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Abstract

All-optical switching, in place of electronic switching, of high data-rate lightpaths at
intermediate nodes is one of the key enabling technologies for economically scalable
future data networks. This replacement of electronic switching with optical switch-
ing at intermediate nodes, however, presents new challenges for fault detection and
localization in reconfigurable all-optical networks. Presently, fault detection and lo-
calization techniques, as implemented in SONET/G.709 networks, rely on electronic
processing of parity checks at intermediate nodes. If similar techniques are adapted to
all-optical reconfigurable networks, optical signals need to be tapped out at interme-
diate nodes for parity checks. This additional electronic processing would break the
all-optical transparency paradigm and thus significantly diminish the cost advantages
of all-optical networks.

In this thesis, we propose new fault-diagnosis approaches specifically tailored to
all-optical networks, with an objective of keeping the diagnostic capital expenditure
and the diagnostic operation effort low. Instead of the aforementioned passive mon-
itoring paradigm based on parity checks, we propose a proactive lightpath probing
paradigm: optical probing signals are sent along a set of lightpaths in the network,
and network state (i.e., failure pattern) is then inferred from testing results of this set
of end-to-end lightpath measurements. Moreover, we assume that a subset of network
nodes (up to all the nodes) is equipped with diagnostic agents - including both trans-
mitters/receivers for probe transmission/detection and software processes for probe
management to perform fault detection and localization. The design objectives of
this proposed proactive probing paradigm are two folded: i) to minimize the number
of lightpath probes to keep the diagnostic operational effort low, and ii) to minimize
the number of diagnostic hardware to keep the diagnostic capital expenditure low.

The network fault-diagnosis problem can be mathematically modeled with a group-
testing-over-graphs framework. In particular, the network is abstracted as a graph in
which the failure status of each node/link is modeled with a random variable (e.g.,



Bernoulli distribution). A probe over any path in the graph results in a value, defined
as the probe syndrome, which is a function of all the random variables associated in
that path. A network failure pattern is inferred through a set of probe syndromes re-
sulting from a set of optimally chosen probes. This framework enriches the traditional
group-testing problem by introducing a topological structure, and can be extended
to model many other network-monitoring problems (e.g., packet delay, packet drop
ratio, noise and etc) by choosing appropriate state variables.

Under the group-testing-over-graphs framework with a probabilistic failure model,
we initiate an information-theoretic approach to minimizing the average number of
lightpath probes to identify all possible network failure patterns. Specifically, we have
established an isomorphic mapping between the fault-diagnosis problem in network
management and the source-coding problem in Information Theory. This mapping
suggests that the minimum average number of lightpath probes required is lower
bounded by the information entropy of the network state and efficient source-coding
algorithms (e.g., the run-length code) can be translated into scalable fault-diagnosis
schemes under some additional probe feasibility constraint. Our analytical and nu-
merical investigations yield a guideline for designing scalable fault-diagnosis algo-
rithms: each probe should provide approximately 1-bit of state information, and thus
the total number of probes required is approximately equal to the entropy of the
network state.

To address the hardware cost of diagnosis, we also developed a probabilistic anal-
ysis framework to characterize the trade-off between hardware cost (i.e., the number
of nodes equipped with Tx/Rx pairs) and diagnosis capability (i.e., the probability
of successful failure detection and localization). Our results suggest that, for prac-
tical situations, the hardware cost can be reduced significantly by accepting a small
amount of uncertainty about the failure status.

Thesis Supervisor: Vincent W.S. Chan
Title: Joan and Irwin Jacobs Professor of Electrical Engineering and Computer Sci-
ence, and Aeronautics and Astronautics
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Chapter 1

Fault Management Architecture

Owing to the recent explosion in internet traffic[58, 44, 19], optical fiber, with its

vast transmission bandwidth (-35THz) [50], has emerged as the only realistic trans-

mission medium for backbone networks. Moreover, all-optical networks [25], where

data traverses lightpaths without any optical-to-electrical conversion, will be increas-

ingly prevalent in future broadband networks as a result of its expected lower cost

and full transparency to different signal formats and protocols. However, as in the

case of other networks, all-optical networks are vulnerable to physical failures such

as fiber cuts, switch node failures, optical amplifiers and transceivers breakdowns.

