty
at the centre of the template, since the template is matched densely
across the image. The greatest locational uncertainty is at points
furthest away from the centre of template.

However, in an interest-point based framework, matching is per-
formed between local descriptors calculated only at interest-points
and from a region of neighbouring pixels (the support region). As
shown earlier, interest-point parameters (e.g. location, scale and ori-
entation) corresponding to the same feature in 3D space are known to
vary between multiple images relative to the 3D feature. Therefore,
the locational uncertainty of a pixel lying at the centre of the support
region, is equal to the uncertainty over the interest-point parameters.
This differs from in dense template matching, where there was no loc-
ational uncertainty at the centre. Further away from the centre, the
locational uncertainty of a pixel increases due to the effects of uncer-
tainty in the scale and orientation measurement of the interest-point
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extraction.
I, therefore, use a modified version of geometric blur to provide

spatial pooling which reflects this, with the goal of achieving more
robust descriptors. In contract to Berg and Malik (2001), I apply
the geometric blur over all interest-point parameters, including scale
and orientation where appropriate, resulting in a 4D rather than a 2D
geometric blur.

3.0.4 Comparison to Other Work

Other work has been undertaken to characterise the locational uncer-
tainty of corners or interest-points. J. Shi and Tomasi (1994) proposed
a feature selection criteria which selects corners or interest-points that
can be precisely positioned within an image, based on their local gradi-
ent structure. The purpose is to ensure that only reliable corners or
interest-points are used for tracking. Triggs (2004) generalised the
corner detection approaches by Förstner (1994), Förstner and Gülch
(1987) and Harris and Stephens (1988), used to select corners which
offer stability of position, to select those which additionally are stable
in scale and orientation. These approaches seek to exclude corners
with a large locational uncertainty, rather than characterise and use
the locational uncertainty in the matching process.

Other approaches seek obtain a locational uncertainty distribution
of a given corner or interest-point. Orguner and Gustafsson (2007)
demonstrated a method for calculating the bias and covariance of
the location of corners detected with the Harris & Stephens corner
detector. The method involves calculating, with the assumption that
the image is formed of a “true image” plus independent and identically
distributed additive Gaussian noise, the probability that the corner in
the true image lies in any of the pixels close to the detected location.
Work has also been undertaken to characterise the locational uncer-
tainty distribution of scale-invariant interest-points: Zeisl et al. (2009)
demonstrated the use of the Hessian matrix generated from the Taylor
series expansion of the interest-point detector operator for determin-
ing the locational uncertainty of a SIFT of SURF interest-point. They
demonstrated that the use of the distributions can improve the per-
formance of 3D reconstruction. In contrast, my work in this chapter,
seeks to characterise the local uncertainty of interest-point in order to
generate more robust local descriptors.
In addition, there is other work (see Section 2.1.8) related to using
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learning per interest-point e.g. Balntas, Tang and Mikolajczyk (2015),
Gupta and Mittal (2008), Lepetit and Fua (2006) and Ozuysal et al.
(2010). Gupta and Mittal (2008), Lepetit and Fua (2006) and Ozuysal
et al. (2010) require training a classifier rather than simply comparing
local descriptors e.g. by using Euclidean distance. Balntas, Tang and
Mikolajczyk (2015) requires learning a binary mask for each interest-
point which is then used in a modified Hamming distance calculation.
In contrast, the work in this chapter calculates local descriptors which
can be compared using conventional approaches, e.g. Euclidean dis-
tance and fast methods which approximate Euclidean distance.

3.1 Methodology

My framework is not dependant on a particular interest-point ex-
tractor nor a set of low level image features used to produce the
descriptor. I demonstrate it by using the interest-point extractor of
SIFT (Lowe, 2004) because of its popularity. The SIFT interest-point
extractor uses maxima and minima of the difference of two Gaussian
functions (an approximation of the Laplacian of Gaussian function),
applied to the image, across many scales, to extract interest-points
(see Section 2.1.3). To demonstrate that the approach can be used
with any low level features, I show the use of both Histograms of Ori-
ented Gradients (HOG) features, as used in SIFT, and pixel intensity
values.
I calculate local descriptors for each interest-point, θi, in an image

as follows:

1. I model the locational uncertainty distribution over interest-
point parameters, p(θ′i), for each interest-point, θi, using a mul-
tivariate Gaussian distribution, centred on the interest-point ex-
traction, θi,

p(θ′i) ∼ N (θi,Σi) (3.1)

(e.g. for SIFT interest-points, θi =
{
txi, tyi, log(σi), φi

}
). I es-

timate this distribution by using warped versions of the image
and redetecting the interest-points in the warped images.

2. I use a Gaussian distribution,

q(θ′i) ∼ N (θi, sΣi) (3.2)
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for the geometric blur. This results in a covariance-based para-
meterisation for the geometric blur. There are two parameters:

Σi, the four by four covariance matrix which is the estimated
covariance of the interest-point’s locational uncertainty dis-
tribution, and,

s, the blur moderation parameter, a scalar, described in Section
3.1.2.

3. I use the Gaussian kernel, q(θ′i), to calculate the geometrically
blurred descriptor,

φ
(gb)
i =

∫
θ′i

F(θ′i)q(θ
′
i) dθ′i, (3.3)

where F(θi) is a set of low level features (see Section 1.6.1) lifted
from the support region defined by the interest-point paramet-
ers, θi. This geometric blur is specific to each interest-point and
replaces the spatial pooling used in other descriptors such as
SIFT which is uniform across all interest-points.

4. Finally, I normalise the descriptor using the L2 norm to provide
robustness to changes to lighting conditions.

Figure 3.12 shows an overview of my approach.
Figure 3.14 shows a geometrically blurred image. This is only one

possible geometric blur: each interest-point will have its own indi-
vidual blur which would correspond to different patterns of dots (see
Figure 3.17). Note that the dots further from the centre show a greater
blur than those in the centre, which is the result of blurring over scale
and orientation of an interest-point.

Figure 3.16 shows a geometrically blurred HOG descriptor (see Sec-
tion 2.1.3 for explanation). Each square (pixel) contains contributions
from many adjacent squares. As with the synthetic dots pattern,
squares further out from the centre show a greater blur. However,
there is still some amount of blur in the centre and no square has
fewer than three orientation bins (directions) occupied, compared to
before the blur (Figure 3.15) in which at most two orientation bins
are occupied.
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input image

warp

detect interest-points detect interest-points

transform to input image

estimate the local uncertainty distribution

moderate the blur

calculate descriptors

Figure 3.12: An overall diagram of my approach for calculating local
descriptors for each interest-point in an image
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Figure 3.13:
A patch
contain-
ing dots
before ap-
plying a
geometric
blur

Figure 3.14:
A patch
contain-
ing dots
after ap-
plying a
geometric
blur
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Figure 3.15:
HOG fea-
tures be-

fore apply-
ing a geo-

metric blur

Figure 3.16:
HOG fea-
tures after
applying

a geomet-
ric blur
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3.1.1 Criteria for Corresponding Interest-Points

The aim of my approach is to improve local descriptors used to match
interest-points. However, the approach I use requires a means for
matching interest-point between and image and a warped version of
the image, before the local descriptor has been calculated and in order
to assist its calculation.
There is no universal definition of corresponding when referring to

two interest-points between two images: it is application-specific and
depends on other factors such desired tolerances and knowledge of the
scene geometry. My approach, however, requires a concrete criteria
for the following two reasons:

1. Enabling the calculation of the locational uncertainty distribu-
tion, p(θ′i) for each interest-point through the method described
in the next section

2. Providing a ground truth for optimisation and evaluation

My approach for determining whether two interest-points in two
different images correspond has two steps:

1. I transform the interest-point in the source image into the des-
tination image.

2. I compare the location, orientation and scale of this transformed
interest-point with the interest-point extracted from the destin-
ation image to determine whether the two interest-points cor-
respond.

I assume that the transformation of a single pixel location, x =[
x y

]>, between a pair of images can be expressed as a homography,
H, such that the point in the destination image,

x′ = H−1(HH(x)) (3.4)

where H is a transformation between Cartesian and homogeneous im-
age coordinates. Note that H, if unconstrained, is non-surjective, as a
Cartesian co-ordinate,

[
u v

]>
, corresponds to a range of homogen-

eous image coordinates, wuwv
w

∀w 6= 0. (3.5)
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Therefore, H is defined by constraining w to unity. H−1 is a left
inverse as H−1(H(x)) = x.

The homography defines a transformation for individual positions
within an image but does not define a transformation for the loca-
tion, scale and orientation of an interest-point. Therefore, I use the
following method to transform an interest-point between images:

1. I sample uniformly a number of locations, xi, in the support
region defined by the interest-point’s parameters and transform
these according to the homography, producing an equal number
of locations,

x′i = H−1(HH(xi)). (3.6)

For the SIFT interest-point extractor, I use the sixteen points
located at the centres of each of the pooling regions usually used
for calculating the SIFT descriptor.

2. I then find the translation, scale and orientation change between
these point pairs, {xi,x′i}. which solves the least-squares prob-
lem:

arg min
S

∑
i

∣∣H−1 (SH(xi))−H−1 (HH(xi))
∣∣2 , (3.7)

where

S =

a [ cos(α) sin(α)
− sin(α) cos(α)

]
t1
t2

0> 1

 . (3.8)

This amounts to a local approximation of the homography, H,
with a similarity transform, S, in the range of the descriptor
footprint. This similarity transform has four parameters corres-
ponding to the SIFT interest-point and therefore allows a SIFT
interest-point to be transformed.

Transforming an interest-point from the source image to the destin-
ation image, using the similarity transform, S, allows it to be matched
to interest-points in the destination image. The transformed interest-
point matches an interest-point in the destination image if the follow-
ing criteria apply:

1. The transformed interest-point has the following, with respect
to the interest-point in the second image (the same criteria as
used in Winder, Hua and Brown (2009)):
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a) a 2D location within a five pixels radius relative to its scale,

b) an orientation within π
8
radians, and

c) a log2 scale within 0.25 of the log2 scale

2. The interest-point in the destination image is closer to the trans-
formed interest-point than any other interest-point in the des-
tination image.

3.1.2 Calculating the Geometric Blur Parameters

Following the logic of geometric blur, I believe the optimal amount of
blur for a given interest-point relates to two factors:

1. The locational uncertainty distribution of the interest-point

2. The sparsity of the low level features from which the descriptor
is calculated

Consider the case of comparing the descriptors calculated from two
matching interest-points between two images. If both interest-points
are transformed to the same image, there will (hopefully) be an extent
to which corresponding pooling regions overlap. This will be related
to the locational uncertainty of each interest-point. A large overlap
means that the descriptors are more likely to be identical despite the
misalignment between the interest-points. As the proportion of over-
lap increases, one would expect the true positive rate to increase for
a given threshold.
Although an increase in blur would be expected to result in an

increase in the true positive rate as it increasing the overlap of the
pooling regions, it will also increase the false positive rate. This is
because an increase in blur results in larger pooling regions and the
descriptor begins to describe more of the whole image and less of the
locality. The extreme case, an infinite blur, would result in every
descriptor containing the average value of the low level features across
the whole image. The extent to which the blur can be increased
without diminishing returns in terms of too large a false positive rate
would be related to the sparsity of the signal.
I use a geometric blur to account for these two factors. The geo-

metric blur is always a multivariate Gaussian distribution,

q(θ′i) ∼ N (θi, sΣi), (3.9)

157



3 Interest-Point Specific Geometric Blur Descriptors

centred on the original interest-point detection, θi, where Σi is an es-
timate of the covariance of the interest-point parameters, calculated
using the methodology in the next section. The blur moderation para-
meter, s, is a scalar which enables the amount of blur to be moder-
ated relative to the estimated covariance. Note that for s = 1, the
descriptor becomes the expected low level features over the locational
uncertainty distribution, i.e. D(gb)

i = E[F(θ′i)], so the technique can
be viewed as a probabilistic version of Berg and Malik (2001)’s geo-
metric blur.

3.1.2.1 Estimating the locational uncertainty distribution

I observe that the locational uncertainty of an interest-point is de-
pendent upon multiple factors, including the following:

1. The different locations from which the 3D feature is observed,
which results in geometric distortion

2. Differences in lighting conditions, specifically those which res-
ult in a non-uniform changes to pixel intensity values, such as
shadows

3. Differences in the camera and configuration used to attain the
image

4. Differences in any post-processing of the image

5. Occlusion of the 3D feature by any other object(s) or phenomena

6. Other sources of noise, such as electrical noise within the camera

Based on my observation, I assume that the dominant factor is the dif-
ferent viewpoints from which a 3D feature which results in an interest-
point detection is observed.
For every image, it would be ideal to model the 3D scene which

resulted in the image and to generate samples from the locational
uncertainty by projecting this model to 2D from different viewpoints.
However, in Computer Vision problems for which interest-point detec-
tion and matching is used, the 3D scene is usually not known a pri-
ori—indeed interest-point matching is often used to generate matches
between images for the purpose of 3D reconstruction. Therefore, I use
a method which relies upon only a single image (without depth or 3D
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information) to obtain the locational uncertainty of each interest-point
within that image.
Let p(H) be a prior on homographies. My method operates as

follows:

1. I generate N multiple warped versions,

I
(
H−1(HnH(x))

)
, n = 1, 2, . . . , N, (3.10)

of the original image, I(x), using homographies sampled from
a prior distribution, p(H). This is intended to approximately
model the different viewpoints from which one expects to view
the same interest-point.

2. I run the interest-point extractor on the N transformed images,
I(H−1(HnH(x))), and match all the interest-points against the
interest-points in the original image, I(x), using the method
outlined in Section 3.1.1.

3. Finally, I transform each matching interest-point from the trans-
formed images into the original image, I(x). These interest-
points are considered be samples from a distribution approx-
imating the locational uncertainty distribution of the original
interest-point,

p(θ′i) ∼ N (θi,Σi). (3.11)

I use the covariance of these samples as an estimate (the maximum
likelihood estimate) for Σi.
I believe that the approximation is correct when the following con-

ditions are met:

1. Only geometric distortion contributes to the locational uncer-
tainty.

2. The interest-point and its support region lie on a plane.

3. The interest-point is being observed from a direction perpendic-
ular to the plane.

4. The prior distribution on homographies correctly models the dis-
tribution of viewpoints of the feature, relative to the viewpoint
of the source image.
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In practice, these conditions, particularly number 2, will not, in
general be true. However, since non-affine invariant features extract-
ors rely on conditions 2 and 3 being approximately true (i.e. narrow-
baseline matching), this does not overly affect the performance of the
method.

3.1.2.2 Prior on homographies

The prior on the homographies used to generate synthetic warps,

p(H) = p(tx)p(ty)p(α)p(sx)p(sy)p(ss)p(px)p(py) (3.12)

where
H =

[
RS t
p 1

]
, (3.13)

and

R =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, S =

[
sx ss
0 sy

]
, t =

[
tx
ty

]
, p =

[
px py

]
.

