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Abstract—In this paper, we introduce a new model for diagnosable systems

called ðt; kÞ-diagnosable system which guarantees that at least k faulty units

(processors) in a system are detected provided that the number of faulty units

does not exceed t. This system includes classical one-step diagnosable systems

and sequentially diagnosable systems. We prove a necessary and sufficient

condition for ðt; kÞ-diagnosable system, and discuss a lower bound for

diagnosability. Finally, we deal with a relation between ðt; kÞ-diagnosability and

diagnosability of classical basic models.

Index Terms—Fault diagnosis, PMC model, one-step t-diagnosis, sequential

t-diagnosis, diagnosability, Cartesian product.
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1 INTRODUCTION

THE rapid development in digital technology has resulted in
developing systems including a very large number of processors.
As the number of processors in a system increases, it has become
important to guarantee the reliability of such systems. This issue
has prompted designers of such systems to study fault-tolerant
systems that are capable of uninterrupted processing. Fault
tolerance on multiprocessor systems is composed of two basic
steps. The first step is called fault diagnosis. In this step, faulty
processors are identified. The second step is called system
configuration. In this step, the faulty units that have been previously
identified are configured out of the system. Then, they are replaced
by spare processors or the tasks that are assigned to the faulty
processors are distributed to remaining fault-free processors in the
system. In large network systems, it is impractical for each
processor to be tested individually by another host. So, the concept
of system level diagnosis is effective in this situation. Preparata et al.
[1] first introduced a graph theoretical model (called PMC model)
for system level diagnosis and the concept of two basic diagnosis
of systems called one-step diagnosis and sequential diagnosis.
After the PMC model, many theoretical or practical studies have
been reported [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22].

In this paper, we propose a new model called the

ðt; kÞ-diagnosable system, which is a generalized sequentially

diagnosable system. A diagnosis is said to be complete if all the

faulty units can be identified. Otherwise, it is an incomplete

diagnosis. Similarly, a diagnosis is correct if no fault-free units

are identified as faulty. If not, the diagnosis is called incorrect. One-

step diagnosis is a complete and correct diagnosis, that is, all faulty

units in the system are correctly identified, while sequential

diagnosis is a correct and incomplete diagnosis. It is known that

the diagnoses proposed by Friedman [7] and by Somani and Peleg

[20] are complete but incorrect diagnoses. Our ðt; kÞ-diagnosis is a

correct and incomplete diagnosis, hence, this is a generalization of

sequential diagnosis.

The rest of this paper is organized as follows: In Section 2, we
describe backgrounds and definitions for diagnosable systems. In
Section 3, we give the definition of a ðt; kÞ-diagnosable system; the
necessary and sufficient condition for this system is proven. In
Section 4, we consider a lower bound of the ðt; kÞ-diagnosability.
Finally, in Section 5, we relate ðt; kÞ-diagnosable systems to two
basic systems using a graph product.

2 THE PMC MODEL AND SOME PRELIMINARIES

In the PMC model, a system S is decomposed into n independent
units. Each unit v is assigned a subset of S to test and it is assumed
that there is no unit tested by itself. The complete collection of tests
in S, called test assignment of S, is represented by a directed graph
GðV ;EÞ, where each unit u is represented by a vertex u 2 V and
there is a directed edge ðu; vÞ 2 E if and only if u tests v in S. The
following sets are associated with each unit u: ÿu ¼ fv : ðu; vÞ 2 Eg,
ÿÿ1u ¼ fv : ðv; uÞ 2 Eg. Similarly, the following sets are defined for
a set of units U � V : ÿU ¼

S
u2U ÿuÿ U , ÿÿ1U ¼

S
u2U ÿÿ1uÿ U .

The outcome of test ðu; vÞ is represented by the weight wðu; vÞ of
the edge, where wðu; vÞ ¼ 0 (resp. 1) if u evaluates v to be fault-free
(resp. faulty). The set of all test outcomes of S is called the syndrome

of S. The faults considered here are permanent, so the test outcome
wðu; vÞ is reliable if and only if u is fault-free. (Diagnosable systems
with intermittent fault have been discussed in research such as in
[12], [14].)