These failures can lead to costly disruptions in communication, and their detection

and localization can constitute a significant fraction of reoccurring network operat-

ing costs. To ensure specified levels of quality of service at an affordable cost, an

efficient network management system - including scalable fault management capabil-

ity - should be in place when all-optical networks are fully deployed in future. In

this thesis, we focus on developing scalable fault management architecture, including

fault-diagnosis algorithms that detect and localize failures in the optical layer and

network survivability designs that provide robustness against network failures, for

all-optical networks.

This chapter highlights a generic framework for fault management in all-optical

networks. We first present a high-level fault-management architecture. Next, we

elaborate on two crucial functions in fault management, i.e., fault diagnosis and



network survivability. Specifically, in the context of fault diagnosis, we will propose

a class of proactive fault-diagnosis schemes and characterize a trade-off between the

diagnosis effort and the diagnosis delay with motivational examples. In the context

of network survivability, we will compare performance of two alternative mechanisms

(i.e., protection switching and lightpath diversity).

1.1 Fault Management System

1.1.1 Fault Management in Network Management Frame-

work

For any network, network management system (NMS) is crucial to ensure efficient

and continuous operations of the network, such that users of the network receive net-

work services with the quality of service that they expect. This objective is achieved

through five management functions provided by the NMS (as specified in [26]): fault

management, configuration management, performance management, security man-

agement and account management. Fault management is responsible for detecting

failures when they happen, identifying the faulty components, and restoring traffic

that may be disrupted due to the failures. Configuration management deals with

the set of functions associated with managing orderly changes in a network, includ-

ing equipment management, connection management and adaptation management.

Performance management deals with monitoring and managing the various param-

eters that measure the performance of the network. Security management covers a

very broad range of security including physically securing the network, as well as

controlling access to the network by the users. Account management is the function

responsible for billing and for developing lifetime histories of the network compo-

nents. By providing these five management functions, network management is also

understood as OAM&P (Operations, Administration, Maintenance and Provisioning)

[59].



Figure 1-1: Network management function map: fault management is the center of
network management. (Adapted from [41])

Among all these five management functions, fault management serves as the hub of

all these functions because the fault detection and localization subsystem (or the fault

surveillance subsystem) provides information for other management functions [41]. In

an optical network, the fault surveillance subsystem is responsible for monitoring the

operation condition of each component, detecting the loss-of-light condition for fiber

links, reporting these fault conditions to the fault management module. Network

state information, acquired through the fault surveillance subsystem, is also forwarded

via the fault management module to the configuration management module and the

performance management module (as illustrated in Fig. 1-1). These modules then

analyze the acquired fault conditions and use that information to update the network

database that contains entries of each component in the network.



1.1.2 Fault Management Architecture

In this subsection, we present a generic system architecture for fault management in

future all-optical networks.

To deal with failures in any network, fault management is normally expected to

include the following five functionalities [59]:

1. Fault detection, which detects faults as quickly as possible, preferably before or

at about the same time as users would notice it.

2. Fault localization, which identifies where the problem has occurred.

3. Service restoration, which reroutes the disrupted lightpaths to protecting light-

paths.

4. Identification of problem's root cause, which traces back the root cause of the

problem.

5. Problem solution, which issues a trouble ticket1 for the problem and initiates a

process to fix the problem automatically or manually.

In Fig. 1-2, we illustrate a system architecture that provides the aforementioned

five functionalities for fault management in all-optical networks. It normally includes

three modules: a network element (NE) module, a data communication network

(DCN) module and a network management system (NMS) module. In some cases,

when network elements from multiple vendors are deployed, a tier of element man-

agement systems (EMS) are inserted between the network element modules and the

network management system module, with the objective to provide a universal inter-

face to the network management system.

Each network element module can be decoupled into two components: a hardware

element under surveillance and a software agent to conduct specified management

functions. In particular, the software agent is responsible for acquiring network state
1A trouble ticket is a notification to network engineers about information regarding to network

problems.
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Figure 1-2: Network management system architecture: a network element module and
a network management module are interconnected by a data communication network
module.
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Figure 1-3: The work flow of the network management system: it takes input via the
data communication network and makes NOC decisions.

information from the hardware element and pre-processing it before forwarding it to

the network management system via the data communication network.