(3.14)
The factors have the following distributions: p(tx) ∼ U(−0.5, 0.5),
p(ty) ∼ U(−0.5, 0.5), p(sx) ∼ U(0.5, 2), p(sy) ∼ U(0.5, 2), p(ss) ∼
U(−0.5, 0.5), p(α) ∼ U

(−π
4
, π

4

)
radians, p(px) ∼ U(−0.0001, 0.0001)

and p(py) ∼ U(−0.0001, 0.0001).
This prior is chosen to reflect possible viewing positions of the same

scene, excluding those which would require wide-baseline matching.
The distribution over translations, U(−0.5, 0.5), covers all possible
translations since the interest-point extractor is covariant to trans-
lation over whole pixels. Likewise, the distribution over scalings,
U(−0.5, 0.5), covers all scales since the interest-point extractor re-
peatedly downscales the image to half width and half height. Simil-
arly, the distributions over rotations, U

(−π
4
, π

4

)
, covers all rotations

since the interest-point extractor relies on gradient operators which
are the transpose of each other, tantamount to a rotation of 90° (−π

2

radians).
The hyper-parameters, px and py, are important as they allow for

the simulation of perspective transformations (with the planar as-
sumption). If their magnitude be too small, the warping would fail
to capture the likely appearances of interest-point following perspect-
ive transforms. However, too large a magnitude would mean that
the warping would likely captures appearances of interest-point which
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would require wide-baseline matching. The choice of 0.0001 for both
parameters represents a compromise which was verified through visu-
ally examining the range of warped images over different values.

3.1.2.3 Value of the blur moderation parameter

I fix the blur moderation parameter, s, for all images and interest-
points. I determined the optimal value experimentally through a brute
force search (see experiment in Section 3.2.2) and always use s = 1.5.

3.1.3 Applying geometric blur to calculate
descriptors

I apply a geometric blur as in Equation (3.3), parameterised by the
covariance estimated in the previous section, Σi, and the blur moder-
ation parameter, s, to the low level features, F(θi). The result is a geo-
metrically blurred descriptor, φi. Equation 3.3 cannot be calculated
analytically, so I use a Monte Carlo method. I approximate the blur
by taking a finite number of samples, Nj in total, θ′ij, j = 1, 2, . . . , Nj,
from the distribution, q(θ′i) ∼ N (θi, sΣi) and calculate the blurred
descriptor as

φi =

∫
θ′i

F(θ′i)q(θ
′
i) dθ′i ≈

1

Nj

Nj∑
j=1

F
(
θ′ij

)
. (3.15)

In all cases, I use N = 100.
Figure 3.13 shows an image patch, a synthetic pattern of black

dots, prior to a geometric blur. Here the low level features, F(θi),
would simply be the pixel intensity values. Figure 3.14 is the result
of applying a geometric blur and reconstructing the pixel intensity
values into an image. This is just one possible geometric blur: Figure
3.17 shows six different geometric blurs applied to the synthetic dots
image.

3.1.3.1 Geometrically Blurred HOG Descriptors

To apply geometric blur to HOG low level features, as used in SIFT
(Lowe, 2004), I represent the low level image feature lifting operation,
F(θi), as a function which returns a either a 16× 16× 8 dimensional
vector or a 4 × 4 × 8 dimensional vector. Both are calculated on the
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Figure 3.17: Different geometric blurs applied to a pattern of dots
(Figure 3.13); the colour corresponds to the interest-point
which yielded that blur in Figure 3.3.
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same 16×16 pixel support region used by the SIFT interest-point (see
Figure 3.15).

The 16 × 16 × 8 version produces an 8D gradient orientation his-
togram for every pixel whereas the 4 × 4 × 8 version returns an 8D
orientation histogram for one in sixteen pixels: it returns the his-
togram for the top-left of the four centre pixels of each 4 × 4 pixel
sub-cell (marked blue in Figure 3.16). The SIFT descriptor bins ori-
entated gradients into a histogram for every such 4 × 4 cell, i.e. the
regions bounded by the red lines of Figure 3.16. Therefore, carry-
ing out spatially pooling during the binning operation. However, no
pooling occurs as part of the low-level image feature lifting operation
under my framework because the next step, applying a geometric blur,
results in spatial pooling.
The spatial pooling of the SIFT descriptor can be expressed in my

geometric blur framework, by casting the pooling to blurring using a
local uncertainty distribution which has equal values for each of the
locations,

(−1.5,−1.5) , (−1.5,−0.5) , (−1.5, 0.5) , (−1.5, 1.5) ,

(−0.5,−1.5) , (−0.5,−0.5) , (−0.5, 0.5) , (−0.5, 1.5) ,

(0.5,−1.5) , (0.5,−0.5) , (0.5, 0.5) , (0.5, 1.5) ,

(1.5,−1.5) , (1.5,−0.5) , (1.5, 0.5) and (1.5, 1.5) ,

and zero else-where. With δ being the Dirac delta function, this is
equal to a geometric blur with the following locational uncertainty
distribution:

p ({tx ty, log(σ), φ}) =

1

16
(δ(tx − 1.5) + δ(tx − 0.5) + δ(tx + 0.5) + δ(tx + 1.5)) (δ(ty − 1.5)+

δ(ty − 0.5) + δ(ty + 0.5) + δ(ty + 1.5)) δ(σ − σi)δ(φ− φi), (3.16)

and with the blur moderation parameter, s, set to unity.

3.2 Experiments

I test the performance of different configurations of my local descriptor
(calculated using the methodology in Section 3.1) against the local
descriptor used in SIFT (see Section 2.1.3.2). I test each descriptor by
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3 Interest-Point Specific Geometric Blur Descriptors

matching between SIFT interest-points found in the image sequences
of Mikolajczyk’s dataset (Mikolajczyk and Schmid, 2005). Table 3.1
indicates the transformations or distortions applied (e.g. by movement
of the camera or changing the camera focus) between images in the
sequence.
I test the ability of each local descriptor to match interest-points

between two images in the dataset through calculating the Euclidean
distance between all positive interest-point matching pairs and an
equal number of randomly sampled negative matches across each im-
age pair. For the purposes of generating a ground truth, I use the
same criteria as used in 3.1.1 to determine a positive match:

1. The transformed interest-point has the following, with respect
to the interest-point in the second image (the same criteria as
used in Winder, Hua and Brown (2009)):

a) a 2D location within a five pixels radius relative to its scale,
b) an orientation within π

8
radians, and

c) a log2 scale within 0.25 of the log2 scale

2. The interest-point in the destination image is closer to the trans-
formed interest-point than any other interest-point in the des-
tination image.

A negative match requires the that interest-point, transformed from
the first image to the second image, lies outside an exclusion zone
formed by doubling the value of each parameter in the criteria. Matches
lying within the exclusion zone are considered ambiguous and dis-
carded.
For the purposes of testing the descriptor, I consider a match to be

positive if the Euclidean distance between the two matching points
is less than a threshold. However, rather than specifying a fixed
threshold, I allow the threshold to vary and generate receiver oper-
ating characteristic (ROC) curves based on varying the threshold. I
report the area under an ROC curve (ROC-area) as a performance
metric (higher is better).

3.2.1 Performance

Figure 3.18 and Table 3.2 demonstrate the performance of my ap-
proach against SIFT. In all experiments, the blur moderation para-
meter (see Section 3.1.2), s, was set to 1.5 (other than the experiments
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Figure 3.18: ROC curves for matching with different descriptors

165



3 Interest-Point Specific Geometric Blur Descriptors

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.80

0.85

0.90

0.95

1.00

T
ru

e
po

si
ti

ve
ra

te

boat

patch-none-16
patch-gb-16
hog-none-16
hog-none
hog-gb-16
hog-gb
sift

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.80

0.85

0.90

0.95

1.00

T
ru

e
po

si
ti

ve
ra

te

bricks

patch-none-16
patch-gb-16
hog-none-16
hog-none
hog-gb-16
hog-gb
sift

Figure 3.18: ROC curves for matching with different descriptors
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Figure 3.18: ROC curves for matching with different descriptors
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Figure 3.18: ROC curves for matching with different descriptors
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Image sequence Distortion or Transformation

bikes blur
trees blur
graffiti viewpoint
bricks viewpoint
bark zoom and rotation
boat zoom and rotation
leuven light
ubc JPEG compression

Table 3.1: The distortions or transformations applied to images in
Mikolajczyk’s dataset

Image Sequence

Descriptor bark bikes boat bricks graffiti leuven trees ubc

patch-none-16 0.955 0.984 0.986 0.953 0.943 0.978 0.967 0.994
patch-gb-16 0.951 0.989 0.991 0.969 0.944 0.984 0.979 0.997
hog-none-16 0.947 0.964 0.973 0.957 0.933 0.966 0.918 0.988
hog-none 0.944 0.955 0.967 0.944 0.924 0.952 0.900 0.981
hog-gb-16 0.955 0.991 0.993 0.990 0.966 0.982 0.971 0.997
hog-gb 0.965 0.988 0.989 0.983 0.961 0.981 0.958 0.993
SIFT 0.974 0.983 0.981 0.970 0.954 0.983 0.949 0.992

Table 3.2: The area under the ROC curve produced using each
descriptor (Figure 3.18); the best result is in bold

to determine the value in Section 3.2.2), thirty transformed versions
of each image were generated to estimate the covariance matrix, Σi,
for each interest-point (see Section 3.2.3) and one hundred samples
were generated from the multivariate Gaussian distribution for each
interest-point, to perform the blur using the approximation in (3.15).
Each descriptor (other than SIFT) is described by the abbreviated

format, (lifting)-(pooling)[-(size)], with the following options:

(lifting) Either patch, the pixel intensity values of the 16×16 support
region covariant with the SIFT interest-point, or hog, for HOG
low level features (see Section 3.1.3.1) obtained from this support
region
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(pooling) The operation used to pool the descriptor: either none
(i.e. φi = F(θi)) or gb for my approach, an interest-point spe-
cific geometric blur (3.3).

(size) A -16 suffix, for the hog lifting operation, indicates that the
low-level features, F(θi), returns a 16×16×8 dimensional vector,
instead of the 4× 4× 8 dimensional vector of the other version.
The patch lifting operation is always formed from 16 × 16 × 1
pixel intensity values and hence is always suffixed.

In six of the image sequences, “bikes”, “boat”, “bricks”, “graffiti”,
“trees” and “ubc”, the geometric blur based pooling (hog-gb) outper-
formed SIFT. It is not surprising that the performance is particularly
better on the image sequences involving viewpoint changes (“bricks”
and “graffiti”) given the synthetic warps aim to mimic a viewpoint
change but more surprising is the improvement in performance on
those not involving a viewpoint change. Perhaps, in the cases of
“bikes”, “boat”, “trees” and “ubc”, the rectangular pooling of SIFT
results in the pooling regions being larger than optimal, whereas the
geometric blur results in smaller pooling regions more appropriate for
the transformations forming these image sequences.
The geometric blur based pooling (hog-gb) performs particularly

well compared to SIFT for mid-range values of false positive rate
(between 0.2 and 0.7). I hypothesise that this is because SIFT has
in insufficient level of blur for interest-points with a high locational
uncertainty.

3.2.2 Optimal Level of blur

Figure 3.19 shows the effect of changing the extent of the geometric
blur, through different values of the blur moderation parameter, s (see
Section 3.1.2). The optimal level of blur varies depending on the
image sequence, but the best overall performance is achieved around
s = 1.5. This is to some extent what one would expect for the following
reasons, assuming the predicted locational uncertainty distribution is
approximately correct:

1. s < 1.0 would result in the descriptor not being blurred over the
whole locational uncertainty distribution.

2. s > 1.0 would provide increased robustness by increasing the
intersection between pooling regions when there is misalignment.
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Figure 3.19: The effect of changing the blur moderation parameter, s,
on the ROC-area for “hog-gb”; the results for the SIFT
descriptor are shown too: the solid line indicates the
mean and the dashed lines the maximum and minimum
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Figure 3.19: The effect of changing the blur moderation parameter, s,
on the ROC-area for “hog-gb”; the results for the SIFT
descriptor are shown too: the solid line indicates the
mean and the dashed lines the maximum and minimum
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Figure 3.19: The effect of changing the blur moderation parameter, s,
on the ROC-area for “hog-gb”; the results for the SIFT
descriptor are shown too: the solid line indicates the
mean and the dashed lines the maximum and minimum
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3. s > 2.0 would result in a blur more than twice as much as the
predicted locational uncertainty and it is reasonable to expect
diminishing returns as the spatial pooling regions become too
large.

However, in six out of eight image sequences, “bikes”, “boat”, “bricks”,
“graffiti”, “trees” and “ubc”, the performance remains constant or ac-
tually increases for higher values of s, suggesting that sparsity of the
oriented gradient features in the vicinity rather than locational un-
certainty of the interest-point may play a more important factor in
optimising the descriptor.

3.2.3 Number of transformed images used to
predict the locational uncertainty distribution

Figure 3.20 indicates the effect of altering the number of transformed
images, N , used to predict the locational uncertainty distribution,
p(θ′i), for calculating the “hog-gb” descriptor. There is a positive
correlation between the number of transformed images, N , and the
descriptor performance, up to around twenty to forty images, after
which the performance plateaus. I conclude that convergence of the
predicted locational uncertainty distribution, p(θ′i), occurs around this
point.
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Figure 3.20: The effect of changing the number of transformed images
used to predict the locational uncertainty description for
“hog-gb”; the results for the SIFT descriptor are shown
too: the solid line indicates the mean and the dashed
lines the maximum and minimum
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3.3 Limitations

Although the technique results in a matching performance improve-
ment in some circumstances, it does not result in a universal improve-
ment. Moreover, it suffers from the following limitations:

Descriptor extraction asymmetry The local descriptor extraction
is based on a geometric blur which is specific to each interest-
point. Consider matching an interest-point located in one image
to one located in another. The descriptors for both interest-
points would be calculated using a different geometric blur for
each image. If the locational uncertainty estimate is reliable for
both images, the geometric blur the technique will perform well,
in spite of the asymmetry. However, if the estimate is unreliable
for one or both of the images, the technique could perform worse
than an identical spatial pooling across all interest-points.

Runtime speed Both the locational uncertainty estimation (Section
3.1.2.1) and the application of geometric blur (Section 3.1.3)
rely on carrying out many image transforms, making them time
consuming steps. Although, this can be mitigated through the
use of one or more graphics processing units (GPUs), the tech-
nique is unlikely to compete on processing speed with other local
descriptors.

Too strong a prior The locational uncertainty estimation procedure
makes strong assumptions about the cause of the locational un-
certainty (Section 3.1.2.1). When these strong assumptions do
not hold even approximately, the technique is likely to perform
poorly.

