
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will t>e noted. Also, if unauthorized
copyright material had to be removed, a note will indicate tfie deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white
photographic prints are availat)le for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Artw, Ml 48106-1346 USA

800-521-0600

UMI

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MULTILEVEL DISTRIBUTED DIAGNOSIS AND THE DESIGN OF A

DISTRIBUTED NETWORK FAULT DETECTION SYSTEM BASED ON THE

SNMP PROTOCOL

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirement for the

degree o f

Doctor of Philosophy

By

MING-SHAN SU
Norman, Oklahoma

2002

UMI Number 3038031

UMI’
UMI Microform 3038031

Copyright 2002 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. 80x1346
Ann Arbor, Ml 48106-1346

© Copyright by MING-SHAN SU 2002

AU Rights Reserved.

MULTILEVEL DISTRIBUTED DIAGNOSIS AND THE DESIGN OF A
DISTRIBUTED NETWORK FAULT DETECTION SYSTEM BASED ON THE

SNMP PROTOCOL

A Dissertation APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

K- ïïiy \ w —

fJLzX:/ZUr

ACKNOWLEDGEMENT

“Love the Lord your God with all your heart and with all your soul and with all your

mind and with all your strength. Love your neighbor as yourself. "

[Mark 12:30-31]

The LORD is my shepherd, I shall not be in want. He makes me lie down in green

pastures, he leads me beside quiet waters, he restores my soul. He guides me in paths o f

righteousness fo r his name ’s sake. Thanks to the LORD for his guidance while I

struggled for the dissertation solution. Without HIM, my life will be meaningless.

I would like to express my deepest appreciation to my mentor Dr. K.

Thulasiraman, for his inspiration, support, and encouragement during my graduate study.

Especially, I am grateful for his patience and philosophical teaching, "'The goal o f

research is to find out the truth hidden by God." Also, without two coffees a day with

him, this work would have taken more time to complete.

I also want to thank Dr. Anindya Das for his suggestions and tennis games while 1

needed relaxation. I also appreciate the discussions and advice from my committee

members, Dr. S. Lakshmivarahan, Dr. Sudarshan Dhall in the School o f Computer

Science, and Dr. Simin Pulat in the School of Industrial Engineering.

I am thankful to Dr. Le Greuenwald and Dr. Sridhar Radhakrishnan for their

excellent advice and guidance during the early period of my study at OU. In addition, 1

am grateful to many people that provided help and inspiration for this work in the

department.

This work would not have been completed without the support o f my lovely wife

An-Chen Lai and I am deeply grateful for her encouragement. Without her, I would have

dropped out o f the Ph.D. program. Finally, I would like to thank the LORD for giving me

a wonderful family member, my parents and my parents-in-law, and two precious gifts,

my lovely children Joyce and Bertram.

IV

Table of Contents

Page

List of Figures... viii

List of Tables.. x
Abstract.. xi

Chapter 1 Introduction..I

1.1 System Level Diagnosis: Review of Literature..2

1.1.1 Models o f System Level Diagnosis... 2

1.1.2 Diagnosis o f Large Fault Sets...5

1.1.3 Adaptive System-Level Diagnosis... 7

1.1.4 Probabilistic Diagnosis... 7

1.1.5 Algorithm-Based Fault Tolerance.. 8

1.2 Distributed System-Level Diagnosis.. 9

1.2.1 On-line Distributed System-Level Diagnosis: SELF and Related

Algorithms..9

1.2.2 Event-Driven Technique for Distributed System-Level Diagnosis.............. 10

1.2.3 Adaptive Distributed System-Level Diagnosis..11

1.2.4 Adaptive Distributed System-Level Diagnosis for Arbitrary Networks 11

1.2.5 Gossiping and Consensus in a Distributed Environment............................... 12

1.2.6 Broadcast Model for Distributed Diagnosis.. 13

1.3 Scope of the Thesis..13

Chapter 2 Multi-Level Adaptive Distributed Diagnosis for Fault Detection in a Network

of Processors.. 15

2.1 The ADSD Algorithm..15

2.2 Hierarchical Adaptive Distributed System-Level Diagnosis.................................. 21

2.3 ML-ADSD: Multi-Level Adaptive Distributed System-Level Diagnosis............25

2.3.1 Level-1 Clusters... 26

2.3.2 Informal Description o f the Two-Level Diagnosis Algorithm................. 27

2.3.3 Data Structures... 29

2.3.4 Cluster Leader Election..30

2.3.5 Cycle Detection at Level 2 .. 32

2.3.6 Two-Level Algorithm Description... 33

2.3.7 Proof o f Correctness and Diagnosis Latency..35

2.3.8 ML-ADSD Algorithm for the General Case...43

2.3.9 Proof o f Correcmess and Diagnosis Latency o f the ML-ADSD

Algorithm... 49

2.4 Simulation and Discussion...52

Chapter 3 A Distributed Network Fault Detection System Based on the SNMP

Protocol.. 56

3.1 Evolution of Network Management Technology... 56

3.2 Motivation for Distributed Network Management.. 59

3.3 Functional Areas o f Network Management..60

3.4 Network Management Architecture (Model)..61

3.4.1 Managed N odes... 62

3.4.2 Network Management Stations (NMS)..63

3.4.3 Dual Role Entities.. 63

3.4.4 Network Management Protocol.. 63

3.4.5 Management Information...64

3.5 Structure of Management Information..64

3.5.1 Names... 66

3.5.2 Management Information Base... 68

3.5.3 MIB Module..68

3.6 MIB for the ML-ADSD Algorithm...70

3.7 SNMP Protocol... 71

3.7.1 Four Simple yet Powerful Operations... 71

3.7.2 Message Exchange between Management System and Managed Node .. 73

3.7.3 SNMP message.. 74

3.7.4 Administrative Policy..76

VI

3.8 Distributed Fault Detection: Integration of the ML-ADSD Algorithm and

SNMP... 77

3.8.1 How to Generate the Agent Program... 79

3.8.2 Setting up the Manager...86

3.8.3 Installation of the Proper Dynamic Library to Run Manager Program.... 89

3.8.4 Interaction between Manager and SNMP Service..90

3.9 Experimental Results.. 90

4. Summary and Future Work.. 96

4.1 Summary of Research... 96

4.2 Future Work...98

References...102

VII

List o f Figures

Number Page

1.1 A system with five un its ..3

1.2 Test outcomes under the PMC, BGM, and Comparison models........................ 3

2.1 The TESTED UP information stored in node 2 ..17

2.2(a) An adaptive testing topology for an eight node network with nodes 1,3,4

faulty...19

2.2(b) Information propagation along fault-free nodes..19

2.3 ADSD algorithm.. 20

2.4 Diagnose algorithm.. 20

2.5 An eight node network with clusters of different sizes.......................................22

2.6 Hi-ADSD algorithm... 24

2.7 Illustration o f Hi-ADSD algorithm.. 24

2.8(a) An eight node Ethernet network.. 26

2.8(b) A logical fully connected network... 26

2.9(a) Node IDs re-mapping table...27

2.9(b) Re map and partition o f the nodes into four clusters..27

2.10 A two-level scheme..28

2.11 Value kept at node no,/ .. 30

2.12 Cluster leader election subroutine.. 31

2.13 Cycle detection subroutine..33

2.14 Level-1 testing algorithm.. 34

2.15 Level-2 testing algorithm.. 35

2.16 Illustration of proof o f correctness... 38

2.17 Illustration of deadlock... 43

2.18(a) Tree representation o f ML-ADSD algorithm... 43

2.18(b) Subtree representation at the node of cluster j at level / 45

2.19 Multi-level level-1 testing algorithm...47

2.20 Information update for non-leaders...48

2.21 Multi-level level-A: testing algorithm...48

Vlll

2.22(a) Comparison o f diagnosis latencies in terms of testing rounds........................... 54

2.22(b) Comparison o f diagnosis latencies in terms of testing tim e.............................. 54

2.22(c) Comparison of the total numbers o f tests..55

3.1 A tree-like structure o f the interaction between manager and agent.................59

3.2 Network management architecture.. 62

3.3 OID directory tree structure and the and the managed objects under

system group (1.3.6.1.2.1.1) .. 67

3.4 Message exchange between management station and managed node...............73

3.5 Ethernet packet format...74

3.6 Preamble and PDU format of SNMP message..74

3.7(a) GetRequest, GetNextRequest, SetReqeust, and GetRespose PDUs..................75

3.7(b) Trap PDU..75

3.8 Contents o f a SNMP Get and it Response messages.. 76

3.9 Node / tests node /+1 and requests /+1 to forward the management

information.. 79

3.10 Process to build an SNMP agent on Windows platform..................................... 81

3.11 Inclusion of testedUpAgent into Registry..82

3.12 Inclusion of the testedUpdll entry into Registry..83

3.13 Interactions between SNMP service and agent DLLs.. 85

3.14 Process to build an SNMP management application.. 86

3.15 Libraries for linker...87

3.16 Level-1 testing algorithm.. 88

3.17 Interaction between manager and SNMP service... 90

3.18 An Ethernet network with 16 machines...91

3.19 Sample events file..92

3.20 A virtual tester is used to inject the events... 93

3.21 Diagnosis latency (in seconds) vs. max. number o f faults................................. 94

IX

List o f Tables

Number Page

2.1 Table generated by function C,.̂ which contains the lists o f nodes in

various clusters to test for an eight nodes network.. 23

2.2 Simulation results for network sizes from 64 to 1024 nodes.............................53

3.1 Diagnosis latency (in seconds) o f the 30 experiments on Two-Level

ML-ADSD.. 93

3.2 Diagnosis latency (in seconds) of the 30 experiments on ADSD..................... 95

ABSTRACT

Advances in semiconductor technology have made possible design of large

computer systems containing hundred o f thousands o f processing elements. As the

complexity and computing power o f these systems increase, fault tolerance and reliability

have become important areas o f concern. Yet, it is impossible to build systems without

defects. Testing of such systems becomes extremely difficult due to their large sizes and

possible geographical distribution of units. Therefore, it is important for computing

systems to have the capability to automatically detect and identify faulty components. In

1967, Preparata, Metze and Chien proposed a model and framework, called system level

diagnosis, to deal with this problem

In the two decades following Preparata, Metze and Chien’s pioneering work, a

number o f issues arising from the application of their framework were investigated and

resolved. All these works assumed the existence of a single highly reliable supervisory

node to do the diagnosis. A single supervisory node is a bottleneck in a system with a

large number o f processing nodes. Distributed diagnosis algorithms which exploit the

inherent parallelism available in a multiprocessor system would be desirable. With this in

view, Kuhl and Reddy, in 1981, pioneered the area of distributed system level diagnosis.

Distributed diagnosis has been the focus of research in this thesis. There are two

aspects to the contributions in this thesis: Design and performance evaluation of a new

distributed diagnosis algorithm, and the design o f a distributed network fault detection

system based on the SNMP protocol.

In 1991, Bianchini and Buskens proposed an adaptive distributed algorithm to

diagnose fully connected networks. This algorithm called the ADSD algorithm has a

diagnosis latency of 0(N) for a network with N nodes. With a view to improving the

XI

diagnosis latency of the ADSD algorithm, in 1998 Duarte and Nanya proposed a

hierarchical distributed diagnosis algorithm for fully connected networks. This algorithm

called the Hi-ADSD algorithm has a diagnosis latency of 0(log~N). The Hi-ADSD

algorithm can be viewed as a generalization of the ADSD algorithm. In this thesis, we

propose a new distributed diagnosis algorithm using the multilevel paradigm. This

algorithm is a generalization o f the ADSD algorithm. We present all details o f the design

and implementation of this multilevel adaptive distributed diagnosis algorithm called the

ML-ADSD algorithm. We also present extensive simulation results comparing the

performance of these three algorithms.

The primary application of our research is to develop and implement a prototype

network fault detection/monitoring system by integrating the ML-ADSD algorithm into a

SNMP-based (Simple Network Management Protocol) fault management system [RM90]

[MR90] [CFSD90]. We report the details o f the design and implementation o f such a

distributed network fault detection system.

SNMP was developed by IETF in 1988 for the purpose o f managing the network

devices over a computer network and has been widely adopted by industry on network

applications. The major drawback o f SNMP-based fault management is its centralized

nature. The resulting problems include a single point of failure, lack of scalability, and

high communication costs around the central manager. Through our application, we

demonstrate that some o f the above problems can be solved and that the improvement of

fault management through distributed fault location is feasible.

Xll

Chapter 1

Introduction

Continuing advances in semiconductor technology have made possible the

development of large computer systems comprising hundreds o f thousands of processors

or units. As the complexity and the computing power of these systems increase, fault

tolerance and reliability become acute areas of concern. Yet it is impossible to build such

systems without defects. As the size of a system grows, it is more likely to develop faults

both in the manufacturing process and during the operation period. Testing of such

systems becomes extremely difficult due to their large sizes. First, the complexity of test

generation for such large systems is overwhelming. Second, the application of test data,

and observation and analysis o f test responses are extremely difficult and costly, even if

test data could be generated. This problem may be further aggravated by possible

geographical distribution of units. Testing of such systems with the traditional stimuli-

supplying and responses-observing philosophy has become virtually impossible.

Therefore, it is important for computing systems to have the capability to automatically

detecting and identifying faulty components.

In 1967, Preparata, Metze and Chien [PMC67] proposed a model and a

framework, called System-Level Diagnosis, for dealing with the above problem. In the

more than three decades following this pioneering work, several issues arising from the

application of this framework have been investigated and resolved. Many o f these results

have profound theoretical and practical implications. Most o f the recent research efforts

in system-level diagnosis have focused on enhancing the applicability o f system-level

diagnosis based approaches to practical scenarios. Specifically, the focus has been on:

1) Probabilistic diagnosis and application to VLSI testing and

2) On-line distributed diagnosis o f a network of processors.

The main theme of our research is on-line distributed diagnosis. The primary

application of this research is in designing a distributed network fault

detection/monitoring system based on the widely used SNMP (Simple Network

Management Protocol) protocol.

This chapter is organized as follows. First, in section 1.1 we present a review of

literature of most of the fundamental results in system level diagnosis using a central

observer. In section 1.2, we review literature on distributed diagnosis. This is followed by

a statement of the scope of this thesis.

1.1 System Level Diagnosis: Review of Literature

1.1.1 Models of System Level Diagnosis

In System-Level Diagnosis and the PMC model proposed by Preparata, Metze and

Chien [PMC67] for diagnosis of large systems, the units are made to test each other

through the interconnects instead o f having a centralized tester to test the whole system.

The result o f such an inter-unit test may be unreliable since the testing unit may be faulty

itself. Therefore, the whole set o f test outcomes must be analyzed to locate the real faulty

units. No postulate is to be made in the course of test outcome analysis either on the

status (fault-free or faulty) o f any o f the units or on the correctness o f any o f the test

outcomes produced by the testing units. In the following, we will use units and nodes,

system and network interchangeably.

1

' 0 or 1 —' - 0 or 1 ~ 11L.P- X -----------

O o r l — , - - 0 or 1
X ------------------------► X X — ► X X -------------------------

(a) PMC Model (b) BGM Model (c) Comparison Model

Fig. 11 A system with five units Fig. 1.2 Test outcomes under the PMC. BGM, and Comparison models

Legend: ^ faulty unit fault-free unit

Figure 1.1 shows an example o f inter-node testing, where each node is represented

by a vertex and each test by an arc. An arc from vertex u to vertex v means that u tests v.

Test outcomes are classified as fault-free or faulty. The set of test outcomes is called the

syndrome o f the system. Nodes can test others or can be tested by others. It is assumed

that test outcomes produced by fault-free testing nodes are always correct while those

produced by faulty testing nodes can be anything (fault-free or faulty), irrespective o f the

status of the tested nodes. This kind of test outcome interpretation has since been known

as the PMC model. The PMC model is described in Figure 1.2(a). The labels on the arcs

represent the possible test outcomes. The labels 0 and 1 correspond to the outcomes fault-

free and faulty, respectively. Preparata, Metze and Chien also introduced the concept of t-

diagnosable systems. A system is said to be t-diagnosable (or one-step /-diagnosable) if

all faulty nodes can be identified from any syndrome produced by the system as long as

the number o f faulty nodes present does not exceed /. The degree o f diagnosability of a

system is the maximum number o f faulty nodes that can be diagnosed correctly.

There are three major issues associated with system-level diagnosis: the

characterization problem, the diagnosability problem, and the diagnosis problem. The

characterization problem is to find necessary and sufficient conditions to achieve a given

degree o f diagnosability in terms of test assignment, which specifies who tests whom.

The diagnosability problem is to determine the degree o f diagnosability (i.e., the largest

value of t) for a given test assignment. Finally, the diagnosis problem is to develop an

algorithm to identify the fault set from the test outcomes. Hakimi and Amin [HA74]

presented the first full characterization o f r-diagnosable systems. Sullivan [S84] solved

the diagnosability problem giving a polynomial-time algorithm to determine the largest

value of t for which a given system is r-diagnosable. Dahbura and Masson [DM84] solved

the /-fault diagnosis problem. They presented an 0(n^^) diagnosis algorithm for t-

diagnosable systems. Other works on /-fault diagnosis on the PMC model include

[AKT75] [KTA75] [K78] [NN86] [S88] [SAA89] and [DMY85].

In addition, several variations o f the PMC model such as the BGM model (as in

Figure 1.2(b)) have been proposed in the literature arising from different considerations

of fault types, ways of testing, test invalidation, etc [BGM76] [CH81] [MM81]. Chwa

and Hakimi [CH81], and Maeng and Malek [MM81] suggested that the stimuli-supplying

and response-observing type testing schemes be replaced by comparison o f computed

results. This is known as the comparison model. This model is shown in Figure 1.2(c).

The outcome, for each pair of nodes whose outputs are compared, is labeled 0 (1), if the

outputs agree (disagree). It is assumed that the outputs of a fault-free node and a faulty

node always disagree and the outputs o f faulty nodes may or may not disagree. For a

broad description of the early works in the theory of system-level diagnosis can be found

in the survey paper [KH87].

1.1.2 Diagnosis of Large Fault Sets

In multiprocessor systems, such as those implementable in VLSI and Wafer Scale

Integration (WSI), the number o f nodes - in this context we use nodes and processors

interchangeably - in a system can be very large. Moreover, the commonly used

interconnection networks such as the rectangular grids and the hypercubes are very

symmetrical and sparse. If the testing links are the same as the communication links

between the processors, the degree of /-diagnosability of such systems is very small. To

address this issue, Somani, Agarwal and Avis [SAA87] proposed a generalized theory of

diagnosis providing necessary and sufficient conditions for fault pattern of any size to be

diagnosable. Motivated by the need to be able to diagnose large fault sets in sparse

systems Das et al. [DTAL93] introduced the concept of local diagnosis and proposed to

place reasonable local constraints to achieve a higher overall diagnosability degree. They

also showed that many regular interconnected structures such as the hypercube and the

rectangular grid are locally diagnosable. They also presented a simple algorithm for

diagnosis of such systems. This algorithm is also amenable for a distributed

implementation. In [DTLA93] a distributed diagnosis algorithm for a ring of processors

in presented. A more recent work on local diagnosis may be found in [L97]. However,

much work remains to be done with regard to the complete characterization of locally

diagnosable systems and their diagnosis.