Preparata et al. [1] have introduced two basic notions of
diagnosis of systems. One is the one-step diagnosis, which finds all
faulty units at one time, and the other is the sequential diagnosis,
which finds a subset of faulty units. A system is called one-step

t-diagnosable (resp. sequentially t-diagnosable) if, given any com-
plete collection of test outcomes, all (resp. at least one) faulty units
in S can be identified, provided the number of faulty units does
not exceed t.

The fault set and the consistent fault set have been defined as
follows [9]:

Fault set. A fault set is a set of the faulty units of a system S.

Consistent fault set. For a system S and a given syndrome, a subset

F � V is a consistent fault set (CFS) if and only if 1) u 2 V ÿ F
and wðu; vÞ ¼ 0 imply v 2 V ÿ F and 2) u 2 V ÿ F and wðu; vÞ ¼ 1

imply v 2 F .

Thus, F is a CFS for a given syndrome if and only if the
assumption that the units in F are faulty and the units in
V ÿ F are fault-free is consistent with the syndrome. Given a
system S and a syndrome !, let 
!;t be the set of possible
CFSs for the syndrome in a t-fault situation (a fault situation
means that t or fewer units in the system are faulty). Thus,

!;t ¼ fF : F is a CFS for the syndrome ! and jF j � tg. Clearly, we
may regard all the units belonging to the intersection of CFSs as
faulty. Thus, a system S is one-step t-diagnosable if and only if, for
any given syndrome ! produced by a t-fault situation, j
!;tj ¼ 1

and a system S is sequentially t-diagnosable if and only if, for any
syndrome !, j

T
F2
!;t

F j � 1 or 
!;t ¼ f;g. In order to characterize
sequentially diagnosable systems, the following terms are defined
in [21]: For a set V , a set of subsets of V , � ¼ fV1; . . . ; Vrg, where
Vi � V (i ¼ 1; . . . ; r), is a cover of V if and only if

S
1�i�r Vi ¼ V .

Given a set V and a cover � ¼ fV1; . . . ; Vrg of V , we associate the set
fðuÞ ¼ fVi 2 � : u 2 Vig for each element u 2 V . For each element
u 2 V and a subset U � V , we define NðuÞ ¼ jfðuÞj and
NðUÞ ¼

P
u2U NðuÞ. That is, fðuÞ is the set of the elements in � to

which u belongs, and NðuÞ is the number of subsets in � to which u
belongs.

Hakimi and Amin [8] characterized one-step t-diagnosable

systems as follows:
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Theorem 2.1 (Hakimi and Amin [8]). A system S is one-step
t-diagnosable if and only if 1) n � 2tþ 1, 2) for any v 2 V ,
jÿÿ1vj � t, and 3) for each integer p with 0 � p < t and each V 0 � V ,
jV 0j ¼ nÿ 2tþ p, jÿÿ1V 0j > p.

Characterization for sequentially diagnosable systems was
proved by Xu and Huang [21].

Theorem 2.2 (Xu and Huang [21]). A system S is sequentially

t-diagnosable if and only if, for any nonempty subset F � V and for

each cover � ofF , � ¼ fF1; F2; . . . ; Frgwith jFij � t ði ¼ 1; 2; . . . ; rÞ,
at least one of the following conditions holds: 1)

T
1�i�r Fi 6¼ ;,

2) there exists a test ðu; vÞ such that u 2 V ÿ F and v 2 F , 3) there

exists a test ðu; vÞ such that fðvÞ 6� fðuÞ and fðuÞ [ fðvÞ 6¼ �.

For a diagnosable system, we call the maximum value of t the
diagnosability of the system. We define the one-step diagnosability
(resp. sequential diagnosability) of a system as the maximum value of
t such that the system is one-step (resp. sequentially) t-diagnosable.
That is, the diagnosability is the maximum number of faulty units
that the system can guarantee to diagnose correctly. The result of
Theorem 2.1 implies that the one-step diagnosability is bounded by
the minimum vertex degree in the graph. However, most well-
known interconnection networks, such as complete k-ary trees,
hypercubes, grids, torus, cube-connected cycles, have small vertex
degrees. Thus, the bound of the one-step diagnosability is very
small in comparison with the total number of units.

