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Abstract 
With the trend of computers towards convergence 

with multimedia entertainment, tools for vision 
processing are becoming commonplace.  This has led 
to the pursuit of a host of unusual applications in the 
National Centre for Engineering in Agriculture, in 
addition to work on vision guidance.  These range 
from the identification of animal species, through the 
location of macadamia nuts as they are harvested and 
visual tracking for behaviour analysis of small 
marsupials to the measurement of the volume of dingo 
teeth. 
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1. Introduction 
In the early nineties, the research team at the 

National Centre for Engineering in Agriculture 
established a reputation for vision-based automated 
guidance of agricultural vehicles.{4}  This work has a 
new lease of life with recent funding.  A succession of 
further vision projects have been somewhat unusual, 
ranging from the visual identification of animal species 
for the culling of feral pigs to vision-based counting of 
macadamia nuts.  A unifying feature is the easy 
availability of low-cost cameras and a framework for 
integrating analysis software using DirectX 'filters'.  
Machine vision has changed from its earlier status as a 
sophisticated and expensive technology to a low-cost 
solution for more general instrumentation. 

For the rapid solution of ad hoc problems, it is easy 
to exploit the convergence between computing and 
media entertainment.  A system including camera, 
interfacing, gigabytes of data storage, display and an 
embedded PC card can cost less than a single 
conventional high resolution industrial camera and 
interface.  However we are also pursuing a more 
fundamental approach, building systems around 
image-sensor components interfaced by means of RISC 
processors. 

 
2.  Identification of Animal Species 
In the Australian Great Artesian Basin, there has 

been a programme of capping bores and piping the 
outflow to watering points.[13]  Access to water can 
therefore be controlled for feral and native animals, in 
addition to the farmed livestock.  The objective is to 
allow normal access to both farmed and protected 
species, while 'undesirables' such as feral pigs are 
directed to a second water supply in an enclosure from 
which they cannot escape until they are 'harvested'.[8]  
Feral pigs do hundreds of millions of dollars worth of 
damage per year, but there is a lucrative export market 
for wild pork. 

Shortly, all Australian farmed animals will carry 
tags under the National Livestock Identification Scheme.  
This would make the task simple were it not for the 
need to allow kangaroos, emus and some other wild 
species equal access to water.  The NLIS tag will give 
a reassuring double check, but the task of species 
identification remains. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1.  Goat and boundary 
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Fig 2. Sheep and boundary 
 
The animals must approach the water through a 

narrow fence-wire corridor, at the end of which is a gate 
which is controlled to direct them into one or other of 
two compounds.  One of these has a one-way exit 
while the other is closed.  Initial experiments used a 
blue tarpaulin behind corridor, to give easy colour-based 
discrimination. 

Identification of the animals is based on their 
boundary shape.  Many edge detection methods lose 
important information by locating a boundary as a 
scatter of points with no regard to the order in which 
they should be linked to form a curve that circumscribes 
the shape.  We therefore use a chain method that 
'draws' the boundary, while a convention of 'animal is to 
the left of the boundary' defines the direction of drawing 
to be anticlockwise. 

A search is first performed on a coarse grid until 
the first 'animal' pixel is detected, then adjacent pixels 
are searched upwards to find the boundary.  The 
boundary is then traced, using a strategy first proposed 
in 1983. [2, 3] 

Points are 'stitched' around the boundary in a 
routine that can most easily be likened to a dance step.  
Assume that we are 'dancing' to the left, starting from a 
point that has been identified as 'animal'.  We step 
forward and test the new point.  If it has changed to 
'not animal' we note the midpoint as a boundary point 
and step diagonally backwards to the left.  If on the 
other hand it is 'animal' again, we rotate our body and 
progress direction forty-five degrees to the right and 
take a further step forward.  A Javascript 
demonstration of the full algorithm can be found at 
http://www.jollies.com/stitch.htm. 

Points are found in a sequence that traces the 
boundary of the animal.  We obtain a sequence of 
vectors of the nature of a Freeman chain.  These give 
vectors, each of which takes us further around the 
boundary and has a direction, psi.  When we plot psi 
against the boundary distance s we obtain an 's-psi' 
curve relating tangent direction to the distance advanced 
around the boundary.  A complex two-dimensional 
image has been reduced to a simple one-dimensional 
function that can be matched against a set of shape 
templates of the same form. 