Sequential /-fault diagnosis and /A-diagnosis allow for more nodes to be faulty in

sparsely connected systems at the cost of prolonging diagnosis time or o f misidentifying

some fault-free nodes. A system is sequentially t-diagnosable if and only if, given a

syndrome, at least one faulty node can be correctly identified, provided that the number of

faulty nodes in the system does not exceed t. A system is t/s-diagnosable if and only i f

given a syndrome, the set o f faulty nodes can be isolated to within a set o f s nodes,

provided that the number of faulty nodes in the system does not exceed t. With the

sequential diagnosis approach up to the square root of the number o f nodes in the system

can be diagnosed on a single loop architecture [PMC67]. Das et al [DTA91] and

Raghavan [R89] have given characterizations o f r/s-diagnosable systems. Das et al

[DTA91] have also given a diagnosis algorithm for t/y-diagnosable systems. Raghavan

and Tripathi [RT91] showed that sequential /-diagnosability is Co-NP-Complete for both

PMC as well as BGM models. Kavianpour and Friedman [Kf 78] considered a very

interesting special case of //s-diagnosability, the t/t-diagnosability. They showed that with

the same degree of connection the degree o f ///-diagnosability might double the degree of

/-diagnosability. An 0(n^^) diagnosis algorithm for ///-diagnosable systems was given by

Yang, Masson and Leonetti [YML86]. Das et al. [DTA94] presented an 0(n^^) diagnosis

algorithm for ///+1-diagnosable systems.

More recently, Somani and Peleg [SP96] introduced a new measure of

diagnosability, called /^-diagnosability. This is similar to /A-diagnosability except that

there is an upper bound on the number of incorrectly diagnosed nodes regardless of the

number o f actual faulty nodes in the system. They have analyzed the t/k- diagnosability of

hypercubes, star graphs and two dimensional meshes and have demonstrated that for

these systems, a substantial increase in the degree o f diagnosability is achieved at the cost

o f a small number of incorrectly diagnosed nodes.

1.1.3 Adaptive System-Level Diagnosis

In adaptive system-level diagnosis schemes, tests are assigned dynamically,

instead of assigning all o f them at the outset and decoding the test outcomes [HN84]. So,

adaptive diagnosis requires fewer tests. In [N81], Nakajima proposed an adaptive

diagnosis scheme. Here, a completely connected system is assumed which restricts its

applicability. This approach is further studied in [NN86]. Vaidya and Pradhan [VP94]

proposed a new adaptive scheme called safe system-level diagnosis. The safe-diagnosis

approach ensures that up to t faulty nodes can be located and up to ii faulty nodes, where

II > /, can be detected. In this approach, a minimal amount o f fault location capability is

sacrificed to attain a large degree of fault detection capability. More recently. Fang,

Bhuyan and Lombardi [FBL96] proposed an adaptive diagnosis algorithm for hypercube

systems. The diagnostic cost (measured in terms of the number o f test links and diagnosis

time) is very low for this scheme.

1.1.4 Probabilistic Diagnosis

Probabilistic diagnosis is yet another approach to allow diagnosis of large fault

sets. The emphasis here is to identify all faulty nodes with a very high probability. This

approach was initiated by Maheswari and Hakimi [MH76]. Dahbura, Sabnani and King

[DSK87] considered probabilistic diagnosis with comparison testing. Scheinerman [S87]

gave a probabilistic diagnosis algorithm which correctly identifies every node as n tends

to infinity, as long as each node compares with slightly more than log n nodes. Blough

[B88] showed that correct diagnosis with high probability was impossible if each node

was tested by only Oilogn) other nodes. Further results were presented by Blough,

Sullivan, and Masson [BSM92]. Fussell and Rangarajan [FR89] considered performing

multiple tests to achieve correct diagnosis o f constant degree connection structures.

Slightly more than log n tests are performed with respect to each test link. They showed

that the probability of correctly identifying every node approaches one as n tends to

infinity. They further showed [RF92] that the number of test links per node and the

number o f tests per test link can be traded off as long as the product of these two

parameters grows as 0{logn) as n tends to infinity. Laforge et al [LHA94] presented

another approach to diagnosing constant degree systems. An extensive review of

probabilistic diagnosis results may be found in Lee and Shin [LS94]. Applications o f

probabilistic approaches to VLSI testing may be found in [FR89], [RFM90], and

[HAT98].

1.1.5 Algorithm-Based Fault Tolerance

In several computation intensive applications (such as signal processing),

multiprocessor architectures are commonly used. To improve the reliability of such

systems, it is desirable to provide them with concurrent error detection capability.

Algorithm-based fault tolerance (ABFT) is one such technique [HA84]. There has been

an extensive literature on the design and analysis of algorithm-based fault tolerant

systems. In a pioneering work, Banerjee and Abraham [BA86a] proposed a graph-

theoretic model to represent ABFT systems. They also showed in [BA86b] how the

ABFT approach can be used for fault diagnosis in multiprocessor systems. Some recent

works in this area are [BP94] [YJ97].

1.2 Distributed System-Level Diagnosis

Most diagnosis algorithms based on the PMC model are assumed to be executed

on a single highly reliable supervisory node. A single supervisory node is a bottleneck in

a system with a large number o f processing nodes. Distributed diagnosis algorithms

which exploit the inherent parallelism available in a multiprocessor system would be

desirable. A detailed review of research results in distributed system-level diagnosis are

presented next. The approaches reviewed use one of two fault models: the Byzantine

failure model and the stopping failure model [J94] [L96]. In the case of a stopping

failure, a node ceases to function without warning. Stopping failures are intended to

model unpredictable node crashes. In the case of a Byzantine failure, a node may exhibit

completely unconstrained behavior. Byzantine failures are intended to model any arbitrary

node malfunction, including, for instance, failures of individual subcomponents.

1.2.1 On-line Distributed System-Level Diagnosis: SELF and Related

Algorithms

Distributed system-level diagnosis was first considered in the early works by

Kuhl, Reddy and Hosseini [KR80][KR81][HKR84] in which each fault-free node in a

distributed system reliably receives test results through its neighbors to perform

diagnosis. In this work the Byzantine failure model was used. It was assumed that the

total number of faulty nodes is restricted to t or fewer nodes, and that the test assignment

graph is fixed, i.e. each node tests a fixed set of neighboring nodes. In the SELF

distributed algorithm [KR81] fault-free nodes forward test results to neighboring nodes

which are then propagated to other nodes. No assumption is made regarding faulty nodes

which can propagate erroneous test results. Each node collects the test information and

independently determines the status o f all the nodes in the system. In the NEW SELF

distributed algorithm [HKR84] the key idea is that a fault-free node accepts test

information from one of its neighbors only if it has tested that neighbor and determined it

to be fault-free. This ensures that test result reports are propagated reliably along fault-

free testing chains. For correct diagnosis, the NEW SELF algorithm requires that every

fault-free node receives all the tests results of every fault-free node in the system. This

condition is satisfied if every node in the system is tested by /+1 other nodes. These

algorithms allow both link and node failures.

1.2.2 Event-Driven Technique for Distributed System-Level Diagnosis

In 1990, Biancini et al [BGN90] proposed an event-driven technique to adapt

Kuhl and Reddy's approach for an Ethernet-based network of workstations. To reduce the

communication overhead required by Kuhl and Reddy's approach, they used an event-

driven technique wherein only when a node is first detected as faulty or when a newly

repaired node rejoins the network is the new information forwarded in the system. Test

results are forwarded by a node only if it differs from the information stored at the node.

The test assignment graph is such that each network node tests /+1 o f its next logical

neighbors, where t is the maximum number of faulty nodes that can be tolerated. This

strategy significantly reduces the number o f messages required to arrive at a diagnosis for

10

systems where the test assignment given above can be applied. These works allow both

link and node failures. They also permit repairs during the execution o f the algorithm.

1.2.3 Adaptive Distributed System-Level Diagnosis

A further refinement o f the approach of Biancini et al was to replace single-step

diagnosis by an adaptive strategy wherein the test assignment, instead of being fixed, is

determined by the fault situation [BB9I] [BB92]. This adaptive distributed system-level

diagnosis approach also removes the bound on the number of faulty nodes in the system.

This results in a sparse test assignment topology, a logical ring o f fault-free nodes in a

connected network. On occurrence o f a fault, the information is forwarded in the network

and the fault-free nodes rearrange the test assignment topology to preserve the ring

structure. More recently Duarte and Nanya [DN98] proposed a hierarchical adaptive

distributed diagnosis algorithm for fully connected networks. This algorithm has better

diagnosis latency than Bianchini and Buskens’ algorithm. More detailed descriptions of

these two algorithms will be given in chapter 2 .

1.2.4 Adaptive Distributed System-Level Diagnosis for Arbitrary
Networks

In [BSB92][SBB92] the adaptive strategy given in [BB92] was extended to

arbitrary networks. In [BSB92] the underlying test assignment topology is strongly

connected among all the fault-free nodes. On the occurrence o f an event, search and

destroy phases are added to modify the test assignment topology so that the strong

connectivity requirement is maintained. In [SBB92], the test assignment topology is a tree

I I

wherein each node in the tree is tested by its designated parent and the root is tested by

one o f its children. On occurrence of an event, a new tree rooted at the node that detects

the event is created to become the new test assignment topology. The path taken by the

forwarding o f information determines the new tree.

In [RDZ95], Rangarajan, Dahbura and Ziegler presented a distributed diagnosis

algorithm for an arbitrary network in which each fault-free node ensures that exactly one

fault-free neighbor - if it exists - is testing it. Nodes perform their tests periodically and if

a failure event is detected then the information is propagated using validating

transactions. The fault model for nodes considered in this case is the stopping failure

model where a node simply ceases to operate without alerting other nodes and a bounded

delay is assumed for communicating links. This work allows node failures and repairs to

occtu" during the execution o f the algorithm.

1.2.5 Gossiping and Consensus in a Distributed Environment

In [BH94] Bagchi and Hakimi presented a distributed algorithm for the gossiping

problem in a faulty environment and demonstrated its application in distributed system

level diagnosis. They assumed the Byzantine failure model and used a tree testing

topology. The system is required to be r-diagnosable if t faults are to be permitted. In this

work link failures are not considered. Also it is assumed that no processor can become

faulty and that no processor is repaired during the execution of the algorithm. Bagchi and

Hakimi pointed to “a growing overlap” between the field of fault diagnosis and the field

o f consensus in distributed systems. Barborak, Malek and Dahbura [BMD93] described

results of interest in these fields.

12

1.2.6 Broadcast Model for Distributed Diagnosis

In a recent work Blough and Brown [BB99] proposed a new comparison-based

model for distributed diagnosis. This model is a combination o f distributed diagnosis and

the generalized comparison model o f Sengupta and Dahbura [SD92]. In the broadcast

comparison model, a distributed diagnosis procedure is used, which is based on

comparisons of redundant task outputs and has access to a weak broadcast protocol.

In this model, a task is assigned to a pair of distinct processors with the same

input. These two processors perform this task and broadcast their outputs to all processors

in the system. Every fault free processor in the system compares the two outputs received.

Note that comparisons are made on every fault free processor including the processors

being compared. Once a processor produces a sufficient number of comparison outcomes,

it executes a diagnosis algorithm to determine the status of all processors in the system. In

other words, the diagnosis algorithm is executed in a distributed fashion. This algorithm

has been implemented in the COSMOS operating system. The authors have produced

simulation results to show that the algorithm diagnoses all fault situations with low

latency and very little overhead.

1.3 Scope of the Thesis

There are two aspects to this thesis. In chapter 2, we first review two distributed

diagnosis algorithms due to Bianchini and Buskens [BB9I] and Duarte and Nanya

[DN98]. Both these algorithms are designed to diagnose fully connected networks. The

ADSD algorithm of Bianchini and Buskens has a diagnosis latency o f 0(N) for a network

13

with N nodes. The Hi-ADSD algorithm of Duarte and Nanya may be a viewed as a

generalization of the ADSD algorithm, and has diagnosis latency of 0(log~N). After a

review o f these two algorithms, we propose a new algorithm based on the multilevel

paradigm. The multilevel paradigm can be applied to both the ADSD and the Hi-ADSD

algorithms. We establish the diagnosis latency of this algorithm to be called the

ML-ADSD algorithm and present extensive simulation results comparing the diagnosis

latencies of these three algorithms.

The primary application o f our research is to develop and implement a prototype

network fault detection/monitoring system by integrating the ML-ADSD algorithm into a

SNMP-based (Simple Network Management Protocol) fault management system [RM90]

[MR91] [CFSD90]. Design and implementation o f such a distributed network fault

detection system is discussed in chapter 3. SNMP was developed by IETF in 1988 for the

purpose of managing the network devices over a computer network and has been widely

adopted by industry on network applications. The major drawback of SNMP-based fault

management is its centralized nature. The resulting problems include a single point of

failure, lack of scalability, and high communication costs around the central manager.

Through our application, we demonstrate that some of the above problems can be solved

to some extend and that the improvement of fault management through distributed fault

location is feasible. Chapter 4 concludes the thesis with a summary o f research and

suggestions for future work.

14

Chapter 2

Multi-Level Adaptive Distributed Diagnosis for Fault

Detection in a Network of Processors

In this chapter we present and discuss a multilevel adaptive distributed diagnosis

algorithm for fully connected networks. This is a generalization o f Bianchini and

Buskens’ [BB92] ADSD algorithm. The multilevel paradigm also helps design an

algorithm with diagnosis latency smaller than that of the ADSD. As mentioned in

Chapter 1, this was also the motivation of Duarte and Nanya’s [DN98] hierarchical

distributed diagnosis algorithm.

We first present in sections 2.1 and 2.2 the essential features of the diagnosis

algorithms o f Bianchini and Buskens, and Duarte and Nanya. Several concepts and ideas

used in these algorithms are also relevant to the design of our new algorithm to be

discussed in the following section. We present the new multilevel diagnosis algorithm

and several aspects of this algorithm in section 2.3. In section 2.4, we present simulation

results comparing these three algorithms.

A preliminary version of the work in this chapter has been reported in [STDOl].

2.1 The ADSD Algorithm

The adaptive-distributed system-level diagnosis algorithm (to be called ADSD)

proposed by Bianchini and Buskens [BB91][BB92] assumes the existence of a logical

fully connected network and does not permit link failures. It is distributed, adaptive on

testing set, and imposes no limit on the number of faulty nodes. It is assumed that there

15

are no links failures. The PMC fault model [PMC67] is used. Also, during the testing

process a node cannot fail and recover from that failure during the time between two tests

by another node.

The ADSD algorithm is the first practical application o f system level diagnosis

theory and has been implemented to run on an Ethernet network o f over 200 workstations

at the Carnegie Mellon University.

Before we discuss the specification of the algorithm, we have to clarify the

concepts of ''tesC' and '"testing round’’’ and "diagnosis latency” used in distributed

system-level diagnosis literature.

A "test” could be just simply a node i sending a message to node j to ask for some

information. If the response is proper and on-time, then node i evaluates node j as fault-

free. Otherwise, node j is faulty.

The concept of testing roimd plays a very important role in expressing the

diagnosis latency (or capturing the time complexity) of a distributed diagnosis algorithm.

A "testing round’’ is defined as the period of time in which every fault-free node

in the system has tested another node as fault-free, and has obtained diagnostic

information from that node, or has tested all other nodes as faulty [BB91]. In other words,

the duration of a "testing round' includes the time taken by a node / to find a fault-free

node j or evaluate all the nodes as faulty. For example, assume a node i at time t\ starts its

sixth test execution, and finds nodes /+1, i+2 as faulty and /+3 as fault-free at time t .̂ At

this time, node / stops testing. On the other hand, node /+3 at time ti starts its sixth test

execution and finds node z+4 as fault-free at time t ̂and then stops testing. Although the

times and the number of tests for node i and node /+3 to find a fault-free node are

1 6

different, we still say that nodes / and /+3 performed their tests in the same testing round,

that is, sixth testing round.

The ‘'"'Diagnosis la tency is defined as the time from the detection of a fault event

to the time when all the fault-free nodes correctly diagnose the event. In the following our

interest is in diagnosis latency after the last fault event has occurred.

Algorithm Spécification:

In the ADSD algorithm, a node i uses an array called TESTED UP, to update the

testing results and to respond to the request of its tester. An example o f the data structure

for node 2 in an eight node system is shown in Figure 2.1.

The TESTED UP/ array contains N entries, and the array indices and the values

o f the entries are node identifiers. For example, entry TESTED_UP/[i/] = v, means that

node i has received a diagnostic message from a neighbor node (which it has tested as

fault-free) indicating node ii has tested node v and found node v fault-free. Also an entry

o f TESTED_UP,[/] = u means that node / itself has tested node u as fault-free. If the

value of an entry is “x”, it means that the entry is arbitrary. Figure 2.1 shows the values

kept at node 2 for an eight node network with nodes 1,3, and 4 faulty.

TESTED_UPj[0] = 2
TESTED_UP,[1] = x
TESTED_UP2[2] = 5
TESTED_UP;[3] =x
TESTED_UPj[4] =x
TESTED_UP2[5] = 6
TESTED_UP,[6] = 7
TESTED_UPi[7] = 0

Fig. 2.1 The TESTED_UP
information stored in node 2

17

A special property o f this array is that in one testing round after the last fault

event has occurred a '‘‘'fault-free rin^' will be formed if we start from a fault-free node /

and connect the fault-free paths from node i to other fault-free nodes. Using the above as

an example, if we start from node 2, then the fault-free tests are 2 to 5, 5 to 6 , 6 to 7, 7 to

0, and 0 to 2. By viewing these fault-free tests as paths and connecting them together, we

will have a 'fault-free ring" (e.g., 2 ^ 5 -^ 6 ^ 7 -» 0 —>2). This property plays an important

role in the proof of correcmess o f the ADSD algorithm as well as the algorithm we shall

propose in the following section.

During the process of diagnosis, each node, in a testing round, executes the

ADSD algorithm to completion and resumes the testing after a predefined interval. Each

node tries to find a fault-free node and uses the information from that fault-free node to

update its local diagnosis information in the TESTED UP array. In at most N testing

rounds after the last fault event, each fault-free node will have consistent diagnosis o f the

fault status of the nodes in the network, thereby resulting in a diagnosis latency of OiN)

testing rounds.

Before the execution o f the algorithm, all the nodes are ordered sequentially in a

list, as (jio, «/, ..., «;V-/) Thus, a node / will test nodes /+1, /+ 2 ,..., etc., sequentially until a

fault-free node is found, and then acquires the diagnosis information from that node.

Since all the additions are modulo N, we will find that once we connect the testing paths

o f all the fault-free nodes, the testing paths will form a ring. Therefore, in each testing

round, a node / will perform a test in a 'forward' manner from node / to node / + 1 as in

Figure 2.2(a), but will get the diagnosis information in a "backward' manner from node

/+1 to node / as in Figure 2.2(b). It takes one testing round for the diagnostic information.

18

TESTED UPrKI, to be propagated between fault-free nodes /+! and /. Likewise, it will

take two testing rounds for fault-free node /-I to get TESTED UP/+, from node /. At the

end of at most N testing rounds, all the fault-free nodes will have the same fault status

information of all the nodes in the network. Based on the information in TESTED UP, an

algorithm called "Diagnose"’ is used to determine all the fault-free nodes in the network.

A

6
^ A

5

Fig. 2.2(a) An adaptive testing topology
for an eight node network with nodes 1 ,
3, 4 faulty

Fig. 2.2(b) Information propagation
along fault-free nodes

Summarizing, an informal description of the ADSD algorithm and the Diagnose

algorithm are given Figures 2.3 and 2.4 respectively.

19

ADSD algorithm (informal)
• List the nodes in sequential order, as (no.«u ••• , «a-O-

Testing round for node Wr

1. Node fix identifies the next sequential fault-free node in the list
• sequentially testing consecutive nodes w.t+i mod n, «1+2 mod n,

..., etc.,
• until a fault-free node is found.