3.4 Conclusion

I presented a new technique for replacing the uniform low level spatial
pooling operation, common to many interest-point local descriptor
algorithms, with an interest-point specific low level pooling opera-
tion. This pooling operation is based on geometric blur, applied to all
parameters of the interest-point and uses many synthetically warped
versions of the image to estimate the individual uncertainty in the
parameters of each interest-point. The technique is not specific to a
single interest-point detector nor descriptor.
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3.4 Conclusion

In some cases, the approach outperforms the rectangular pooling of
the SIFT descriptor, however the performance improvement is mar-
ginal. In addition, there are other limitations, such as a slow running
time, asymmetric comparison and reliance on too strong a prior. In
the next chapter, I seek to address these issues.
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4 Interest-Point Specific
Learnt Descriptors

The work in this chapter involves the same task of matching interest-
points between images (see Section 1.2.3) as the previous chapter.
However, it aims to address the limitations of technique used in the
previous chapter. In addition, unlike the technique used in the pre-
vious chapter, it aims to take advantage of machine learning. In this
chapter, I introduce a new technique for calculating per interest-point
local descriptors, which is suitable for large scale matching and im-
age search. The resulting descriptors are known as per interest-point
(PIP) descriptors.
Every PIP descriptor is composed of a subset of globally learnt

descriptors, which I refer to as base-descriptors. These base-descriptors
are based on those learnt using the work of Simonyan, Vedaldi and
Zisserman (2014). The authors’ descriptor is composed of a number
of rings of pooling regions. The reason for having pooling regions is to
provide spatial pooling (see Section 1.6.2), as used in other algorithms.
However, the authors’ contribution is to learn which pooling regions
to use using a convex optimisation algorithm. (Although there is no
need to maintain the ring structure, the authors find that it improves
performance.)
Whereas the authors’ ultimately to learn a “one size fits all” descriptor,

my approach is to learn a number of base-descriptors, which can be
combined in a different matter for every interest-point, producing a
PIP descriptor. Each base-descriptor is designed to have a different
discriminative power to invariance trade-off (Varma and Ray, 2007).
I use regularised dual averaging (RDA) (L. Xiao, 2010) to select the
subset of base-descriptors for each individual interest-point, as well
as learning a linear weighting over the subset used for the distance
function. This forms an optimal descriptor for each interest-point.

Figure 4.1 shows the pooling region rings and their weighting (by
colour), of the PIP descriptor, overlaying the patch associated with
each interest-point. These are learnt using the algorithm and with
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Figure 4.1: My PIP descriptors are different for each interest-point:
here I show my descriptors’ pooling regions and their
learnt weightings (from blue, low, through green and yel-
low to red, high) on a number of support regions

reference to other patches of the same 3D feature viewed at different
angles. However, one can observe a general trend, that more interest-
ing and varied parts of the patch tend to have larger weighting.
My aim is to increase the accuracy of interest-point matching over

large numbers of interest-points. Through the use of a small num-
ber of base-descriptors and weights, my approach scales in terms of
memory storage, and is suitable for large scale image search and 3D
reconstruction.

4.0.1 Comparison to Other Work

The work in this chapter uses learning to combined a number of base-
descriptors, each of which are learnt using the work of Simonyan,
Vedaldi and Zisserman (2012, 2014). However, in comparison to their

184



approach, I use different subsets of pooling region rings for each base-
descriptor, rather than a single large set.

Combining base-descriptors is related to the work of Varma and
Ray (2007), which itself built upon earlier approaches for combining
descriptors (Bosch, Zisserman and Munoz, 2007; Lazebnik, Schmid
and Ponce, 2005; Nilsback and Zisserman, 2006; J. Zhang et al., 2007)
by introducing learning. The authors used a support vector machine
(SVM) to learn weights over a number of descriptors and associated
distance functions. Each base-descriptor was designed to yield a dif-
ferent discriminative power-invariance trade-off and an `1 regulariser
was used to induce sparsity. Their approach is related to multiple
kernel learning (F.R. Bach, Lanckriet and Jordan, 2004; Varma and
Babu, 2009) however each kernel and hence weight is specific to a
single descriptor and its associated features. Whereas, Varma and
Ray (2007) used their approach for image classification, the work in
this chapter provides an approach suitable for interest-point matching:
instead of learning a classifier, I learn a weight over base-descriptors
allowing comparison in a weighted Euclidean distance framework in
which the weights depend on each interest-point.

The work in this chapter is closely related to other work (see Sec-
tion 2.1.8) on using per interest-point learning e.g. Balntas, Tang and
Mikolajczyk (2015), Gupta and Mittal (2008), Lepetit and Fua (2006)
and Ozuysal et al. (2010). Lepetit and Fua (2006) and Ozuysal et al.
(2010) learnt individual classifiers for each interest-point. These per-
form well in real-time applications with a small number of interest
points (a few thousand). Due to the large storage requirements of
leaf nodes, these approaches do not scale to large numbers of interest-
points, i.e. 106 or more, which I focus on (see section 4.2.2).
Gupta and Mittal (2008) learnt a set of binary tests based on intens-

ity values for each interest-point. This approach requires the storage
of a number of 2D point pairs and associated stability factors, for
each interest-point. This is likely to scale much better than the afore-
mentioned approaches. However, the requirement to perform a set a
binary tests for matching local descriptors means that it is not suit-
able for rapid matching of interest-point and perhaps only suitable
for a verification stage. In comparison, the work in this chapter uses
a weighted Euclidean distance which is more suitable for large scale
matching.

Balntas, Tang and Mikolajczyk (2015) learnt a binary mask for
each interest-point which is then used as part of a per interest-point
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Hamming distance calculation. This method is most similar to that of
this chapter and can be seen as a binary per interest-point descriptor.
Whereas the work in this chapter involves learning weights over

base-descriptors, Balntas, Tang and Mikolajczyk (2015) learn a bit
map, effectively zero or one weighting, over a set of binary tests. As
with binary local descriptors compared to their floating point counter-
parts, Balntas, Tang and Mikolajczyk (2015) will run more efficiently
in both computational and memory expense than the work in this
chapter, at the cost of matching accuracy.

4.0.2 Regularised Dual Averaging

Regularised dual averaging (RDA) is a class of online learning al-
gorithms which can better exploit the regularisation structure of an
optimising function compared to other methods such as stochastic
gradient descent (SGD). In particular, under `1 regularisation, which
I use in this chapter, RDA is better suited than SGD for achieving
sparsity, which is desirable for the PIP descriptor. I use RDA (L. Xiao,
2010) both for the global learning and the per interest-point learning.
The use of RDA in the global learning case is identical to the use in
Simonyan, Vedaldi and Zisserman (2014), except for a change in the
set of candidate pooling regions and hence the dimensionality of the
optimisation variable (a set of weights). Both cases involve optimising
w in the following loss function:

arg min
w
{η(w)} (4.1)

= arg min
w
{Ed∈D[f(w)] + µ‖w‖1}, (4.2)

= arg min
w

{
Ed∈D

[
max

(
0, 1 + w>d

)]
+ µ‖w‖1

}
, (4.3)

where w is a vector of weights and µ‖w‖1 is an `1 regularisation term.
For the purposes of explaining the use of RDA, consider d to be a

sample of D, an independent and identically distributed random vari-
able. In this chapter, however, it will be a vector of distances between
the appearance of local image patches as calculated using different
descriptors or pooling regions. Some descriptors and associated dis-
tance metrics will yield better results than others, and this motivates
using RDA to optimise w, which will result in selection and weighting
the descriptors. As RDA is an online method, optimisation will occur
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through processing values of d sequentially and updating w at each
step.
The loss function (4.3) is convex, however RDA requires a strongly

convex loss function, i.e. there exists an ι > 0 such that

Φ(αb+ (1− α) c) ≤ αΦ(b) + (1− α) Φ(c)− ι
2
α (1− α) ‖b− c‖2,∀b, c ∈ dom Φ. (4.4)

This is not the case for (4.3), however this can be resolved by adding
the strongly convex term,

β(t)

2t
‖w‖2

2, (4.5)

where, to ensure convergence, β(t) is a nonnegative and nondecreasing
sequence for time steps, t = 1, 2, 3, . . . . In all cases, I use the “enhanced
`1 RDA method”, for which

β(t) = γ
√
t, (4.6)

where γ is a hyper-parameter.
At each time step, t, the “enhanced `1 RDA method” for the above

loss function operates as follows:

1. Calculate the subgradient,

g(t) =
∂f(t)

∂w
=

{
d if w>(t)d > −1

0 otherwise.
(4.7)

where d is randomly sampled from D.

2. Update the dual average (so called because the subgradients live
in the dual space of w),

ḡ(t) =
t− 1

t
ḡ(t−1) +

1

t
g(t) (4.8)

3. Update the weights,

w(t+1) = arg min
w

{
w>(t+1)ḡ(t) + µ‖w‖1 +

γ

2
√
t
‖w‖2

2

}
, (4.9)

which (through differentiation to find the minimum) yields the
closed-form solution,

w(t+1) = max

[
0,
−
√
t

γ

(
ḡ(t) + µ

)]
. (4.10)
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Initially,
ḡ(0) = 0,w(0) = 0. (4.11)

With β(t) = γ
√
t, it can be shown that the algorithm has the follow-

ing convergence rate on average weights, w̄ compared to the optimal
solution η∗,

η
(
w̄(t)

)
− η∗ ≤ O

(
G√
t

)
, (4.12)

where G is a uniform upper bound on the norms of the subgradient
g(t). The proof is long and can be found in Sections 3–4 of L. Xiao
(2010).

4.1 Methodology

I build upon the descriptor computation pipeline used by Simonyan,
Vedaldi and Zisserman (2014), which is a refined version of the pipelines
used by Brown, Hua and Winder (2011) and Lowe (2004). This oper-
ates on a patch extracted from an interest-point support region (patch)
of a greyscale image as follows:

1. Apply a Gaussian blur, as used by Brown, Hua and Winder
(2011)

2. Extract local intensity gradients at each pixel, and bin them into
eight orientation channels,as first used in SIFT (Lowe, 2004), to
yield a eight-channel image, containing low level features (see
Section 1.6.1)

3. Normalise gradient magnitudes across the entire patch based on
the quartile statistic; this is novel to Simonyan, Vedaldi and
Zisserman (2014)

4. Spatially pool the gradient magnitudes, independently for each
orientation channel, using isotropic Gaussian pooling regions,
as used by Tola, Lepetit and Fua (2010) and Brown, Hua and
Winder (2011): each pooling region forms an eight-dimensional
feature set, i.e. one for each orientation channel

5. Apply a linear weighting to each of the pooling regions: each
weight is shared across a ring of either four or eight rotationally
symmetric pooling regions
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The selection and weighting of these pooling region rings is the
product of machine learning. The learning algorithm selects from
a large but finite set of candidate pooling region rings, optimising
performance when matching descriptors over a large dataset. This
results in a single descriptor.

My approach, on the other hand, is to learn multiple descriptors,
each using smaller and non-overlapping sets of candidate pooling re-
gion rings, as outlined in the next section. I use the same approach
as Simonyan, Vedaldi and Zisserman (2014), as described in Section
4.1.2, to carry out this learning. I then perform additional learning at
run-time, per interest-point, to combine these base-descriptors into a
PIP descriptor, as described in Section 4.1.3.

4.1.1 Base-Descriptors

Simonyan, Vedaldi and Zisserman (2014) uses five configurations of
pooling region rings, all of which are symmetrical along the horizontal,
vertical and both diagonal centre lines. The five configurations are
specified based on the angular offset, α. This is the angle from the
centre of the ring, between the x axis and the first isotropic Gaussian
pooling region. it is located at one of the following angular offsets
from the x axis:

α =

{
0,
π

16
,
π

8
,
3π

16
,
π

4

}
. (4.13)

By symmetry, this yields two ring configurations which contain four
pooling regions, and three which contain eight pooling regions.
In addition to the angular offset, α, each pooling region ring has

two additional parameters:

r, the radius of the ring on which all the centres of the pooling
regions lie

σ, the standard deviation of the isotropic Gaussian pooling regions

In my approach, I learn ten separate base-descriptors in place of the
single descriptor of Simonyan, Vedaldi and Zisserman (2014), which I
then combine using linear weighting learnt at run-time to form PIP
descriptors. The base-descriptors differ from the single descriptor in
two ways:

1. Each base-descriptor has only one value for the standard devi-
ation, σ, for each radius, r
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2. Each base-descriptor covers only a limited range of radii.

The base-descriptors can be interpreted as non-intersecting subsets
of the original descriptor. The smaller training data in per interest-
point descriptor learning problems, perhaps as few as four exemplars,
necessitates this succinct set of ten base-descriptors.
There are two categories of base-descriptor:

Fixed sigma (FS) descriptors use isotropic Gaussian pooling regions
lying close to the centre of the support region with a fixed stand-
ard deviation, σ, such as those in Figure 4.2: this allows for
varying amounts of misalignment of the centre of interest-points
between images.

Fixed sigma ratio (FSR) descriptors which use isotropic Gaussian
pooling regions far from the centre of the support region with a
fixed ratio, σ = kr, such as those in Figure 4.3: as noted by Berg
and Malik (2001), the geometric error is larger further from the
descriptor; the FSR base-descriptors allow for this.

There are five of each, yielding ten base-descriptors in total. Fig-
ures 4.2 and 4.3 show examples of pooling ring candidates. Table 4.1
contains details of candidate pooling region rings used to form each
base-descriptor.
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base-descriptor radii (r) stdev (σ) angular offset (α)

Simonyan et al. (2014) {0, 1, . . . , 31} {0.5,1,...,16}
{

0, π
16
, π

8
, 3π

16
, π

4

}
FS0 {1, 2, . . . , 6} 1.0

{
0, π

16
, π

8
, 3π

16
, π

4

}
FS1 {1, 2, . . . , 6} 1.5

{
0, π

16
, π

8
, 3π

16
, π

4

}
FS2 {1, 2, . . . , 6} 2.0

{
0, π

16
, π

8
, 3π

16
, π

4

}
FS3 {1, 2, . . . , 6} 2.5

{
0, π

16
, π

8
, 3π

16
, π

4

}
FS4 {1, 2, . . . , 6} 3.0

{
0, π

16
, π

8
, 3π

16
, π

4

}
FSR0 {7, 8, . . . , 31} 0.2r

{
0, π

16
, π

8
, 3π

16
, π

4

}
FSR1 {7, 8, . . . , 31} 0.3r

{
0, π

16
, π

8
, 3π

16
, π

4

}
FSR2 {7, 8, . . . , 31} 0.4r

{
0, π

16
, π

8
, 3π

16
, π

4

}
FSR3 {7, 8, . . . , 31} 0.5r

{
0, π

16
, π

8
, 3π

16
, π

4

}
FSR4 {7, 8, . . . , 31} 0.6r

{
0, π

16
, π

8
, 3π

16
, π

4

}
Table 4.1: Candidate pooling region rings for PIP’s base-descriptors

and for those of Simonyan, Vedaldi and Zisserman (2014)–
the latter’s candidate pooling regions are the Cartesian
product of a range of radii and standard deviations, while
PIP pooling regions have a fixed expression or constant
value for the standard deviation.

The PIP base-descriptor design reflects the following two assump-
tions:

1. The main requirement for spatial pooling in the centre of the
support region is to compensate misalignment errors caused by
the interest-point detector.