If the object is rotated, a constant is added to all the 
points of the curve.  The distance can optionally be 
normalised to allow shapes of different sizes to be 

matched.  Matching is simplified if we can choose a 
unique starting point on both curve and template. 

Instead of the full circumference of an animal, the 
'top half' is usually sufficient for identification and 
avoids the confusion that leg movements can give.  
The edge is traced from the upwards vertical tangent at 
the nose, along the back to the downwards vertical 
tangent near the tail. 

It was felt that the blue tarpaulin might deter many 
of the animals in the wild from approaching the system.  
Further experiments discriminated between animals and 
background on the basis of the difference between the 
frame and a 'remembered' image of the background.  It 
was harder to get a complete circumference this way, 
but a ‘bounding box’ was easy to construct.  An 
elementary algorithm based on the two arrays of 
distances from the box to the front and to the rear of the 
animal gave good discrimination. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
Fig 3.  Natural background and bounding box. 



 The project is at a field testing stage (literally) 
and sheep and goats can be separated with 100% 
success, except when animal overlap to a serious extent. 

 
3. The Counting of Macadamia Nuts 
One of the objectives of breeding varietal strains is 

to produce a tree with maximum yield.  The harvesting 
method is simple.  Nuts fall from the trees and are 
picked up from the ground.  The trees are planted close 
together, however, so the task of segregating the catch 
from the individual 'drop zones' is important. [1] 

The accepted harvester technology consists of a 
'bristle roller' several metres wide.  The nuts, in their 
husks, are trapped between the bristles and carried 
upwards, where they are stripped from the roller by 
'fingers'.  They fall into an auger that carries them 
across the machine to another auger at the side, which in 
turn carries them to a bin at the back of the machine. 

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

 
 

Fig 4.  Harvester photo, diagram 
 
As they move to the left in the auger at the front of 

the machine, nuts that have been gathered from the 
right-hand-side of the swathe are joined by nuts 
gathered progressively further to the left.  At any 
instant, a point in the delivery auger will thus contain 
nuts gathered from a diagonal stripe of the width of the 
roller.  If this were the basis of a count, it would be 
impossible to deconvolve the 'Green's function' to 
ascribe the count rate to a fine enough location to assess 
the yield of individual trees. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 5.  Camera locations 

Machine vision has been adopted as the solution.  
The bristle roller has been coloured blue, to obtain good 
colour contrast with nuts at all stages of maturing, and 
cameras have been mounted inside the housing. 

First the RGB pixel components must be analysed 
to determine 'roller' or 'not roller'.  It was found by 
experiment that (red > blue) gave good discrimination.  
Unfortunately leaves are also picked up that are of a 
similar colour to the nuts.  The second stage must 
therefore involve shape discrimination to select the 
circular nuts and reject other shapes.  Figure 3 shows 
the discriminated image when all pixels are processed, 
but the chosen algorithm requires only a small 
proportion of the pixels to be sampled. 

The formal Hough transform approach would 
involve applying a filter to the discriminated data to 
identify all boundary points.  Triplets of boundary 
points can then contribute 'votes' on the circle centres. 

Because analysis must be performed in real time, a 
much simpler circle-detection algorithm was chosen.  
Pixels are examined on a coarse grid, with spacing half 
the size of a nut.  The grid is such that columns of 
points are examined downwards, the columns 
progressing from left to right.  When a pixel is found 
that is 'not blue', adjacent pixels are then explored from 
this point up and down to find two points on the 
boundary.  From the midpoint of this chord, pixels are 
explored horizontally to find boundary points; the centre 
is located and the radius is determined. 

To check the circularity of the object that has been 
found, we inspect points on the vertices of two octagons.  
These lie on two circles, one inside and one outside the 
circle we are testing. 

 
 

  
 
 

 
 

Figure 6.  Detected nuts and leaves 
 
Although rough and ready, this algorithm is robust 

and rapid.  If the initial search grid has intervals of five 
pixels, only four percent of the pixels are initially 
inspected.  For each nut or leaf detected, some further 
thirty to forty further pixels are tested. 