2. Diagnostic information received from the tested fault-free node
is utilized to update local information.

Repeat steps 1 and 2 in subsequent testing rounds.

Fig. 2.3 ADSD algorithm

/* Diagnose algorithm*/
/* The following is executed at each rix, Q < x < N when rix desires

diagnosis o f the systems. */

1. For / = 0 to 1
1.1. ST ATEr[/] = faulty;

2. node_pointer = x;

3. repeat {
3.1. ST ATEj:[node_pointer] = fault-free;
3.2. node_po inter = TESTED_UP^;[node_pointer]
3.3.} until (node_pointer = x);

Fig. 2.4 Diagnose algorithm

2 0

2.2 Hierarchical Adaptive Distributed System-Level Diagnosis

The hierarchical adaptive distributed system-level diagnosis (Hi-ADSD)

algorithm o f Duarte and Nanya [DN98] uses a divide-and-conquer testing strategy to

reduce the diagnosis latency. For testing, Hi-ADSD divides nodes into clusters of various

sizes (from small to large), and then collects the diagnosis information in each cluster to

accomplish the diagnosis o f the system.

Hi-ADSD has a diagnosis latency of at most 0{log~N) testing rounds where N is the

number of nodes in the network. It is both adaptive and hierarchical on the testing nodes,

distributed on execution, and imposes no limit on the number o f faulty nodes. It is also

claimed that it has less communication overhead in terms o f packet size. Additionally, it

has been integrated with the simple network management protocol (SNMP) [RM90]

[CFSD90] [MR91] and applied in a 37-node Ethernet network platform.

Algorithm Specification:

Consider a network (system) S o ï N nodes with each node in one of two states,

faulty or fault-free. The system is assumed to be a logically complete network. It is

assumed that there are no links failures. Again the PMC fault model [PMC67] is used.

Also, during the testing process a node cannot fail and recover from that failure during

the time between two tests by another node, and that the time could be as long as logN

testing rounds in the worst case.

Firstly, the Hi-ADSD algorithm at each node divides the remaining nodes into

various sizes of clusters for testing, and the size of the cluster tested will vary at different

2 1

testing rounds. In the following discussion, the network size N and ail the cluster sizes are

assumed to be a power o f 2. In general, a cluster o f m nodes will contain nodes u„

Ui+m-i with / MOD m = 0, and m is a power of 2. If w = 1, then the cluster has only one

node. If m = 2, then the cluster is the union of two smaller clusters, one containing nodes.

Ub -, Ui+m/2-i and the other containing nodes i f , ... As an example, an eight

node network with clusters of different sizes is illustrated in Figure 2.5. Duarte and

Nanya have developed a formula to identify the clusters with respect to each node. This

helps reduce the complexity of the algorithm.

0 <-----► 1 4 <------► 5

Ik ~

2 <---- ► 3 6 <------► 7

duster of size 1 node

duster of size 2 nodes

duster of size 4 nodes

A hierarchical approach to test clusters in Hi-ADSD algorithm

Fig. 2.5 An eight node network with clusters of different sizes

Next, during the execution of the algorithm, in any testing round, each node starts

by testing a cluster of size one, then a cluster of size two, and so o n ,..., up to a cluster of

size o f or N/2 nodes, and then repeats this testing process. Accordingly, after the

continued execution of the Hi-ADSD in at most log'N testing rounds after the last fault

event, each fault-free node will have the same fault status information of the system.

2 2

Basically, in one testing round, a node / will sequentially test the nodes in cluster

C/.j. Function Q j is used to generate the list of nodes in a cluster as shown below.

C,5 ={n i \ t = (i MOD 2" + 2"' + f) MOD 1>s-I+a

where
(/ DIV 2") * 2" + 6 * 2"-';y = 0. 1,.... 2 " '- l },

[I if /
"{o

MOD 2^ < 2 '-'
otherwise.

b = 1
i f a = l A N D (/M O D 2‘ + 2 " ' + j)
M O D 2 " " + (/ D I V 2 ') * 2 ’ < /

0 otherwise.

For example, the table generated by function C/.j which contains the lists of nodes
in various clusters to test for an eight nodes network is shown in Table 2.1.

Table 2.1
Table generated by function Cu which contains the lists o f nodes in various clusters
to test for an eight nodes network is shown below.

s Co, Cl., C2.S Cl, Cj, Cl, Co., C-,
1 1 0 3 2 5 4 7 6
2 2,3 3 ,2 0, 1 1,0 6 ,7 7,6 4,5 5 ,4
3 4, 5,6, 7 5, 6, 7, 4 6, 7,4. 5 7,4, 5, 6 0, 1,2,3 1,2, 3 ,0 2, 3,0, 1 3 .0 , 1,2

During execution of the Hi-ADSD, if node / finds a fault-free node j in the cluster,

then node / will stop testing and copy the diagnosis information regarding the nodes in

Ci,s from node j . If node / can not find a fault-free node in Q j, then node / will continue to

test the next cluster C, i+/, This testing process at cluster j+1 will stop when node i finds a

fault-free node in some cluster or all the nodes in all the clusters are tested as faulty. In

the next testing round, node / will start testing the cluster next to the one where it stopped

in the previous testing round. However, regardless o f the number of clusters that node /

has to test in order to find a fault-free node or find the rest of the nodes as faulty, we

define the time interval node / spends in doing this as belonging to one testing round.

Summarizing, an informal presentation of the Hi-ADSD algorithm is given Figure

2.6 along with an illustration in Figure 2.7.

23

Hi-ADSD algorithm (informal)
• Divide nodes into logN clusters of various sizes, (from small to large),

with cluster index f = 0, 1, ..., logNA.
• Cluster s will contain an ordered list of size 2® nodes. Initially, set 5 = 0.

Each testing round for node rir

1. Node nx identifies a fault-free node in cluster s
• sequentially testing list nodes in cluster s
• until a fault-free node is found or all the nodes in cluster s are

faulty.
2. If a tested fault-free node is found, then

• copy diagnostic information of all nodes in cluster s from this
fault-free node.

• Set 5 = (5 + 1) modulo logN
Else goto Step 1 with 5 = (5 + 1) modulo logN

Fig. 2.6 Hi-ADSD algorithm

Fau Ity

Faul ty-free

Find n o d e 6 as faul t - f ree , so
s top th i s t e s t ing in terval at

 this c l u s t e r .
T h e n e x t tes t ing interval
s t a r t s f rom the n e x t c lus ter .

0, 1 1, 12, 1 3, 14

6, 17, ,

Af t er tes t ing o f cluster
o f size N H , goes back
to tes t c lus ter o f size I .

Fig. 2.7 Il lustration o f H i - A D S D algori thm

24

We conclude this section by pointing out that the ADSD algorithm can be viewed

as a special case o f the Hi-ADSD algorithm.

In the Hi-ADSD algorithm each node / views the remaining nodes as partitioned

into log N-\ clusters o f varying sizes. In the first testing round it starts testing a cluster of

size one, then a cluster of size 2, and so on until it finds a cluster with a fault free node. In

the subsequent testing roimd, node i starts testing with the cluster next to the one where it

stopped in the previous testing round.

On the other hand, node / in the ADSD algorithm views the remaining nodes as

one single cluster of Â -1 nodes: /+1, i+2,..., /-I. So, in every testing round node / tests its

only cluster starting each time testing node /+1.

Thus the ADSD algorithm can be viewed as a 1-level hierarchical algorithm

whereas the Hi-ADSD algorithm is a log M-l level hierarchical algorithm.

2.3 ML-ADSD: Multi-Level Adaptive Distributed System-Level

Diagnosis

In this section we propose the design o f a multi-level adaptive distributed

diagnosis algorithm for fully connected networks, which generalizes the ADSD algorithm

of Bianchini and Buskens. This algorithm, to be called the ML-ADSD algorithm, has

been motivated by the need to reduce the diagnosis latency of the ADSD algorithm as

well as the message transmission overhead. The main features of the ML-ADSD

algorithm are: multi-level divide-and-conquer partition strategy; adaptive on the next

testing assignment; distributed on execution; no upper bound on the number o f faulty

25

nodes; autonomous leader election; easy control on synchronization; and less message

transmission overhead.

For the sake o f simplicity in explanation, the following discussion o f the

ML-ADSD algorithm assumes a two-level scheme. The details of the algorithm for more

than two levels will be presented in the following section.

2.3.1 Level-1 Clusters

Again, we assume a logically complete network G of N nodes, nn, ni «.v-/. The

nodes are first partitioned into p clusters o f equal size. Thus each cluster has N/p nodes.

For reasons which will become clear later we shall call these clusters as level-1 clusters.

To make the discussion and the algorithm simpler to present, we assume that both N and

p are powers o f two. Also it is assumed that each node is able to correctly test and

determine the state of other nodes based on the PMC fault model. Link failures are not

permitted. An example o f a Bus/Ethernet Network of eight nodes and its logical fully

connected network is shown in Figures 2.8(a) and (b). Figures 2.9(a) and (b) also shows

the re-mapping of old node ids to new node ids and the partition of a network of eight

nodes into four clusters.

Fig. 2.8(a) An eight node Ethernet
network

Fig. 2.8(b) A logical fully connected
network

26

k 0 1 2 3 4 5 6 7
i 0 1 0 1 0 1 0 1
j 0 0 1 1 2 2 3 3

Hk = old node id
nk => n,j, i: new node id,

y: cluster id
/ = k MOD {N/p),
j = k DIV {N/p)
e.g., ri2 => no.i ,ns => m j where

V = 8 , p = 4.

Fig. 2.9(a) Node IDs re-mapping
table

(^\ Ç)\ (3\Ç)
\ \ \ (^

Cluster 0 \ Cluster 1 \Cluster 2 \ Cluster 3

Fig. 2.9(b) Re-map and partition o f
the nodes into four clusters

2.3.2 Informal Description of the Two-Level Diagnosis Algorithm

Consider Figure 2.10 which gives a pictorial view of our two-level algorithm. In

this tree description o f the algorithm we have the p original clusters at level I. Whenever

possible, we associate a leader node with each cluster. The fault free node with the

smallest id in a cluster is selected as the leader of that cluster. If a node is not a leader

node, then it is called a regular node. Note that if all the nodes in a level-1 cluster are

faulty, then this cluster has no leader. At level 2 there is a single level-2 cluster

consisting of the leaders from the different level-1 clusters. Thus the size o f the level-2

cluster is at most p nodes.

27

Tests at level 2
tor leader nodes/

Tests at Level I
7) , for regular nodes

Fig. 2.10 A two-level scheme

Initially, all nodes are regular nodes. Each node begins the diagnosis process by

testing, in its first testing round, only the nodes in its cluster. This testing round is called a

level-1 testing round. The actions taken during this testing round are almost the same as

in the testing round of the ADSD algorithm. Specifically, during a level-1 testing round

each fault free node identifies a unique fault free node, if it exists, and updates the local

diagnosis information. Moreover, in at most N/p testing rounds after the occurrence o f the

last fault event these fault free nodes will form a cycle and a node will be able to detect

all the nodes in this cycle. A subroutine ^'Cluster-leader " (in Figure 2.12) to be discussed

later is used to detect this cycle. If a node finds itself to have the smallest id among the

ids of all the nodes in this cycle, it elects itself as leader o f its cluster. After completing

28

the testing of nodes in a testing round, the node changes its status to "leader", if

necessary, and ends the testing round.

On the other hand, a leader node executes a level-2 testing round to be defined in

the following and also updates its status to "regular", if necessary.

Note that in a level-1 testing round a node n,j will try to find a fault-free node

sequentially in cluster j and uses the diagnosis information from that fault-free node to

update its local diagnosis information. On the other hand, in a level-2 testing round a

leader node will try to find a fault-free node starting from wo^i in clustery-i-1 (modulo

p). The leader will then use the diagnosis information from that fault-free leader node in

clustery+1 to update the status of the nodes in clusters other than its own. If all the nodes

in cluster /+1 are found fault) , the leader node in cluster j will continue to look for a

fault-free node starting from noj+i in cluster j+ 2 , ..., and so on, if necessary. As in the case

of level-1 testing rounds, in each level-2 testing round each leader identifies a unique

leader from another cluster and these leaders will form a cycle. But a leader will be able

to detect the nodes in this cycle only after performing at most p level-2 testing rounds.

Also, during a level-2 testing round, in some cases, a leader node may be required to do a

level-1 testing if it continues to be the fault free node with the smallest id in its cluster

and take appropriate actions, if necessary.

We next present the details of the data structures and algorithms used in

implementing the above diagnosis scheme.

2.3.3 Data Structures

In the ML-ADSD algorithm, a node «y uses an array called TESTED UP,^ to

update the testing results. TESTED UP,,/ is a two-dimensional array of size {N/p x p)

29

where N is the number o f nodes of the network and p is the number o f clusters defined by

the user. Also the row index i represents the re-mapped node id and the column index j

represents the cluster id. Additionally, the values in the array are the re-mapped node

identifiers. In addition, entry TESTED_UP/^[«][A:] = v at node means that node i in

cluster j has received a diagnosis message from a neighbor node (which it has tested as

fault-free) indicating node u in cluster k has tested node v in cluster k and found node v as

fault-free Also, an entry TESTED UP,.y [/][/] = u means that node / itself has tested node u

and found node u as fault-free in cluster j . If the value o f an entry is "x", it means that the

entry is arbitrary. Figure 2.11 shows that the values kept at node no.i for an eight node

network of four clusters with nodes «/./, and «0,7 (where the old node ids are «j and «v)

faulty.

TESTED_UPo/ [0][0] = 1
TESTED_UPo/ [1][0] = 0
TESTED_UPo/ [0][1] = 0
TESTED_UPo,/ [l] [l] = x
TESTED_UPo/ [0][2]=.r
TESTED_UPo/ [1][2] = 1
TESTED_UPo./ [0][3] = 1
TESTED_UPo,/ [1][3]=0

Fig. 2.11 Values kept at node «0,/

2.3.4 Cluster Leader Election

The subroutine "Cluster leader" in Figure 2.12 identifies the smallest node id

along a fault-free ring (cycle) in a cluster as the leader in that cluster. Recall that one o f

the special properties of the one-dimensional TESTED UP, array used in the ADSD

algorithm is that a fault-free ring will be formed in at most N testing rounds after the last

30

fault event if there exists at least one fault-free node in the network. A fault-free ring can

be formed at a node / by connecting all the fault-free tests in the TESTED UP, array

starting from the value in TESTED_UP,[/]. To find out a leader, a node i just goes along

the members o f the fault-free ring and compares its own node id with other members’

node ids. If node / has the smallest node id among the members in the ring, then node i is

the leader in the fault-free ring. Otherwise, node / is not the leader. If a node is not in a

ring, then it is not a leader node.

/* Cluster_leader election subroutine at node itij */

1. MARK n,j = True; //Mark node visited
2. next node = TESTED_UPy[/][/]; //get the next tested node id

3. While (next node # '%’) do
4. If (has_marked(A7ex/_noi/e) = True)
5. If (next node = /)
6. stop, i is the leader; //cycle back to myself
7. Else // cycle detected but / is not in the cycle
8. stop, / is not the leader;
9. Else
10. I f (next_node < i)
10. stop, / is not the leader; //someone’s id smaller than mine
11. Else
12. MARK next node = True;
13. next node = TES'fED_\5Ÿ,J[next_node'\[/];
14. End While

15. Stop;// / is not leader or the fault-free ring has not formed yet

Fig. 2.12 Cluster leader election subroutine

Similarly, we will apply the same fault-free ring concept in the two-dimensional

TESTED UP,^ array in this section by viewing each cluster’s values in TESTED UP,^ as

one smaller one-dimensional TESTED UP,. To find out the cluster leadership in clustery.

31

a node can start from the node id value in TESTED_UPy [/][/] and go along the fault-

free ring to compare the rest of node ids in TESTED UP/^. The pseudo code for the

routine "Cluster Jeader" is shown in Figure 2.12.

2.3.5 Cycle Detection at Level 2

To detect the cycle at level 2 we use a data structure similar to the TESTED UP

array. With each node we associate a one-dimensional leader array LEADER,

The LEADER/y array contains p entries. The array indices represent the cluster ids

and the values of the entries are node identifiers. For example, entry LEADER,y[w] =

means that node has received an information from a neighbor node (which it has

tested as fault-free) indicating a node in cluster u has tested node tix.y, in cluster y and

found node it fault-free. Also an entry of LEADER,y[/] = rix.y means that the leader node

itself in cluster j has tested node in cluster y as fault-free. If the value o f an entry is

"x", it means that the entry is arbitrary.

As in the case of cluster leader election, the LEADER,^ array can be used to

determine if node is in a cycle at level 2. The subroutine for cycle detection is given

in Figure 2.13. Once a node detects that it is in a cycle its status is changed to “regular”.

If a faulty node at level 2 recovers it may detect a fault free cycle at level 2, but

may not find itself in the cycle. In this case also we change the status o f the node to

“regular”. Certain actions need to be taken if the node does not detect a cycle. See the

algorithm description given below.

Now we are ready to present our two-level adaptive distributed diagnosis

algorithm.

32

/* Cycle Detection subroutine at node nij*!

1. MARK j = True; //Mark cluster id j Visited
2. na.b = LEADERjj[/]; //get the next tested node id

3. While ria.b ^ ‘x’ do
4. If (has_marked(/>) = True) // Has cluster 6 been visited?

If (a = /) //cycle back to myself
Stop, riij is in a cycle;

Else
Stop, riij detects a cycle but
it is not in the cycle;

9. Else
MARK b = True; // Mark cluster id b visited
ria.b = LEADERjj[6];

5.
6.
7.
8 .

10 .

1 1 .

12. End While

13. Stop; // n,j does no detect a cycle

Fig. 2.13 Cycle detection subroutine

2.3.6 Two-Level Algorithm Description

2-Level ADSD Algorithm

Initially, all the nodes are regular nodes.

During a testing round each node v performs the following:

CASE 1: If V is a regular node, then execute the "Level-1 Testing Algorithm” o f Figure

2.14, which includes leader election.

• Change the status of v to “leader ”, if it becomes a leader.

• End testing round.

CASE 2: If V is a leader, then execute the “Level-2 Testing Algorithm” of Figure 2.15.

• Execute the Cycle detection algorithm of Figure 2.13.

• If V detects a cycle at level 2, then

o change the status of v to "regular".

33

o End testing round.

• If V does not detect a cycle, then

o if V is not the fault free node with smallest id in its cluster at level-1, then

change the status o f v to '"regular”,

o Otherwise, execute the "Level-1 Testing Algorithm.”

o End testing round.

The Diagnose algorithm is very similar to that used in the ADSD algorithm. As in

the diagnosis algorithm in Figure 2.4, the STATE information is completed at each node

Hij by using the node identifiers in TESTED UP,^ and LEADER,j arrays.

/* Regular node. Level-1 Testing Algorithm at node rix,a */

1. y = x //assign my node id
2. repeat {
3. ^ + 1) mod Nip
4. request ny,a to forward TESTED UPy ̂ to nx.a
5. } until (nx,a tests «y.a as ""fault-free”)

6. for node = 0 to (N/p - 1) // update local cluster diagnosis information
7. TESTED_UP.r.a[«ode][a] = TESTED_UP^.a[woc/e][a]

8. TESTED_UPv.a[x][cf] =>/ //.y itself tests y as fault free

I* Level-1 Cluter Leader Election or Update */
9. If (Ciuter_ieader{) = "leader ”) // check the leadership
10. status(x) = /eaflfer
11. Else // update diagnosis information regarding other clusters
12. for cluster = 0 to {p - 1)
13. for node = Oto (N/p - I)
14. if (clusters a)
15. TESTED_UPxa[«of/e][c/M5ter] = TESTED_UP^a[/70i/e][c/wj/er]

16. Stop. // end of Level-1 testing round

Fig. 2.14 Level-1 testing algorithm_________________

34

/* Leader node, Level-2 Testing Algorithm at node nx,*!