2. Away from the centre of the support region, differences in view-
ing angle become the dominant purpose for pooling, roughly
proportional to do the distance from the centre of the support
region: this is supported by geometric blur (Berg and Malik,
2001), the “DAISY” descriptor (Tola, Lepetit and Fua, 2010)
and the pooling regions selected by Simonyan, Vedaldi and Zis-
serman (2014).
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FS0 FS1 FS2 FS3 FS4

Figure 4.2: The pooling candidate ring at r=6,α=0 for each FS base-
descriptor

4.1.2 Global Learning

Following Simonyan, Vedaldi and Zisserman (2014), I use RDA (L.
Xiao, 2010) (see Section 4.0.2) to carry out global learning, learning
weights over and selecting pooling region candidate rings. Each base-
descriptor is learnt independently, using a set of matching and non-
matching patch pairs, split into training and validation sets. (Every
patch is located at an interest-point support region.) The operation
is as follows:

1. I learn a sparse set of weights over the pooling region candidate
rings using RDA, as described in Section 4.1.2.1.

2. I learn a linear projection matrix, also using RDA, to achieve
dimensionality reduction, over the pooling regions with non-zero
weighting, as described in Section 4.1.2.2

3. I use the pooling regions with a non-zero weights and the linear
projection matrix, learnt in the previous steps, to form the base-
descriptor.
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FSR0 FSR1 FSR2 FSR3 FSR4

Figure 4.3: Two pooling candidate rings at r=7,α=0 and r=20,α=π
8
re-

spectively, for each FSR base-descriptor

FS0 FS1 FS2 FS3 FS4

FSR0 FSR1 FSR2 FSR3 FSR4

high

low

Figure 4.4: The PIP base-descriptors formed by global training on the
“liberty” dataset: the circles indicate isotropic Gaussian
pooling regions with radii proportional to the standard
deviation and colour to represent the weighting; for clarity,
the radii are doubled for the FS descriptors
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4.1.2.1 Learning the weights

The first step involves selecting and learning weights for the pooling
candidate regions for each base-descriptor. The method for calculating
a descriptor using Simonyan, Vedaldi and Zisserman (2012, 2014) is
outlined in Section 2.1.6. Starting with a patch, applying a Gaussian
Blur, extracting local intensity gradients, binning the gradients into 8
orientations and normalising them results in an unpooled descriptor.
Following Simonyan, Vedaldi and Zisserman (2012, 2014), a pooled
descriptor is Φi,j,c(x) and indexed over pooling region ring i, pooling
region index within a ring, j and channel (orientation bin), c.
The set of pooling regions is Ωi, where i again indexes over pooling

region rings. Differing from Simonyan, Vedaldi and Zisserman (2012,
2014), which has one set of pooling region rings, Ω, I have N sets, Ωh,i,
where h = 1, 2, · · · , N indexes over N base-descriptors (N = 10) cor-
responding to my ten base-descriptors throughout my experiments),
leading to N learnt base-descriptors, ρh,i,j,c(x). However, as each base-
descriptor is learnt independently and identically, I will drop the index
h for simplicity until I describe the per interest-point learning.
Each learned descriptor,

ρi,j,c(x) =
√
wiΦi,j,c(x), (4.14)

is a weighted version of the “full” pooled descriptor, Φi,j,c(x). The
weights, w =

[
w1 w2 · · ·

]> are all nonnegative (and zero for pool-
ing region rings that are not selected). There is a single weight, wi,
for each ring of pooling regions. Hence, the number of weights corres-
ponds to the number of candidate pooling region rings, i.e. the size of
the Cartesian product of a single row in Table 4.1.
Comparison between descriptors occurs using the squared `2 dis-

tance,

d(x,y) = ‖ρ(x)− ρ(y)‖2
2 (4.15)

=
∑
i,j,c

(
√
wiΦi,j,c(x)−

√
wiΦi,j,c(y))

2 (4.16)

=
∑
i

wi
∑
j,c

(Φi,j,c(x)− Φi,j,c(y))2 (4.17)

= w>ψ(x,y), (4.18)

where ψ(x,y) is a vector containing the squared distances correspond-
ing to each pooling region ring Ωi, so that the ith component of the
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vector,
ψi =

∑
j,c

(Φi,j,c(x)− Φi,j,c(y))2 . (4.19)

The objective function used to learn the weights is as follows:

arg min
w≥0


∑

(x,y)∈P
(u,v)∈N

`
(
w> (ψ(x,y)− ψ(u,v))

)
+ µ‖w‖1

, (4.20)

where P and N are the training sets of positive (matching) and neg-
ative (non-matching) patch pairs, `(z) = max(0, z + 1), is a hinge loss
function and µ‖w‖1 is an `1 regularisation term. This objective en-
courages every negative patch pair to be further apart in the descriptor
space than every positive patch pair by at least a distance of unity,
while simultaneously encouraging sparsity in the weights, w.
As in Simonyan, Vedaldi and Zisserman (2012, 2014), I solve the

objective using RDA, following the approach outlined in Section 4.0.2.
I maximise the objective on a given training set for many combinations
of µ and γ and then select the values which maximise the false positive
rate (FPR) at 95% recall on the associated validation set. The values
used are the Cartesian product of

µ = {0.05, 0.1, 0.15, . . . , 1.0} (4.21)

and
γ =

{
2−1, 1, 2, 22, 23, 24

}
. (4.22)

4.1.2.2 Learning a linear projection matrix

The next step involves dimensionality reduction applying a matrix,
W ∈ Rm×n, where n is the number of non-zero elements in w and
m < n. The matrix is applied only to the elements of the descriptor,
Φi,j,c(x) for which the associated weight, wi is non-zero, indicated by
Φ′i,j,c(x) resulting in a descriptor,

φ(x) = WΦ′(x). (4.23)

The squared `2 distance between two descriptors,

dA(x,y) = ‖WΦ′(x)−WΦ′(y)‖2
2 = θ(x,y)>Aθ(x,y), (4.24)
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where θ(x,y) = Φ′(x)−Φ′(y) and A = W>W. The optimising of W
occurs by the convex optimisation of A, with the following optimisa-
tion function:

arg minA�0

{∑
(x,y)∈P
(u,v)∈N

`
(
θ(x,y)>Aθ(x,y)− θ(u,v)>Aθ(u,v)

)
+ µ∗‖W‖∗

}
, (4.25)

where A � 0 means that A is positive semidefinite and ‖ . . . ‖∗ is the
matrix norm. The matrix norm is a convex surrogate of the rank of the
matrix and hence the term encourages W to form a lower dimensional
embedding. Hence, µ∗ is a hyper-parameter which trades off the hinge
loss term the rank of the matrix.

This objective is also solved using RDA. However, because of the use
of a matrix rather than a vector, the update steps differ from Section
4.0.2. The subgradient calculation, in place of (4.7), is as follows:

g(t) =

{
θ(x,y)θ(x,y)> − θ(u,v)θ(u,v)>, if dA(x,y) + 1 > dA(u,v)

0, otherwise,
(4.26)

where (x,y) ∈ P and (u,v) ∈ N are randomly sampled at each time
step. Similarly, the update step for A, in place of (4.9), is as follows:

At+1 = Π

(
−
√
t

γ

(
ḡ(t) + µ∗I

))
, (4.27)

where I is the identity matrix and Π: Rn×n → Rn×n
PSD is a projection

fromRn×n onto the cone of positive semidefinite matrices which occurs
by eigenvalue decomposition, setting all negative eigenvalues to zero,
and recomposing the matrix.)
If the eigenvalue decomposition of A is QΛQ−1 then, since A =

W>W, W can be obtained by calculating.
√

ΛQ−1, and removing
the rows which are equal to 0>. Hence, m is determined by the number
of non-zero eigenvalues of A and the resulting value will depend on
the value of hyper-parameter, µ∗.
I maximise the objective on the same training set as used for learn-

ing the weights using many values for µ∗ and γ and then select the
values maximise the FPR at 95% recall on the associated validation
set. The values used are the Cartesian product of

µ∗ = {0.001, 0.0015, 0.002, 0.0025, 0.003} (4.28)

and
γ =

{
2−4, 2−3, 2−2, 2−1, 1, 2

}
. (4.29)
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Figure 4.4 shows the base-descriptors learnt on the “liberty” dataset
(see Section 4.2.1.1), prior to dimensionality reduction. After dimen-
sionality reduction, FS base-descriptors have 46 dimensions on aver-
age and FSR base-descriptors have 66 dimensions on average. The
original descriptors (Simonyan, Vedaldi and Zisserman, 2014) have 74
dimensions on average.

4.1.3 Per Interest-Point Learning

The aim is to learn a descriptor for each interest-point which is optimal
for that interest-point. This is equivalent to learning a descriptor for
each patch associated with the interest-point. Here, it is assumed that
multiple positive patches exist for a given interest-point in an image,
perhaps obtained from a prior reconstruction or produced through
applying synthetic jitter to the original image. In addition, the avail-
ability of negative patches from non-matching interest-points is also
assumed, e.g. other locations in the same image, which in the absence
of reflections are guaranteed to be negative.

4.1.3.1 Combining the Base-Descriptors

The aim is to find an optimal descriptor for a given patch, O (the
original patch); if this patch is the support region for interest-point,
θo, this also corresponds to finding an optimal descriptor for θo. Let
X and Y be patches; let

φ1(X),φ2(X), · · · ,φN (X) (4.30)

be the set of N base-descriptors. These are the formed from base-
descriptors learnt in the previous section, i.e. (4.23) with the learnt
dimensionality reduction. In addition, let

d1(X,Y), d2(X,Y), · · · , dN(X,Y) (4.31)

be the set of N associated distance functions. Though many distance
functions could be used, I always use the Euclidean distance (`2 norm),
therefore

dn(X,Y) = ‖φn(X)− φn(Y)‖2 (4.32)

in all cases.
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I aim to learn a set of nonnegative weights, w =
[
w1 w2 · · ·

]>,
over the vector of distances for each base-descriptor between O and
another patch, Z,

d(O,Z) =

d1(O,Z)
· · ·

dN(O,Z)

 . (4.33)

The results in an optimal PIP descriptor, φ(opt), for the patch O, with
distance function,

d(opt)(O,Z,w) =
N∑
n=1

wndn(O,Z) = w>d(O,Z). (4.34)

Zero weighting of the nth base-descriptor, wn = 0, implies that it
does not feature in the PIP descriptor, resulting in selection of a few
base-descriptors or perhaps one single base-descriptor.

4.1.3.2 Learning the weights

Let P be a set of positive (matching) patches and let N be a set of
negative (non-matching) patches, i.e. those located at interest-points
matching or not matching the original interest-point, θo, respectively.
Following the approach used by Simonyan, Vedaldi and Zisserman
(2014), inspired by Weinberger and Saul (2009), I place a hinge loss
function between every pair of positive and negative patches. As with
the global learning, there is an `1 regularisation term to induce a sparse
solution, i.e. one in which wn = 0 for many n. This, in effect, selects a
few or a single base-descriptor(s), reducing the dimensionality of each
PIP descriptor and preventing over-fitting.
As a shorthand, let the difference of distances function,

d(P,N,O) = d(P,O)− d(N,O) (4.35)

=

d1(P,O)
· · ·

dN(P,O)

−
 d1(N,O)

· · ·
dN(N,O).

 (4.36)

The objective is to learn a set of weights, w, which satisfy

arg min
wn≥0


∑
P∈P
N∈N

`
(
w> [d(P,N,O)]

)
+ µ‖w‖1

 (4.37)
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where, as before,
`(z) = max(0, z + 1), (4.38)

is a hinge loss function and µ‖w‖1 is an `1 regularisation term. As be-
fore, this objective encourages every negative patch, N, to be further
from the original patch, O, than every positive patch, P, by at least
a distance of unity, while simultaneously encouraging sparsity in the
weights, w. The hyper-parameter µ allows control over the trade-off
between the two terms.
This is identical to the hinge loss term of the global learning object-

ive (4.26), with x = P and u = N except that y = v = O because the
objective is to learn weights for positive and negatives with respect to
the same patch, O, rather than between many sets of matching and
non-matching patch pairs.
I use the same RDA learning process to learn the weights as for the

global learning in Section 4.1.2.1. For each iteration, I select a random
positive and negative patch pair, P ∈ P and N ∈ N , respectively, and
proceeds as follows:

1. Update the average gradient of the objective with respect to the
weights, w, ḡ, at time t as follows:

ḡ(t) =

{
(t−1)ḡ(t−1)+d(P,N,O)

n
, if w>(t−1)d(P,N,O) > −1

t−1
t

ḡ(t−1), otherwise.
(4.39)

2. Calculate the new weights as follows:

w(t) = max

[
0,
−
√
t

γ

(
ḡ(t) + µ

)]
, (4.40)

where γ is the index of the auxiliary strongly convex term (see
Section 4.0.2)

I train a number of descriptors in parallel, with a range of val-
ues for the hyper-parameters, µ and γ, known to perform well, each
for 100 000 iterations, and then select the descriptor which yields op-
timum performance on the set of positive and negatives, in terms of
maximising the area under an ROC curve (ROC-area).
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4.1.3.3 Selecting the Threshold

Since the descriptor and distance function differ for each patch, the
optimal threshold for classifying a match v. non-match from the res-
ulting distance, will differ. This is resolved by setting the threshold,
t′i, for each patch, i, as

t′i = sti (4.41)

where ti is the threshold which yields 95% recall (using linear inter-
polation) for the patch on the training positives and negatives, and
s is a global threshold scaling factor which allows the matching per-
formance across all patches, Oi ∈ O, to be varied along the receiver
operating characteristic (ROC) curve.

4.2 Experiments

I experimented using both patch datasets (to form a benchmark) and
image sequences (to demonstrate a performance improvement in an
application). I use FPR at 95% recall as the performance metric
rather than ROC-area which is used in the previous chapter. This is
to follow the approach of Simonyan, Vedaldi and Zisserman (2014),
who use FPR at 95% recall to evaluate descriptors, rather than Brown,
Hua and Winder (2011), who use area under an ROC curve.

4.2.1 Experiments with Patch Datasets

I compare performance on two datasets: the Learning Local Image
Descriptors dataset (Winder, Hua and Brown, 2009) and the DTU
Robot dataset (Aanæs, Dahl and Pedersen, 2012) with the following
three approaches:

Simonyan (SIM) Descriptors trained according to Simonyan, Vedaldi
and Zisserman (2014) and matched using the Euclidean distance
and a fixed threshold, as a state-of-the-art baseline

Simonyan with optimal threshold (SIM-OT) The previous, except
that I vary the threshold per interest-point (Section 4.1.3.3), to
show the contribution from this element alone

PIP I learn weights over the ten base-descriptors, FS0–4 and FSR0–4
(see Table 4.1) using the learning approach outlined in Section
4.1.3

200



4.2 Experiments

4.2.1.1 Learning Local Image Descriptors Data Set

I tested the per interest-point learning on the Learning Local Image
Descriptors dataset (Winder, Hua and Brown, 2009), which consists
of sets of patches centred on interest-point detections. The global
learning for the base-descriptors which PIP and the descriptor for the
SIM baseline is carried out on an entire unmodified scene (i.e. liberty,
notredame or yosemite) as in previous work (Brown, Hua and Winder,
2011; Simonyan, Vedaldi and Zisserman, 2014). I use the same train-
ing and validation set split as in the previous work, which, for each
scene, corresponds to 500 000 labelled (matching or non-matching)
patch pairs for training, and 100 000 labelled patch pairs for valida-
tion.
The patches in the dataset are divided by 3D feature, i.e. corres-

ponding to same feature in the 3D reconstruction, as per the dataset’s
ground truth. Many features in this dataset have few patches and so
the original dataset, though suitable for global training, is not suitable
for testing the PIP descriptor. I therefore exclude all features with
fewer than eight patches; for each remaining feature, I select only one
patch to be the original, O, and one to be a single positive test patch,
P(test); the remaining patches are used as the positive training set,
P . To increase the number of patch combinations used for testing, I
perform this selection on a exhaustive basis, testing all possible per-
mutations of one original and one test patch for the 3D feature (see
Table 4.2 for an example of the permutations). I select an equal num-
ber of negative training patches from other features in the dataset and
select an additional patch from one of these features to be a negative
test patch, N(test).

