3,120 research outputs found

    Word contexts enhance the neural representation of individual letters in early visual cortex

    No full text
    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions

    Use of Key Points and Transfer Learning Techniques in Recognition of Handedness Indian Sign Language

    Get PDF
    The most expressive way of communication for individuals who have trouble speaking or hearing is sign language. Normal people are unable to comprehend sign language. As a result, communication barriers are put up. Majority of people are right-handed. Statistics say that, an average population of left-handed person in the world is about 10%, where they use left hand as their dominating hand. In case of hand written text recognition, if the text is written by left-handed or right-handed person, then there would not be any problem in recognition neither for human and nor for computer. But same thing is not true for sign language and its detection using computer. When the detection is performed using computer vision and if it falls into the category of detection by appearance, then it might not detect correctly. In machine and deep learning, if the model is trained using just one dominating hand, let’s say right hand, then the predictions can go wrong if same sign is performed by left-handed person. This paper addresses this issue. It takes into account the signs performed by any type of signer: left-handed, right-handed or ambidexter. In proposed work is on Indian Sign Language (ISL). Two models are trained: Model I, is trained on one dominating hand and Model II, is trained on both the hands. Model II gives correct predictions regardless of any type of signer. It recognizes alphabets and numbers in ISL. We used the concept of Key points and Transfer Learning techniques for implementation. Using this approach, models get trained quickly and we could achieve validation accuracy of 99%

    3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described

    Visual Information Retrieval in Digital Libraries

    Get PDF
    The emergence of information highways and multimedia computing has resulted in redefining the concept of libraries. It is widely believed that in the next few years, a significant portion of information in libraries will be in the form of multimedia electronic documents. Many approaches are being proposed for storing, retrieving, assimilating, harvesting, and prospecting information from these multimedia documents. Digital libraries are expected to allow users to access information independent of the locations and types of data sources and will provide a unified picture of information. In this paper, we discuss requirements of these emerging information systems and present query methods and data models for these systems. Finally, we briefly present a few examples of approaches that provide a preview of how things will be done in the digital libraries in the near future.published or submitted for publicatio

    The Inferior Temporal Numeral Area distinguishes numerals from other character categories during passive viewing: A representational similarity analysis

    Get PDF
    A region in the posterior inferior temporal gyrus (pITG) is thought to be specialized for processing Arabic numerals, but fMRI studies that compared passive viewing of numerals to other character types (e.g., letters and novel characters) have not found evidence of numeral preference in the pITG. However, recent studies showed that the engagement of the pITG is modulated by attention and task contexts, suggesting that passive viewing paradigms may be ill-suited for examining numeral specialization in the pITG. It is possible, however, that even if the strengths of responses to different category types are similar, the distributed response patterns (i.e., neural representations) in a candidate numeral-preferring pITG region ( pITG-numerals ) may reveal categorical distinctions, even during passive viewing. Using representational similarity analyses with three datasets that share the same task paradigm and stimulus sets (total N = 88), we tested whether the neural representations of digits, letters, and novel characters in pITG-numerals were organized according to visual form and/or conceptual categories (e.g., familiar versus novel, numbers versus others). Small-scale frequentist and Bayesian meta-analyses of our dataset-specific findings revealed that the organization of neural representations in pITG-numerals is unlikely to be described by differences in abstract shape, but can be described by a categorical digits versus letters distinction, or even a digits versus others distinction (suggesting greater numeral sensitivity). Evidence of greater numeral sensitivity during passive viewing suggest that pITG-numerals is likely part of a neural pathway that has been developed for automatic processing of objects with potential numerical relevance. Given that numerals and letters do not differ categorically in terms of shape, categorical distinction in pITG-numerals during passive viewing must reflect ontogenetic differentiation of symbol set representations based on repeated usage of numbers and letters in differing task contexts

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Introduction

    Get PDF

    The Book as Computer: A Numerical and Topological Analysis of Only Revolutions

    Get PDF
    oai:ojs.pkp.sfu.ca:article/3The novel Only Revolutions: The Democracy of Two Set Out & Chronologically Arranged (2006), by Mark Z. Danielewski, establishes a relationship between its bibliographic coding (i.e., its graphical and material form as a book made of letters, pages and openings with a specific typographic design), its linguistic coding (i.e., its phonetic, syntactic, semantic, and pragmatic form), and its narrative coding (i.e., its form as story). Only Revolutions uses the Möbius strip and the circle, in their multiple material and symbolic manifestations – including letter and number shapes – as the organizing principle of this triple universe of signs. Circularity and mirror symmetry function simultaneously as the structure of the book, the structure of language, and the structure of narrative. This article describes the book’s numerical and topological form as a mechanism for creating feedback loops between those structures

    SOME FORENSIC ASPECTS OF BALLISTIC IMAGING

    Get PDF
    Analysis of ballistics evidence (spent cartridge casings and bullets) has been a staple of forensic criminal investigation for almost a century. Computer-assisted databases of images of ballistics evidence have been used since the mid-1980s to help search for potential matches between pieces of evidence. In this article, we draw on the 2008 National Research Council Report Ballistic Imaging to assess the state of ballistic imaging technology. In particular, we discuss the feasibility of creating a national reference ballistic imaging database (RBID) from test-fires of all newly manufactured or imported firearms. A national RBID might aid in using crime scene ballistic evidence to generate investigative leads to a crime gun’s point of sale. We conclude that a national RBID is not feasible at this time, primarily because existing imaging methodologies have insufficient discriminatory power. We also examine the emerging technology of micro- stamping for forensic identification purposes: etching a known identifier on firearm or ammunition parts so that they can be directly read and recovered from crime scene evidence. Microstamping could provide a stronger basis for identification based on ballistic evidence than the status quo, but substantial further research is needed to thoroughly assess its practical viability
    • …
    corecore