Having determined the coordinates of nut-centres 
in one frame of the video stream, it is necessary to 
collate the sequence of frames to ensure that nuts are 
neither counted twice nor omitted.  The result is a map 
of coordinates from which totals can be aggregated tree 
by tree. 

 
4. Animal Behaviour 

There is a breeding programme to improve the 
survival chances of a species of dunnart, Sminthopsis 
douglasi.  A serious hazard is the aggressive nature of 
the small marsupials.  If the female is not in oestrus 
when introduced into a cage with the male, there is a 
danger that they will fight to the death. 

A first step was to mount a camera where it could 
capture video from two adjoining cages containing male 



and female.  Background discrimination enabled the 
animals to be located as they moved, easing the task of 
the student who had to monitor the recorded video to 
judge when it would be safe to put the animals together. 

The next step will be to encode the movement to 
obtain an automatic assessment of the animals' 
behaviour.  Initially this will merely alert the animal 
breeders, but eventually automatic operation of a 
gateway between the cages might be possible. 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 7.  Dunnarts and detected movement 
 

5.  Texture Analysis 
One of the factors used to determine citrus quality 

is the texture of the skin. 
The skin texture of citrus fruit is a combination of 

three different types of spatial variation. Sub-millimetre 
wrinkles cover the entire skin and are irregular, but have 
relatively constant coverage. Small dimples 1mm-5mm 
in depth are randomly spaced around the fruit. It is the 
depth and quantity of these which have the greatest 
impact on the skin texture grade. The third type of 
variation is deformation from the normal spheroid shape. 
These lumps or flat spots can be caused by rough 
handling, or may be due to variety. 

The texture can be measured directly from a fruit 
using an expensive stylus instrument where, similar to 
that of a record player, a needle touches the skin of the 
fruit as it revolves. [11] The changes in position are 
amplified and recorded. A serious problem is that this 
method only gives a single sample from one ‘latitude’ 
around the fruit, which may or may not be 
representative. 

The machine-vision solution is to illuminate the 

fruit from the side, so that to the camera mounted in 
front of it, it appears as a 'half moon'.[7] The 'terminator', 
dividing lit and portions in shadow, will appear as a 
ragged vertical line, with a statistical distribution of the 
horizontal 'roughness' that is readily related to the 
texture.  As the fruit rotates, a sequence of measures 
can be accumulated to give an assessment of the entire 
fruit. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 8.  Orange, illumination and camera 
 
One such measure involves detecting the shadow 

edge position as a function x(y) of the scan line y on 
which it is seen.  This function can be doubly low-pass 
filtered by executing code equivalent to 

 
xsmooth(ymin) = x(ymin) 
for y = ymin to ymax 
   xs = xs + (x(y) - xs) / k 
  xsmooth(y) = xs 
next  
for y = ymax to ymin step -1 
  xs = xs + (xsmooth(y) - xs) / k 
  xsmooth(y) = xs 
next 
 

where k is a smoothing parameter, a sort of 'distance 
constant’. 

The high pass 'roughness' signal is given by x(y) - 
xsmooth(y).  A measure of texture can be obtained by 
squaring and summing this.  We can tune k to remove 
lumps and deformations, while preserving dimples. 

A second project involving vegetation texture 
analysis is not really agricultural.  There is a need for a 
fast and simple way of analysing the cover of a football 
pitch, to ensure that there is no bald and slippery patch 
where an expensive player might suffer damage. [9] 



6. Measuring the Density of Dingo Teeth 
A biologist colleague had a requirement to measure 

the density of porous dingo teeth, in order to establish 
the validity of using the relationship between tooth 
density and age to estimate the age of the animal.[5]  
Skulls containing canine teeth from 68 ‘known-age’ 
animals, either field-captured or captive-reared, were 
borrowed from dingo skulls held by CSIRO Sustainable 
Ecosystems, Canberra, Australia. 

Weighing the teeth was of course not a problem, 
but their very porosity was at variance with the use of 
an ‘Archimedes’ immersion method for measuring their 
volumes.  The biologist seized on the suggestion that 
machine vision could be the answer. 

The original intention was to use ‘structured light’ 
to map the tooth.  Then there was a surprise 
announcement that the museum required the return of 
the teeth by the end of the week.  Attention turned to a 
means of capturing the data for later analysis.  The 
result was almost certainly superior to the original 
intention. 