\ . j = a\ !* assign my cluster id*/
2. repeat {
3. y = (/+ l)mod/7;
4. M = N/p - 1 ; // always start to test node id 0 in a new cluster
5. repeat {
6. M = (m + I) mod N/p\
7. request riuj to forward TESTED_UP„j and

LEADER»^ to nx.a,
8. } until (jixa tests riuj as “fault-free”) or (“all the nodes in cluster J are

faulty”);
9. } until («xa tests as “fault-free”)

10. for cluster = 0 Xo ip - I) / / update info, regarding other clusters
11. for node = 0 to {N/p — 1)
12. ii {clustered)
13. TESTED_UPx.a[«oi/e] [cluster\=^ TESTED_UP„j[noc/e] [cluster^

14. Stop. // end of Level-2 testing round

Fig. 2.15 Level-2 testing algorithm

2.3.7 Proof of Correctness and Diagnosis Latency

Note that our ML-ADSD algorithm is a generalization of the ADSD algorithm of

Bianchini and Buskens [BB92]. We can view the ADSD algorithm as a level-1 algorithm.

Since all the nodes are at level I in the ADSD algorithm, in at most N testing rounds after

the last fault event every fault free node will have correct and consistent fault status

information o f all the nodes in the network. But in the case of the multilevel algorithm

some o f the faulty nodes could be at level 2 and may recover to become fault free nodes

while being at level 2. Until they return to level 1, the information they contain is not

reliable and may not be correct. Also, they may not perform level-1 testing, thereby

35

preventing the election of the leaders at level 1. So, in proving the correctness of the

two-level algorithm we need to ensure that a faulty node after recovery does not prevent

the election of leader at level 1 and also eventually returns to level 1. The actions taken

by the ML-ADSD algorithm achieve this.

Consider again the two-level scheme show in Figure 2.10. Without loss of

generality, we assume that initially all nodes are fault free and are regular nodes. Our

proof o f correctness involves establishing that after executing a certain number o f testing

rounds after the occurrence of the last fault event, all the nodes will have the correct view

o f the fault status of all the nodes in the system.

Note that a testing round for a node includes the time taken by the node to

perform the actions specified by the 2-level ADSD algorithm.

The algorithm may be viewed as consisting of three phases.

Phase 1: In this phase all the nodes identify their respective leaders. The nodes in

each level- 1 cluster acquire correct view o f the fault status of all the nodes in that cluster.

In order to elect the leader each node must identify, using the data in the TESTED UP

array, the cycle of fault free processors at level 1. To do so, each node must execute

certain number of level- 1 testing rounds after the last fault event.

We need to consider several cases.

Case 1 : No faults occur.

In this case, all nodes are regular nodes and as in the ADSD algorithm, in at most

36

N/p levcI-1 testing rounds after the last fault event, all nodes in each level-1 cluster will

get consistent and correct fault status information of all nodes in that cluster, and the

leader o f each cluster will be selected.

In the following, cluster refers to a level-1 cluster.

Case 2: A faulty node can recover only when it is at level 1.

Without loss of generality, let us assume that the last fault event is the recovery of

a faulty node, say node k, in cluster 1. Let Ci, the cycle of fault free processors in cluster

1 just before the last fault event be as in Figure 2.16(a). Let / be the fault free node with

the smallest id in C| In the worst case node k may also be in a cycle C? of faulty

processors before its recovery. Cycle C% is shown in Figure 2.16(b). Since node k

recovers in the last faulty event, the cycle o f fault free processors after the recovery of

node k will be as in Figure 2.16(c). This cycle needs to be identified by all the fault free

nodes in cluster 1 .

• Let us first assume that node k is less than i.

In the first testing round after the recovery of node k, node i will execute a level-1

testing (Case 1 in the 2-level ADSD algorithm) and identify node i\ as the next node in

the cycle o f fault free processors. Node i being the leader of cluster 1 before the recovery,

the TESTED UP, will indicate that node i is a leader and so it will change its status to

“leader”. This is because, in the TESTED UP, array of node /, node k will not be

identified as a fault free processor until after a certain number of testing rounds. Other

nodes including node k also will execute one level- 1 testing in this first round, but will

not identify themselves as leaders.

37

k<i

(a)
(b)

k < i

Fig. 2.16 Illustration o f proof of correctness

In the second testing round, being a leader node, node / will execute a level-2

testing (Case 2 in the 2-level ADSD algorithm). Node i will not find itself to be the fault

free node with the smallest id in cluster. So, it will set its status to “regular”. This

completes the actions taken by node / in the second testing round after the recovery of

node k. Other nodes in cluster 1 will execute one level-1 testing and remain as regular

nodes. These nodes also will identify the next two nodes in the fault free cycle C3 In

particular, node will identify /2 and ô as the next two nodes in C3.

In the third testing round, node i will execute one level-1 testing and identify itself

as leader. After testing r, fault fi-ee and updating its TESTED UP array, it will also

identify nodes /'i, /2, and node h as the next three nodes in the fault free cycle C3.

Thus in an even testing round node i will execute one level-2 testing and in an odd

testing round it will execute one level-1 testing. This will continue until node / identifies

38

node A: as the smallest fault free node in C3 and node / recognizes that it is no longer the

leader o f its cluster. On the other hand, all other nodes will execute only level-1 testings.

Thus, if node k is xth one after node / in the fault free cycle C3, then these x nodes

will be identified by node / in x or x+ 1 testing rounds after the recovery o f node k, and the

cycle C3 of fault free processors will be identified by all the nodes in at most N/p or

N/p-^\ testing rounds after the last fault event. Also, at the end o f these testing rounds,

node k will be identified as the leader of cluster 1 .

The above reasoning is applicable even if more than one node recovers in the last

fault event.

• Next consider the situation when k is greater than /.

In this case, in the first testing round after the last event, node / will execute a level-1

testing roimd and may find itself as leader. In the second and subsequent testing rounds,

being a leader and the fault free node with the smallest id, node / will execute a level- 1

testing as well as a level-2 testing and will remain at level 2. On the other hand, all other

nodes in cluster 1 will execute only level-1 testings. Thus, in at most N/p testing rounds

after the last event, node / and all other nodes in cluster 1 will identify node i as the leader

o f cluster 1 .

Case 3: Faulty nodes at level 2 may recover

Let the last fault event be the recovery of node k at level 2.

• Let us first consider the situation when node k is not the fault free node with

the smallest id in cluster 1 after the last fault event.

In the first testing round after its recovery, node k will execute a level- 2

39

testing round and will return to “regular” node status. In the second testing

round, it will execute one level- 1 testing and may find itself as a leader

because, possibly, it was in a cycle o f faulty nodes before the last fault event.

In the third testing round it will execute one level- 2 testing and again return to

“regular” node status. In the fourth testing round it will execute one level- 1

testing and may again find itself to be a leader. This sequence of alternation

between “regular” and “leader” status will continue until at most N/p testing

rounds are executed. At the end o f these testing rounds, node k will identify

the cycle C3, This is also true of all other nodes in the cycle C3.

• Let us next consider the situation when node k is the fault free node with the

smallest id in cluster 1 after it recovers in the last fault event.

In this case, in each testing round after the last fault event, the node k will

execute both a level- 1 testing and a level- 2 testing and will remain at level 2 .

All other nodes will execute level-1 testings in these testing rounds. So, in at

most N/p testing rounds after the last event, every node in cluster 1 will

identify node k as the leader.

Summarizing, in at most N/p or N/p +1 testing rounds after the last fault event all

nodes in all clusters will identify the leader nodes and acquire correct view of the status

of all the nodes in their respective clusters.

Phase 2: During this phase, in at most p testing rounds the fault free leaders of

the clusters identify the ring of leader nodes at level 2 using the LEADER array, update

40

their TESTED UP arrays with the status information of all the nodes in clusters other

than their own.

Phase 3: During this phase consisting of at most N/p Level-1 testing rounds, the

information at the fault-free leader nodes will be propagated to the remaining nodes in

their respective clusters.

Thus at the end of at most 2(N/p) + p + 1 testing rounds after the last fault event

all the fault free nodes in the network will have consistent and correct status information

of all the nodes in the network. Thus we have the following theorem.

Theorem 1: The diagnosis latency of the two-level adaptive distributed
diagnosis algorithm is at most 2{N/p) + p + 1 testing rounds

We now draw attention to certain issues we encountered while developing the

two-level algorithm.

Suppose no faults occur (Case I in Phase I discussed above). The following

simplified version of the 2-level ADSD algorithm will be adequate for all nodes to

acquire a correct view of the status of all the nodes in the network.

Simplified 2-Level ADSD Algorithm

Initially, all the nodes are regular nodes.

During a testing round each node v performs the following.

CASE 1: If V is a regular node, then execute the “Level-1 testing algorithm” o f Figure

41

2.14, which includes leader election.

• Change the status of v to “leader ”, if it becomes a leader.

• End testing round.

CASE 2: If V is a leader, then execute the “Level-2 testing algorithm” of Figure 2.15.

• Execute the “Cycle detection algorithm” o f Figure 2.13.

• If V detects a cycle at level 2, then change the status o f v to "regular".

• End testing round.

Consider Case 2 in Phase 1. Assume k is less than / (as in Figure 2 .17). In this

situation, if the above simplified algorithm is used, then in the first testing round node /

will identify itself as leader o f cluster I and move to level 2. In the second and

subsequent testing rounds it will execute only level-2 testing. It will also identify the

leader node q o f cluster 2 and update its LEADER array appropriately. Since it does not

execute any level- 1 testings, the nodes in cluster I will never be able to identify their

leader node k. But the node t will become a leader o f cluster 4 at some point and will

identify node k as the leader of cluster 1 and update its LEADER accordingly. Since node

k has not been able to identify itself as leader o f cluster 1 , none o f the leader nodes will

identify the cycle of leaders at level 2. Thus, a deadlock situation results (as in Figure

2 .17) and the nodes execute their respective actions without ever being able to acquire the

correct view of the status of the nodes in the network.

Similar deadlock situations would occur in case 3 too. The additional actions taken in

Case 2 o f the 2-level ADSD algorithm ensure that such deadlock situations do not occur.

42

cluster 3 cluster 4cluster 2cluster 1

Fig. 2.17 Illustration of deadlock

2.3.8 ML-ADSD Algorithm for the General Case

We now present the details of the Multi-level Adaptive Distributed Diagnosis

Scheme (ML-ADSD) for the general case of level greater than 2. A pictorial tree

description of this algorithm is shown in Figure 2.18(a). To simplify the discussion and

without loss of generality, we assume that each cluster at level 1 (the original p clusters)

has at least one fault free node. We denote the last level by M

Level/ogp-

LeveKogj

L e v e l f ^ ^
S.2Î-2

Leadei

cluster cluster cluster clustercluster cluster cluster cluster
G 0^4 Qy] C 2̂ Q>-|

Fig. 2 .18(a) .Tree representation of ML-ADSD algorithm

43

Algorithm Specification

• Level-f Clusters and Leaders

At level 1 of the tree representation are the p original clusters, to be called the

level-1 clusters. At level 2 there are p/2 clusters, to be called level—2 clusters Each

level-2 cluster consists of at most 2 nodes which are leaders o f two level-1 clusters. In

general, at level i there are p/2 ''* clusters, each containing at most two nodes which are

leaders o f two level-(/-l) clusters. In view of our assumption that each cluster has at least

one fault free node, all clusters at levels greater than one contain exactly two nodes. Note

that, as before, in each cluster the node with the smallest id will be called the leader of

that cluster. The leader will be called the left node and the other node will be called the

right node of that cluster. Also, if M < log p + 1, then at level M there will be one cluster

oïpil^^'^ nodes, one for each cluster at level M - \ .

Each cluster at level i < M may be viewed as the root of the subtree with 2' *

level-1 clusters as leaves. Specifically, consider theyth cluster (counted from left) in level

/. This cluster may be viewed as representing the level-1 clusters numbered fromy2''' to

(/+l)2''*-l. Each one of the two nodes in this cluster will then represent half of this group

o f the level-1 clusters. That is, the left node (the node with the smallest id) in this cluster

will represent the level- 1 clusters numbered from y2 ''* to 2 ''^(2y+ l)-l, and the right node

will represent the clusters numbered from 2''^(2y+l) to (/+1)2"’-1. We shall refer by PijiO

the set o f level-1 clusters represented by the left node in cluster J at level /, and by PrjiO

the set o f clusters represented by the right node inyth cluster at level /. See Figure 2.18(b)

for a pictorial explanation o f these definitions.

If M < log p + I, then the level-1 clusters represented by the yth node at level M

44

are those at the leaves o f the subtree rooted at this node and will be denoted by

cluster/ at level/ Left
ripde, node

Right

O O

• • • • • • • •

/ u o

level - 1 Clusters level - 1 Clusters

Fig. 2 .18(b) Subtree representation at the node o f cluster j at
level /

Level-i Testing Rounds

If M = logp + \, then nodes at level / perform level-/ testing as follows. The node

in the cluster j at level / representing Ptj(J) will test the nodes in the level-1 clusters in the

set Prjii) until it finds the smallest fault free node, if such a node exists, and updates in its

TESTED UP array the status o f the nodes in these clusters. The other node in the cluster

j at this level representing Prjij) will test the nodes in the level- 1 clusters in the set /*///)

until it finds the smallest fault free node , if it exists, and updates in its TESTED UP

array the status of nodes in these clusters.

45

If A/< lo g p + \, then nodes at level M perform the level-A/ testing as follows. The

y* node in this cluster will test the nodes not in Pj{M) until it finds the smallest fault free

node in a cluster greater than its cluster (modulo N) and updates the TESTED UP array

with the status of nodes in other clusters.. This is similar to the level-2 testing round

definition in section 2.3.2.

With these definitions we are now ready to present the ML-ADSD algorithm for

the general case of level greater than two.

• ML-ADSD Algorithm

Initially all nodes are regular nodes and are at level 1.

During each testing round each node v executes the following.

Let k be the current level o f node v.

CASE 1: If A := 1 , then do the following.

• Execute the level-1 testing algorithm of Figure 2.19

• Execute the leader election algorithm of Figure 2.12

• If node V is a leader, then set status(v) = leader

• If node V is not a leader then execute the algorithm in Figure 2.20 and update the

TESTED UP array with the status of nodes in other clusters.

CASE 2 : l f &>l , then do the following.

• Execute the level-A: testing algorithm of Figure 2.21.

CASE 2.1 If V detects a cycle (using the LEADER array) then do the following.

■ If A is not the last level then do:

46

(a) If V is not a leader then change the level o f v to 1 and End

testing round.

(b) If V is a leader at level k, then change the level of v to Æ+1 and

End testing round.

■ If /t is the last level, then change the level o f v to 1 and End testing

round.

CASE 2.2 If V does not detect a cycle at level k, then test

■ If V is still the fault free node with the smallest id in the group of

level- 1 clusters at the leaves of the subtree rooted at v.

• If not, change the level of v to 1.

• Otherwise, execute the level-1 testing algorithm (see Figure 2.19)

and End testing round.

/* Multi-level Level-1 testing algorithm at node nx.a*l
1 . y =x //assign my node id
2. repeat {
3. y = (y + 1) mod A7p
4. request riy_a to forward TESTED UPy a to rix,a
5. } until (jixM tests n^a as “fault-free”)

6 . for node = 0 to {N/p - 1) // update local cluster info.
7. TESTED_UPx.a[nof/e] [a] = _\5?y,a[node] [a]

8 . TESTED_UPj.a[x] [a] = y II x itself tests y as fault free

9. End of level-1 testing

Fig. 2.19 Multi-level level-1 testing algorithm

47

// Update information regarding other clusters at node /txa
1. for cluster = O xo(p - 1)
2 . for node = 0 to {N/p - 1)
3. i t {clusters a)
4. TESTED_UPr.a[noc/e][c/wjrrer] = TESTED _\JVy,a[node][cluster]

Fig. 2.20 Information update for non-leaders

/* Multi-level level k testing algorithm */

1. If A/ = log p + \, then nodes at level / perform level-/ testing rounds as

follows.

• The node in the cluster j at level / representing Pi.j{i) will test the nodes

in the level-1 clusters in the set Prj{i) until it finds the smallest fault free

node, if such a node exists, and updates in its TESTED UP array the

status o f nodes in these clusters. The other node in the cluster j at this

level representing Prj{i) will test the nodes in the level-1 clusters in the

set Pij{i) until it finds the smallest fault free node , if it exists, and

updates in its TESTED UP array the status o f nodes in these clusters.

2. If M < log p + \, then nodes at level M perform the level-M testing rounds as

follows.

• The jth node in this cluster will test the nodes not in Pj{M) until it finds

the smallest fault free node in a cluster greater than its cluster (modulo p)

and updates the TESTED UP array with the status of nodes in other

clusters.

Fig. 2.21 Multi-level level-^ testing algorithm

48

2.3.9 Proof of Correctness and Diagnosis Latency of the ML-ADSD

Algorithm

As in our discussion in the previous section on the proof o f correctness of the 2-level

algorithm, we view the ML-ADSD algorithm as consisting o f three phases. We show that

after executing certain number of testing rounds after the last fault event, all nodes

acquire correct view o f the status of all the nodes in the network.

First, we shall assume that the number o f levels M = logp + I.

Case 1: No faults occur

Phase 1: In at most N/p level-1 testing rounds after the last fault event, all nodes in

each level- 1 cluster will get consistent and correct fault status information of all nodes in

that cluster, and the leader o f each cluster will be selected.

Phase 2: The leaders (left nodes of the two clusters at level log p of the first cluster

(O'** cluster) and the M2 -I^ cluster) will reach the last level in 2{logp-\) testing rounds,

and then perform two testing rounds. At the end of these llogp testing rounds, these two

nodes will have correct fault status information of all the nodes in the network.

• While the left nodes of the two clusters at level log p move to the last level, the

right nodes o f these clusters move to level 1. After performing one testing round

at level 1 , these right nodes will move to level logp after 2{logp-2) testing roimds

and perform two additional testing rounds at that level to collect information from

the left nodes in their respective clusters the correct fault status information o f all

49

the nodes in the network. In all, they perform 2(log p -\) + 1 testing rounds to

collect correct fault status information o f all the nodes in the network.

• Continuing as above, in general, the right nodes o f the clusters at level i perform

2 (/-l) + 1 testing rounds to collect the correct fault status information of all the

nodes in the network. Note that 2 < / < log p.

Phase 3: Finally, the nodes in all level-1 clusters will collect from their respective

leaders the correct fault status information of all the nodes in the network in at most N/p

level-1 testing rounds

Combining all these testing rounds, all the nodes will have correct fault status

information o f all the nodes in the network in at most

N/p + [2 log p + 2 (Jog p - \) + 2 {log p - 2) ++ 2] + log p - 1 + N/p

= 2 N/p + {logp + 1) {logp) + l o g p - \

= 2 N/p + {logp + 2) logp - 1

testing rounds.

Case 2:Only Faulty nodes at level 1 recover

As in Case 2 in the discussion in the previous section, all nodes will identify their

cluster leaders in Phase 1 in at most N/p or N/p + 1 testing rounds. The other phases will

proceed as in Case 1 above. So the diagnosis latency in this case is one more than that for

the first case.