The data communication network connects the set of network element modules,

the network management system module, and the set of element management modules

if possible. For today's optical networks, it has been implemented in several ways [50]:

1. through a separate out-of-band network outside the optical layer;

2. through the optical supervisory channel (OSC) on a separate wavelength;

3. through the rate-preserving or digital wapper in-band optical channel layer over-

head techniques.

The network management system, which usually resides in a centralized network

operation center (NOC), is the brain of all the network management functions. Its

work flow for fault management is illustrated in Fig. 1-3. Network state information,

obtained through the data communication network from network element modules, is

first fed into an event correlation engine. The event correlation engine then employs

different techniques (to be explained later) to localize faults in networks and identify

the root causes of those problems. The output of the event correlation engine is

finally used to make network operating center decisions, such as network maintenance

schedules that fix network problems, or service restoration decisions that dynamically

re-route disrupted network traffics to other protecting lightpaths.



The event correlation engine employs different event correlation techniques for

(i)detecting and filtering of events, (ii) correlating observed events to isolate and

localize the fault either topologically or functionally, and (iii) identifying the cause

of problems. Roughly speaking, existing correlation techniques can be classified into

the following six categories[40]:

Rule-Based Reasoning This technique contains three components: a working mem-

ory, an inference engine and a knowledge base. The knowledge base contains

knowledge as to (1) definition of a problem in the network and (2) action that

needs to be taken if a particular condition occurs. The knowledge base is rule-

based in the form of if-then or condition-action, containing rules that indicate

which operations are to be performed when. The working memory contains the

topological and state information of the network being managed, and recognizes

when the network goes into a faulty state. The inference engine, in coopera-

tion with the knowledge base, compares the current state with the left side of

the rule-base and finds the closest match to output the right side of rule. The

knowledge base then executes an action on the working memory.

Model-Based Reasoning This technique refers to an inference method based on a

model of the physical world. In particular, an object-oriented software model

is created for each managed network elements, and the relationship between

network element objects is reflected in a similar relationship between models.

The interaction between the physical network and the software model gives the

opportunity to identify problems in the physical network.

Case-Based Reasoning This technique is similar to the rule-based reasoning, with

the exception that the unit of knowledge is case (i.e., previously solved problem).

The intuition of case-based reasoning is that situations repeat themselves in the

real world and that what was done in one situation is applicable to others in

a similar, but not necessarily identical, situation. It consists of four modules:

input, retrieve, adapt and process, along with a case library. This approach

uses knowledge, which is gained previously and stored in the case library, and



extend it to the current situation.If the current situation, as received by the

input module, matches one in the case library (as identified by the retrieved

module), it is applied. If it does not, the closest situation is chosen by the adapt

module and adapted to the current situation to solve the problem. The process

module take the appropriate actions. Once the problem has been resolved, the

newly adapted case is added to the library.

Codebook Correlation Model In this approach, problem events are viewed as

messages generated by a system and encoded in set of alarms that they cause.

The function of the correlator is to decode those messages to identify the prob-

lem. It follows that the coding technique has two phases. In the first phase,

called the codebook selection phase, problems to be monitored are identified

and the symptoms or alarms that each of them generates are associated with

the problem. This phase results in a problem-symptom matrix. In the second

phase, the correlator compares the streams of alarm events with the codebook

and identifies the problem.

State transition graph model In this approach, a state transition graph is created

to correlate events in a network. An action or a response from some previous

action would change the state. If there is a problem in the system, we will arrive

at a node in the graph that indicates a failure.

Finite state machine model It is a passive testing system based on the assump-

tion that an observe agent is present in each node and reports abnormality to

a central point. A failure in a node or a link is indicated by the state machine

associated with the component entering an illegal state. A similarity between

the finite state machine model and the state transition model is the state transi-

tions. The main difference between them is that the former is a passive system

and the latter is an active system.

As it will be explained later, the proactive fault diagnosis scheme developed in

this thesis has properties of the codebook correlation model and the state transition



Figure 1-4: A simple view of the fault management system for optical networks
includes two crucial functions to deal with network failures: fault diagnosis and net-
work survivability. Fault diagnosis is responsible for acquiring network failure state
information, and network survivability is responsible for maintaining the quality of
network services with/without network failure state information.

graph model. Indeed, it can be considered as the state transition graph model with

an online codebook generation process.