It is known that there are two ways to increase the diagnosa-
bility under PMC models. One approach is sequential diagnosis.
For example, a directed cycle with n units is known to be
sequentially ð2

ffiffiffi
n
p
ÿ 2Þ-diagnosable [1] (a directed cycle is referred

as a single-loop system in [1]). Since most practical systems have
Hamiltonian cycles, we can sequentially diagnose such systems for
a large number of faulty units more than the smallest degree.
Another way is to allow a certain number of units to be incorrectly
diagnosed. Friedman’s t=s-diagnosable system [7] and Somani and
Peleg’s t=k-diagnosable system [20] are the representative works in
this area. These notions are extension of one-step diagnosis, and
many theoretical results are reported. On the other hand, the
studies of generalization of sequential diagnosis have not been
reported.

The aim of sequential diagnosis is to identify iteratively subsets
of faulty units until all faulty units are repaired. At the end of each
iteration, the identified subset of faulty units is repaired and then
next iteration is started. In each iteration, at least one faulty unit is
guaranteed to be identified under sequential t-diagnosis. One
approach to designing an algorithm for sequential diagnosis is that
some fault-free units are identified in the first phase and, then, we
iteratively search faulty units using the identified fault-free units
and repair the identified faulty units. It should be noted that, in
each iteration, there is a possibility that more than one faulty unit
may be identified. Some algorithms [11], [10] adopted this
approach in order to design efficient sequential t-diagnosis
algorithms. As another approach, Somani et al. [19] treated the
problem that the set of all faulty units with more than the one-step
diagnosability is identified. Hence, it is an interesting problem to
consider the number of faulty units a system can locate correctly.
This problem may have the possibility of motivating the design of
a new algorithm for diagnosis of systems.

For this reason, we propose a new framework for the sequential
diagnosis, called the ðt; kÞ-diagnosis, which is a generalized
sequential diagnosis so that at least k � 1 faulty units are
identified. The one-step t-diagnosable system and sequentially
t-diagnosable system are basic diagnosis models and each of them
treats the extreme case with respect to the number of the
identifying faulty units. (One-step t-diagnosis identifies all faulty
units, on the other hand, sequential t-diagnosis identifies at least one

faulty unit.) The ðt; kÞ-diagnosable system, with a new parameter k,

gives a wide class of diagnosable systems which includes one-step

diagnosable systems and sequentially diagnosable systems as

extremal cases.

3 (t, k)-DIAGNOSABLE SYSTEMS AND THEIR

CHARACTERIZATIONS

A ðt; kÞ-diagnosable system is defined as follows:

Definition 3.1. For t and k, t � k, a system S is ðt; kÞ-diagnosable if,

given any syndrome produced by the system under the presence of a

fault set F :

1. All faulty units can be identified for jF j � k and
2. At least k faulty units can be identified for k < jF j � t.

If k ¼ t, then the system is one-step t-diagnosable and, if

k ¼ 1, then the system is sequentially t-diagnosable. Therefore,

ðt; kÞ-diagnosable systems are generalized fault diagnosable sys-

tems including the two basic diagnosable systems defined by

Preparata et al.
Given an integer k � 1 and a system S, we define the

ðt; kÞ-diagnosability of the system S as the maximum value of t

such that S is ðt; kÞ-diagnosable. If there is no value t such that S is

ðt; kÞ-diagnosable for given k, we define the ðt; kÞ-diagnosability as 0.

By the definition, if a system S is ðt; kÞ-diagnosable, then S is

ðt; k0Þ-diagnosable for any 1 � k0 � k. Hence, the following proposi-

tion clearly holds:

Proposition 3.2. For any system S, the ðt; k0Þ-diagnosability is greater

than or equal to the ðt; kÞ-diagnosability if 1 � k0 < k.

Hence, it may be understood intuitively that the

ðt; kÞ-diagnosability becomes larger as k becomes smaller.
Let F be a fault set in a system S. We need jF j times iterations of

diagnosis in order to repair all faulty units in worst case under the

sequential diagnosis. In ðt; kÞ-diagnosable systems, it is guaranteed

that the number of iterations of diagnosis is at most djF j=ke. When

the probability of processor to be faulty is low, ðt; kÞ-diagnosable

systems identify most faulty units (for appropriate value k) and,

further, have higher reliability since the diagnosability is larger

than the one-step diagnosability. (Somani [18] proposed a

sequential diagnosis under the situation that faults occur sequen-

tially. In this situation, identifying all faulty units is achieved by

repeating one-step diagnosis.)
Definition 3.1 is equivalent to the following definition:

Definition 3.3. A system S is ðt; kÞ-diagnosable if and only if, given

any syndrome ! for S in a t-fault situation, j
T
F2
!;t

F j � k or

j
!;tj ¼ 1.