50

Case 3: Faulty nodes at levels greater than one may recover

In this case, an additional at most 2 log p testing rounds will be required for all the

fault free nodes to return to level 1. So, in this case the diagnosis latency is 2 N/p + {logp

+4) logp testing rounds

Summarizing the above, we have the following:

Theorem 2: If A/ = log p + 1, the diagnosis latency of the M-Level

ML-ADSD algorithm is at most 2 N/p + {logp + 4) logp testing rounds.

Proceeding as above, we can determine the diagnosis latency for the M-level

ML-ADSD algorithm as in Theorem 3.

Theorem 3: The diagnosis latency of the M-level algorithm (M > 2) is at most

2 Nip + (M-2)(M+4) + p2 * + 1 testing rounds.

We wish to note that other implementations o f our multilevel scheme are possible.

For instance, at each level we can combine more than 2 clusters to form clusters for the

next higher level. Diagnosis latency calculation and proof o f correctness in these cases

will proceed as above with some appropriate minor changes.

51

2.4 Simulation and Discussion

In this section, we present the results o f our simulation of the ADSD [BB92],

Hi-ADSD [DN98] and our ML-ADSD algorithms (for two-level and three-level schemes)

for networks o f various sizes. The algorithms were simulated using the discrete-event

simulation language SSS [P96]. The fail-stop model was used. All o f the network nodes

are modeled as independent processes and each node is assigned a unique node identifier.

Three types o f events are defined: test, fault occurrence and recovery.

Also, tests are scheduled for each node at each 30 ± ct time units as in [DN98],

where <r is a random number in the range of 0 and 3. This is the time interval between

two consecutive testing rounds at a node.

The fault event is modeled as the process being in faulty state and the recovery as

the process being in recovery state. During each test, the status of the node is checked

and, if the node is fault-free, the whole diagnosis information stored in the tested fault-

free node is copied to the testing node. If the tested node is faulty, the testing nodes

proceed testing as in the algorithm.

Experiments are conducted for all three algorithms on networks of different sizes.

In each simulation, we first made five percent o f the nodes fail. We then allowed 60% of

these failed nodes to recover. In all, there were 0.08*A event fault events. These events

occurred about x * (30 ± cr) time imits apart, where x is a random number between 0 and

5. There are 30 + ct time imits between the last fault event and the first recovery event.

The average diagnosis latency in terms of testing rounds and also in testing time units as

well the total number of test messages exchanged from the last event and until all the

52

fault free nodes have the same correct diagnosis information were collected. The average

was over 50 simulation runs. The results are presented in Table 2.2 and Figure 2.22.

Table 2.2 Simulation results for network sizes from 64 to 1024 nodes

Size pxN/p Round Time Test
N = 64 ML-2 8 x8 1 2 . 2 405 1697

ML 3 8 x8 11.9 399 1618
Hi-ADSD 15.2 499 2056
ADSD 30.7 999 4051

N = 128 ML-2 16x8 18.2 596 4972
8x16 18.3 602 5022

ML 3 16x8 16.4 540 4403
8x16 19.9 646 5264

Hi-ADSD 19.5 634 5228
ADSD 61.2 1978 16116

N = 256 ML-2 8x32 32.8 1070 17821
16x16 26.0 852 14200
32x8 34.5 1 1 2 1 18676

ML 3 8x32 33.2 1081 17657
16x16 24.1 790 12906
32x8 27.9 907 14813

Hi-ADSD 28.7 931 15351
ADSD 123.7 3988 65160

N = 512 ML-2 16x32 40.1 1309 43632
32x16 41.9 1363 45419

ML-3 16x32 37.8 1237 40418
32x16 35.1 1148 37508

Hi-ADSD 38.7 1247 41135
ADSD 245.4 7949 259677

N = 1024 ML-2 32x32 55.2 1808 120533
ML-3 32x32 49.8 1636 106833
Hi-ADSD 52.1 1674 110475
ADSD 488.8 15888 1037842

N: the number o f network nodes. ML2: ML-ADSD with two-level scheme
p: the number of clusters ML3: ML-ADSD with three-level scheme

53

(/)
■D
C3
O
t r
O)c

400

350

300

250

200

-&-IVIL2
-* -M L 3
— ADSD

Hi-ADSD
ML2, ML3: ML-ADSD with two-
level and three-level schemes

% 150

1 0 0

50

0
64 128 256 512 1024

Num ber of Nodes
Fig. 2.22 (a) Comparison of diagnosis latencies in terms of testing roimds

25000

(O 20000

3
I 15000

o>

$

10000

5000

0

-ML2
-ML3
-ADSD
-HI-ADSD

ML2, ML3: ML-ADSD with two-
level and three-level schemes / - - -

6— ------------ ----------

64 128 256 512 1024
Number of Nodes

Fig. 2.22 (b) Comparison of diagnosis latencies in terms of testing time

54

(O
Q)
05
(0(/)
<D
E
05

en
Q)

450000
400000
350000
300000
250000
200000
150000
100000
50000

0

ADSD
Hi-ADSD

ML2, ML3: ML-ADSD with two-
level and three-level schemes

64 128 256 512
Number of nodes

1024

Fig. 22(c) Comparison of the total numbers o f testing messages

Recall that the ADSD algorithm has a diagnosis latency of 0(N) and the

Hi-ADSD algorithm has a diagnosis latency o f O(log^N). As we can see from Table 2.2

and Figure 2.22 and as expected, in all respects, the performance of the ML-ADSD

algorithm is much better than that of the ADSD algorithm. In all cases, the number of

tests (messages) used by the ML-ADSD algorithm is smaller than the number for the Hi-

ADSD algorithm. In all cases, the time required by the ML-ADSD algorithm is better

than or the same as for the Hi-ADSD algorithm. Note that the performance of the

ML-ADSD algorithm can be improved by an appropriate choice of the number o f clusters

and the number o f levels. We would also like to point out that the ML-ADSD algorithm

is scalable in the sense that only some minor modifications will be required to adapt the

algorithm to networks of varying sizes. This property is not shared by the Hi-ADSD

algorithm.

55

Chapter 3

A Distributed Network Fault Detection System Based on the
SNMP Protocol

In this chapter we describe the design and implementation of a distributed

network fault detection system based on the SNMP (Simple Network Management

Protocol) protocol. The fault detection system is implemented by integrating the

ML-ADSD algorithm of the previous chapter with the SNMP protocol.

In section 3.1, we present a brief sketch of the evolution of the SNMP protocol. In

section 3.2, we describe the motivation for distributed network fault detection. In section

3.3, we briefly summarize the five key fundamental areas of the network management

and the details o f the architecture o f a network management system and SNMP. In

section 3.4, we describe how we integrate our multi-level distributed algorithm into the

SNMP-based fault management network.

3.1 Evolution of Network Management Technology

In this section, we present a brief overview of the Network Management

Framework developed by International Organization for Standardization (ISO) also later

known as the SNMP (Simple Network Management Protocol) [RM90] [CFSD90]

[MR91] and why we need a framework to manage the network devices running over the

Internet.

An Internet consists of different kinds o f networks and they are connected

together through the use of network devices (e.g., routers, switches, and bridges) and

56

some network protocols. In general these devices are able to implement TCP/IP protocol,

but they have the interoperability problems because different vendors produce these

devices. Therefore, the concept o f an “open” network management architecture

framework is proposed to manage these devices running over the networks. As a result,

the SNMP is such a management framework and has been widely accepted and broadly

deployed over the Internet today.

In 1987, three models of network management, namely, HEMS, CMOT, and

SGMP were proposed. High-level Entity Management System (HEMS) was first

proposed by researchers as an experimental framework to manage the networks. Later,

the Common Management Information Protocol (CMIP) was proposed by Open System

Interconnection (OSI) group of the International Organization for Standardization (ISO)

and CMIP was designed to run on the OSI-based networks. So a new protocol CMOT

(CMIP over TCP) w£is proposed by ISO to be used for the TCP networks. In November

1987, a simple design and easy to implement protocol Simple Gateway Monitoring

Protocol (SGMP) [DCFS87] was proposed and soon gained it acceptance and wide

deployment in the Internet community.

In February 1988, the Internet Activities Board (now Internet Architecture Board)

decided to promote CMOT as the future model for Internet Network Management

Framework, and use SGMP as the short-term solution before CMOT was accepted. For

some reason, HEMS was not considered.

In April 1988, the Simple Network Management Protocol (SNMP) was proposed

by lAB as the common network management model to be developed to allow the future

transition of systems from SGMP to CMOT.

57

In June 1989, due to some disagreements between CMOT and SNMP groups,

lAB decided to let CMOT and SNMP groups to develop independently. In May 1990,

lAB promoted SNMP as the standard network management protocol and a recommended

framework for use on the TCP/IP networks.

Soon after defining the format o f Management Information Base (MIB) [RM91],

and Trap [R91] message, and revision o f MIB, SNMP version 1 (SNMPvl) [MR91] was

issued in March 1991. SNMPvl’s standardization, universal acceptance, independent

operating systems and languages, and little demand on system resources have resulted in

its wide deployment.

In the years that followed, SNMP went through several improvements. In early

1996, SNMPv2 (SNMP version 2) was finalized and issued. In April 1999, SNMPv3

[HPW99][CHPW99], the latest version, was proposed to emphasize the security and

administration aspects of the earlier versions. SNMPv3’s features include identification

between users, verification of message for modification, protection o f message from

disclosure, and message authentication services, etc.

Although many versions of SNMP and different protocols (such as Remote

Monitoring Protocol, RMON [W91]) have been proposed and implemented to monitor

and control the networks, SNMPvl is still the widely accepted and deployed protocol.

58

3.2 Motivation for Distributed Network Management

The purpose of network management is to manage (monitor and control) the local

and remote network devices over a computer network through the exchange o f messages

between devices and hopefully to maintain the health of the network through such

framework.

Base on this approach, in general one node (device) will be designated as a central

network management station (NMS) or manager and the rest o f the nodes as regular

nodes (Agent). The manager then periodically polls information from the agents and then

organizes those data into meaningful information to diagnose or prevent network

problems. If the network size increases, then one or more nodes will be designated as

new NMS with dual role, manager and agent, to balance loads and to void traffic

congestion around the central network manager. Those new managers then poll

information from agents under their respective domains and the central network manager

SNMP polling

Central

NMS/NMS/

NMS/
Agent

Agent . - Agent

Fig. 3.1 A tree like structure o f the interaction between manager and agent

59

polls information from those new managers. Figure 3.1 illustrates a tree like structure of

the interaction between the managers and agents.

The drawbacks o f such an approach include a single point o f failure, lack of

scalability, and high communication costs around the central manager. If the manager

fails, the node information under its domain will be lost because there is no automatic

substitution mechanism provided for by the network management system. Through our

application, we want to show that some o f the above problems can be solved to some

extent and that the improvement of fault management through distributed diagnosis is

feasible.

3.3 Functional Areas of Network Management

There are five key functional areas o f network management as defined by the

International Organization for Standardization (ISO). Although this functional

classification was developed for the Open Systems Interconnect (OSI) environment, it

has gained broad acceptance by vendors o f both standardized and proprietary network

management systems. These areas [M98] include:

• Fault management involves the detection o f a fault, fault isolation, and possibly a

correction operation on the abnormal situation and informing the problem to the

management system. It plays a very important part of network management in that it

keeps the network running under a healthy (correct) condition.

• Accounting management is to determine the charge for the use of network resources

(managed devices), also called chargeback management, and identify the cost of

operating and maintaining the network resources (or called cost management).

60

• Configuration management is to identify the physical or logical connection of

network devices, collect information from and provide information to the managed

devices, and to configure and coordinate those devices to provide uninterrupted

interconnection services.

• Performance management is to evaluate and monitor the performance of the

managed devices and modify those devices’ settings to have a better performace, if

necessary.

• Security management is to provide the security policies and actions to prevent

unauthorized users from accessing, using, and changing the network devices.

Among these areas, our research focuses on fault management, that is, to quickly

detect a service-affecting problem, and report it to a management device.

3.4 Network Management Architecture (Model)

In general, a network management system contains five components (as shown in

Figure 3.2):

• one or more managed nodes (e.g.. Desktop PCs, Workstations, Laser printer, and

Tower Box) each containing an agent;

• at least one network management station (NMS) on which one or more network

management applications (also termed managers) reside;

• perhaps one or more dual role entities which are able to act in both the agent and

manager roles;

61

• a network management protocol (e.g., SNMP) which is used by the station and

the agents to exchange management information; and

• management information (e.g.. Management Information Base - MIB) which is

used to reflect the current status o f the managed devices.

Figure 3.2 is a snapshot o f the model over an Internet. The Workstation can play

the dual role entities, as a manager to poll management information from agents (e.g..

Laser printer or Tower box) through SNMP protocol and as an agent to provide

management information to other managers in the network.

DeskTop PC (Agent)
Manager/Agent

poHthQ

T ra p s

Laser printer (Agent) /^W orkstation (Manager)

M I B

O C OQ D DD

Fig. 3.2 Network management architecture

3.4.1 Managed Nodes

A managed node refers to any device that has some sort of network capability that

allows being managed. A device can be a modem, printer, workstation, mainframe,

bridge, repeater, hub, or router system. Also, we say that a node is managed when it is

continuously monitored by an SNMP agent.

62

3.4.2 Network Management Stations (NMS)

A network management station (NMS or management node) refers to a

workstation or server on a network which contains one or more network management

applications and exchanges information with other workstation through some network

management protocol. Those applications will periodically poll (collect) information

from other devices, and present the meaningful information to the human managers with

an interactive menu-driven or graphical user interface or web-based interface for analysis.

3.4.3 Dual Role Entities

As the term implies that a workstation can both have the role of a managed node

and management node at the same time. It can have an agent application and a

management application running at a node and doesn’t intervene with each other’s

functionality.

3.4.4 Network Management Protocol

There are many network management protocols, such as SNMP, CMIP (Common

Management Information Protocol), and TLl (Transaction Language 1). Because of the

wide acceptance and low complexity features of SNMP, we have decided to use SNMP

in our research.

SNMP protocol defines the format o f the SNMP messages exchanged between

management and managed nodes, and uses four simple yet powerful operations (Get,

GetNext, Set, and Trap) to read or change information in managed node or report events

63

between management and managed nodes. The features o f SNMP include its ubiquity,

standardization, broad acceptance and support, lightweight workload (small code)

extendibility, and portability [M98].

3.4.5 Management Information

Management Information [RM90] reflects the current values and states of the

managed nodes. Managed object is defined as a basic unit o f management information. A

collection o f related managed objects defined in a document is called the Management

Information Base (MIB) [MR90]. A managed object can be viewed as simple as the

representation of the location o f the machine it resides, the machine’s IP address, the

SNMP service uptime, a document, or as complex as the routing table of a router. Even

more, the user can write his own codes (e.g., C, C++, or Java) after defining the managed

object, such that when the managed object is queried it can interact with the local

database and return the result.

In general, the network can be monitored and controlled by the management node

by sending a query message (e.g., the SNMP Get or Getnext operation) or an alter

message (e.g., the SNMP Set operation) to the managed objects o f the remote managed

node.

3.5 Structure of Management Information

In the SNMP management framework, the OSI uses the Structure of Management

Information (SMI) language [RM90] to define the common data structures and

identification scheme for the definition of management information to be exchanged and

64

understood between managed nodes and management stations. SMI is a subset of the

formal language Abstract Syntax Notation One (ASN.l) [CCITT89a], and the goals of

SMI is to achieve simplicity and extensibility. Management Information defined using

ASN.l is implementation-independent, well-defined, and unambiguous. ASN.l also

includes the rules called Basis Encoding Rules (HER) [CCITT89b] as to how instances of

an object type are represented when being transmitted on the network.

In general, managed objects reside in a virtual information store, like a database,

called the Management Information Base (MIB). The SMI also defines the schema of the

database.

Each type of object (termed an object type) consists o f five fields: a name, a

syntax, max-access, status and description. The name is an unique OBJECT

IDENTIFIER and should not be conflict with other type name. The syntax defines the

abstract syntax for the object type (e.g.. Integer, Octet String, Null, and TimeTicks^cccxx

defines the access rights, i.e., read-only, read-write, or not-accessible. Status shows one

of the mandatory, optional, or obsolete states.). The description describes the meaning of

the object type. An example o f the object type definition is given below:

sysDescr OBJECT-TYPE

SYNTAX OCTET STRING

MAX-ACCESS read-only

STATUS mandatory

DESCRIPTION “A textual description of the entity. This value should include the

full name and version identification of the system’s hardware type, software

operation-system, and networking software. It is mandatory that this only

contains printable ASCII characters.

::= {system 1}

65

For example, this object type is named sysDescr (i.e., system description for

short) and is assigned as the first object under system group. So its object ID (OID) is the

concatenation of system OID (1.3.6.1.2 .1.1) plus I which is equal to 1.3.6.1.2.1.1.1 (as

shown in Figure 3.3). The construction o f the system OID can be viewed as the path from

root o f the OID directory tree to the leave with a dot between each internal node. For

example, the path of sysDescr OID is

iso(1).org(3).dod(6).internet(1).mgmt(2).inib-2(1).sy stem(1).sy sDescr(1) or

1.3.6.1.21.1.1 in numerical object ID string format.

3.5.1 Names

Managed objects are identified by names and each name is constructed in a

hierarchical tree structure. To model the naming notion, the OBJECT IDENTIFIER

(OID) concept is utilized. An OJBECT IDENTIFIER is a sequence o f integers that

traverse a reverse tree. The concept is similar to the computer directory tree structure. At

the top of the reverse tree is the unlabeled virtual root and there are three branches which

connect to three labeled nodes under the root. Each node can have its own branches and

each branch may have its own children which in turn can have its own branches. The

maximum number o f levels of the tree (depth of the tree) is 128. An OID is like a '‘path”

which is constructed by traversing from the root to the leaf nodes. Each branch is

separated by a period. A label consists of a textual description and an integer.

At the first level, there are only three labeled nodes ccitt(O), iso(l), and joint-iso-

ccitt(2). After that, there are many different nodes, as can be seen in Figure 3.3. However,

most o f the new MIB objects defined will be under the internet node.

6 6

For example, the path of the internet node is written as:

iso(l).org(3).dod(6).internet(l) or

1.3.6.1 in numerical object ID (OID) string format.

root

ccitt(O) iso(l) joint-iso-ccitt(2)

org(3)

doci(6)

intemet(l)

directory(l) mgmt(2) experimental(3) private(4) snmpv2(6)

enterprises(l)

system(l)
 I

I I I
microsoft(3l I) _____OU_CS(9999)

sysDescr(l) sysUpTime(3)
 1--------
sysName(S)

1
sysServices(7)

sysObjectID(2) sysContact(4) sysLocation(6)

Fig. 3.3 OID directory tree structure and the managed objects
under system group (1.3.6.1.2.1.1)

67

3.5.2 Management Information Base (MIB)

The MIB defines the management information to be monitored and controlled in

the TCP/IP-based network. The first version MIB-1 [MR90] is classified as historic and

the current one is MIB-II [MR91]. In a MIB, related managed objects are organized into

a group. Each group can be further subdivided into subgroup or subsubgroup, if

necessary. The MIB-II contains the following essential groups and some of their

managed objects:

Group Managed Objects

System sysDescr, sysObjectID, sysUpTime, sysContact, sysName,

sysLocation, and sysServices

Interfaces iflndex, ifDescr, iffype, etc.

Address

Translation

atTable, atEntry, atPhysAddress, and atNetAddress

IP ipForwarding, ipInHdrErrors, ipInAddrErrors, etc,.

ICMP icmpInMsgs, icmpInDestUnreachs, icmpInTimeExcds, etc..

TCP tcpRtoAlgorithm, tcpMaxConn, tcpActiveOpens, etc..

