114 research outputs found

    (t, k)-diagnosable system: A generalization of the PMC models

    Get PDF
    ln this paper, we introduce a new model for diagnosable systems called (t, k)-diagnosable system which guarantees that at least k faulty units (processors) in a system are detected provided that the number of faulty units does not exceed t. This system includes classical one-step diagnosable systems and sequentially diagnosable systems. We prove a necessary and sufficient condition for (t, k)-diagnosable system, and discuss a lower bound for diagnosability. Finally, we deal with a relation between (t, k)-diagnosability and diagnosability of classical basic models

    Discrete and hybrid methods for the diagnosis of distributed systems

    Get PDF
    Many important activities of modern society rely on the proper functioning of complex systems such as electricity networks, telecommunication networks, manufacturing plants and aircrafts. The supervision of such systems must include strong diagnosis capability to be able to effectively detect the occurrence of faults and ensure appropriate corrective measures can be taken in order to recover from the faults or prevent total failure. This thesis addresses issues in the diagnosis of large complex systems. Such systems are usually distributed in nature, i.e. they consist of many interconnected components each having their own local behaviour. These components interact together to produce an emergent global behaviour that is complex. As those systems increase in complexity and size, their diagnosis becomes increasingly challenging. In the first part of this thesis, a method is proposed for diagnosis on distributed systems that avoids a monolithic global computation. The method, based on converting the graph of the system into a junction tree, takes into account the topology of the system in choosing how to merge local diagnoses on the components while still obtaining a globally consistent result. The method is shown to work well for systems with tree or near-tree structures. This method is further extended to handle systems with high clustering by selectively ignoring some connections that would still allow an accurate diagnosis to be obtained. A hybrid system approach is explored in the second part of the thesis, where continuous dynamics information on the system is also retained to help better isolate or identify faults. A hybrid system framework is presented that models both continuous dynamics and discrete evolution in dynamical systems, based on detecting changes in the fundamental governing dynamics of the system rather than on residual estimation. This makes it possible to handle systems that might not be well characterised and where parameter drift is present. The discrete aspect of the hybrid system model is used to derive diagnosability conditions using indicator functions for the detection and isolation of multiple, arbitrary sequential or simultaneous events in hybrid dynamical networks. Issues with diagnosis in the presence of uncertainty in measurements due sensor or actuator noise are addressed. Faults may generate symptoms that are in the same order of magnitude as the latter. The use of statistical techniques,within a hybrid system framework, is proposed to detect these elusive fault symptoms and translate this information into probabilities for the actual operational mode and possibility of transition between modes which makes it possible to apply probabilistic analysis on the system to handle the underlying uncertainty present

    INCREMENTAL FAULT DIAGNOSABILITY AND SECURITY/PRIVACY VERIFICATION

    Get PDF
    Dynamical systems can be classified into two groups. One group is continuoustime systems that describe the physical system behavior, and therefore are typically modeled by differential equations. The other group is discrete event systems (DES)s that represent the sequential and logical behavior of a system. DESs are therefore modeled by discrete state/event models.DESs are widely used for formal verification and enforcement of desired behaviors in embedded systems. Such systems are naturally prone to faults, and the knowledge about each single fault is crucial from safety and economical point of view. Fault diagnosability verification, which is the ability to deduce about the occurrence of all failures, is one of the problems that is investigated in this thesis. Another verification problem that is addressed in this thesis is security/privacy. The two notions currentstate opacity and current-state anonymity that lie within this category, have attracted great attention in recent years, due to the progress of communication networks and mobile devices.Usually, DESs are modular and consist of interacting subsystems. The interaction is achieved by means of synchronous composition of these components. This synchronization results in large monolithic models of the total DES. Also, the complex computations, related to each specific verification problem, add even more computational complexity, resulting in the well-known state-space explosion problem.To circumvent the state-space explosion problem, one efficient approach is to exploit the modular structure of systems and apply incremental abstraction. In this thesis, a unified abstraction method that preserves temporal logic properties and possible silent loops is presented. The abstraction method is incrementally applied on the local subsystems, and it is proved that this abstraction preserves the main characteristics of the system that needs to be verified.The existence of shared unobservable events means that ordinary incremental abstraction does not work for security/privacy verification of modular DESs. To solve this problem, a combined incremental abstraction and observer generation is proposed and analyzed. Evaluations show the great impact of the proposed incremental abstraction on diagnosability and security/privacy verification, as well as verification of generic safety and liveness properties. Thus, this incremental strategy makes formal verification of large complex systems feasible

    Scalable fault management architecture for dynamic optical networks : an information-theoretic approach