If j
T
F2
!;t

F j � k, then at least k faulty units are identified and,

if j
!;tj ¼ 1, then all faulty units are identified.
Somani et al. [19] generalized the notion of one-step diagnosis.

Let F ¼ fF1; F2; . . . ; Fkg be a family of fault sets. A fault set F is

uniquely diagnosable with respect to a family of fault sets F if any

syndrome corresponding to the fault set F is not producible by the

system in the presence of any other fault set Fi 2 F . Clearly, a

system is t-diagnosable if and only if any fault set F with jF j � t is

uniquely diagnosable with respect to the family of fault set

F t ¼ fFi : jFij < t; Fi � V g. Somani et al. characterized a fault set

to be uniquely diagnosable with respect to the family of fault set

F t. If a system is ðt; kÞ-diagnosable, then any fault set F with jF j �
k is uniquely diagnosable with respect to F t. However, Somani

et al.’s work did not treat the case that two or more CFSs

correspond to given syndrome. The ðt; kÞ-diagnosis is a diagnosis-

ing scheme such that a fault set F with jF j � k is uniquely
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diagnosable and faulty units in F with k < jF j � t are correctly and
incompletely diagnosed.

A necessary and sufficient condition for a ðt; kÞ-diagnosable
system is stated as follows. This is a generalization of the
characterization in Theorem 2.2 (Xu and Huang).

Theorem 3.4. A system S represented by GðV ;EÞ is ðt; kÞ-diagnosable
if and only if, for every nonempty subset F � V and for each cover �
of F , � ¼ fF1; F2; . . . ; Frg with jFij � t ði ¼ 1; 2; . . . ; rÞ, at least one
of the following conditions holds:

1.
T

1�i�r Fi
�� �� � k,

2. ÿF
�� �� � k, where F ¼ V ðGÞ ÿ F ,

3. There exists an edge ðu; vÞ 2 EðGÞ such that fðvÞ 6� fðuÞ
and fðuÞ [ fðvÞ 6¼ �, and

4. r ¼ 1.

Proof. (Necessity) Suppose that there is a subset U � V and a cover
� of U , � ¼ fF1; F2; . . . ; Frg with jFij � t (i ¼ 1; 2; . . . ; r), such
that

1.
T

1�i�r Fi
�� �� < k,

2. ÿF
�� �� < k,

3. for all ðu; vÞ 2 EðGÞ, fðvÞ � fðuÞ or fðuÞ [ fðvÞ ¼ �, and
4. r � 2.

Then, we can construct a syndrome ! such that � � 
!;t as

follows: For any ðu; vÞ 2 E, let wðu; vÞ ¼ 0 if v 2 F ; let wðu; vÞ ¼
1 if u 2 F and v 2 F ; let wðu; vÞ ¼ 0 if fðvÞ � fðuÞ, otherwise

wðu; vÞ ¼ 1. Note that, for each i ¼ 1; 2; . . . ; r, if u 62 Fi and

wðu; vÞ ¼ 0, then v 62 Fi and, if u 62 Fi and wðu; vÞ ¼ 1, then

v 2 Fi. So, each Vi (i ¼ 1; 2; . . . ; r) is a CFS for the syndrome !.

Since jVij � t for any i ¼ 1; 2; . . . ; r, Vi 2 
!;t. However, since

j
T

1�i�r Fij < k, we have j
T
F2
!;t

F j < k. Therefore, by Defini-

tion 3.3, S in not ðt; kÞ-diagnosable.

(Sufficiency) Assume that one or more of conditions 1, 2, 3,

and 4 hold, but S is not ðt; kÞ-diagnosable. By Definition 3.3,

there exists a syndrome ! such that j
T
F2
!;t

F j < k and 
!;t > 1.