1.1.3 A Simple View: Fault Diagnosis and Network Surviv-

ability

Intuitively, when network failures happen, two tasks need to be performed in order to

maintain the quality of service. The first task is to identify the failures. The second

task is to design transport schemes that are robust, even without network failure

information. Therefore, in this thesis, we take a simple view of the fault management

system, focusing on two crucial functions to deal with network failures: fault diagnosis

and network survivability, as illustrated in Fig. 1-4.

The failure diagnosis module is responsible for detecting and localizing network

failures. In addition, fault diagnosis schemes should be designed with low overhead,

short delay, and/or high accuracy. However, simultaneously optimizing these metrics

generally is not possible, and thus trade-offs among them should be struck. In Section

1.2, we illustrate one trade-off between the diagnostic effort and the diagnostic delay,

with some motivational example.

The network survivability module is responsible for maintaining the required qual-

ity of service, via service restoration or other mechanisms, in the event of network



failures in all-optical networks. Survivability mechanisms could be either re-active

(i.e., acting upon network failure state information) or passive (i.e., acting without

network failure state information). Design alternatives will be presented in Section

1.3.

1.2 Scalable Fault Diagnosis Architecture

All-optical networks promise significant cost benefits, mainly due to optical switching

of high data-rate lightpaths at intermediate network nodes, thereby reducing elec-

tronic processing costs. However, the absence of electronic processing capability at

intermediate nodes results in challenges to fault detection and localization, which

previously relies on the electronic processing capability at intermediate nodes(e.g.,

parity check bits in SONET/G.709 networks). It follows that, for all-optical net-

works, either optical signal is tapped out at each intermediate node for parity check

or new mechanisms are needed to diagnose link/node failures. If tapping out signals

were to be done, a lot of cost benefit of all-optical networks would be negated. In this

thesis, we seek to develop scalable fault-diagnosis schemes for all-optical networks, by

exploiting the unique property that optical signals are carried over lightpaths without

being detected at intermediate nodes.

1.2.1 Two Alternative Fault Diagnosis Paradigms: Passive

Monitoring vs. Proactive Probing

A fault-diagnosis system can be decoupled into three cascaded modules: (1) a network

state information acquisition module, (2) a network state information transportation

module and (3) a network state information processing module, as illustrated in Fig.

1-5. Each module provides its specific functionality for fault diagnosis. The network

state information acquisition module is responsible for collecting information about

internal network states, such as, optical power level, noise level, and etc, in the optical

layer. The network state information transportation module transfers the network



Figure 1-5: Fault diagnosis architecture. The fault-diagnosis system can be decoupled
into three cascaded modules: network state information acquisition module, network
state information transportation module and network state information processing
module.

state information obtained at the acquisition module to the network state information

processing module, which could be located at some centralized agent or a group of

distributed agents. The network state processing module is responsible for analyzing

the collected network state information to detect and localize possible failures.

The relationship among these three modules are illustrated in Fig. 1-5. In addi-

tion to the information flow from the acquisition module to the processing module

via the transportation module, the feedback control from the processing module to

the acquisition module provides an additional dimension to design a scalable fault

surveillance system, which is one of the key sub-systems in a network management

system [41].

Based on how network state information is acquired in the network state acquisi-

tion module, fault-diagnosis schemes can be classified roughly into two categories: a

passive monitoring diagnosis paradigm and a proactive probing diagnosis paradigm2 ,

as illustrated in 1-6. In the passive-monitoring diagnosis paradigm (see Fig. 1-6(a)),

network state information is acquired via passively monitoring existing traffics. In the

proactive-probing diagnosis paradigm (see Fig. 1-6(b)), networks state information

is acquired via proactively measuring optical probing signals.
2 A third category might exist to combine both approaches by acquiring network state information

through passively monitoring network traffics and proactively sending probing signals.



(a) Passive Monitoring Diagnosis (b) Proactive Probing Diagnosis

Figure 1-6: Two alternative fault diagnosis paradigms based on the information acqui-
sition mechanisms: a passive monitoring diagnosis paradigm vs. a proactive probing
diagnosis paradigm. In the passive monitoring diagnosis paradigm, network state
information is acquired through monitoring the existing traffics. In the proactive
probing diagnosis paradigm, network state information is acquired through measure-
ments of optical probing signals.



