35,268 research outputs found

    Case Tomtom/Teleatlas

    Get PDF

    Evaluating the effectiveness of physical shape-change for in-pocket mobile device notifications

    Get PDF
    Audio and vibrotactile output are the standard mechanisms mobile devices use to attract their owner's attention. Yet in busy and noisy environments, or when the user is physically active, these channels sometimes fail. Recent work has explored the use of physical shape-change as an additional method for conveying notifications when the device is in-hand or viewable. However, we do not yet understand the effectiveness of physical shape-change as a method for communicating in-pocket notifications. This paper presents three robustly implemented, mobile-device sized shape-changing devices, and two user studies to evaluate their effectiveness at conveying notifications. The studies reveal that (1) different types and configurations of shape-change convey different levels of urgency and; (2) fast pulsing shape-changing notifications are missed less often and recognised more quickly than the standard slower vibration pulse rates of a mobile device

    The Remarkable Place of the UV-Curve in Economic Theory

    Get PDF
    The purpose of this paper is to provide an analysis of the impact the UV-curve had on economic theory and to provide an account of the subsequent radical changes in its place and role over the decades since its first appearance in 1958. The paper traces the historical development of the UV-curve and argues that the role of the UV-curve has changed from a measuring device to a graphical representation of full employment to an axiom necessary for matching models of unemployment. This changing role is best understood in the light of a paradigmatic change from Keynesianism to neoclassical search theory.UV-curve, Beveridge-curve, Theories of Unemployment, UV-analysis, Matching models, History of Economic Thought

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ”elder monitoring and emergency detection” solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed

    After the Gold Rush: The Boom of the Internet of Things, and the Busts of Data-Security and Privacy

    Get PDF
    This Article addresses the impact that the lack of oversight of the Internet of Things has on digital privacy. While the Internet of Things is but one vehicle for technological innovation, it has created a broad glimpse into domestic life, thus triggering several privacy issues that the law is attempting to keep pace with. What the Internet of Things can reveal is beyond the control of the individual, as it collects information about every practical aspect of an individual’s life, and provides essentially unfettered access into the mind of its users. This Article proposes that the federal government and the state governments bend toward consumer protection while creating a cogent and predictable body of law surrounding the Internet of Things. Through privacy-by-design or self-help, it is imperative that the Internet of Things—and any of its unforeseen progeny—develop with an eye toward safeguarding individual privacy while allowing technological development

    LineFORM: Actuated Curve Interfaces for Display, Interaction, and Constraint

    Get PDF
    In this paper we explore the design space of actuated curve interfaces, a novel class of shape changing-interfaces. Physical curves have several interesting characteristics from the perspective of interaction design: they have a variety of inherent affordances; they can easily represent abstract data; and they can act as constraints, boundaries, or borderlines. By utilizing such aspects of lines and curves, together with the added capability of shape-change, new possibilities for display, interaction and body constraint are possible. In order to investigate these possibilities we have implemented two actuated curve interfaces at different scales. LineFORM, our implementation, inspired by serpentine robotics, is comprised of a series chain of 1DOF servo motors with integrated sensors for direct manipulation. To motivate this work we present various applications such as shape changing cords, mobiles, body constraints, and data manipulation tools
    corecore