The number of unique original/test patches is as follows: 26 896
for notredame, 10 991 for liberty and 2529 for yosemite. The number
of exhaustive combinations is much larger, as follows: 202 906 for
notredame, 82 882 for liberty and 19 034 for yosemite.
Table 4.3 details the FPR at 95% recall for each approach. In all

cases, SIM-OT achieves better results than SIM, showing that allowing
the threshold to vary per patch (see Section 4.1.3.3) is beneficial. In
addition, PIP yields a further performance improvement in all cases,
showing the benefit of learning a combination of the base-descriptors,
per interest-point.

Figure 4.5 shows Precision-Recall (PR) curves for each of the global
training and per-IP learning combinations. In all cases, PIP outper-
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forms SIM and SIM-OT for recall values above 90%. Interestingly,
PIP sometimes performs worse than SIM for lower recall values. This
may be because the training regime is not optimal for lower values of
recall and a different training could be carried out if a better perform-
ance at lower recall is desired.
Table 4.4 shows the average sparsity (percentage of non-zero base-

descriptor weights) of PIP descriptors across all patches. This amounts
to an average of between one-and-a-half and two base-descriptors for
each PIP descriptor, effectively around 100 dimensions, showing that
the use of RDA results in the selection of a small number of base-
descriptors. This makes the approach scalable in terms of memory
storage: even allowing for weights, PIP will require, at most, double
the storage requirements of SIM. In addition, calculating the distance
between two PIP descriptors through linear weighing will take less
than double the number of operations, on average, compared to SIM,
due to the sparsity induced by RDA.

Figure 4.6 shows the distribution of base descriptors selected. The
percentage corresponds to the percentage of patches which have a non-
zero weight for each given base-descriptor. (As the average sparsity
is 15–20%, the sum for a given combination will be 150–200%.) The
figures shows a that the distribution depends on the global training
set used. In particular, the distribution is most uniform when globally
trained on notredame, and least uniform when trained on yosemite.
While the distribution does not appear to have a great an impact in
performance, it highlights the importance of ensuring that the global
training data set is suitable for the desired range of target images.
Figure 4.7 and Table 4.5 show the number of the different combin-

ations of base-descriptors with non-zero weights. In the majority of
cases, only one or two base-descriptors are used. The most common
configuration is a single FSR base-descriptor, followed by one FSR and
one FS base-descriptor. The former suggests that, for many interest-
points, the centre of the patch does not offer significant discriminative
information—the PIP descriptor exploits this by only selecting FSR
base descriptors. The latter suggests that many interest-points require
two pooling strategies: one for the centre to compensate for misalign-
ment areas, which is offered by one of the FS descriptors; another for
locations far from the centre to compensate for differences in viewing
angle, offered by one of the FSR descriptors.

Figure 4.8 shows a number of patches from liberty categorised by
their base-descriptors combination. Only those with at most one FS
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Figure 4.5: PR curves for different global training and per-IP learning
combinations
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Figure 4.6: The distribution of base-descriptors selected across
patches key: global training dataset / per interest-point
learning and testing dataset

and at most one FSR base-descriptor are shown, to allow this informa-
tion to be displayed on a 2D grid—this corresponds to the grey cells in
Table 4.5. Where possible, I show multiple patches from the same 3D
feature, to give a better idea of the variation between patches which
led to the base-descriptor selection.
The weighting and selection of base-descriptors per interest-point is

a function of both the positive and negative patches in the training so
one would not expect to see absolute trends in Figure 4.8. However,
I observe the following:

1. Regions not matched with an FS base-descriptor appear to suffer
from centre misalignment between regions.

2. Regions matched with the FS0 base-descriptor tend to have less
centre misalignment than those matched with the FS4 base-
descriptor.

3. Regions with no FSR base-descriptor appear to suffer from oc-
clusion in around the outside of the regions or a large variation
in viewing angle between regions.
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Figure 4.7: The distribution of patches categorised by the number of
base-descriptors selected; key: global training dataset /
per interest-point learning and testing dataset

4. Regions with the FSR4 base-descriptor tend to show a larger
variation in viewing angle than those in FSR1.

Using RDA, a very small fraction of patches are matched using
no base-descriptors and other patches are always classified as neg-
ative matching, e.g. the 23 patches in the top-left cell of Table 4.5.
One solution would be to avoid matching any patches or associated
interest-point for which this occurs.
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Figure 4.8: Patches from liberty categorised by the constituent base-
descriptors
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orig test + + + + + +
orig + test + + + + +
orig + + test + + + +
orig + + + test + + +
orig + + + + test + +
orig + + + + + test +
orig + + + + + + test

test orig + + + + + +
+ orig test + + + + +
+ orig + test + + + +
+ orig + + test + + +
+ orig + + + test + +
+ orig + + + + test +
+ orig + + + + + test

· · · · · · · · · · · · · · · · · · · · · · · ·

test + + + + + + orig
+ test + + + + + orig
+ + test + + + + orig
+ + + test + + + orig
+ + + + test + + orig
+ + + + + test + orig
+ + + + + + test orig

Table 4.2: To increase the number of patch combinations used for test-
ing PIP, I select patches to be original and test patches on
an exhaustive basis. Each row corresponds to one combin-
ation of original patch (orig), test patch (test) and positive
training patches (+).
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scene descriptors

global training per IP learning SIM SIM-OT PIP

notredame liberty 3.16% 1.26% 0.58%
notredame yosemite 6.87% 5.63% 3.54%
liberty notredame 0.53% 0.29% 0.15%
liberty yosemite 5.28% 4.36% 2.77%
yosemite liberty 3.97% 1.26% 0.64%
yosemite notredame 0.49% 0.28% 0.16%

Table 4.3: The FPR at 95% recall achieved on each combination of
datasets: PIP descriptors yield the lowest error in each
case

global training per IP learning sparsity

notredame liberty 19.40%
notredame yosemite 18.91%
liberty notredame 17.87%
liberty yosemite 18.34%
yosemite liberty 17.09%
yosemite notredame 15.79%

Table 4.4: The average sparsity (percentage of non-zero weights over
base-descriptors) across all patches
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number of FS base-descriptors

num. FSR 0 1 2 3 4 5

0 23 17368 8796 932 36 1
1 61317 52711 10562 717 27 0
2 29440 13781 1796 99 0 0
3 3791 1191 112 6 0 0
4 166 31 2 0 0 0
5 0 1 0 0 0 0

Table 4.5: The number of patches in notredame categorised by the
number of base-descriptors (globally trained on liberty) se-
lected (non-zero weighted), split between the FS and FSR
base-descriptor sets
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4.2.1.2 DTU Robot Image Point Feature Data Set

I also tested PIP using a patch dataset formed of patches from interest-
points from scenes of the DTU Robot Image dataset (Aanæs, Dahl and
Pedersen, 2012), which was originally created for comparing interest-
point extractors. This dataset contains a number of model scenes
which are photographed from a range of viewpoints and under different
lighting conditions, as shown in Figure 4.9. The authors use a robot
and structured light scanner to ensure a precise 3D reconstruction.
This set-up is similar to the previous experiment but with a larger
number of patches for each set of matching interest-points. I also
believe that this dataset is more challenging than the previous, e.g.
due to the larger range of lighting variations.
The dataset does not contain a list of corresponding interest-points,

or associated patches. I therefore use the dataset to obtain sets of
patches. For every model scene, I selected a single image to be the
key frame and extract all Scale-Invariant Feature Transform (SIFT)
interest-points (Lowe, 2004). For every interest-point in this scene, I
carry out the following:

1. I use the 3D data to transform the interest-point into every other
image in the model scene.

2. I find any interest-points which match the criteria used byWinder,
Hua and Brown (2009) and as used in the previous chapter (see
Section 3.1.1).

3. I discard any interest-points whose support region extends bey-
ond the border of the image.

4. Once a total of forty-nine suitable interest-points have been
found, I extract patches from the support regions for these and
the original interest-point. This results in a set of fifty patches:
see Figure 4.10 for examples.

I use the following method to order to transform an interest-point
from one image to another:

1. I obtain a rectangular grid of eight by eight pixels from the
first interest-point footprint (this grid occupies a quarter of the
overall support region size)
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Figure 4.9: Images from different scenes in the DTU Robot Image
Dataset: note the variation in viewing angle and lighting
conditions
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Figure 4.10: Sets of patches corresponding to matching interest-points
between different images in the DTU dataset; note the
differences in position and lighting conditions
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scenes Patches

global training test per interest-point training test

1–6 7–12 2–25 26–50
7–12 1–6 2–25 26–50

Table 4.6: The division of test and training sets, both for the global
learning and per interest-point learning

2. I use the provided 3D reconstruction and camera parameters to
transform these pixels to the second image, through ray-casting
and projection.

3. I calculate the best similarity transform between these pixel
pairs, using the method of least squares, and use this to trans-
form the interest-point.

The twelve scenes are split into two configurations for test and train-
ing as shown on the left of Table 4.6. The global training occurs using
500 000 labelled (matching or non-matching) patch pairs for training,
and 100 000 labelled patch pairs for validation, which are randomly
selected from the six scenes for each of the two scene splits. This is
for compatibility with the configuration of the Learning Local Image
Descriptors dataset.
In addition, the sets of patches are split into test and training posit-

ives as shown on the right of Table 4.6. The per interest-point training
set is used for per interest-point training (PIP) and threshold selec-
tion (PIP and SIM-OT); it is not used for SIM. An equal number of
negatives are selected randomly from the per interest-point training
sets and test sets of other patches. The total number of unique test
patches for each scene can be found in Table 4.7, which is 25 times
the number of matching interest-point.
Table 4.7 details the FPR at 95% recall for each approach. In nine

out of twelve cases, PIP outperforms SIM. In the three cases where
PIP performed poorly, the FPR for SIM was below 3%; I believe that
the learning algorithm is attempting to optimise the base-descriptor
for a small set of difficult features and adversely affecting performance
on the rest. SIM-OT outperformed SIM in only seven out of the
twelve cases, showing that varying the threshold alone is not sufficient
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descriptors

scene test patches SIM SIM-OT PIP

1 25 300 8.05% 7.00% 5.73%
2 52 650 0.72% 1.46% 1.26%
3 9600 24.89% 17.77% 15.41%
4 3650 10.19% 9.01% 8.30%
5 16 600 7.49% 6.11% 4.89%
6 30 700 6.90% 7.20% 5.56%
7 21 325 32.74% 18.06% 15.05%
8 19 200 3.14% 3.54% 2.77%
9 28 700 17.90% 14.82% 11.13%
10 36 225 26.65% 14.90% 12.01%
11 29 500 0.70% 1.19% 0.96%
12 28 675 2.57% 3.64% 2.71%

Table 4.7: The FPR at 95% recall achieved on the DTU dataset; the
best is in bold.

for better performance on this dataset. All descriptors show a large
variation in their performance between difference scenes: I believe that
this is because some scenes are more subject to the effects of camera
translation and rotation or changes in lighting conditions than others.

4.2.2 Experiments with Photo Collections

The previous experiments tested the performance of the PIP on patch
datasets, but did not demonstrate an application for improved interest-
point matching. I therefore test the use of PIP for image match-
ing/search using the Oxford Buildings dataset (Philbin et al., 2007).
The dataset consists of 5062 photos of Oxford buildings, obtained from
Flickr, divided into scenes based on landmark and view.
I consider a scenario where N images of a scene have already been

matched, and it is desirable to match a new (query) image, IQ, to a
target image, IT , in this scene. Initially, N starts at one, and matching
begins using SIM alone, with matches verified using random sample
consensus (RANSAC). As N grows, more interest-point matches be-
come available to train PIP descriptors for interest-points in IT . Typ-
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ically N grows to around 200 once all images have been processed for
a given landmark. In all cases, I extract interest-point using SIFT’s
interest-points extractor (Lowe, 2004) and use inlier and incorrect
(outlier) matches of successful homographies (those obtained from at
least sixteen RANSAC inliers) as positive and negative exemplars.
I repeat for 4280 pairs of target and query images, {IT , IQ}; in total

there are 55 unique query images. For every pair, I match with two
approaches:

SIM SIM only, as a baseline

SIM + PIP the union of matches from both descriptors

Ideally, one would like to use PIP alone, however using PIP requires
that each interest-point has sufficient matches to learn an effective
PIP descriptor. In the experiments, N is not sufficiently large for this
to be the case as many interest-points appear sporadically between
images.
A successful match of the query image is defined by having at least

sixteen RANSAC inliers. Table 4.8 shows the percentage of successful
matches for each approach. In every case, including matches yielded
from PIP descriptors yielded an improved result over the use of SIM
alone. Figure 4.11 shows the success rate per interest-point (probabil-
ity of the feature being a RANSAC inlier) as a function of the number
of training exemplars (matched interest-point in other images). The
performance of PIP increases with the number of training exemplars
available, being at par with SIM descriptors alone for two exemplars,
and increasing to 20% more matches at ten training exemplars. Note
that the performance of SIM also improves (to a lesser extent) for
interest-point with many matches, perhaps due to these features be-
ing a priori more visually distinctive or reliable.
In addition to the numerical results, I demonstrate matching between

individual image pairs using figures showing the matches using the col-
our code in Table 4.9. Blue matches were inliers in both cases and
must have been a closest match using SIM (they may or may not
be using PIP). Red matches must represent a failure case of SIM +
PIP: even though it was closest match using SIM, it was lost with the
introduction of PIP matches. Green, yellow and orange matches are
those which were an inlier only when SIM + PIP was used. Green
and orange matches were also matched using SIM, however required
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success rate

global training SIM SIM + PIP

notredame 21.14% 22.41%
liberty 21.52% 22.34%
yosemite 21.54% 23.06%

Table 4.8: The percentage of query images correctly matched to the
original; Using PIP in addition to SIM improves perform-
ance

the extra corroboration of the PIP matches to be a RANSAC inlier.
Yellow matches were matched by PIP alone.

Figure 4.12 shows a case in which SIM + PIP succeeded, but SIM
alone did not: the successful set of inliers included those from PIP
alone (yellow), those common to both PIP and SIM (orange) and
those from SIM alone (green). With SIM alone, only the blue matches
were obtained by RANSAC. This shows that PIP achieved better res-
ults partly by finding additional matches and partly by strengthening
existing SIM matches during RANSAC.

There are occasional failure cases where PIP adds no new correct
matches. This effectively adds noise to the matches, reducing the in-
lier probability and causing occasional RANSAC failures due to the
non-deterministic nature of the algorithm. Figure 4.13 shows a failure
case. SIM alone found a large enough set of inliers (red). Despite these
SIM matches being retained with the addition of matches from PIP
fewer than sixteen inliers were obtained by RANSAC on the combin-
ation of matches. The non-deterministic nature of RANSAC means
that the inclusion of PIP does not necessarily improve image match-
ing performance in every case (due to possible selection of incorrect
sample sets). However, Table 4.8 and Figure 4.11 clearly show that, on
average, PIP performs better at image matching and offers improved
performance per interest-point in terms of match probability.

Figure 4.14 shows other cases in which SIM + PIP succeeded, but
SIM alone did not. Figure 4.15 shows other cases in which SIM
alone succeeded but SIM + PIP failed to obtain a homography with
RANSAC. Finally, Figure 4.16 shows cases in which neither approach
succeeded.
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Figure 4.11: The percentage of RANSAC inliers for SIM and PIP in
query images against the number of positive exemplars
for each interest point found prior to PIP training

4.3 Conclusion

In this chapter, I presented a new approach for learning an interest-
point specific descriptor (PIP) by learning weights over a number of
base-descriptors. I globally train each base-descriptor over a large set
of image regions, building on the descriptor of Simonyan, Vedaldi and
Zisserman (2014) (SIM), and then select and learn weights over these
base-descriptors to achieve an optimal descriptor for each interest-
point. The approach outperforms the use of a single globally-learnt
descriptor on the Learning Local Image Descriptors and DTU Ro-
bot datasets, even when a small number of patches are provided for
training each interest-point. I also demonstrated the suitability of the
approach for matching in photo collections. The memory requirement
of the PIP descriptor is only slightly more than double for SIM making
the approach scalable.

