5,300 research outputs found

    Shadow detection for vehicles by locating the object-shadow boundary

    Get PDF
    We introduce in this paper a shadow detection method for vehicles in traffic video sequences. Our method approximates the boundary between vehicles and their associated shadows by one or more straight lines. These lines are located in the image by exploiting both local information (e.g. statistics in intensity differences) and global information (e.g. principal edge directions). The proposed method does not assume a particular lighting condition, and requires no human interaction nor parameter training. Experiments on practical real-world traffic video sequences demonstrate that our method is simple, robust and efficient under traffic scenes with different lighting conditions. Accurate positioning of target vehicles is thus achieved even in the presence of cast shadows.postprin

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents

    Object's shadow removal with removal validation

    Get PDF
    We introduce in this paper, a shadow detection and removal method for moving objects especially for humans and vehicles. An effective method is presented for detecting and removing shadows from foreground figures. We assume that the foreground figures have been extracted from the input image by some background subtraction method. A figure may contain only one moving object with or without shadow. The homogeneity property of shadows is explored in a novel way for shadow detection and image division technique is used. The process is followed by filtering, removal, boundary removal and removal validation

    A new strategy of detecting traffic information based on traffic camera : modified inverse perspective mapping

    Get PDF
    The development of Intelligent Transportation Systems (ITS) needs high quality traffic information such as intersections, but conventional image-based traffic detection methods have difficulties with perspective and background noise, shadows and lighting transitions. In this paper, we propose a new traffic information detection method based on Modified Inverse Perspective Mapping (MIPM) to perform under these challenging conditions. In our proposed method, first the perspective is removed from the images using the Modified Inverse Perspective Mapping (MIPM); afterward, Hough transform is applied to extract structural information like road lines and lanes; then, Gaussian Mixture Models are used to generate the binary image. Meanwhile, to tackle shadow effect in car areas, we have applied a chromacity-base strategy. To evaluate the performance of the proposed method, we used several video sequences as benchmarks. These videos are captured in normal weather from a high way, and contain different types of locations and occlusions between cars. Our simulation results indicate that the proposed algorithms and frameworks are effective, robust and more accurate compared to other frameworks, especially in facing different kinds of occlusions

    A Proposal Concerning the Analysis of Shadows in Images by an Active Observer (Dissertation Proposal)

    Get PDF
    Shadows occur frequently in indoor scenes and outdoors on sunny days. Despite the information inherent in shadows about a scene\u27s geometry and lighting conditions, relatively little work in image understanding has addressed the important problem of recognizing shadows. This is an even more serious failing when one considers the problems shadows pose for many visual techniques such as object recognition and shape from shading. Shadows are difficult to identify because they cannot be infallibly recognized until a scene\u27s geometry and lighting are known. However, there are a number of cues which together strongly suggest the identification of a shadow. We present a list of these cues and methods which can be used by an active observer to detect shadows. By an active observer, we mean an observer that is not only mobile, but can extend a probe into its environment. The proposed approach should allow the extraction of shadows in real time. Furthermore, the identification of a shadow should improve with observing time. In order to be able to identify shadows without or prior to obtaining information about the arrangement of objects or information about the spectral properties of materials in the scene, we provide the observer with a probe with which to cast its own shadows. Any visible shadows cast by the probe can be easily identified because they will be new to the scene. These actively obtained shadows allow the observer to experimentally determine the number and location of light sources in the scene, to locate the cast shadows, and to gain information about the likely spectral changes due to shadows. We present a novel method for locating a light source and the surface on which a shadow is cast. It takes into account errors in imaging and image processing and, furthermore, it takes special advantage of the benefits of an active observer. The information gained from the probe is of particular importance in effectively using the various shadow cues. In the course of identifying shadows, we also present a new modification on an image segmentation algorithm. Our modification provides a general description of color images in terms of regions that is particularly amenable to the analysis of shadows