UDP udpInDatagrams, udpNoPorts, updlnErrors, and udpOutDatagrams

EGP egpInMsgs, egpInErrors, egpOutMsgs, etc..

3.5.3 MIB module

A collection of ASN.l descriptions relating to a common theme is named a

module. A module has the following syntax [R94]:

« m o d u le » DEFINITIONS ::=

BEGIN
« lin k a g e » — some IMPORTS and/or EXPORTS

«m odule identity defin ition»

6 8

« d éc la ra tio n s»
END

The « m o d u le » is the name of the module. Since some modules might be used

in other MIB, the module name should be unique. Thus, modules can EXPORT

definitions for use by other modules, which in turn IMPORT them. The « d ec la ra tio n s»

term contains the definitions o f all node and leaf objects.

Three kinds of objects are defined using ASN. 1 :

• types, which define new data structures;

• values, which are instances (variables) of a type; and,

• macros, which are used to change the actual grammar of the ASN. 1 language.

An example of the module identify is as follows.

mynewMibModule MODULE-IDENTITY

LAST-UPDATED ‘̂200204081300Z”

ORGANIZATION “Univ-Oklahome-CS-Dept”

CONTACT-INFO “Prof. K. T. Email: kt_example@ou.edu "

DESCRIPTION “Experimental MIB only”

::= {enterprises 9999}

The keywords o f the ASN. 1 language appear entirely in uppercase. Comments in

ASN.l start with two consecutive dashes (“—“) and continue until reaching another two

dashes or the end of the line A detail description of MIB file format, syntax, and how to

write a MIB can be found in [R94] [PM97].

69

mailto:kt_example@ou.edu

3.6 MIB for the ML-ADSD Algorithm

MLADSD-MIB-DEF DEFINITIONS ::=
BEGIN

IMPORTS enterprise FROM RFCU55-SMI

MLADSD-MIB MODULE-IDENTITY
LAST-UPDATED “0106270000Z”
ORGANIZATION “University o f Oklahoma”
CONTACT-INFO

“Ming-Shan Su, K. Thulasiraman and Anindya Das
University of Oklahoma — School of Computer Science
Phone: 2-405-325-0566
Email: {mssu, thulasi, das}@ou.edu”

REVISION “0105120000Z”
DESCRIPTION

“The MIB module for mapping the testedUp array diagnosis information
in the ML-ADSD algorithm.”

::= {enterprise 9999}

testedUp OBJECT-TYPE
SYSTAX SEQUENCE OF TestedUpEntry
ACCESS not-accessible
STATUS current
DESCRIPTION

“In the ML-ADSD algorithm, a node uses a two-dimensional array called
TESTED UP to update the testing results o f the network.”

::= (MLADSD-MIB 1}

testedUpEntry OBJECT-TYPE
SYNTAX TestedUpEntry — this is a new type
ACCESS not-accessible
STATUS current
INDEX (testerD, cluster ID}
DESCRIPTION

“Each entry testedUp[w][Ar] = v at a node n\, y means that node / in cluster j
has received a diagnosis message from a neighbor node (which it has tested
as fault-free) indicating node u in cluster k has tested node v in cluster k and
found node v as fault-free.”

::= (testedUP 1}

TestedUPEntry ::= SEQUENCE {
testerlD INTEGER,
clusterlD INTEGER,

70

testedlD INTEGER
}

testerlD OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS current
DESCRIPTION

“The tester node ID index of the TestedUp array also indexes the table.”
::= {testedUpEntry 1}

clusterlD OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS current
DESCRIPTION

“The cluster index of the TestedUp array also indexed the table.”
::= (testedUpEntry 2}

testedID OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS current
DESCRIPTION

“If the node ID of a test result is -1, it means that the entry is arbitrary. ”
::= (testedUpEntry 3}

END

3.7 SNMP Protocol

The SNMP protocol is a request-and-response protocol. It defines the functions of

the base operations of SNMP and the format of the messages exchanged by management

systems and agents.

3.7.1 Four Simple yet Powerful Operations

SNMP is based on a simple philosophy: it defînes only four operations to perform

all network functions between a management system and a managed node. These four

71

operations Ce/, GetNext^ Set, and Trap can monitor (read) and alter (write) the values of

the managed objects which are maintained by the managed node.

The Get operation retrieves (i.e., read, fetch, or query) the value of a given

managed object. For example, part of the managed objects in system group in my

machine are:

Name ID Value
sysContact 1.3.6.1.2.1.1.4.0 Ming-Shan Su
sysName 1.3.6.L2.1.1.5.0 KTGroup-WinPC 1
sysLocation 1.3.6.1.2.1.1.6.0 KTGroup-Rm 104

If we execute '‘‘Get sysName”, then the value “KTGroup-WinPCl " will be received.

The GetNext operation retrieves the value of the managed object

lexicographically next to the object specified in the GetNext operation. For example.

if we execute a "GetNext sysName”, then the value '"KTGroup-Rml04 ” will be

received since sysLocation is lexicographically next to sysName.

The Set operation modifies the value of a managed object. For example,

if we execute a "Set on sysLocation to KTGroup~Rml06'\ then the new value stored

in sysLocation will be "KTGroup-Rml06 ”.

The Trap operation is an unsolicited notification operation. Once an event

occurred, the agent will generate a trap message and inform one or more designated

management stations about the event. For example, if a warmstart event occurred, then a

trap message will be sent to the management station(s).

72

The wide popularity o f SNMP is because of these four simple but powerful

operations.

3.7.2 Message Exchange between Management System and Managed

Node

Typically the message exchange between a management station and a managed

node is as follows. A management station sends a Get (GetNext, or Set) request message

to the managed node. The managed node responds by sending a GetResponse message

back to the management station. As for the Trap message, it is a one-way trip message.

Once an event occurs in a managed node, the node will send a Trap message to its

designated management station and it is not required for the management station to send

any message back to the managed node. One thing worth mentioning is that since SNMP

uses UDP (User Datagram Protocol), there is no guarantee that the messages sent will

reach the destination. It is up to the message sender’s responsibility to handle this

situation. A pictorial illustration of the message exchange is shown in Figure 3.4.

time I

Management
Station

Send

Managed
Node

Managed
Node

Management
Station

time„
- T — Recv’

Send
Get/GetNext Trap

i /Set Request message
Recv’ "A

Send
1 Get Response

4 ^

Recv’

Fig. 3.4 Message exchange between management station and managed node

73

3.73 SNMP message

An SNMP message is encapsulated in the payload portion of an UDP (User

Datagram Protocol) datagram (as in Figure 3.5) and then exchanged between Agents and

Managers over a TCP/IP network. Each SNMP message also uses the Basic Encoding

Rule (BER) to encode the message.

Ethernet IP
Packet

CRC
Frame

SNMP Message
Datagram

Fig. 3.5 Ethernet packet format

In general, an SNMP message format consists o f two parts (as in Figure 3.6), the

Preamble and PDU (Application Protocol Data Unit also termed SNMP PDU.)

Preamble Protocol Data Unit (PDU)

Message Message Community PDU PDU Body
Length Version String Header

Fig. 3.6 Preamble and PDU format o f SNMP message

SNMPvl [CFSD90] defines five different PDUs: GetRequest, GetNextRequest,

SetRequest, GetResponse, and Trap PDUs. The format o f those PDUs can be categorized

into two types as in Figures 3.7(a) and 3.7(b).

74

Preamble Protocol Data Unit (PDU)

PDU Header PDU Body

PUD PDU Request Error Error
Type Length ID Status Index

First Variab e Bindings Additional
Length of Length OID Type Value Variable
Variable o f First o f First o f First o f First Bindings

Bindings : Bindings Binding Binding Binding

Fig. 3.7(a) GetRequest, GetNextRequest, SetReqeust, and GetRespose PDUs

Preamble Protocol Data Unit (PDU)

PDU Header PDU Body

PUD PDU Enterprises Agent IP Standard Specific Time
Type Length MIB OID Address Trap Type Trap T>"pe Stamp

Fig. 3.7(b) Trap PDU

Some important fields in the message are explained below:

• Community String: serves security checking purpose

• PDU Header: used for the error checking

• PDU Body: the request or response data to and from agent.

First Variab e Bindings Additional
Length of Length OID Type Value Variable
Variable o f First o f First o f First o f First Bindings

Bindings Bindings Binding Binding Binding 1 '

75

An example o f a GetRequest query from manager to agent is as follows;

SnmpUtil GetRequest midway.cs.ou.edu public 1.4.0

The manager sends a GetRequest (e.g., retrieve) query to an agent residing in

machine named midway.cs.ou.edu. The password is public and the variable name is

system.sysContact with alias 1.4.0. The request and response data in the messages [M97]

are as in Figure 3.8.

Request Response

38
z

Message Length 49
0 SNMP Message Version 0

public I
k.

Community String public

0 u r PDU Type 2
25 ? PDU Length 36
147 £•(Request ID 147
0 =O Error Status 0
0 a. Error Index 0
14

f
Length of All Variable

Bindings
25

12 Length of First Bindings 23
1.3.6.1.2.1.1.4.0 OID o f First Bindings 1.3.6.1.2.1.1.4.0

NULL fib Type of First Bindings Octet String
NULL K. Value of First Bindings George Bush

Fig. 3.8 Contents o f a SNMP Get and its Response messages

3.7.4 Administrative Policy

SNMP defines a community to be a relationship between SNMP entities. The

community also serve as a security mechanism.

When SNMP messages are exchanged, they contain two parts:

• a community string, sent in plain text; and.

76

• data, containing an SNMP operation and associated operands.

The agent will do the following checking before responding to the manager:

• first identify the collection of managed object resources to be monitored or

controlled.

• then determine which SNMP operations may be performed on them. This is termed

an access policy, and is used to control the flow o f information between an SNMP

agent entity and a given management application entity.

If the community name is correct and the operation is appropriate on the managed

objects (e.g., a SET operation should issue on an object which its ACCESS attribute is

Read-Write), then the proper response will be responded.

3.8 Distributed Fault Detection: Integration of the ML-ADSD

Algorithm and SNMP

The primary application of this our effort in this thesis is to develop and

implement a prototype network fault detection/monitoring system by integrating the

ML-ADSD algorithm into the SNMP-based fault management network [RM90] [MR91]

[CFSD90]. As mentioned earlier, the Simple Network Management Protocol was

developed by IETF in 1988 for the purpose o f managing the network devices over a

computer network and has been widely adapted by industry on network applications. The

major drawback o f this SNMP-base fault management is the central management system.

The problems include a single point of failure, lack o f scalability, and high

communication costs around the central manager. Through our application, we want to

77

show that some o f the above problems can be solved to some extent and that the

improvement of fault management through distributed diagnosis is feasible.

The operation platform we use to implement our integrated management software

is Microsoft’s Windows systems (including Windows 95, 98, NT, 2000, and ME). Three

major tasks. Generate the MIB, Setup the Agent, and Setup the Manager, are

required to implement the management software.

As mentioned in section 3.4, a node can have serve in dual roles, as a network

management station (NMS or manager) as well as a managed node (agent). In our

implementation, we set up each machine to have this property too. Since in SNMP

applications, the manager and agent are two different software applications running

independently, the software codes for manager and agent are written differently and they

have to be compiled using different SNMP interfaces (libraries).

Figure 3.9 shows how a node i tests node /+1 and requests /+1 to forward the

management information. The manager / in node / does not test the manager /+1 in node

/+1. Instead manger i tests agent /+1 as in step 1 (see Fig. 3.9) and requests agent /+1 to

forward the management information as in step 2 (see Fig. 3.9). Then manager / updates

the information (e.g., TESTED UP array) and stores the information in agent i as in step

3 (see Fig. 3.9). The whole distributed diagnosis process proceeds in this fashion.

In our implementation, the agent when queried Just returns the information in

TESTED UP array. However, in some commercial software the function of an agent can

be extended to perform some operation and then return the value stored in database (e.g.,

Oracle database) when queried.

78

Manageri

SI. Manager/sends a Get (test)
operation to Agent/fl to
request the TestedUp-Mlb

Agent i+̂

S3. Manage^ uses a Set
operation jon Its OMffi
agent to iipdate the

TestedÇ%>Mlb

Agent/:
TestedUp

-Mb

GetResponse
to forward

the
TestedUp-
Mb back to
Manager/

Agent/4-1:
TestedUp

-Mb

Fig. 3.9 Node / tests node /+! and requests /+l to forward the management
information

3.8.1 How to Generate the Agent Program

• Generation of the MIB

The process to generate a user defined MIB is illustrated in Figure 3.10. Steps I,

5, 6, and 7 are to be implemented by the user. The other steps employ the third party

software.

Step 1. Use the SMI language syntax to define the managed object(s) (testedUp-MIB in

our case).

79

Step 2. Use a MIB compiler (e.g., Microsoft MIBcc.exe) to compile the testedUp-MIB to

make sure the syntax is correct. And if it is correct, a temporary code (e.g.,

testedUpMIBTemp) will be generated.

Step 3. and Step 4. Use a MIB C (can be C+4-, or Java) code generator toolkit to read the

testedUpMib.

Step 5. Generate a Template C code (e.g., testedUpMIBTempC) for each managed

object.

Step 6. Add or modify the testedUpMIBTempC in step 5 to fit our needs and call the

codes as testedUpMIBFinalC. The reason for being called a Template code is that

it is like a new user defined data type for each managed object defined. For

example, we can define a new data type or called structure in C which includes

name, student ID, major, and address, etc., for a student. But we can only specify

how many such different types o f structures are needed for each different

managed object in step 6. There is no indication that how many managed objects

will use that type.

80

1. Writing MIB
(Managed Objects)
Codes Bases on SMI

2. MIB Compiler*

3. Temporary Codes

 à . . _________
4. C Code Generator*

: t
5. Template (Entry)
Code for each
Managed Objects

6. Add additional C
Codes for each
Managed Objects

SMI is a subset
of ASN.l

A template (Entry) usually consists o f the following
components;

1. MIB variable OID
2. MIB value storage variable
3. MIB temporary value storage variable
4. MIB value modification commit flag
5. ASN. I data type o f variable
6. Minimum end o f range or length
7. Maximum end o f range or length
8. Access specifier (read-writer, read-only,...)
9. Process function for this MIB variable
10. Pointer to next MIB entry

7. myAgent.c ^ ___ 1 Other header files •
! snmp.h j

I
8. C Compiler"

9. Linker*

10. myAgent.DLL

Other Libraries
snmpapi.lib

: Legend:
*: third party software

Fig. 3.10 Process to build an SNMP agent on Windows platform

81

• Generation of the MIB Dynamic Link Library Code

The process to generate the MIB dynamic link library is illustrated in steps 7 to 10

in Figure 3.10.

Step 7. Include the required snmp.h header file in our testedUpMIBFinalC code.

Steps 8 and 9. Use a C compiler and a snmpapi.lib to compile and link the

testedUpMIBFinalC to generate the testedUpMIB.DLL dynamic library code. The

next task is to setup the agent so it can run the testedUpMIB.DLL.

• How to Setup the Agent Program

The Agent in Windows system is called Extendible Agent and it is implemented

by dynamically linking to Extension Agent DLLs [M98] that implement portions o f the

MIB. These Extension Agents are configured in the Windows NT Registration Database.

When the Extendible Agent Service is started, it queries the registry to determine which

■ i^gistry fidftor:
Feç'C’v t ’:it ravci icef HeiC'

S __| SharedAccess
2] Smbad

a SimpTcp
3 SNMP

■ j Enum
3 _ J Parameters

ExtenskmAgents
O MSFTPSVC
2] PermittedManagers
Ç] Rf=C1156Agent
C J TrapConfiguration
C] VaMCommunides

C] Securky
a SNMPTRAP
a Sparrow
a C] Spooler
aO S rv

Name Type : Data

S l(D efauk) REGJZ (value not set)

'•Ho REG_S2 Software\Mlcrosoft\MSFrPSVC\CurrentVersion

REG_SZ SOFrWARE\Mcrosoft\LANManagerMIB2Agent\CurrentVersion

iîH io REG.SZ SOFTWARE\Microsoft\IASAgent\CurrentVersion

^ 1 2 REG_S2 SOFTWARE\0'ReiIy\SNNP\E)£ter«onAgents\MinAgent\CurrentVersion

g] 13 REG.SZ SOFrwARE\Mkrosoft\T casterAgent\CurrentVersion

® j2 REG.SZ SOFrwARE\Mcrosoft\RFCl 156Agent\CurrentVersion

g | 3 REGJSZ SOFTWARE\MkT0Soft\HostMlB\CurrentVersion

REGJSZ SOFTWARE\MkTOSoft\SNMPMIB\CurientVersion

@ 5 REG_SZ SOFTWARE\Ma'osoft\SNMP_EVENTS\CurrentVersion

@ 6 REGJSZ SOFrWARE\Mfcrosoft\ACS\CurrentVersion

@ 7 REG_SZ SOFWARE\MlcrosoftUGMPMIbAgent\CurrentVersion
g | 8 REGJZ SOFTWARE\Mcrosoft\IPMulticastMbAgent\CirrentVersion

@ 9 REGJZ SOFTWARE\Wcrosoft\IP>ïttAgent\CurrentVersion

«1 1

! My CotnpUter\HŒyj.OCAL_MACWNE\SVSTEM\CurrentCor*roiSet\Services\SNMPV*arainetefs\ExterttionAgenls

Fig. 3.11 Inclusion of testedUp Agent into Registry

82

Extension Agent DLLs have been installed (see Figure 3.11) and need to be loaded and

initialized. The Extendible Agent invokes various DLL entry points (see Figure 3.12) to

request MIB queries and obtains Extension Agent generated traps.

R egistry Editor ■
I P e g ic try - d i t View F i\ 'n r ;f e 5 Help
I a CJ Shared -1

a C] Shared Tools
C_] Shared Tools Location

a _ | SNMP_EVENTS
a •_] SNMPMIB
a 23 SpeechAPI
a 23 SystemCertlficates
a 23 Tcpip
S 23 TelnetServer
S 23 TermServlicensing
a _3 Toaster Agent

<23 CurrentVersion
a L_J Tracing
a _3 Transaction Server

-1 1

Name Type Data
'^ (D e fa u lt) REG_SZ (value not set)
«^Pathnam e REG_SZ %5ystemRoot%\System32\testdll.dl

j ,My Co>nputef\HKEVJ.OCALJ<ACHlNE\50FTWWE\Mlcrosoft\ToasterAgent\CürrentVersion

Fig. 3.12 Inclusion of the testedUpdll entry into Registry

• Registering the testedUpMIB.dll in Windows Registry:

Step 1. Use a mib compiler mibcc.exe to compile the required MIBs and create the new

mib.bin file.

A MIB compiler converts a human-readable MIB module text file into a data

format that can be read more easily by the SNMP Management API. Microsoft’s

mibcc.exe (in NT Resource Kits) is used to create the MIB.BIN file. The

command to generate the new mib.bin is as follows:

MIBCC SMl.MIB MIB-II.MIB LMMIB2.MIB WINS.MIB DHCP.MIB

INETSRV.MIB FTP.MIB GOPHERD.MIB HTTP.MIB TestedUp.MIB

83

ftp://FTP.MIB
http://HTTP.MIB

The mib.bin file itself is a binary record format file that contains the compiled

collection of MIBs. This file is read by the management API when it needs to use

symbolic names (e.g., system.sysContact.O) instead o f numbers

(.1.3.6.1.2.1.1.4.0) used on the local machine.

Step 2. Stop the SNMP service ("net stop SNMP", or “SNMP -stop" in Win95).

Step 3. Rename %SYSTEMROOT%\SYSTEM32\MIB.BIN to MIB.OLD.