Although the PIP descriptor, on average, outperforms SIM, it led
to worse performance on a quarter of the scenes in the DTU dataset.
I believe that this is because the descriptor design is built upon wrong
set of assumptions, which prevents universal improvement, as follows:
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RANSAC inlier

Colour SIM SIM + PIP Source

blue yes yes doesn’t matter
red yes no doesn’t matter

green no yes SIM only
yellow no yes PIP only
orange no yes SIM and PIP

Table 4.9: The colour code used for image pair matches

Figure 4.12: A success case using SIM + PIP

Figure 4.13: A failure case using SIM + PIP
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Figure 4.14: Other success cases with SIM + PIP
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Figure 4.15: Other failure cases with SIM + PIP
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Figure 4.16: Cases in which neither SIM nor SIM + PIP succeeded
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Figure 4.16: Cases in which neither SIM nor SIM + PIP succeeded
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1. Oriented gradients, eight in total, are the right features.

2. All pooling regions should be Gaussian.

3. Pooling regions should lie over circular rings centred on the
centre of the support region.

4. Weights should be shared over symmetric rings of four or eight
regions.

I believe that the use of pooled features at such a low level limits the
performance of either SIM or PIP in accordance with my proposition:

The invariance of state-of-the-art algorithms is at too low
a level for generalised interest-point matching and gener-
alised object detection.

If there was invariance at a higher level, i.e. involving semantics, the
matching could be universally better. One example is patches con-
taining letters. As a human, it is easy to identify and match the
letters between patches even where there is a large amount of vari-
ation in viewing conditions. Having confirmed that two letters match,
it is then possible to determine whether the letters could be from the
same 3D object, e.g. based on the colour or font style. On the other
hand, the SIM and PIP descriptors simply lift, bin and pool low level
Histograms of Oriented Gradients (HOG) features, and are unable to
perform any semantic analysis.
Another example for which higher level invariance would result in

better performance is in patches containing part of a recognisable
object, such as a window or column. There are objects such as these
present in the image-pairs in which both SIM and PIP failed, e.g. those
in Figure 4.16. A human is unlikely to accidentally confuse a patch
with a window with one not containing a window (though two similar
but different windows might be confused) whereas the PIP descriptor
is prone to such false positives. Moreover, once a human has matched
based semantic objects, he or she can analyse the scene to determine
whether the scenes match e.g. determining whether the windows or
columns are consistent in spite of adverse such changes such as lighting
conditions, partial occlusion or poor camera focus. This requires both
a high level semantic understanding and the ability to then determine
whether or not the lower level detail is consistent with the same object
instance under different viewing conditions.
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In addition, the PIP descriptor has only been shown to work on
natural images (photos), and even then imperfectly. An even greater
issue would occur when trying to match between photos and other
depictive styles (see Section 1.3), e.g. matching between photos and
non-natural images (artwork) of the Eiffel tower.
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5 Detecting People in
Artwork with CNNs

Whereas the previous two chapters involved interest-point matching,
this chapter involves the task of object detection. Object detection
has improved significantly in recent years, especially as a result of the
resurgence of convolutional neural networks (CNNs) and the increase
in performance and memory of graphics processing units (GPUs) (see
Section 2.2.2.2). However, in spite of the successes in photo-based
recognition and detection, research into recognition within styles of
images other than natural images (photos) remains limited (Hall et
al., 2015; Westlake, Cai and Hall, 2016).
This is an instance of the cross-depiction problem: detecting objects

regardless of how they are depicted (photographed, painted, drawn,
etc.). The motivation for considering the cross-depiction problem is
two fold (Hall et al., 2015):

foundational Because we, as human observer’s, are able to recognise
objects across a plethora of depictive styles, there must be some-
thing fundamental about the object which is invariant across
depictions. Analysis into the cross-depiction problem forces one
to test all assumptions about object detection, many of which
are premised on photos alone, including the very foundations of
Computer Vision.

practical Since the world contains images in a plethora of depiction
styles, any Computer Vision task which must operate on all
images must overcome the cross-depiction problem. An example
is image search: if a method relies on the assumption that all
images to be photos or photo-like non-natural images (artwork),
it is unlikely to generalise across all depictive styles. Therefore,
its results will either be limited to photos and similar artwork
or, worse, include false positives results other depictive styles.

This chapter focuses on one class: people. As Westlake, Cai and
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Figure 5.1: Detecting people across different depictive styles is a chal-
lenge: here are some successful detections

Hall (2016) observe, people occur far more frequently than other
classes across the spectrum of depictive styles perhaps, for at least
two reasons:

1. As human observer’s, we are interested in other humans and this
is reflected in the choice of photos and artwork.

2. Many classes only existed after a particular time period, e.g.
cars, computers and aeroplanes.

As a result, focusing on people increase the range of depictive styles
represented in artwork and may even provide the most difficult object
to detect across different depictions.

5.0.1 Limitations of Earlier Work

This chapter builds upon the limitations of earlier work addressing
the cross-depiction problem, which are set out here. These limitations
include both the methods and the datasets used.
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Algorithm Precision Recall F-measure

Human 80 % 86 % 0.829

DPM (Felzenszwalb, Girshick et al., 2010) 44 % 46 % 0.458
Poselets (Bourdev et al., 2010) 31 % 24 % 0.271
RCNN (Girshick et al., 2014) 32 % 18 % 0.226
HOG (Dalal and Triggs, 2005) 3 % 49 % 0.051

Table 5.1: Performance of computer algorithms against humans on the
Picasso dataset: the figures are based on the point on the
precision-recall curve which maximises the F-measure

5.0.1.1 Detecting People In Cubist Art

Ginosar et al. (2014) identify that evaluations of Computer Vision
algorithms are often limited to photos, which means the algorithm
only needs to be robust to natural poses. Humans, on the other hand,
are able to recognise people in abstract representations, such as in
the Cubist paintings of Picasso, even without prior training. The
authors created a dataset using such paintings (the Picasso Dataset)
to determine whether test object detection algorithms are also able to
recognise people in such paintings.

One interesting result was that there was disagreement between
different human observers as to whether or not a person was present
and if so, what the bounding box for the person was. Nevertheless,
there was, on the whole, a consensus with 80 % precision and 86 %
recall. By taking the median location of the bounding box corners
as labelled by humans, the authors were able to produce a “ground
truth” for training and evaluating Computer Vision algorithms.
The results (Table 5.1) showed that all Computer Vision algorithms

perform worse than humans. One limitation of this study is that the
algorithms were trained on photos of people rather than artwork con-
taining people. As a result, they almost certainly overfitted. However,
as the authors point out, humans are able to identify people in Cubist
art without prior training and so it is not unreasonable to expect or to
seek this ability in Computer Vision. Another is that the dataset only
contains one depictive style, and indeed one artist: Picasso. The best
performing algorithm was DPM, suggesting that the use of a parts
allows better generalisation.
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5.0.2 In Search of Art

Crowley and Zisserman (2014) evaluate the performance of CNNs
learnt on photos for classifying objects in oil paintings, showing strong
performance in spite of the difference in domain. The CNNs used for
classification allow paintings to be searched for based on the object
they contain.
The authors evaluate the algorithms using the BBC “Your Paint-

ings” dataset which contains 210 000 oil paintings. A subset of these
images have been tagged with the objects they contain, and so are
used for classification. One limitation, however, is that many paint-
ings include people without being tagged as such. As a result, the
author’s evaluation excludes people as a class.
To allow the CNNs to be used to search for objects which are not

part of the (off-line) training process, the authors download a number
of images from Google to form positive training examples, and use a
set of other images as negative training examples. Next, they train a
Linear-SVM classifier using the output of the penultimate layer of the
CNN. One interesting result is that this approach performs best when
using only photos from Google and not clip-art. This appears to be
because the paintings tend to be closer to photographs than clip-art,
suggesting the dataset is limited to photo-like artwork.

5.0.3 Learning Graphs to Model Visual Objects
Across Different Depictive Styles

Wu, Cai and Hall (2014) improved DPM (Felzenszwalb, Girshick et al.,
2010) to perform cross-depiction matching across different depictive
styles. Instead of using root and part-based filters and a latent-SVM
(LSVM), the authors learn a fully connected and bidirected graph
to better model object structure between depictions, using the struc-
tural SVM (SSVM) formulation of M. Cho, Alahari and Ponce (2013).
Moreover, instead of single set of attributes (weights and biases over
HOG features) for each node, the authors learn two sets of attrib-
utes: e.g. one for photos and the other for artwork though the set
assignment occurs at train-time in an unsupervised manner through
k-means clustering. At test-time, the algorithm calculates the score
of a detection, based on the location of all the nodes, by summing
the similarity score of the nodes and edges against the model. The
similarity score for the each node is the maximum score across each at-
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Figure 5.2: Detections using Wu, Cai and Hall (2014)’s algorithm,
showing the fully connected graph. The size of the nodes
and darkness of the edges indicates the relative contribu-
tion towards the detection score.

Figure 5.3: Images from Wu, Cai and Hall (2014)’s Photo-Art-50:
there is one artwork image and one photo for each of the
fifty categories
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tribute set. The edge parameters are shared between the sets and the
features used are as in M. Cho, Alahari and Ponce (2013). Figure 5.2
shows examples of detections with the relevant graph.
One limitation of the model is the need to cluster the images by

depiction style (only two are used by authors) which means that gen-
eralisation across photos and artwork effectively occurs by learning one
model per depiction style. This does not apply to the edges, which
are shared between depiction styles, and the use of a fully connected
graph rather than a “hub-and-spoke” model may improve generalisa-
tion across depictive styles.

Another limitation is the use of DPM to initialise the parts and to
bootstrap the model. This means it suffers from the same limitation
as DPM, the heuristic used to select parts is not ideal and may not
be reliable. This can be observed in Figure 5.2: in particular, note
the seven parts of a bottle and the preference for parts to lie on the
torso of a human, perhaps due to its consistency, over parts such as
the hands and elbows.

Wu, Cai and Hall (2014) introduce a new dataset, Photo-art-50, to
test their model. This comprises of photos and artwork, with ground
truth bounding boxes, for fifty object classes. Figure 5.3 shows some
examples. Although the dataset includes photos, paintings, drawings
and cartoons, the number of depictive styles represented remains small
compared to the many possible in the world. In addition, the images
tends to show objects in their entirety. As most or all parts are visible,
this makes the images suitable for a part-based model. However, it
does not represent the true challenge of the cross-depiction problem.

5.0.4 The People-Art Dataset

The experiments in this chapter involve a more recent dataset, People-
Art (Westlake, Cai and Hall, 2016). The dataset can be found online
at https://github.com/BathVisArtData/PeopleArt. Hall et al. (2015)
used an earlier version of the dataset in their work.

The dataset contains images from 41 different artwork movements,
increasing the number of depictive styles compared to the Photo-Art-
50 dataset. It also contains photos and cartoons making a total of 43
depictive styles. Whereas, that dataset had fifty classes, the People-
Art dataset has one single class, people, focusing on a diversity of
depictive styles rather than classes. This dataset presents a challenge
because of the sheer diversity in the way artists have depicted humans,
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and overcomes the limited range of depictive styles in earlier datasets.
Prior to the experiments in this chapter, the best performance on the
dataset was 45% average precision (AP), from a CNN that was neither
trained nor fine-tuned for this task.

The images in the People-Art dataset come from the following
sources:

photos PASCAL Visual Object Classes (VOC) 2012 (Everingham,
Van Gool et al., 2012)

cartoons Google searches

other images WikiArt.org

Figure 5.4 shows one image for every depictive style represented in
the People-Art dataset. In total, there are 4778 images, of which 1644
images contain one or more people.
The 41 depictive styles from WikiArt.org are categorised based on

art movements, e.g. Art Deco, Cubism, impressionism and photoreal-
ism. These depictive styles cover the full range of projective and
denotational styles, as defined by Willats (1997). In addition, West-
lake, Cai and Hall (2016) propose that these styles cover many poses,
a factor which Willats did not consider. They identify the following
challenges presented by the dataset.

range of denotational styles The denotational style is the style with
which primitive marks in the image are made (brush strokes,
pencil lines, etc.) (Willats, 1997), with photos of natural scenes
rather than artwork being a denotational style in its own right.
Figure 5.5 shows a range of images with different denotational
styles.

range of projective style The projective style includes linear cam-
era projection, orthogonal projection, inverse perspective, and
a range of ad-hoc projections (Willats, 1997). An extreme pro-
tective styles is shown in Cubism, in which it is common for
an object to drawn or painted as if seen from many different
viewpoints into the 2D canvas (Ginosar et al., 2014). Figure 5.6
shows a range of images with different projective styles.

range of poses Though pose is handled by previous Computer Vis-
ion algorithms (Felzenszwalb, Girshick et al., 2010), Westlake,
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Academicism Analytical Realism Art Deco Art Nouveau Biedermeier

cartoon classicism constructivism Cubism Cubo-Futurism

Divisionism Environmental Art fantastic realism feminist art High Renaissance

impressionism International
Gothic

Japonism lowbrow art magic realism

Mechanistic
Cubism

muralism Naturalism Neo-Baroque neo-figurative art

neo-rococo New European
Painting

Northern
Renaissance

outsider art photo

photorealism pop art poster art realism Proto-Renaissance realism

rococo shin-hanga socialist realism Suprematism symbolism

synthetism Tonalism ukiyo-e

Figure 5.4: The People-Art dataset (Westlake, Cai and Hall, 2016)
contains images from 43 different depictive styles: here is
one example for every depictive style.
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Cai and Hall (2016) have observed that artwork, in general, ex-
hibits a wider variety of poses than photos. Figure 5.7 shows
examples of images with different poses.

overlapping, occluded and truncated people This occurs in art-
work as in photos, and perhaps to a greater extent. Figure 5.8
shows some examples.

5.1 Methodology

I use the same architecture as the “Fast Region-based Convolutional
Network” method (Fast R-CNN) (Girshick, 2015), which represented
a state-of-the-art object detector in 2015. Fast R-CNN is built upon
a modified version of the Caffe library (Jia et al., 2014). A CNN using
this architecture has two inputs: an image and a set of class-agnostic
rectangular region proposals. The region proposals are a large number
of rectangular regions, all with horizontal and vertical sides, which are
the output of another algorithm.
There are many algorithms for generating region proposals. All

experiments in this chapter use selective search (Uijlings et al., 2013)
with the default configuration. The number of regions produced for
a single image is large, however much smaller than the number of all
possible regions for an image. Figure 5.9 shows an example of the
many regions generated by selective search on an image: only 1 in 10
are shown for clarity.

