832 research outputs found

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Cursive script recognition using wildcards and multiple experts

    Get PDF
    Variability in handwriting styles suggests that many letter recognition engines cannot correctly identify some hand-written letters of poor quality at reasonable computational cost. Methods that are capable of searching the resulting sparse graph of letter candidates are therefore required. The method presented here employs ‘wildcards’ to represent missing letter candidates. Multiple experts are used to represent different aspects of handwriting. Each expert evaluates closeness of match and indicates its confidence. Explanation experts determine the degree to which the word alternative under consideration explains extraneous letter candidates. Schemata for normalisation and combination of scores are investigated and their performance compared. Hill climbing yields near-optimal combination weights that outperform comparable methods on identical dynamic handwriting data

    Hierarchical K-Nearest Neighbor with GPUs and a High Performance Cluster: application to Handwritten Character Recognition

    Get PDF
    The accelerating progress and availability of low cost computers, high speed networks, and software for high performance distributed computing allow us to reconsider computationally expensive techniques in image processing and pattern recognition. We propose a two-level hierarchical [Formula: see text]-nearest neighbor classifier where the first level uses graphics processor units (GPUs) and the second level uses a high performance cluster (HPC). The system is evaluated on the problem of character recognition with nine databases (Arabic digits, Indian digits (Bangla, Devnagari, and Oriya), Bangla characters, Indonesian characters, Arabic characters, Farsi characters and digits). Contrary to many approaches that tune the model for different scripts, the proposed image classification method is unchanged throughout the evaluation on the nine databases. We show that a hierarchical combination of decisions based on two distances, using GPUs and a HPC provides state-of-the-art performances on several scripts, and provides a better accuracy than more complex systems. </jats:p

    Enhancing Automation with Label Defect Detection and Content Parsing Algorithms

    Get PDF
    The stable operation of power transmission and distribution is closely related to the overall performance and construction quality of circuit breakers. Focusing on circuit breakers as the research subject, we propose a machine vision method for automated defect detection, which can be applied in intelligent robots to improve detection efficiency, reduce costs, and address the issues related to performance and assembly quality. Based on the LeNet-5 convolutional neural network, a method for the detection of character defects on labels is proposed. This method is then combined with squeezing and excitation networks to achieve more precise classification with a feature graph mechanism. The experimental results show the accuracy of the LeNet-CB model can reach up to 99.75%, while the average time for single character detection is 17.9 milliseconds. Although the LeNet-SE model demonstrates certain limitations in handling some easily confused characters, it maintains an average accuracy of 98.95%. Through further optimization, a label content detection method based on the LSTM framework is constructed, with an average accuracy of 99.57%, and an average detection time of 84 milliseconds. Overall, the system meets the detection accuracy requirements and delivers a rapid response. making the results of this research a meaningful contribution to the practical foundation for ongoing improvements in robot intelligence and machine vision
    • 

    corecore