Step 4. Copy the following files to the %SYSTEMROOT%\SYSTEM32 folder:

• MIB.BIN (created after you ran MIBCC.EXE)

• testedUpMIB.DLL (This is the extension dll that will process the SNMP

requests and return the testedUp array date stored in local machine).

Step 5. Register testedUpMIB in the Registry by adding the following entries to the

registry manually (as in Figures 3.11 and 3.12).

\HKEY_LOCAL MACHINE
\Software

\OU_CS
\TestedUpAgent

\CurrentVersion
\Pathname = REG EXPAND SZ

%Sy stemRoot%\S ystem3 2\testedUpmi b.dl 1

\HKEY_LOCAL_MACHINE
\System

\CurrentControlSet
\Services

\SNMP
\Parameters

\ExtensionAgents
\OU_CSAgent =

SOFT W AREVOUC S\T estedUp Agent\Current V ersion

Step 6. Restart the SNMP service ("net start SNMP" or “SNMP” in Win95).

84

Step 7. Now the management program snmpMgr.exe should be able to query (request or

test) the extended agent agent.dll to get (or forward) the data stored in

testedUpMIB.

Note: Once the testedUpMIB has been compiled in a NT machine, there is no

need to repeat the process for other Windows machines. Just copy the required files to

other machines and add new entries and values in the registry, and then stop and re-start

the SNMP service.

• Interaction between SNMP and Agents

The interaction between SNMP service and Agent DLLs is illustrated in Figure

3.13. When a manager queries the SNMP agent, the query will go to SNMP service first,

then SNMP will pass the query to the appropriate extended agent, e.g., testedUpMib.dll.

The testedUpMib.dll then communicates with snmpapi.dll agent for some required library

functions, retrieves the testedUp array data and gives to the SNMP service. The SNMP

service then sends back the query to the manager.

mib ii.dll

snmp.exe snmpapi.dll

testedUpMib.dll

lmmib2.dll

Fig. 3.13 Interactions between SNMP service and agent DLLs

85

3.8.2 Setting up the Manager

• Generation of the Manager Executable Program

The process to build a manager application program is illustrated in Figure 3.14.

C Start

I
1. snmpMgr.c

2. Add/Modify snmpMgr.c

Distributed, ML-ADSD, Algorithm:
• get (testedUp-MIB, nextNode)
• leadership (testedUp-MIB)

• leaderTest(testedUp-MIB, nextCluster)
• update(testedUp-MIB)
• diagnosis (testedUp-MIB, fault-free-

Nodes)

3. snmpMgr.c

4. C Compiler*

 i._.
5. Linker*

I
6. snmpMgr.exe

Includes:
• Other Header Files
• srunpapi.h; mgmtapi.h;

winsock.h

Links:
• Other Libraries
• snmpapi.lib; mgmtapi.lib;

wsock32.Iib

Legend:
*: third party software

Fig. 3.14 Process to build an SNMP management
application

Steps 1, 2, and 3 are to be implemented by the user. The other steps employ some third

part software.

Step 1. Use a manager sample program, snmputil.c, from Microsoft’s Visual C++

software and rename it as snmpMgr.c.

8 6

Step 2. Add our ML-ADSD algorithm into the program and modify the program to suit

our needs. In snmpMgr.c, we first convert all the pseudo subroutines or

algorithms of ML-ADSD into C codes, such as leader Election, Cycle Detection,

Level-1 and Level-2 Testing, and Diagnose Algorithms. The update TestedUp

array part has to be written by the user, (i.e., use the ''SET' operation to write the

local testedUpMIB).

Step 3.Include the necessary header files into snmpMgr.c, such as snmp.h, mgmtapi.h,

winsock.h, so that it will not have compilation errors.

Steps 4 and 5. First add some required function libraries for the linker (as in Figure 3.15),

such as snmpapi.lib, mgmtapi.lib, and wsock32.1ib.

Step b.Compile the program snmpMgr.c to generate snmpMgr.exe executable program.

General | Debug | C/C++ Link | Resouro’ | ■< | »

ResetCatcfloiif I General

Output file name:
[myMgrexe

Object/pbrai}) modules;
|kernel32lib user32.lib gdi32lib winspooUib comdlg3Zlib ad

|7 generate debug Mo l~ Ignore al défaut Etjraries

Uhkmcrementally f Generate mapfile

r~ £nable profiShg

Project Options:
advapi32lib she>32lib ole32lib oleaut32Cb uuidlib +■ |
ocft)c^lib odbccp32lib snmpaplEb mgmtapLlib i
wsock32Eb /nologo /subsystem: console

_ O K _ J Cancel }

Fig. 3.15 Libraries for linker

In step 2, the request Uy,a to forward TESTED_UPy,a to Ux,a (e.g, line 4 in Figure3.16)

is similar to the following functions from MGMTAPI.LIB:

87

y =x\
repeat {

y = (y+ I) mod
«y.aSession = SnmpMgrOpen(/i^oIPaddress, Commun ityName, Timeout, Retries);
• • • I I some user codes, e.g., SetUpVariableBindings(, , TestedUpOID,);
SNMPMgrRequest(/i^.aSession, GetRequest, VariableBindings, ErrorStatus, Errorlndex);
• • • I I some user codes, e.g., nyoFaultFree = CheckVariableBindings(VariableBindings);

} until (ny,aFaultFree)

The Update process (e.g., lines 12-15 in Figure 3.16) is similar to the following

functions:

/ir aSession = SnmpMgrOpen(M̂ alPaddress, Commun ityName, Timeout, Retries);
• • // some user codes, e.g., SetUpVariableBindings(, _, TestedUpOID,);

^^SNMPMgrRequest(«.t oSession, SetRequest, VariableBindings, ErrorStatus, Errorlndex);

/* Regular node, Level-1 Testing Algorithm at node ttx,a */

1. y =x I* assign my node id */
2 . repeat {
3. >> = 0 /+ 1) mod

“4. request iiy a to forward TESTED UPy.a to
5. } until (rtxM tests n â as “fault-free”)

6. for node = 0 to {N/p - 1) // update local cluster info.
7. TESTED_UP;,.a[norfe] [a] = TESTED_UP^..a[«or/e] [a]

8. TESTED_UPx.a[Jt:] [a] = y U x itself tests y as fault free

9. If (C/«jter_/efl</er() = T rue) / / check the leadership
10. statusfx) = Leader
11. Else // update info, regarding other clusters
12. for cluster = 0 to (p — I)
13. for node = Oto {N/p — 1)
14. if {cluster* a)
15. TESTED UPxa[nod(g] [cluster] =

TESTED_}JVy_a\pode][cluster]

16. Stop. // end of Level-1 testing

Fig. 3.16 Level-1 testing algorithm

8 8

3.8.3 Installation of the Proper Dynamic Library to Run Manager

Program

In Windows 95, SNMP service is designed as an Agent application. In order to

run the manager application, the following programs have to be installed and updated.

• To Set up Windows 95:

1. Update the Windows 95 sockets to Winsock version 2 by running W95ws2setup.exe.

(from Microsoft download web site)

2. Setup SNMP service by running the self-extracting file Snmppz.exe first, then follow

the procedures in WinNT Book [M98].

3. Copy mgmtapi.dli (newer version o f file size 18KB) to directory c:\windows\system

4. Copy any Mib.bin to c:\windows\system.

5. Run snmpMgr.exe to start the distributed diagnosis.

• To Set up Win98/2000/ME,

Use steps 2, 3,4, and 5 as for Windows 95.

• To Set up WinNT,

Follow the WinNT Book [M98].

89

3.8.4 Interaction between Manager and SNMP Service

The interaction between manager program and snmp agents is illustrated in Figure

3.17. The Manager program, e.g., snmpMgr.exe sends the query to snmp service over the

agent side through the application program interface libraries snmpapi.dll and

mgmtapi.dli. The snmp service then sends the query to the appropriate agent (as in Figure

3.12) and sends back the answer once the agent returns the response.

Snmp ServicesnmpMgr.exe snmpapi.dll
mgmtapi.dli

Fig. 3.17 Interaction between manager and SNMP service

3.9 Experimental Results

We developed the network fault detection system described in the previous

section and implemented it on a 10/100 Mbps Ethernet Local Area Network consisting of

16 machines (see Fig. 3.18) running Microsoft Windows operating systems (Windows

2000, NT, 95, and ME). Since robustness and diagnosis latency o f the ML-ADSD

algorithm are our main focus, we tested the fault detection system extensively with

different combinations of parameter settings as explained later. Since the total number of

machines in our experimental system is small, we have used the 2-level diagnosis scheme

of section 2.3 in the design of the fault detection system.

In our experiments we used two parameters:

• Waiting time (in seconds) between test intervals

• Maximum number o f faults during each run of an experiment

90

Cluster 0:
129.15.90.xxx

Cluster 1:
129.15.90.xxx

MingShan Dr. Da

Jenney Dr. Das2

Cluster 2
129.15.90.xxx

Cluster 3:
129.15.78.xxx

□
HongPing

KTS KT2 Dr. K T. Manoji

Fig. 3.18 An Ethernet Network with 16 machines

An experiment corresponds to a setting of the above parameters. Each experiment

consists of 20 runs of the diagnosis algorithm with 20 randomly generated fault events

injected during a run. Recall that diagnosis latency refers to the time taken for all fault

free nodes to reach a consensus view o f the fault/free-free status o f the whole network.

The diagnosis latency is recorded after the last fault event (failure or recovery) in each

run. The average diagnosis latency over the 20 runs of an experiment gives the average

diagnosis latency for that experiment.

91

Initially, for each run a file o f 20 randomly faulty events are created. The file

specifies the time and type o f fault event. For example, a typical file can be as in Figure

3.19. The fault events as specified by the file are injected into the system in the course of

a run o f an experiment. In addition, among those 20 events in each run, many nodes can

fail or recover at the same time (as long as the maximum number o f faulty nodes allowed

in the setting is not exceeded at any time). However, the time between the failure and

recovery (or vice versa) of the same node has to be at least a few seconds since a node

does not fail and then recover (or vice versa) at the same time in a computer network

n o 11 ' j p 111
kt, {

U U I < J 1 » 1 I ! p

(. 11 r i ' f (i t I 11 i r : H
. . . [}<\ i t . 111 l o t ' 8
. . . 8

t. 1 f i r I m I t

Fig. 3.19 Sample events file

Additionally, since all the machines are rurming in a distributed and independent

manner, a virtual tester (see Fig. 3.20) is used to inject the events (faulty or recovery).

The tester also compares the TestedUp-Mib in each fault free machine after the last

event, and calculating and recording the diagnosis latency when all the fault free

92

machines have reached a consensus on the fault status o f ail the machines in the network.

Note that a tester is not required in the real management system and we use it here just

for the experiment purpose.

Cluster 0:
129 IS 90 XXX

Cluster 1:
129.1S.90.xxx

ingS tiaiK Dr. Da

o u Internet

Cluster 2: Cluster 3;
129.1S.78.xxx

HongPing

KT3 KT2 Dr. K. T. Manoji

Fig. 3.20 A virtual tester is used to inject the events

The results of 30 experiments are reported in Table 3.1.

Table 3.1 Diagnosis latency (in seconds) of the 30 experiments on
Two-Level ML-ADSD

maximum number of faults / per run
4 5 6 7 8

: | i

3 20.45 19.20 19.85 18.45 18.35
4 27.95 27.25 24.50 25.00 23.20
5 32.50 33.60 29.20 31.00 29.20
6 39.40 36.25 38.50 36.55 34.30
7 46.90 45.70 43.70 41.90 39.15
8 50.05 50.35 50.80 48.10 43.60

93

In Table 3.1, the diagnosis latency of 20.45 seconds at row 1 and column 1 of

corresponds to the experiment with the waiting time set to 3 seconds and maximum

number o f faults / per run set to 4.

It can be seen from Table 3.1 and Figure 3.21 that the greater the number of faulty

nodes in a system the smaller the diagnosis latency. We also observe that the diagnosis

latency does not increase in proportion to the increase in waiting time. This could be

because some of the faulty events may not be seen by a node, if the waiting interval is too

large. In other words, the effect o f some o f these faulty events may not get propagated.

Diagnosis latency is an important piece of information for a network

administrator. For example, if all the fault free nodes have to detect the last event within

30 seconds o f the last event, then setting the waiting interval to 5 seconds is a good

choice. Again, there is always a tradeoff between the diagnosis latency and the number of

messages required by the network management system. Smaller diagnosis latency will

require more testing messages which in turn would require more network bandwidth.

Diagrx36is Latency (in seconds) VS.
Faults

_ 60.00

e g 30.00| 5%88
° 0.00

3 4 5 6 7 8 9
Mbx. nm tero f FauHs

-\M_3secs
-vwj4secs
vM_5secs
vM_6secs
vwTsecs
vw

Fig. 3.21 Diagnosis latency (in seconds) vs. max. number o f faults

94

Since ML-ADSD is a generalization o f the ADSD algorithm, we also

implemented and tested the ADSD algorithm on similar settings. The ADSD

implementation results are shown in Table 3.2.

Table 3.2 Diagnosis latency (in seconds) o f the 30 experiments on ADSD

Maximum Number o f Faults / run
4 5 6 7 8

3 21.65 21.10 20.55 18.70 19.00
4 27.45 25.35 24.75 24.85 21.25

■| £ 1 5 33.95 32.55 30.95 29.50 27.45
1 1 g 6 41.35 39.10 37.75 35.95 33.30^ W ^ 7 48.05 44.30 36.40 37.10 36.95

8 54.50 51.60 51.90 43.90 42.95

Comparing the ML-ADSD and ADSD algorithms, for a network with 16

machines, it can be seen that if the number of faulty nodes in the system is small, then the

ML-ADSD algorithm will have a better diagnosis latency. For example, with waiting

interval o f 8 seconds and a maximum of 4 faulty nodes, the diagnosis latency of

ML-DSD is 50.05 while ADSD needs 54.5 seconds. However, if the number o f faulty

nodes is large in the system, such as 8 faulty nodes, then ML-ADSD needs 43.6 seconds

while ADSD needs only 42.95. This result is expected since the ML-ADSD algorithm is

designed to outperform ADSD for large networks. For networks of small sizes, the

overhead involved in the ML-ADSD algorithm will result in a degradation of

performance.

95

Chapter 4

Summary and Future Work

4.1 Summary of Research

Continuing advances in semiconductor technology have made possible the

development of large computer systems comprising hundreds o f thousands of processors

or units. As the complexity and the computing power o f these systems increase, fault

tolerance and reliability become acute areas of concern. Yet it is impossible to build such

systems without defects. As the size of a system grows, it is more likely to develop faults

both in the manufacturing process and during the operation period. Testing of such

systems becomes extremely difficult due to their large sizes. First, the complexity o f test

generation for such large systems is overwhelming. Second, the application of test data,

and observation and analysis of test responses are extremely difficult and costly, even if

test data could be generated. This problem may be further aggravated by possible

geographical distribution o f units. Testing of such systems with the traditional stimuli-

supplying and responses-observing philosophy has become virtually impossible.

Therefore, it is important for computing systems to have the capability to automatically

detecting and identifying faulty components. In 1967, Preparata, Metze and Chien

[PMC67] proposed a model and a framework, called System-Level Diagnosis, for dealing

with the above problem.

In the two decades following Preparata, Metze and Chien's pioneering work, a

number of issues arising from the application o f their framework were investigated and

resolved. All these works assumed the existence of a single highly reliable supervisory

96

node to do the diagnosis. A single supervisory node is a bottleneck in a system with a

large number o f processing nodes. Distributed diagnosis algorithms which exploit the

inherent parallelism available in a multiprocessor system would be desirable. With this in

view, Kuhl and Reddy, in 1981, pioneered the area o f distributed system level diagnosis.

Distributed diagnosis has been the focus of research in this thesis. There are two

aspects to the contributions in this thesis: Design and performance evaluation o f a new

multi-level distributed diagnosis algorithm, and the design of a distributed network fault

detection system based on the SNMP protocol.

In 1991, Bianchini and Buskens proposed an adaptive distributed algorithm to

diagnose fully connected networks. This algorithm called the ADSD algorithm has a

diagnosis latency o f 0(A^ for a network with N nodes. With a view to improving the

diagnosis latency of the ADSD algorithm, in 1998 Duarte and Nanya proposed a

hierarchical distributed diagnosis algorithm for fully connected networks. This algorithm

called the Hi-ADSD algorithm has a diagnosis latency of 0(log'^f). The Hi-ADSD

algorithm can be viewed as a generalization o f the ADSD algorithm.

In this thesis, we propose a new distributed diagnosis algorithm using the

multilevel paradigm. This algorithm Is a generalization o f the ADSD algorithm. We

present all details o f the design and implementation of this multilevel adaptive distributed

diagnosis algorithm called the ML-ADSD algorithm. We present extensive simulation

results comparing the performance o f these three algorithms.

Simulation results indicate that in all cases, the ML-ADSD algorithm is much

better than the ADSD algorithm. In all cases the time required by the ML-ADSD

algorithm is better than or the same as the time required by the Hi-ADSD algorithm. The

97

performance o f the ML-ADSD can be tuned/improved, depending on the needs, by an

appropriate choice of the number of clusters and the number o f levels. The ML-ADSD

algorithm is scalable in the sense that only some minor modifications will be required to

adapt the algorithm to networks of varying sizes. This property is not shared by the

Hi-ADSD algorithm.

The primary application of our research is to develop and implement a prototype

network fault detection/monitoring system by integrating the ML-ADSD algorithm into a

SNMP-based (Simple Network Management Protocol) fault management system [RM90]

[CFSD90] [MR91]. We report the details of the design and implementation o f such a

distributed network fault detection system.

SNMP was developed by IETF in 1988 for the purpose of managing the network

devices over a computer network and has been widely adopted by industry on network

applications. The major drawback of SNMP-based fault management is its centralized

nature. The resulting problems include a single point o f failure, lack of scalability, and

high communication costs aroimd the central manager. Through our application, we

demonstrate that some of the above problems can be solved to some extend and that the

improvement o f fault management through distributed fault location is feasible.

4.2 Future Work

Our research in this thesis suggests several directions for research in the area o f

system level diagnosis. Four o f these are presented below.

98

• Hybrid Multilevel Distributed Diagnosis

In our work we have applied the multilevel paradigm to the ADSD algorithm. In

other words, we have used the ADSD algorithm at all levels. Multilevel paradigm can

also be applied to the Hi-ADSD algorithm. Since the Hi-ADSD algorithm requires a

complex partitioning scheme, it is not suitable at levels greater than one. If we could

implement the Hi-ADSD algorithm at level 1 and the ADSD algorithm at other levels, we

would get a hybrid ML-ADSD scheme. The diagnosis latency o f such a hybrid scheme

can be obtained by simply replacing Nip by lo^N/p in Theorem 2. However, certain

questions need to be resolved to achieve a successful design o f such a hybrid scheme.

One of them is the definition of actions to be taken during a testing round. In the

Hi-ADSD algorithm, a node starts a new testing round from the cluster next to the one

where it stopped in the previous round. It is not clear whether this would work in the case

o f the hybrid multilevel scheme. Research in this direction will be quite rewarding. It will

also be an illustration of the power of the multilevel paradigm.

• Multilevel Diagnosis for Networks of Arbitrary Topologies

The diagnosis algorithm of Rengarajan, Dahbura and Zeigler [RDZ95] is the only

distributed diagnosis algorithm in the literature applicable to networks of arbitrary

topologies. An interesting direction of research is to see if we could apply the multilevel

paradigm on top of this algorithm. This will not be as simple as extending the Hi-ADSD

algorithm mentioned above. Several questions arise. It is not even clear how to define a

testing roimd, because the algorithm of [RDZ95] is quite a complex one.