The first stage of the CNN consists of convolutional layers, recti-
fied linear units (ReLUs) (Krizhevsky, Sutskever and Hinton, 2012;
Nair and Hinton, 2010), max-pooling layers, and, in some cases, local
response normalisation (LRN) layers (Krizhevsky, Sutskever and Hin-
ton, 2012) (see (2.5)). This stage operates on the entire image (having
been resized to a more consistent size while preserving aspect ratio).
The region proposals enter the CNN only at the final pooling layer of
this stage. This final layer is a region of interest (ROI) pooling layer
which is novel to Fast R-CNN: as well as the input from the previous
convolutional or ReLU layer, this layer receives another input, a region
proposal or ROI; the output is a fixed-length feature vector formed
by max-pooling of the convolutional stage features. (See Figure 5.22
for a comparison of the ROI pooling layer compared to an ordinary
max-pooling layer.)
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Figure 5.5: The People-Art dataset contains a range of denotational
styles, including acrylic paint, oil paint, ink, pencil and
sculpture.

Figure 5.6: The People-Art dataset contains a range of projective
styles including linear camera projection, orthogonal pro-
jection, Cubism and child-like art.
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Figure 5.7: The People-Art dataset contains a range of poses, perhaps
a wider variety compared to photos.

Figure 5.8: The People-Art dataset contains images with overlapping,
occluded or truncated people
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Figure 5.9: Region proposals (blue) generated by selective
search (Uijlings et al., 2013) on “Hockey” by Hiro
Yamagata
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In order to preserve information about the global structure of the
ROI, i.e. at a scale within an order of magnitude of the ROI size, the
max-pooling happens over a uniformly spaced rectangular grid, size
H × W . As a result, the layer outputs feature vector with CHW
dimensions where C is the number of channels of the previous convo-
lutional layer.
The input of the second stage of the CNN, which is fully connected,

is the CHW–dimensional feature vector. This stage consists of inner
product and ReLU layers, as well as dropout layers (training only)
which are aimed at preventing overfitting (Srivastava et al., 2014).
The output for each class is a score and a set of four co-ordinates which
indicate the bounding box coordinates relative to the ROI, providing
an adjustment to the bounding box proposal. In the original CNN
architecture, the final layer outputs a score over many classes, as well
as a bounding box prediction. Hence, for the experiments of this
chapter, I modify the final layer of any imported CNN architecture to

ImageNet

C1

C2

C3 C4 C5 FC6
FC7

1000 class softmax

People-Art

C1

C2

C3 C4 C5

ROI
pooling

FC6
FC7

two class softmax

bbox regressor

Transfer Fine tune Learn from
random

Figure 5.10: The CNNs use a network pre-trained on ImageNet and
fine-tuned on the People-Art dataset (training and valid-
ation sets): I fix the weights for the first F layers, selected
by validation.
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output a score and bounding box prediction for only one class: person.
The approach used for training the CNN is identical to that of

Fast R-CNN, save where expressly stated. This involves the use of
stochastic gradient descent (SGD) with momentum (Krizhevsky, Sut-
skever and Hinton, 2012) and uses networks initialised with weights
from the pre-trained models. All experiments in this chapter use CNN
models pre-trained on ImageNet (Deng et al., 2009; Krizhevsky, Sut-
skever and Hinton, 2012).

Both CaffeNet and VGG1024 have five convolutional layers and
LRN layers and vary slightly: in particular VGG1024 has more weights
and channels. VGG16 is much a larger network, with thirteen convolu-
tional layers and no LRN layers. Except for the number of dimensions,
all three networks have the same ROI pooling layer and fully connec-
ted network structure: each CNN’s fully connected network structure
consists of two inner product layers, each followed by ReLU and dro-
pout layers (training only). Table 5.2 summarises the networks, as
well indicating the number of filters or outputs in each level.

I fine-tune the models (pre-trained on ImageNet) using the People-
Art dataset (training and validation sets). I test three different mod-
els:

CaffeNet a reproduction of AlexNet (Krizhevsky, Sutskever and Hin-
ton, 2012) with some minor changes

VGG1024 Oxford Visual Geometry Group (VGG)’s “CNN M 1024”
(VGG1024) (Chatfield, Simonyan et al., 2014)

VGG16 Oxford VGG’s “Net D” (Simonyan and Zisserman, 2015)

All CNN models are unchanged from Girshick 2015, save for chan-
ging the number of class output to one plus the background class,
and where expressly stated in the next section or for an individual
experiments. The original implementation and models pre-trained on
ImageNet can be found online at https://github.com/rbgirshick/fast-
rcnn. The implementation of selective search is not bundled and can
be found online at http://disi.unitn.it/~uijlings/MyHomepage/index.
php. I use the default settings for selective search in all cases.

5.1.1 Fine turning the CNNs

In order to fine-tune the CNN, the experiments involve fixing the
weights of the first F convolutional layers to those in the pre-trained
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num. layers (num. filters/outputs for each)

CNN convolutional fully connected LRN

AlexNet 5 (96, 256, 384, 384, 256) 2 (4096, 4096) Yes
VGG1024 5 (96, 256, 512, 512, 512) 2 (4096, 1024) Yes
VGG16 13 (64, 64, 128, 128, 256, 256, 2 (4096, 4096) No

256, 512, 512, 512, 512, 512, 512)

Table 5.2: The structure of the CNNs including the number of con-
volutional and fully connected layers, the number of filters
or outputs each layer has and whether or not the network
uses LRN

ImageNet model; this parameter is selected by validation. This is
achieved by setting the learning rate of these convolutional layers to
zero, such that the SGD does not change the weights. Figure 5.10
shows the network architecture in detail.

Before fine-tuning the parameters (weights and biases) of the net-
work are set to those in the models pre-trained on ImageNet, for
all layers except the final inner product layers. Since the final inner
product layer has a different size output as the experiments involve the
detection of only one class, people, I initialise the weights for this layer
using random Gaussian initialisation with zero mean and a standard
deviation of 0.01 (person vs not person classification) or 0.001 (bound-
ing box prediction); I initialise the all biases to zero. These values are
identical to those of Fast R-CNN. In addition, the experiments involve
different criteria for the region proposals to use as training ROI in the
fine-tuning, as detailed in Section 5.2.2.
In Fast R-CNN, the authors train for 30 000 iterations with a learn-

ing rate of 0.001, reduce the learning rate to 0.0001, and then train
for another 10 000 iterations. I do the same for the fine-tuning, except
that I train for 20 000 iterations, which was found to yield a slight
performance improvement on the validation set.

5.2 Experiments

I test the performance of the approach on two different datasets, the
People-Art dataset and the Picasso Dataset, with fine-tuning and val-
idation performed on People-Art. The benchmark for both valida-
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1.0 IoU 0.5 IoU 0.5 IoU 0.0 IoU

Figure 5.11: Examples of intersection over union values: the red
bounding box represents the bounding box produced by
an object detector; the ground truth bounding box is
equal to the bounding box of the left most stick figure

tion and testing is average precision (AP), calculated using the same
method as the PASCAL VOC detection task (Everingham and Winn,
2007). A positive detection is one whose intersection over union (IoU)
overlap with a ground truth bounding box is greater than 50%; du-
plicate detections are considered false positives. Annotations marked
as difficult are excluded.

5.2.1 Intersection over Union (IOU)

The intersection over union (IoU), in Computer vision, is a measure
of how close an object detection, with a bounding box, reflects the
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ROI IoU

CNN configuration neg pos F AP

CaffeNet default [0.1, 0.5) ≥ 0.5 2 33.7%
CaffeNet gap [0.1, 0.4) ≥ 0.6 2 33.5%
CaffeNet all-neg [0.0,0.5) ≥ 0.5 0 42.5%
CaffeNet gap + all-neg [0.0, 0.4) ≥ 0.6 1 42.2%

VGG1024 default [0.1, 0.5) ≥ 0.5 1 38.4%
VGG1024 gap [0.1, 0.4) ≥ 0.6 3 35.8%
VGG1024 all-neg [0.0,0.5) ≥ 0.5 1 42.6%
VGG1024 gap + all-neg [0.0, 0.4) ≥ 0.6 1 42.0%

VGG16 default [0.1, 0.5) ≥ 0.5 1 43.9%
VGG16 gap [0.1, 0.4) ≥ 0.6 2 39.0%
VGG16 all-neg [0.0, 0.5) ≥ 0.5 3 50.0%
VGG16 gap + all-neg [0.0,0.4) ≥ 0.6 3 50.1%

Table 5.3: Validation performance using different criteria for positive
and negative ROI using CNNs pre-trained on ImageNet,
fine-tuned on the People-Art training set and then evalu-
ated on the People-Art validation set; the best configura-
tion for each CNN is in bold.

ground truth (GT) and is defined as follows:

IoU =
Intersection of detection and GT bounding box area

Union of detection and GT bounding box area
(5.1)

Figure 5.11 shows examples of different IoU values.

5.2.2 Hyper-parameter Selection

I optimised performance on the People-Art validation set by modifying
the hyper-parameters used for selecting which ROIs to use in training
the CNN and the number of layers to fix, F .

Although the experiments rely on the default selective search set-
tings to generate region proposals, I experimented with different cri-
teria to specify which region proposals to use in training. The default
configuration of Fast-RCNN (Girshick, 2015) defines positive ROIs to
be region proposals whose IoU overlap with a ground truth bounding
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box is at least 0.5, and defines negative ROI to be those whose overlap
lies in the interval [0.1, 0.5). The cutoff between positive and negat-
ive ROI matches the definition of positive detection according the
VOC detection task (Everingham and Winn, 2007). Girshick (2015)
states that the lower cut-off (0.1) for negative ROI appears to act as
a heuristic to mine hard examples, inspired by the approach used in
DPM (Felzenszwalb, Girshick et al., 2010).
I experimented with two alternative configurations for selecting

ROIs:

gap Discard ROIs whose IoU overlap with a ground truth bounding
box lies in the interval, [0.4, 0.6): this follows the hypothesis that
ROIs lying in this interval are ambiguous and impede training
performance.

all-neg Remove the lower bound for negative ROI used in training:
this is based on the hypothesis that this improves performance
for two reasons:
1. This results in the inclusion of ROIs containing classes

which appear similar to people, for example animals with
faces, to serve as negative examples.

2. This permits the inclusion of more artwork examples, for
example images without any people present. This may
ameliorate the CNN’s ability to discern between people and
features resulting from a particular depiction style.

The validation procedure optimises performance for each ROI con-
figuration by selecting, F , the number of convolutional layers to fix to
the weights obtained from the ImageNet pre-training. Table 5.3 shows
the validation performance for the different criteria, i.e. performance
on the validation set after fine-tuning on the People-Art training set.
Removing the lower bound on negative ROI (all-neg) results in a sig-
nificant increase in performance, the highest increase to AP being
around nine percentage points. Therefore, it appears that what is not
a person is as important as what is a person for fine-tuning. Dis-
carding ROI with an IoU overlap in the interval [0.4, 0.6) (gap) yields
mixed results: it was marginally beneficial in one case and detrimental
in all others.
The optimal number of convolutional layers for which to fix weights

to the pre-trained model, F , varies across the different training config-
urations, even for the same CNN. The variation in performance could
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datasets

method pre-train fine tuning AP

Fast R-CNN (CaffeNet) ImageNet People-Art (train+val) 46%
Fast R-CNN (VGG1024) ImageNet People-Art (train+val) 51%
Fast R-CNN (VGG16) ImageNet People-Art (train+val) 59%

Fast R-CNN (CaffeNet) ImageNet VOC 2007 36%
Fast R-CNN (VGG1024) ImageNet VOC 2007 36%
Fast R-CNN (VGG16) ImageNet VOC 2007 43%

DPM People-Art N/A 33%
YOLO ImageNet VOC 2010 45%

Table 5.4: Performance of different methods on the test set of the
People-Art dataset: the best performance is achieved using
a CNN (Fast R-CNN) fine-tuned on People-Art

be explained by stochastic variation caused by the use of SGD. The
performance falls rapidly for F ≥ 5; leading to the conclusion that
the first three or four convolutional layers transfer well from photos to
artwork. Fine-tuning these layers yields no significant improvement
nor detriment in performance. In this respect, the experiments show
similar results to Yosinski et al. (2014) for this task: i.e. the first three
or four convolutional layers are more transferable than later layers, in
this case from photos to artwork.
All later experiments, including the performance benchmarks, use

the configuration which maximises performance on the validation set
(bold in Table 5.3) and use CNNs re-trained (fine-tuned) on the com-
bination of the training and the validation set.

5.2.3 Performance Benchmarks on the People-Art
Dataset

Table 5.4 shows how each CNN model and other methods perform
on the People-Art test set. The best performing CNN, VGG16, scores
59% AP, an improvement of 14 percentage points on the best previous
result of 45% with “You Only Look Once” (YOLO) (Redmon et al.,
2016). It is difficult to conceptualise average precision as a metric, as
it is an average value of precision over different recall values (the full
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range from 0% to 100%). However, an increase in precision from 45%
to 59% at 50% recall (544 bounding boxes out of 1088 bounding boxes
detected) would correspond to a reduction in false positive bounding
boxes from 665 to 377: a significant reduction.
The results demonstrate the benefits of fine-tuning the CNN on

(the training and validation sets of) People-Art for the task. It is
clear that training and fine-tuning a CNN on photos yields a model
which overfits and does not generalise to detection in images of other
depictive styles.
As noted in Section 5.1, Fast R-CNN (unlike YOLO) relies on an

external algorithm, here selective search (Uijlings et al., 2013), to gen-
erate region proposals. The experiments here used the default settings,
which are tuned to photos. Selective search achieves a recall rate of
98% on the People-Art test set. Consequently, the use of selective
search does not appear to be a limiting factor for the performance.
I attempted to fine-tune YOLO (Redmon et al., 2016) on People-

Art. The default configuration results in an exploding gradient, per-
haps due to the sparsity of regions containing objects (only people
in this case) compared to other datasets. I expect that a brute-force
search over the parameters or heuristic may solve this problem.

5.2.4 Detection Performance on People-Art

I used the tools of Hoiem, Chodpathumwan and Dai (2012) to analyse
the detection performance of the best performing CNN. Since there
is only a single class (person), detections are classed into three types
based on their IoU with a ground truth labelling:

Cor correct (true positives) i.e. IoU ≥ 0.5

Loc false positive caused by poor localisation, 0.1 ≤ IoU < 0.5

BG false positive caused by a background region, IoU < 0.1

Figure 5.12 shows the detection trend: the proportion of detection
types as the number of detections increases, i.e. from reducing the
threshold. At higher thresholds, the majority of incorrect detections
are caused by poor localisation; at lower thresholds, background re-
gions dominate. In total, there are 1088 people labelled in the test set
which are not labelled difficult. The graph in Figure 5.12 shows a grey
dashed line corresponding to this number of detections and a separate
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Figure 5.12: Left: The proportion of detections by type as the
threshold decreases: either correct, a background region
(BG) or poor localisation (LOC); right: the proportion
of detections by types for 1088 detections (the correct
number of people) marked as a grey dashed line on the
left plot

pie chart for this threshold. This threshold is significant: with perfect
detection, there would be no false positives or false negatives at this
point. This shows that poor localisation is the bigger cause of false
positives, though only slightly more so than background regions.

Figures 5.13 and 5.14 show some of the correct positive detections.
Figure 5.15 shows some of the false positives caused by background
regions. Some are caused by mammals which is understandable given
these, like people, have faces and bodies. Others detections have less
clear causes. Figure 5.16 shows some of the false positives caused by
poor localisation. In some of the cases, the poor localisation is caused
by the presence of more than one person, which leads to the bounding
box covering multiple people. In other cases, the bounding box does
not cover the full extent of the person, i.e. it truncates limbs or the
lower torso. I believe that this shows the extent to which the range of
poses makes detecting people in artwork a challenging problem.