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.MIT Barker Engineering Library copy: printed in pages.Also issued printed in pages.Includes bibliographical references (leaves 255-262).All-optical switching, in place of electronic switching, of high data-rate lightpaths at intermediate nodes is one of the key enabling technologies for economically scalable future data networks. This replacement of electronic switching with optical switching at intermediate nodes, however, presents new challenges for fault detection and localization in reconfigurable all-optical networks. Presently, fault detection and localization techniques, as implemented in SONET/G.709 networks, rely on electronic processing of parity checks at intermediate nodes. If similar techniques are adapted to all-optical reconfigurable networks, optical signals need to be tapped out at intermediate nodes for parity checks. This additional electronic processing would break the all-optical transparency paradigm and thus significantly diminish the cost advantages of all-optical networks. In this thesis, we propose new fault-diagnosis approaches specifically tailored to all-optical networks, with an objective of keeping the diagnostic capital expenditure and the diagnostic operation effort low. Instead of the aforementioned passive monitoring paradigm based on parity checks, we propose a proactive lightpath probing paradigm: optical probing signals are sent along a set of lightpaths in the network, and network state (i.e., failure pattern) is then inferred from testing results of this set of end-to-end lightpath measurements. Moreover, we assume that a subset of network nodes (up to all the nodes) is equipped with diagnostic agents - including both transmitters/receivers for probe transmission/detection and software processes for probe management to perform fault detection and localization. The design objectives of this proposed proactive probing paradigm are two folded: i) to minimize the number of lightpath probes to keep the diagnostic operational effort low, and ii) to minimize the number of diagnostic hardware to keep the diagnostic capital expenditure low.(cont.) The network fault-diagnosis problem can be mathematically modeled with a group testing-over-graphs framework. In particular, the network is abstracted as a graph in which the failure status of each node/link is modeled with a random variable (e.g. Bernoulli distribution). A probe over any path in the graph results in a value, defined as the probe syndrome, which is a function of all the random variables associated in that path. A network failure pattern is inferred through a set of probe syndromes resulting from a set of optimally chosen probes. This framework enriches the traditional group-testing problem by introducing a topological structure, and can be extended to model many other network-monitoring problems (e.g., packet delay, packet drop ratio, noise and etc) by choosing appropriate state variables. Under the group-testing-over-graphs framework with a probabilistic failure model, we initiate an information-theoretic approach to minimizing the average number of lightpath probes to identify all possible network failure patterns. Specifically, we have established an isomorphic mapping between the fault-diagnosis problem in network management and the source-coding problem in Information Theory. This mapping suggests that the minimum average number of lightpath probes required is lower bounded by the information entropy of the network state and efficient source-coding algorithms (e.g. the run-length code) can be translated into scalable fault-diagnosis schemes under some additional probe feasibility constraint. Our analytical and numerical investigations yield a guideline for designing scalable fault-diagnosis algorithms: each probe should provide approximately 1-bit of state information, and thus the total number of probes required is approximately equal to the entropy of the network state.(cont.) To address the hardware cost of diagnosis, we also developed a probabilistic analysis framework to characterize the trade-off between hardware cost (i.e., the number of nodes equipped with Tx/Rx pairs) and diagnosis capability (i.e., the probability of successful failure detection and localization). Our results suggest that, for practical situations, the hardware cost can be reduced significantly by accepting a small amount of uncertainty about the failure status.by Yonggang Wen.Ph.D

    Multilevel distributed diagnosis and the design of a distributed network fault detection system based on the SNMP protocol.

    Get PDF
    In this thesis, we propose a new distributed diagnosis algorithm using the multilevel paradigm. This algorithm is a generalization of both the ADSD and Hi-ADSD algorithms. We present all details of the design and implementation of this multilevel adaptive distributed diagnosis algorithm called the ML-ADSD algorithm. We also present extensive simulation results comparing the performance of these three algorithms.In 1967, Preparata, Metze and Chien proposed a model and a framework for diagnosing faulty processors in a multiprocessor system. To exploit the inherent parallelism available in a multiprocessor system and thereby improving fault tolerance, Kuhl and Reddy, in 1980, pioneered a new area of research known as distributed system level diagnosis. Following this pioneering work, in 1991, Bianchini and Buskens proposed an adaptive distributed algorithm to diagnose fully connected networks. This algorithm called the ADSD algorithm has a diagnosis latency of O(N) testing rounds for a network with N nodes. With a view to improving the diagnosis latency of the ADSD algorithm, in 1998 Duarte and Nanya proposed a hierarchical distributed diagnosis algorithm for fully connected networks. This algorithm called the Hi-ADSD algorithm has a diagnosis latency of O(log2N) testing rounds. The Hi-ADSD algorithm can be viewed as a generalization of the ADSD algorithm.In all cases, the time required by the ML-ADSD algorithm is better than or the same as for the Hi-ADSD algorithm. The performance of the ML-ADSD algorithm can be improved by an appropriate choice of the number of clusters and the number of levels. Also, the ML-ADSD algorithm is scalable in the sense that only some minor modifications will be required to adapt the algorithm to networks of varying sizes. This property is not shared by the Hi-ADSD algorithm. The primary application of our research is to develop and implement a prototype network fault detection/monitoring system by integrating the ML-ADSD algorithm into a SNMP-based (Simple Network Management Protocol) fault management system. We report the details of the design and implementation of such a distributed network fault detection system