99

• SNMP Based Distributed Fault Detection Systems for Networks of Arbitrary

Topologies

The SNMP based fault detection system discussed in chapter 3 assumes that the

network is fully connected. But it will also work correctly if the network is logically fully

connected. This would require a fault free communication path between every pair o f

nodes. In other words, the distributed fault detection system based on the SNMP protocol

can be used to diagnose networks of arbitrary topologies. Designing, implementing and

testing such a fault detection system in large networks will be a significant

accomplishment. To make this useful in a multi-vendor environment, mangers and agents

have to be designed to suit platforms other than the Windows platform we have

considered. Such a system will demonstrate the applicability of our approach for

networks of arbitrary topologies.

• Distributed Testing and Diagnosis in a Mobile Computing Environment

The rapidly expanding technology of cellular communication, wireless LANs and

satellite services will make information available anywhere and at any time [IB94]. Soon,

millions of people will carry portable computing devices. Regardless of the size of these

mobile computers, they will be equipped with a wireless connection to the fixed part of

the network. The resulting computing environment, often referred to as mobile or

nomadic computing, does not require users to maintain a fixed and universally known

position in the network and allows almost unrestricted mobility. Rising expectations from

this environment require a rich set of computing and communication capabilities and

services to be provided to the mobile user in a transparent, integrated and convenient

1 0 0

form [BCKP95] [IK96]. This new mobile computing environment has given rise to a host

o f new research challenges in areas such as address management, mobility management,

data distribution, security and bandwidth management [AB94] [FZ94] [KCVP95]

[BCKP95] [IK96] [CMB96] [S97],

Currently most studies regarding host mobility use the assumption that the mobile

computing device is only “one hop” away from the fixed part o f the network. We are

seeing the emergence of multi-hop ad-hoc networks which have dynamically changing

mesh topologies. These networks could be of interest in military or disaster situations, or

even during the organization of a special event such as a scientific conference or a

business meeting. These networks could also be seen to exist at the boundaries of a fixed

network. Keeping in view the emergence of such networks and the need for mobile hosts

to have a global picture o f the network topology either for routing purposes or organizing

distributed computations, a challenging research direction is to investigate distributed

testing and diagnosis issues in a general mobile computing environment.

1 0 1

References:

[AB94] A. Acharya and B.R. Badrinath, “Delivering Multicast Messages in Networks
with Mobile Hosts,” Proc. 4*** International Conference on Distributed
Computing Systems, 1994.

[AKT75]F.J. Allan, T. Kameda, and S. Toida, “An Approach to the Diagnosability
Analysis of a System,” IEEE Trans, on Computers, vol. 24, 1975, pp.
1040-1042.

[B88] D M. Blough, “Fault Detection and Diagnosis in Multiprocessor Systems,”
Ph.D. Thesis, The John Hopkins University, 1988.

[BA86a] P. Banerjee and J. Abraham, “Bounds on Algorithm-based Fault Tolerance in
Multiprocessor Systems,” IEEE Trans, on Computers, vol. 35, 1986, pp.
296-306.

[BA86b] P. Baneqee and J. Abraham, “Concurrent Fault Diagnosis in Multiprocessor
Systems,” Proc. lb**" Intl. Symp. on Fault-Tolerant Computing, 1986, pp.
298-303.

[BB91] R. Bianchini, R. Buskens, “An Adaptive Distributed System-Level Diagnosis
Algorithm and its Implementation”, Proceedings o f the 21st International
Symposium on Fault Tolerant Computing, 1991, pp. 222-228.

[BB92] R. Bianchini, R. Buskens, “Implementation o f On-Line Distributed
System-Level Diagnosis Theory”, IEEE Trans, on Computers, vol. 41, no. 5,
May 1992, pp. 616-626.

[BB99] D. Blough, H. Brown, "The Broadcast Comparison Model for On-Line Fault
Diagnosis in Multicomputer Systems: Theory and Implementation," IEEE Trans,
on Computers, vol. 48, no.5, 1999, pp. 470-493.

[BCKP95] R. Bagrodia, W.W. Chu, L. Kleinrock, and G. Popek, “Vision, Issues, and
Architecture for Nomadic Computing,” IEEE Personal Communications, Dec.
1995, pp. 14-27.

[BGM76] F. Barsi, F. Grandoni, P. Maestrini, “A Theory o f Diagnosability of Digital
Systems”, IEEE Trans, on Computers, vol. C-25, no. 6, June 1976, pp. 585-593.

[BGN90] R. Biancini, Jr., K. Goodwin, and D.S. Nydick, “Practical Application and
Implementation o f Distributed System-Level Diagnosis Theory,” Proc. 20* Intl.
Symp. on Fault-Tolerant Computing, 1990, pp. 332-339.

[BH94] A. Bagchi and S.L. Hakimi, “Information Dissemination in Distributed Systems
with Faulty Units,” IEEE Trans, on Computers, vol. 43, 1994, pp. 698-710.

1 0 2

[BMD93] M. Baborak, M. Malek, and A T. Dahbura, “The Consensus Problem in
Fault-Tolerant Computing,” ACM Computing Surveys, vol. 25, no. 2, 1993, pp.
171-220.

[BF94] D M. Blough and A. Pelc, “Almost Certain Fault Diagnosis through Algorithm
Based Fault Tolerance,” IEEE Trans, on Parallel and distributed Systems, vol.
5, 1994, pp. 532-539.

[BSB92] R. Biancini, Jr., M. Stahl, and R. Buskens, “The Adapt2 On-Line Diagnosis
Algorithm for General Topology Networks,” Proc. GLOBECOM, 1992, pp.
610-614.

[BSM92] D-M. Blough, G.F. Sullivan and G.M. Masson, “Efficient Diagnosis of
Multiprocessor Systems under Probabilistic Models,” IEEE Trans, on
Computers, vol. 41, no. 9, 1992, pp. 1126-1136.

[CClTT89a] CCITT Recommendation X.208 (1989) | ISO/IEC 8824 : 1990,
Information Technology - Open Systems Interconnection - Specification of
Abstract Syntax Notation One (ASN.l).

[CClTT89b] CCITT Recommendation X.208 (1989) | ISO/IEC 8824 : 1990,
Information Technology - Open Systems Interconnection - Specification of
Basic Encoding Rules For Abstract Syntax Notation One (ASN. 1).

[CFSD90] J.D. Case, M.S. Fedor, M L. Schoffstall and J R. Davin, “A Simple Network
Management Protocol”, RFC 1157, 1990.

[CH81] K. Chwa, S. Hakimi, “On Fault Identification in Diagnosable Systems”, IEEE
Trans, on Computers, vol. C-30, no. 6, June 1981, pp. 414-422.

[CHPW99] J. Case, D. Harrington, R. Presuhn, and B. Wijnen, “Message Processing and
Dispatching for the Simple Network Management Protocol (SNMP)”, RFC
2572, 1999.

[CMB96] S. Corson, J. Macker, and S. Batsell, “Architectural Considerations in Mobile
Mesh Networking,”, tonnant.itd.nrl.navy.mil/mmnetRFC.txt, June 1996.

[DCFS87] J. Davin, J. Case, M. Fedor, and M. Schoffstall, “A Simple Gateway
Monitoring Protocol”, RFC 1028, 1987.

[DM84] A. T. Dahbura, G. M. Masson, “An 0(n^^) Fault Identification Algorithm for
Diagnosable Systems”, IEEE Trans, on Computers, vol. C-33, no. 6, June 1984,
pp. 486-492.

103

[DMY85] A T. Dahbura, G.M. Masson, and C. Yang, “Self-Implicating structures for
Diagnosable Systems,” IEEE Trans, on Computers, vol. 34, 1985, pp. 718-723.

[DN98] E. P. Duarte Jr., T. Nanya, “A Hierarchical Adaptive Distributed System-Level
Diagnosis Algorithm”, IEEE Trans, on Computers, vol. 47, no. I, Jan. 1998, pp.
34-45.

[DSK87] A.T. Dahbura, K.K. Sabnani and L.L. King, “The Comparison Approach to
Multiprocessor Fault Diagnosis,” IEEE Trans, on Computers, vol. 33, 1987, pp.
373-378.

[DTA9I]A. Das, K. Thulasiraman and V.K. Agarwal, “Diagnosis of t/s-Diagnosable
Systems”, Journal o f Circuits, Systems, and Computers, vol. 1, 1991, pp.
353-371.

[DTA94]A. Das, K. Thulasiraman and V.K. Agarwal, “Diagnosis of t/t+1-Diagnosable
Systems”, SIAM Journal on Computing, 1994, pp. 895-905.

[DTAL93] A. Das, K. Thulasiraman, V.K. Agarwal and K.B. Lakshmanan,
“Multiprocessor Fault Diagnosis under Local Constraints”, IEEE Trans, on
Computers, vol. 42, 1993, pp. 984-988.

[DTLA93] A. Das, K. Thulasiraman, K.B. Lakshmanan, and V.K. Agarwal, “Distributed
Fault Diagnosis o f a Ring of Processors”, Parallel Processing Letters, vol. 3,
1993, pp. 195-204.

[FBL96] C. Feng, L.N. Bhuyan, and F. Lombardi, “Adaptive System-Level Diagnosis for
Hypercube Multiprocessors,” IEEE Trans, on Computers, vol. 45, 1996, pp.
1157-1170.

[FR89] D. Fussell and S. Rangarajan, “Probabilistic Diagnosis o f Multiprocessors with
Arbitrary Connectivity,” Proc. 19^ Intl. Symp. on Fault-Tolerant Computing,
1989, pp. 560-565.

[FZ94] G.H. Forman, and J. Zahotjan, “The Challenges of Mobile Computing,” IEEE
Computer, 1994.

[HA74] S. L. Hakimi, A. T. Amin, “Characterization of Connection Assignment o f
Diagnosable Systems”, IEEE Trans, on Computers, January 1974, pp. 86-88.

[HA84] K. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for Matrix
Operations,” IEEE Trans, on Computers, vol. 33, 1984, pp. 518-528.

[HALT95] K. Huang, V.K. Agarwal, L.E. LaForge, and K. Thulasiraman, “A Diagnosis
Algorithm for Constant Degree Structures and its Application to VLSI Testing”,
IEEE Trans, on Parallel and Distributed Systems, vol. 6, 1995, pp. 363-372.

104

[HAT98]K. Huang, V.K. Agarwal, and K.Thulasiraman, “Diagnosis of Clustered Faults
and Wafer Testing,” IEEE Trans, on Computer Aided Design, vol. 17, no. 2,
February 1998, pp. 136-148.

[HKR84] S. H. Hosseini, J. G. Kuhl, S. M. Reddy, “A Diagnosis Algorithm for
Distributed Computing Systems with Dynamic Failure and Repair”, IEEE
Trans, on Computers, vol. C-33, no. 3, March 1984, pp. 223-233.

[HN84] S.L. Hakimi and K. Nakajima, “On Adaptive System Diagnosis”, IEEE Trans,
on Computers, vol. 33, 1984, pp. 234-240.

[HPW99] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for Describing
SNMP Management Frameworks”, RFC 2571, 1999.

[IB94] T. Imielinski and B.R. Badrinath, “Mobile Wireless Computing: Challenges in
Data Management,” Communications of the ACM, Oct 1994.

[1K96] T. Imielinski and H.F. Korth. Mobile Computing, Kluwer Academic Publishers,
1996

[J94] P. Jalote, Fault Tolerance in Distributed Systems, Prentice-Hall, 1994.

[K78] T. Kohda, “On One-Step Diagnosable Systems Containing at most /-Faulty
Units,” Systems, Computers, and Control, vol. 9, 1978, pp. 30-37.

[KCVP95] P. Krishna, M. Chatterjee, N.H. Vaidya, and D.K. Pradhan, “A Cluster-based
Approach for Routing in Ad-Hoc Networks,” Proc. Mobile and Location-
Independent Computing Symposium, 1995.

[KF78] A. Kavianpour and A.D. Friedman, “Efficient Design of Easily Diagnosable
Systems,” USA-Japan Comput. Conference, vol. 5, 1978, pp. 251-257.

[KH87] S.E. Kreutzer and S.L. Hakimi, “Microprocessing and Microprogramming 20
(1987), pp. 33-330.

[KR80] J.G. Kuhl, S. M. Reddy, “Distributed Fault-Tolerance for Large Multiprocessor
Systems”, Proceedings of the 7th Annual Symposium on Computer
Architecture, 1980, pp. 23-30.

[KR81] J.G. Kuhl, S. M. Reddy, “Fault-Diagnosis in Fully Distributed Systems”,
Proceedings of the 11th International Symposium on Fault Tolerant Computing,
1981, pp. 100-105.

[KTA75]T. Kameda, S. Toida, and F.J. Allan, “A Diagnosing Algorithm for Networks,”
Information and Control, vol. 5, 1975, pp. 141-148.

105

[L96] N. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San
Francisco, 1996.

[L97] C. Lamb, “Graph Models and Systems Level Testing”, Ph.D. thesis. Dept, o f
ECE, University of Oklahoma, 1997.

[LHA94JL.E. LaForge, K. Huang, and V.K. Agarwal, “Almost Sure Diagnosis o f Every
Good Element,” IEEE Trans, on Computers, vol. 43, 1994, pp.295-305.

[LS94] S. Lee and K.G. Shin, “Probabilistic Diagnosis of Multiprocessor Systems,”
ACM Computing Surveys, vol. 26, 1994, pp. 121-139.

[M98] J. Murray, Windows NT SNMP, O’Reilly & Associated, Inc., 1998.

[MH76] S.N. Maheshwari and S.L. Hakimi, “On Models for Diagnosable Systems and
Probabilistic Fault Diagnosis,” IEEE Trans, on Computers, vol. 25, no. 3, 1976,
pp. 228-236.

[MM81] J. Maeng, M. Malek, “A Comparison Connection Assignment for
Self-Diagnosis of Multiprocessor Systems”, Proceedings of the 11th
International Conference on Fault Tolerant Computing, 1981, pp. 173-175.

[MR90] K. McCloghtie and M.T. Rose, “Management Information Base for Network
Management of TCP/IP-based internets”, RFC 1156, 1990.

[MR91] K. McCloghtie and M.T. Rose, “Management Information Base for Network
Management of TCP/IP-Based Internets: MIB-II”, RFC 1213, 1991.

[N81] K. Nakajima, “A New Approach to System Diagnosis,” Proc. 19^ Annual
Allerton Conf. Communication, Control, and Computers, 1981, pp. 697-706.

[NN86] J. Narasimhan and K. Nakajima, “An Algorithm for Determining the Fault
Diagnosability of a System,” IEEE Trans, on Computers, vol. 35, 1986, pp.
1004-1008.

[P96] M. Pollastshek, Programming Discrete Simulations - Tools for Modeling the
Real World, R&D Books, 1996.

[PM97] D. Perkins, E. McGinnis, Understanding SNMP MIBS, Prentice-Hall, Inc. 1997.

[PMC67] F. P. Preparata, G. Metze, R. T. Chien, “On the Connection Assignment
Problem o f Diagnosable Systems”, IEEE Trans, on Electronic Computers, vol.
EC-16, no. 6, December 1967, pp. 848-854.

106

[R89] V. Raghavan, “Diagnosability Issues in Multiprocessor Systems,” Ph.D. Thesis,
University of Minnesota, 1989

[R9I] M. Rose, “A Convention for Defining Traps for use with the SNMP,” RFC
1215, 1991.

[R94] M. Rose, The Simple Book An Introduction to Internet Management, 2"** edition,
PTR Prentice-Hall, Inc, 1994.

[RDZ95] S. Rangarajan, A.T. Dahbura and E.A. Ziegler, “A Distributed System-Level
Diagnosis Algorithm for Arbitrary Network Topologies”, IEEE Trans, on
Computers, vol. 44, 1995, pp. 312-333.

[RF92] S. Rangarajan and D. Fussell, “Diagnosing Arbitrarily Connected Parallel
Computers with High Probability,” IEEE Trans, on Computers, vol. 41, 1992,
pp. 606-615.

[RFM90] S. Rangarajan, D. Fussell, and M. Malek, “Built-In Testing o f Integrated
Circuit Wafers”, IEEE Trans, on Computers, vol. 39, 1990, pp. 195-205

[RM90] M. Rose and K. McCloghrie, “Structure and Identification of Management
Information for TCP/IP-Based Internets,” RFC 1155, 1990.

[RM91] M. Rose and K. McCloghrie, “Concise MIB Definitions,” RFC 1212, 1991.

[RT91] V. Raghavan and A. Tripathi, “Sequential Diagnosability is Co-NP-CompIete,”
IEEE Trans, on Computers, vol. 40, 1991, pp. 584-595.

[S84] G.F. Sullivan, “A Polynomial Time Algorithm for Fault Diagnosability”, Proc.
25“’ Symp. on Foundations of Computer Science, 1984, pp. 148-156.

[587] E.R. Scheinerman, "Almost Sure Fault-Tolerance in Random Graphs," SIAM
Journal on Computing, vol. 16, 1987, pp. 1124-1134.

[588] G.F. Sullivan, “An 0(t^+|e|) Fault Identification Algorithm for Diagnosable
Systems,” IEEE Trans, on Computers, vol. 37, 1988, pp. 538-546.

[S97] S. Sathyanarayanan, “Mobile Computing: Where is the Tofu?,” Mobile
Computing and Communications Review, vol. 1, 1997, pp. 17-21.

[SAA87JA.K. Somani, V.K. Agarwal, and D. Avis, “A Generalized Theory for System-
Level Diagnosis,” IEEE Trans, on Computers, vol. 36, no. 5, 1987, pp. 388-397.

[SAA89] A.K. Somani, D. Avis, and V.K. Agarwal, “On the Complexity o f Single-Fault
Diagnosability and Diagnosis Problems in System-Level Diagnosis,” IEEE
Trans, on Computers, vol. 38, 1989, pp. 195-201.

107

[SBB92] M. Stahl, R. Buskens, and R. Biancini, Jr., “On-Line Diagnosis in General
Topology Networks,” Proc. Workshop on Fault-Tolerant Pzuallel and
Distributed Systems, 1992.

[SD92] A. Sengupta and A. Dahbura, "On Self-Diagnosable Multiprocessor Systems:
Diagnosis by the Comparison Approach", IEEE Trans, on Computers, vol. 41.
no. 11, 1992, pp. 1386-1396.

[SP96] A.K. Somani and O. Peleg, “On Diagnosability of Large Fault Sets in Regular
Topology-based Computer Systems,” IEEE Trans, on Computers, vol. 45, 1996,
pp. 892-903.

[STDOl] M.-S. Su, K. Thulasiraman, and A. Das, “A Multi-Level Adaptive Distributed
Diagnosis Algorithm for Fault Detection in a Network of Processors”, Proc. 39'*’
Annual Allerton Conf. on Communication, Control, and Computers, 2001.

[VP94] N.H. Vaidya and D.K. Pradhan, “Safe System-Level Diagnosis,” IEEE Trans,
on Computers, vol. 43,1994, pp. 367-370.

[W91] S. Waldbusser, “Remote Network Monitoring Management Information Base”,
RFC 1271, 1991.

[YJ97] S. Yajnik and N.K. Jha, “Graceful Degradation in Algorithm-Based
Multiprocessor Systems,” IEEE Trans, on Parallel and Distributed Systems, vol.
8, 1997, pp. 137-153.

[YML86] C. Yang, G.M. Masson, and R. Leonetti, “On Fault Identification and Isolation
in t|/t|-Diagnosable Systems,” IEEE Trans, on Computers, vol. 35, no. 7, 1986,
pp. 639-643.

108