Let � ¼ 
!;t ¼ fF1; F2; . . . ; Frg and F ¼ [1�i�rFi ¼ F . So, � is a

cover of F � V . Note that � does not satisfy the conditions 1

and 4. If there is an edge ðu; vÞ such that u 2 V ÿ F and

v 2 F ÿ
T

1�i�r Fi, then v 62 Fx and v 2 Fy for some x. However,

if wðu; vÞ ¼ 0, then Fy is not a CFS. If wðu; vÞ ¼ 1, then Fx is not a

CFS. This is a contradiction. Thus, v 2
T

1�i�r Fi. This implies

that ÿF �
T

1�i�r Fi. Hence, jÿF j � j
T

1�i�r Fij < k. Therefore, �

does not satisfy 2. Finally, assume � meets condition 3, that is,

there exists an edge ðu; vÞ such that fðvÞ 6� fðuÞ and

fðuÞ [ fðvÞ 6¼ �. Then, there are two sets Fx, Fy such that

u 62 Fx, v 2 Fx and u; v 62 Fy. However, wðu; vÞ ¼ 0 implies Fx is

not CFS, which is a contradiction; wðu; vÞ ¼ 1 implies Fy is not

CFS, which is also a contradiction. tu

Setting k ¼ 1 in the above theorem, we obtain the characteriza-
tion for sequentially t-diagnosable systems (Theorem 2.2). By the
proof of Theorem 3.4, F � V and � satisfy condition 3 if and only if
each Fi 2 � is CFS for some syndrome for S in a t-fault situation.
When k ¼ t, we find that the conditions in Theorem 3.4 are
equivalent to 1) r ¼ 1 or 2) there exits ðu; vÞ such that fðvÞ 6� fðuÞ
and fðuÞ [ fðvÞ 6¼ �, if r � 2. This condition can be put in other
words: “A system is one-step t-diagnosable if and only if any
syndrome does not have two or more CFSs.” This is the definition
of a one-step t-diagnosable system.

Lemma 3.5. If a system S is ðt; kÞ-diagnosable, then 1) n � 2tþ 1,
2) jÿÿ1vj � k for any v 2 V , and 3) jÿÿ1Uj > p for each U � V with
jUj ¼ 2ðtÿ pÞ and 0 � p < k.

Proof. Similar to the proof of Theorem 2.1 [8]. tu

The necessary condition in Lemma 3.5 is not sufficient when
k ¼ t. In fact, if k ¼ 1, condition 3 means “for any U with jUj ¼ 2t,
jÿÿ1U j > 0.” Hence, a single-loop system with 13 units illustrated in
Fig. 1 satisfies conditions 1, 2, and 3 for t ¼ 6. However, the system is
not 6-diagnosable. The syndrome represented in Fig. 1 associates the
following CFSs: F1 ¼ f3; 6; 8; 9; 10; 13g, F2 ¼ f1; 2; 6; 7; 11; 13g,
F3 ¼ f3; 4; 5; 8; 11; 12g. Since F1 \ F2 \ F3 ¼ ;, no faulty units are
identified. Hence, the system is not sequentially 6-diagnosable.

4 DIAGNOSABILITY OF (t, k)-DIAGNOSABLE SYSTEMS

It is known that the determination of the exact diagnosability of a
given diagnosable system is difficult. Theorem 2.2 gives some
conditions that must be satisfied by every subset of units. Since
there are exponentially many subsets, checking each subset is
impractical for large systems. Raghavan and Tripathi [16] have
shown that determining the exact sequential diagnosability for any
testing assignment is co-NP Complete. The characterization for
ðt; kÞ-diagnosable systems (Theorem 3.4) is essentially equivalent to
sequentially t-diagnosable systems, hence there may be no efficient
algorithm for determining the diagnosability of ðt; kÞ-diagnosable
systems. So, in this section, we consider a lower bound for the
ðt; kÞ-diagnosability using graph-theoretic properties.

Let GðV ;EÞ be a strongly connected digraph representing a
system S with n units. Assume that S is not ðt; kÞ-diagnosable for
n � 2tþ 1 and that �ðGÞ � k, where �ðGÞ denotes the connectivity
of the digraph G defined by the minimum number of vertices
whose removal from G results in a directed graph that is not
strongly connected. By Theorem 3.4, there are a subset F � V and a
cover � of F , � ¼ fF1; F2; . . . ; Frg, jFij � t (i ¼ 1; 2; . . . ; r) such that
all the following conditions are satisfied:

1.
T

1�i�r Fi
�� �� < k,

2. ÿF
�� �� < k,

3. For each edge ðu; vÞ 2 EðGÞ, fðvÞ � fðuÞ or fðuÞ [ fðvÞ ¼ �,
and

4. r > 1.