The canine tooth, shaped rather like a banana, was 
attached to the vertical axis of a small stepper motor.  
The motor had been ‘recovered’ from a discarded 
floppy-disk drive.  A ‘Smartcam Pro’ web camera was 
mounted firmly to observe it.  It was decided that the 
320 by 240 pixel resolution would be best employed by 
mounting the camera in ‘portrait’ position.  The 
off-white tooth was illuminated in front of a black 
background.   

Only 50 images were to be captured per revolution.  
Even so, the prospect of saving and later processing 
over eleven megabytes of data for each of 160 teeth was 
daunting.  So just the green signal was captured, 
yielding a clear binary silhouette.  The data was further 
reduced before saving. 

For each of the 320 ‘slices’ of the image, the 
location of maximum and minimum tooth boundary 
were found.  If no white appeared because the slice 
was beyond the end of the tooth, two values of 0 were 
recorded, otherwise two comma-separated numbers 
were written to file.  The file size for each tooth was 
reduced to just over 100 kilobytes. 

Some industrious work by a biology student saw 
the teeth scanned and returned to the museum on time.  
The problem still remained of processing the data. 

Each of the number-pairs in the data file represents 
a line section of the perceived tooth image, in other 
words a ‘left tangent’ and a ‘right tangent’ to the tooth 
for a given elevation angle from the camera lens.  The 
‘perspective effect’ can readily be accommodated by 
drawing the tangents through a single point representing 
the camera. 

The method adopted was similar to that of the 
tomograph.  A planar array of points was set up, 
initially deemed to be ‘occupied’.  Now each tangent 
becomes a line that sets a boundary between occupied 
and unoccupied points and those that are unoccupied are 
eliminated.  For the next image in the sequence, the 
camera position is rotated 1/50 revolution with respect 
to the plane and the process repeated.  At the 
conclusion, the survivors are counted to give the area of 
the slice. 

 
 

 
 
 
 
 
 
 

 
 

Fig 9.  Building image from left and right tangents 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 10.  Left and right estimates of the slice. 
 
The left and right tangents give two distinct 

estimates of the area.  By comparing them, corrections 
can be made for errors in the location and angle of the 
image of the axis.  Totalling the area gives a measure 
of the volume. 

 
7. Vision guidance 

The original vision guidance method had a number 
of patented features.  These have been carried through 
into the new version of the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig 11.  Fitting lines to crop rows 
 
The basis of the strategy is to form ‘keyholes’ in 

the image, each of which embraces a single row.  A 
regression fit is made to fit a line to the ‘plant’ pixels in 



the keyhole, updating the estimate of the row’s location 
and direction.  This in turn updates the keyhole to be 
used for the next frame. 

The vegetation or furrow that must be followed 
must be discriminated from the background, either by 
comparing brightness or colour components.  Since the 
lighting is apt to change, this could give problems.  To 
solve this, the threshold level is manipulated to give a 
certain proportion or ‘plant’ pixels in the keyhole.  At 
any stage of growth, this will be fairly constant. 

Figure 11 shows a typical image from the 
row-following algorithm. 

 
8. Conclusions 

A vision approach can be applied to an ever 
broader range of instrumentation tasks.  It has become 
simple to exploit the media-motivated interfacing and 
video-stream processing tools that are now readily 
available. 

 Projects not described here include a 
refractometer for measuring sugar cane juice, based on a 
line-scan camera.[12]  The interfacing task would have 
been simplified if a cannibalised webcam had been used 
instead.  There is a divergence within computer 
peripheral systems.  Analogue to digital converters for 
instrumentation have become increasingly complicated 
and costly, while sound cards with high performance 
ADCs are available at give-away prices.  Transducers 
for absolute position are extremely costly and we have 
given serious thought to using a webcam to inspect a 
measuring tape.  It may be technological overkill, but 
it is a low-cost alternative to a commercial sensor.  
There will be many occasions on which it is easier to 
tailor an elaborate consumer product rather than craft a 
simpler engineering solution. 

The projects presented in this paper may seem 
strange, but future applications may well push the 
bounds much further. 
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