    Minimization of Sensor Activation in Discrete-Event Systems with Control Delays and Observation Delays

    Full text link
    In discrete-event systems, to save sensor resources, the agent continuously adjusts sensor activation decisions according to a sensor activation policy based on the changing observations. However, new challenges arise for sensor activations in networked discrete-event systems, where observation delays and control delays exist between the sensor systems and the agent. In this paper, a new framework for activating sensors in networked discrete-event systems is established. In this framework, we construct a communication automaton that explicitly expresses the interaction process between the agent and the sensor systems over the observation channel and the control channel. Based on the communication automaton, we can define dynamic observations of a communicated string. To guarantee that a sensor activation policy is physically implementable and insensitive to random control delays and observation delays, we further introduce the definition of delay feasibility. We show that a delay feasible sensor activation policy can be used to dynamically activate sensors even if control delays and observation delays exist. A set of algorithms are developed to minimize sensor activations in a transition-based domain while ensuring a given specification condition is satisfied. A practical example is provided to show the application of the developed sensor activation methods. Finally, we briefly discuss how to extend the proposed framework to a decentralized sensing architecture

    Efficient Detection on Stochastic Faults in PLC Based Automated Assembly Systems With Novel Sensor Deployment and Diagnoser Design

    Get PDF
    In this dissertation, we proposed solutions on novel sensor deployment and diagnoser design to efficiently detect stochastic faults in PLC based automated systems First, a fuzzy quantitative graph based sensor deployment was called upon to model cause-effect relationship between faults and sensors. Analytic hierarchy process (AHP) was used to aggregate the heterogeneous properties between sensors and faults into single edge values in fuzzy graph, thus quantitatively determining the fault detectability. An appropriate multiple objective model was set up to minimize fault unobservability and cost while achieving required detectability performance. Lexicographical mixed integer linear programming and greedy search were respectively used to optimize the model, thus assigning the sensors to faults. Second, a diagnoser based on real time fuzzy Petri net (RTFPN) was proposed to detect faults in discrete manufacturing systems. It used the real time PN to model the manufacturing plant while using fuzzy PN to isolate the faults. It has the capability of handling uncertainties and including industry knowledge to diagnose faults. The proposed approach was implemented using Visual Basic, and tested as well as validated on a dual robot arm. Finally, the proposed sensor deployment approach and diagnoser were comprehensively evaluated based on design of experiment techniques. Two-stage statistical analysis including analysis of variance (ANOVA) and least significance difference (LSD) were conducted to evaluate the diagnosis performance including positive detection rate, false alarm, accuracy and detect delay. It illustrated the proposed approaches have better performance on those evaluation metrics. The major contributions of this research include the following aspects: (1) a novel fuzzy quantitative graph based sensor deployment approach handling sensor heterogeneity, and optimizing multiple objectives based on lexicographical integer linear programming and greedy algorithm, respectively. A case study on a five tank system showed that system detectability was improved from the approach of signed directed graph's 0.62 to the proposed approach's 0.70. The other case study on a dual robot arm also show improvement on system's detectability improved from the approach of signed directed graph's 0.61 to the proposed approach's 0.65. (2) A novel real time fuzzy Petri net diagnoser was used to remedy nonsynchronization and integrate useful but incomplete knowledge for diagnosis purpose. The third case study on a dual robot arm shows that the diagnoser can achieve a high detection accuracy of 93% and maximum detection delay of eight steps. (3) The comprehensive evaluation approach can be referenced by other diagnosis systems' design, optimization and evaluation

    Sensor Selection for Behavior Validation of Multiple Agents

    Get PDF
    Given a pre-declared itinerary of potential activities and sites for sensor placement within an environment, sensor selection involves choosing a set of sensors which can determine whether what actually occurs matches the supplied itinerary. This problem is encountered when, subject to some budget, one instruments a facility in order to ensure that the agents within behave as expected (e.g., a laboratory where the robots operating inside should follow some policy). It also applies to settings that range from surveillance and security to the design of smart spaces. We tackle a variant of the sensor selection problem where multiple agents share the same environment, which introduces some modeling subtleties, including those arising from interactions. Specifically, the multi-agent validation problem may require more than merely the union of sensors necessary for individual agents owing to aliasing: different agents may trigger sensors without those sensors necessarily being able to distinguish who was the cause. Also, the treatment of time and modeling of interleaving becomes important in providing joint itineraries, especially when combining itineraries of individuals. Since the underlying problem is NP-hard, when multiple agents are considered, another of the issues is the natural increase in size of problem instances. This paper re-formulates sensor selection as a SAT problem and introduces a graph trimming technique based on a reachability analysis. Treating the problem as a question of satisfiability is especially apt when the primary interest is in determining whether the sensors that one has available (or are within some budget to purchase) have some arrangement that suffices to validate the itinerary of interest. It also facilitates use of fast, state-of-the-art solvers. Taken together, these modifications yield significant speed-up over the previous method, as we detail in our empirical results based on simple 2-agent case studies
    • …
    corecore