In general, there may be two or more subsets and covers. We
adopt a subset F and a cover � that have the minimum value r.
That is, F and � satisfy conditions 1-4 and, for values smaller than
r, any pair of subsets and cover do not satisfy one or more
conditions. Let Y and Yi (i ¼ 1; 2; . . . ; r) be Y ¼

T
1�i�r Fi, and

Yi ¼
T

1�j�r;j 6¼i Fj ÿ Y . The cardinality of the sets Y and Yi is
denoted by y and yi, respectively.

Claim 4.1. F ¼ V .
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Fig. 1. An example of system that is not sequentially 6-diagnosable.



Proof. Assume that F 6¼ V . Let U ¼ fu : u 62 Fg (of course, U 6¼ ;).
Since G is strongly connected, there is an edge ðu; vÞ 2 E such

that u 2 F and v 2 F . By condition 3, we have fðvÞ ¼ � (that is,

v 2 Y ). Thus, removal of vertices in Y results in a subgraph of G

that has no directed paths from U to F ÿ Y . Hence,

jY j � �ðGÞ � k. This contradicts condition 1. tu
Claim 4.2. For each i ¼ 1; 2; . . . ; r, Yi 6¼ ;.
Proof. If Yi ¼ ;, then �0 ¼ �ÿ fFig is a cover of V 0 ¼

S
Fj2�0 Fj that

satisfies conditions 1-4. This is easily proven using the fact thatT
Fj2�0 Fj ¼ Y [ Yi ¼ Y . tu

Lemma 4.3 ([21]). There is a set Vi such that jFij � NðV Þ=r.

We show that yþ yi � k for each i ¼ 1; 2; . . . ; r. If �ÿ fFig is not

a cover of V , then there exists a vertex u such that fðuÞ ¼ fFig. Let

U ¼ fu : fðuÞ ¼ fFigg, then ÿU �
T

1�j�r;j6¼i Fi ¼ Y [ Yi. Thus, the

graph obtained by removing the vertices in Y [ Yi does not have

directed path from a vertex u 2 U to a vertex v 62 U [ Y [ Yi. This

means jY [ Yij ¼ yþ yi � �ðGÞ � k. If �0 ¼ �ÿ fFig is a cover of V ,

it is clear that �0 satisfy conditions 2, 3, and 4. Hence, �0 does not

satisfy condition 1 by the way of selecting F and �. Thus, we obtain

yþ yi � k. Therefore, we have

yþ
X

1�i�r
yi ¼

X
1�i�r
ðyþ yiÞ ÿ ðrÿ 1Þy � krÿ ðrÿ 1Þðkÿ 1Þ

¼ kþ rÿ 1:

Let M ¼ Y [ Y1 [ . . . [ Yr, then

NðV Þ ¼ NðMÞ þNðV ÿMÞ � ryþ ðrÿ 1Þ
X

1�i�r
yi þ ðjV j ÿ jMjÞ

¼ ðrÿ 1Þyþ ðrÿ 2Þ
X

1�i�r
yi þ n

¼ yþ ðrÿ 2Þ yþ
X

1�i�r
yi

 !
þ n � ðrÿ 2Þðkþ rÿ 1Þ þ n:

From Lemma 4.3, jFij � NðV Þ=r ¼ rþ ðkÿ 3Þ þ ðnÿ 2kþ 2Þ=r for

some i. Let F ðrÞ ¼ rþ ðkÿ 3Þ þ ðnÿ 2kþ 2Þ=r. It is obvious that

r � 3 since n � 2tþ 1. Thus, F ðrÞ has the minimum value Fmin ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nÿ 2kþ 2
p

þ ðkÿ 3Þ for 3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nÿ 2kþ 2
p

and Fmin ¼ ðnþ kþ
2Þ=3 for 3 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nÿ 2kþ 2
p

. Since t � jFij � Fmin, we obtain the

following theorem.