    Using Shadows to Detect Targets in Synthetic Aperture Radar Imagery

    Get PDF
    Synthetic Aperture Radar (SAR) can generate high resolution imagery of re- mote scenes by combining the phase information of multiple radar pulses along a given path. SAR based Intelligence, Surveillance, and Reconnaissance (ISR) has the advantage over optical ISR that it can provide usable imagery in adverse weather or nighttime conditions. Certain radar frequencies can even result in foliage or limited soil penetration, enabling imagery to be created of objects of interest that would otherwise be hidden from optical surveillance systems. This thesis demonstrates the capability of locating stationary targets of interest based on the locations of their shadows and the characteristics of pixel intensity distributions within the SAR imagery. Shadows, in SAR imagery, represent the absence of a detectable signal reflection due to the physical obstruction of the transmitted radar energy. An object\u27s shadow indicates its true geospatial location. This thesis demonstrates target detection based on shadow location using three types of target vehicles, each located in urban and rural clutter scenes, from the publicly available Moving and Stationary Target Acquisition and Recognition (MSTAR) data set. The proposed distribution characterization method for detecting shadows demonstrates the capability of isolating distinct regions within SAR imagery and using the junctions between shadow and non-shadow regions to locate individual shadow-casting objects. Targets of interest are then located within that collection of objects with an average detection accuracy rate of 93%. The shadow-based target detection algorithm results in a lower false alarm rate compared to previous research conducted with the same data set, with 71% fewer false alarms for the same clutter region. Utilizing the absence of signal, in conjunction with surrounding signal reflections, provides accurate stationary target detection. This capability could greatly assist in track initialization or the location of otherwise obscured targets of interest

    Vehicle-component identification based on multiscale textural couriers

    Get PDF
    This paper presents a novel method for identifying vehicle components in a monocular traffic image sequence. In the proposed method, the vehicles are first divided into multiscale regions based on the center of gravity of the foreground vehicle mask and the calibrated-camera parameters. With these multiscale regions, textural couriers are generated based on the localized variances of the foreground vehicle image. A new scale-space model is subsequently created based on the textural couriers to provide a topological structure of the vehicle. In this model, key feature points of the vehicle can significantly be described based on the topological structure to determine the regions that are homogenous in texture from which vehicle components can be identified by segmenting the key feature points. Since no motion information is required in order to segment the vehicles prior to recognition, the proposed system can be used in situations where extensive observation time is not available or motion information is unreliable. This novel method can be used in real-world systems such as vehicle-shape reconstruction, vehicle classification, and vehicle recognition. This method was demonstrated and tested on 200 different vehicle samples captured in routine outdoor traffic images and achieved an average error rate of 6.8% with a variety of vehicles and traffic scenes. © 2006 IEEE.published_or_final_versio

    Machine vision applications in agriculture

    Get PDF
    Keynote paper. [Abstract]: With the trend of computers towards convergence with multimedia entertainment, tools for vision processing are becoming commonplace. This has led to the pursuit of a host of unusual applications in the National Centre for Engineering in Agriculture, in addition to work on vision guidance. These range from the identification of animal species, through the location of macadamia nuts as they are harvested and visual tracking for behaviour analysis of small marsupials to the measurement of the volume of dingo teeth

    Detecting animals in African Savanna with UAVs and the crowds

    Full text link
    Unmanned aerial vehicles (UAVs) offer new opportunities for wildlife monitoring, with several advantages over traditional field-based methods. They have readily been used to count birds, marine mammals and large herbivores in different environments, tasks which are routinely performed through manual counting in large collections of images. In this paper, we propose a semi-automatic system able to detect large mammals in semi-arid Savanna. It relies on an animal-detection system based on machine learning, trained with crowd-sourced annotations provided by volunteers who manually interpreted sub-decimeter resolution color images. The system achieves a high recall rate and a human operator can then eliminate false detections with limited effort. Our system provides good perspectives for the development of data-driven management practices in wildlife conservation. It shows that the detection of large mammals in semi-arid Savanna can be approached by processing data provided by standard RGB cameras mounted on affordable fixed wings UAVs
    • …
    corecore