5.2.5 Performance on the Picasso Dataset

In addition to the results on People-Art, I show results on the Picasso
Dataset (Ginosar et al., 2014). Table 5.5 shows how each CNN and
other methods perform. Figures 5.17–5.20 show some of the successful
detections and false positive detections on this dataset. While the
CNN performs well on a range of complicated artwork, it suffers from
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Figure 5.13: Successful detections (People-Art dataset) showing the
cropped detections, when using the best performing CNN
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Figure 5.14: Successful detections (People-Art dataset) showing the
images with bounding box superimposed, when using the
best performing CNN
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Figure 5.15: False positive detections on background regions (People-
Art dataset) from the best performing CNN; top two
rows: cropped detections; bottom three rows: original
images with bounding box superimposed
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Figure 5.16: False positive detections due to poor localisation (People-
Art dataset) from the best performing CNN

method training fine tuning AP

Fast R-CNN (CaffeNet) ImageNet People-Art 45%
Fast R-CNN (VGG1024) ImageNet People-Art 44%
Fast R-CNN (VGG16) ImageNet People-Art 44%

Fast R-CNN (CaffeNet) ImageNet VOC 2007 29%
Fast R-CNN (VGG1024) ImageNet VOC 2007 37%
Fast R-CNN (VGG16) ImageNet VOC 2007 33%

DPM VOC 2007 N/A 38%
YOLO ImageNet VOC 2012 53%

Table 5.5: Performance of different methods on the Picasso dataset

similar issues as before, in particular truncating people or mistaking
many people for a single person.
Figure 5.21 shows some patches centred on high scoring locations

in the images, one for each of the thirty-five channels with the highest
mean response prior to the ROI pooling layer. These are obtained us-
ing unsupervised part learning approach of Simon and Rodner (2015)
using the best performing CNN, CaffeNet. Often the CNN detects
part of a face or limb, while in other times the CNN confuses other
patterns in the image.

As before, each CNN performed better if it was fine-tuned on People-
Art rather than VOC 2007 ; moreover, DPM performs better than
CNNs fine-tuned on VOC 2007 but worse than those fine-tuned on

251



5 Detecting People in Artwork with CNNs

Figure 5.17: Successful detections (Picasso dataset) showing the
cropped detections, when using the best performing CNN
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Figure 5.18: Successful detections (Picasso dataset) showing the im-
ages with bounding box superimposed, when using the
best performing CNN
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5 Detecting People in Artwork with CNNs

Figure 5.19: False positive detections on background regions (Picasso
dataset) from the best performing CNN; top two rows:
cropped detections; bottom two rows: original images
with bounding box superimposed
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Figure 5.20: False positive detections due to poor localisation (Picasso
dataset) from VGG16

People-Art. This confirms the earlier findings: CNNs fine-tuned on
photos alone overfit to photos. In addition, this shows that fine-tuning
on People-Art results in a model which is not just better for People-
Art but additionally better for a dataset also containing artwork but
on which the CNN was not fine-tuned.
Interestingly, the best performing CNN is the smallest (CaffeNet),

suggesting that the CNNs may still be overfitting to less abstract art-
work (from fine-tuning on People-Art, for which Cubist paintings are
but a small subset) and a simpler CNN generalises better. Further-
more, the best performing method is YOLO despite being fine-tuned
on photos (VOC 2012 ). Selective search achieved a recall rate of 99%
on the Picasso Dataset, so this is unlikely to be the reason that Fast
R-CNN performs worse than YOLO. I therefore believe that YOLO’s
design is more robust to abstract forms of art.

5.2.6 Importance of Global Structure

Earlier work (Wu, Cai and Hall, 2014; B. Xiao, Song et al., 2008; B.
Xiao, Yi-Zhe and Hall, 2011) suggests that structure is invariant across
depictive styles, and is therefore useful for cross-depiction detection.
As described in Section 5.1, Fast R-CNN includes an ROI pooling
layer, which carries out max-pooling over an H×W uniformly spaced
rectangular grid. Therefore, the ROI pooling layer captures the global
structure of the person, while earlier convolutional layers only pick up
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Figure 5.21: Patches at the higher scoring locations in the Picasso
Dataset: one for each of the thirty-five channels with the
highest mean response prior to the ROI pooling layer
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Figure 5.22: Two max-pooling layers and their resulting feature vec-
tors from a two channel input image; top: an ROI pooling
layer takes the maximum for each channel in each cell of
an ROI (blue grid) resulting in an 8 dimensional vector;
Right: a global max-pooling layer simply takes the max-
imum yielding a 2 dimensional vector
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fine tuning People-Art VOC 2007

ROI pooling default single cell default

CaffeNet 46% 34% 36%
VGG1024 51% 35% 36%
VGG16 59% 40% 43%

Table 5.6: Replacing the ROI pooling layer (default) with a single cell
max-pooling layer yields a performance drop greater than
not fine-tuning on People-Art

the local structure.
In order to examine what effect the ROI pooling layer and the global

structure which it captures has on detection performance on artwork, I
replaced the ROI pooling layer replaced with a single cell max-pooling
layer. This is equivalent to setting W = 1 and H = 1 for the ROI
pooling layer (see Figure 5.22). This is similar to bag-of-words (BoW)
algorithms (see Section 2.2.1.3): withW = H = 1, the fully connected
layers have no information about the location the previous layer’s
output. The CNN is fine-tuned as before.
Table 5.6 shows the results. In all cases, replacing the default ROI

pooling layer with a single cell max-pooling layer results in worse
performance. On top of this, the performance is worse than when fine-
tuned on VOC 2007 with the default configuration. This supports
the claim of the earlier work, i.e. that structure is invariant across
depictive styles and necessary for high performance.

5.2.7 Generalisation Performance

Section 5.2.3 demonstrated that fine-tuning on the People-Art dataset
rather than PASCAL VOC 2007 resulted in better performance on the
People-Art dataset. An interesting result is the reverse: fine-tuning on
the People-Art data and then testing on PASCAL VOC 2007. Given
People-Art contains photos (from PASCAL VOC 2012), this is not a
domain adaptation task, but rather the ability of the CNNs to learn
a model which performs better on artwork without performing worse
on photos.
Table 5.7 contains the results of this task, as well as other results for
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datasets AP

fine tuning test CaffeNet VGG1024 VGG16

VOC2007 VOC2007 57% 60% 66%
People-art VOC2007 42% 48% 52%

VOC2007 People-art 36% 36% 43%
People-art People-art 46% 51% 59%

Table 5.7: Performance of the CNNs on the People-Art and VOC2007
datasets when fine-tuned on each

comparison. Just as there is a performance drop on People-Art when
fine-tuned on PASCAL VOC 2007, so there is also a performance drop
on PASCAL VOC 2007 when fine-tuned on the People-Art dataset.
In the case of VGG16, the AP drops from 66% to 52%, a drop of 14
percentage points. This demonstrates that these CNNs are not able
to generalise to both photos and artwork, even when fine-tuned on
People-Art which includes both photos and artwork.

5.3 Conclusion

As demonstrated by the performance on the People-Art dataset, de-
tecting people across many depictive styles is challenging. The results
show that a CNN trained on photos alone overfits to photos, while
fine-tuning on other depictive styles allows the CNN to better gener-
alise to other depictive styles. These findings also apply to the Picasso
dataset and so are not limited to a single dataset. In addition, the
validation results demonstrate the importance of using negative ex-
emplars from artwork with no overlap with a person bounding box,
rather than only those with at least a small overlap.
Nevertheless, the performance on the People-Art dataset, though

the best so far, is still less than 60% AP. The CNN often mistakes
other mammals for people and makes other spurious detections. It
often fails to localise people correctly, by either truncating them or
mistaking multiple people for a single person. Further work is required
to address these issues.
In addition, the People-Art dataset only covers a subset of possible

images containing people. It does not include African, Babylonian,
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Figure 5.23: Examples of depictive styles not included in the People-
Art dataset
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Chinese or Egyptian art, the Bayeux Tapestry, stained glass windows,
photos of sculptures and all kinds of other possibilities (see Figure 5.23
for some examples). Therefore, the experiments are only beginning to
examine the cross-depiction problem, which provides a huge scope for
further research.
Furthermore, just as every CNN fine tuned on the PASCAL VOC

2007 dataset performed worse on the People-Art dataset, so every
CNN fine tuned on People-Art performed worse on PASCAL VOC
2007. While the first is perhaps understandable, the People-Art data-
set includes a selection of photos from PASCAL VOC2012, therefore
it is not unreasonable to expect the CNNs to maintain its perform-
ance on photos after fine-tuning. It is evident that even the best
CNN model cannot simultaneously perform well on photos and art-
work. This also suggests that invariance occurs at too low a level: the
CNN is unable to learn an abstraction for people at a high enough
level to handle the variety across artwork and achieve human levels of
detection.

Finally, the results demonstrated the importance of global structure
for object detection. However, even the best performing CNN often
results in poor localisation, especially when more than one person
is in close proximity. This suggests that the CNN has a weak and
unreliable model of the structure of a person. As a result, it is often
unable to correctly identify how many people are present and what
their bounds are.
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6 Conclusion

Throughout this dissertation, I have shown that the same thing often
looks very different. I began with the task of interest-point matching:
matching interest-points between different photos, based on them be-
ing the same feature in 3D. In this case, the issues were limited to
changes in viewpoint, variations in lighting, occlusion and other arte-
facts such as blur and compression. Nevertheless, the task remained
challenging.

In Chapters 3 and 4, I set out to prove the following thesis:

A local descriptor can be optimised per interest-point rather
than globally to improve matching accuracy.

In Chapter 3, I presented a technique for replacing the low level spatial
pooling operation, applied globally across all interest-points, with an
interest-point specific low level pooling operation, based on geometric
blur. In Chapter 4, I presented a technique for learning an interest-
point specific descriptor by learning weights over a number of base-
descriptors for each interest-point. Both of these techniques resulted
in an increase in matching accuracy, thereby proving the thesis.
Next, I presented the task of detecting people in artwork. There

are huge differences between instances of people, even in photos alone,
due to variations which include pose, body shape, body features, hair-
style and clothes. This variation is aggravated and the challenge is
even greater with artwork, as the number of depictive styles increases:
people are painted or drawn using many different styles of brush stroke
and media and in different projections, especially ad-hoc projections
such as in Cubist art.

In Chapter 5, I set out to prove the following thesis:

It is not yet possible to train or tune state-of-the-art object
detectors to simultaneously perform optimally on artwork
and photos.

I demonstrated that a convolutional neural network (CNN) trained on
photos alone overfits to photos, while fine-tuning on artwork allows

263



6 Conclusion

the CNN to perform better at detecting people in artwork. However,
performance on photos falls as a result, even though the images used
for fine-tuning includes photos in addition to artwork. This proves
the second thesis.
All the work that I have presented follows a similar theme: the

need be invariant to variation which does not prevent two interest-
points from matching or an object being a person, without losing
discriminative ability and causing false positives. While the techniques
I presented improved performance, the performance still falls short
of human performance, suggesting that the techniques are far from
reaching the “right” invariance.

Furthermore, none of the technique resulted in a universal benefit.
In the case of Chapters 3 and 4, the new techniques were better on
average but were not better on all image sequences: there was no
universal improvement. In addition, fine-tuning the best performing
CNN on a dataset containing both photos and artwork resulted in a
performance drop on a dataset containing only photos. This supports
my proposition:

The invariance of state-of-the-art algorithms is at too low
a level for generalised interest-point matching and gener-
alised object detection.

This proposition provides scope for further work: developing algorithms
with invariance at a higher level.

6.1 Further Work

The approach used in Chapter 3 involves using synthetic warps of
the images to estimate the distribution over the appearance of corres-
ponding interest-points in other images. However, the performance
is limited because of the strong assumptions implied by the warping
operation. The approach in Chapter 4 involves combining a number
of base-descriptors into an optimal descriptor based on multiple pos-
itives and negative exemplars. However, the performance is limited
because of the strong assumptions implied by the base-descriptors.
Both of these approaches involve applying different spatial pooling

to low level features, modifying the spatial pooling for each interest-
point, to achieve invariance. However, for each image in an image
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sequence, a human is able to obtain a semantic understanding, identi-
fying individual objects such as windows and columns, as well as es-
timating the 3D geometry of the scene. Using this information, if a
Computer vision algorithm could obtain it, would provide a better
indicator of how to match each interest-point individually.
Furthermore, if matching occurred at the semantic level, e.g. match-

ing window to window and column to column, prior to determining
whether the two scenes match, the matching performance would be
improved. Likewise, the semantic information gives a clue as to likely
future presence of parts of an image: in particular, the presence and
appearance of buildings tends to remain the same for much longer
than people and vehicles. I therefore propose, as further work, invest-
igation into using state-of-the-art deep learning methods to obtain a
semantic understanding of the scene and incorporating this into the
interest-point matching framework.

Chapter 5 demonstrated that the best performing algorithm was
unable to generalise so as to simultaneously perform optimally on
photos and artwork. Other issues included poor localisation of people
and spurious detections. These results and other work demonstrate
the importance of structure for cross-depiction however the poor loc-
alisation suggests that the modelling of structure in the algorithms is
unsatisfactory.

One solution, inspired by Wu, Cai and Hall (2014), might be to
use deep learning with graph structures such as K. Cho et al. (2014),
Chung et al. (2014), Li et al. (2015) and Scarselli et al. (2009). How-
ever, the critical issue appears to be the inability learn the actual
structure, end-to-end, from only bounding boxes, which makes the
algorithms in their current forms unsuitable. It appears that there is
not yet a satisfactory way to learn parts reliably in an unsupervised
matter, a limitation of Felzenszwalb, Girshick et al. (2010), Simon and
Rodner (2015) and Wu, Cai and Hall (2014). Addressing this issue
provides scope for further work.

An alternative may be to take advantage of body part labelling data-
sets such as the MPII Human Pose dataset (Andriluka et al., 2014)
and seek to modify existing algorithms (Cao et al., 2017; Insafutdinov
et al., 2016) to detect body parts in artwork without any additional
part-based labelling. It would appear that humans are able to identify
individual body parts in artwork, including Cubism and sketches from
an early age without being specifically taught. They can use know-
ledge learnt from seeing the world with their own eyes to interpret
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artwork. Achieving this ability with Computer Vision algorithms, on
par with humans, would be a triumph of machine learning and artifi-
cial intelligence.
Another issue appears to be handling the lack of body parts in

images: sometimes only the face or upper torso is present and some-
times parts of the body are occluded. A similar issue was handled
for bag-of-word models, e.g. by the Pyramid Match Kernel (PMK) of
Grauman and Darrell (2005). It is clear that the CNN model has a
limited ability to overcome lack of body parts. However this ability
is insufficient, resulting in the algorithm often truncating part of the
body in detections. The presence or lack of certain parts would fit
in naturally with better structural modelling, as proposed earlier for
further work.

Finally, the presence of false positives caused by other mammals
and miscellaneous objects on the People-Art dataset suggests that an
algorithm would benefit from using knowledge of such objects learnt
from photos. This is challenging if they are not labelled individually,
however the use of an extra classifier stage, as in Yang et al. (2016)
could help address this issue.
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