Theorem 4.4. Let G be a strongly connected digraph representing a

system S. For any positive integer k such that �ðGÞ � k, S is

ðt; kÞ-diagnosable if n � 2tþ 1 and 1) t < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nÿ 2kþ 2
p

þ ðkÿ 3Þ
if n � 2kþ 7, 2) t < ðnþ kþ 2Þ=3 if n < 2kþ 7.

Example. m-dimensional hypercube Qm has 2m vertices, and

connectivity �ðQmÞ ¼ m. For m � 4, 2m > 2mþ 7. Thus, for k

with k � m and t with t < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ÿ 2mþ 2
p

þ ðmÿ 3Þ, Qm is

ðt; kÞ-diagnosable. Table 1 shows the ðt; kÞ-diagnosability of

hypercubes for small dimensions.

5 CONSTRUCTION OF (t, k)-DIAGNOSABLE SYSTEMS

BY THE CARTESIAN PRODUCT

The Cartesian product of graphs is defined as follows: For
digraphs G and H, G�H is a digraph with a vertex set V ðGÞ �
V ðHÞ and an edge from a vertex ðu1; v1Þ to a vertex ðu2; v2Þ exists if
and only i f ðu1; u2Þ 2 EðGÞ and v1 ¼ v2 or u1 ¼ u2 and
ðv1; v2Þ 2 EðHÞ. Many interconnection networks are defined by
the Cartesian product, such as hypercubes, grids, torus, and
meshes, and these networks constitute very important classes
widely studied for interconnection networks.

It has been shown that one-step diagnosability has an intimate
relation to Cartesian products [2].

Theorem 5.1 (Araki and Shibata [2]). Let G and H be digraphs
representing one-step tG and tH -diagnosable systems, respec-
tively. Then, the system represented by G�H is one-step
ðtG þ tHÞ-diagnosable.

A relation between a ðt; kÞ-diagnosable system and the two basic
systems, one-step and sequentially diagnosable system, is stated
using the Cartesian product.

Lemma 5.2. Let G and H be digraphs representing a sequentially
tG-diagnosable and a one-step tH -diagnosable system, respec-
tively. Then, the system S represented by G�H is
ðtG þ tH; tH þ 1Þ-diagnosable.

Proof. Let ! be a syndrome for a system S provided the number of
faulty units does not exceed ðtG þ tHÞ. The graph G�H has
jV ðHÞj copies of G as subgraphs. Let c be the number of copies
of G containing test outcomes “1.”

If tH < c � tG þ tH , then each copy of G contains at most
tG faulty units. Assume to the contrary that, if there exists a copy
of G having more than tG faulty units, then the total number of
faulty units is at least ðtG þ 1Þ þ ðcÿ 1Þ ¼ tG þ c > tG þ tH . This
is a contradiction. Thus, in this case, each copy of G identifies at
least one faulty units.

In the case of 1 � c � tH , we consider copies of H in G�H.
Obviously, the number of faulty units in the copies of H is at
most tH . Since the system represented by H is one-step
diagnosable, all faulty units are identified.

By the above discussion, the system S identifies at
least tH þ 1 faulty units or all faulty units. Thus, S is
ðtG þ tH; tH þ 1Þ-diagnosable. tu

Let Kþ2 be a digraph representing a system such that two units
test each other.

Lemma 5.3. LetG be a digraph representing a ðt; kÞ-diagnosable system.
Then, a system represented by G�Kþ2 is ðtþ 1; kþ 1Þ-diagnosable.

Proof. Easily proven. tu

The method of proof of Lemma 5.2 is very simple, so the
supposable number of faulty units (tG þ tH ) is small compared to
the total number of units (jV ðGÞjjV ðHÞj). However, we can obtain a
lower bound for diagnosability without considering the structure
of graphs G and H using a property of Cartesian products.

6 CONCLUDING REMARKS

We introduce a notion of ðt; kÞ-diagnosable systems and give a
characterization of the system and discuss some relations to
one-step and sequentially diagnosable systems. It is expected
that there is a trade off relation between diagnosability t and a
new parameter k. To solve the dependency of the diagnosa-
bility on the parameter k is a future subject. We think that the
notion of ðt; kÞ-diagnosis may motivate us to design new
diagnosis algorithms.
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TABLE 1
Diagnosability of m-Dimensional Hypercubes
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