In current systems, the passive-monitoring fault-diagnosis paradigm has been de-

ployed in SONET/G.709 networks, where network failures are identified by verifying

the parity bits embedded in the overhead of data frames [50]. This approach is

illustrated in Fig. 1-6(a). The passive monitoring module generates the events -

alarms, warnings, parameters of network elements - as inputs to the fault-diagnosis

engine. Using various inference algorithms or event-correlation techniques mentioned

in Section 1.1.2 (e.g., neural networks [51] and Finite-state Machines [3]), the fault-

diagnosis engine identifies a set of network elements whose failures may have caused

the input events. Similar approach has also been proposed in [32] to diagnose net-

work failures from network coding overhead bits3 Because the monitoring module is

decoupled from the fault-diagnosis engine, network architect can follow a "divide-

and-conquer" approach in designing different modules separately, and thus reducing

design complexity. In addition, the diagnosis scheme can leverage existing traffic,

without incurring additional diagnosis traffic. However, the absence of feedback from

the diagnosis engine to the monitoring module could entail tremendous inefficiency in

fault-diagnosis process. For example, one single failure could trigger a large number

of redundant alarms, all of which are fed into the fault-diagnosis engine. Combined

with the network growth and faster switching speed, the redundancy in the input

events could generate a large amount of management information. It can consume

a fair amount of network source to transfer and store this large amount of manage-

ment information, and thus limits its scalability in future all-optical networks. To

make matters worse, because all measurements are piggybacked onto real traffic, the

state information of infrequently used links might be obsolete when they are accessed.

This could cause serious problems in some real-time applications with critical time

deadlines [55], especially for dynamic all-optical networks.

Motivated by these shortcomings of the passive monitoring diagnosis paradigm,

we focus in this thesis on proactive probing diagnosis schemes where optical probing

signals are sent along a set of lightpaths and network failures are inferred through

3In network coding schemes, the coefficients used at intermediate nodes to linearly combine all
the inputs are sent along the data to the destination. The destination can thus infer internal network
states (e.g., link failures) by looking into the set of missing coefficients.



probing results of this set of lightpaths. The result of a lightpath probe is defined as

the probe syndrome, indicating whether the probed lightpath is healthy or not. In

this thesis, we adopt the following notations for probe syndromes: F for failure, S for

success. One design objective is to minimize the number of lightpath probes, so as to

reduce the diagnosis effort4 . The proactive probing diagnosis paradigm is illustrated

in Fig. 1-6(b), where the feedback from the fault-diagnosis engine to the proactive

probing module (i.e., the event generator) provides the flexibility to design scalable

proactive fault-diagnosis schemes that reduce the diagnostic effort and the diagnostic

hardware cost.

The unique property of all-optical networks suggests that the proactive fault-

diagnosis paradigm should be the natural choice for fault detection and localization

in all-optical networks. In all-optical networks, optical signals traverse a lightpath

without being detected and regenerated by intermediate nodes. This property permits

lightpath probes to test the health of several links/nodes simultaneously, which can

be used to reduce the diagnosis effort. To exploit such an opportunity, we focus

on proactive probing diagnosis schemes in this thesis, with the objective to develop

scalable proactive fault diagnosis schemes for dynamic all-optical networks.

Mathematically, the fault-diagnosis problem with the proactive probing diagnosis

paradigm can be cast as a problem of group testing over graphs. As illustrated in

Fig. 1-7, the network is abstracted as a graph in which the failure status of each

node/link is modeled with a Bernoulli random variable. Probing signals are sent

along a set of lightpaths and their measurements, defined as probe syndromes, are

used to infer network state of health. This framework can be extended to model many

other network-diagnosis applications by choosing appropriate state variables.



Figure 1-7: Group testing over graphs: the states of nodes and links are modeled by
random variables (or random processes), and the outputs of probes are functions of
node/link states covered by paths (or subgraphs).



Node Architecture

Figure 1-8: Proposed node architecture for proactive fault diagnosis schemes: Trans-
mitter/Receiver pair for probe transmission and detection, software agent for probe
syndrome processing.
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1.2.2 Proposed Node Architecture for Proactive Fault Diag-

nosis Schemes

Under the proactive fault-diagnosis paradigm, some network nodes should have the

capability to transmit and receive optical probing signals, and report probe syn-

dromes. For this purpose, we propose a node architecture with diagnosis capability,

as illustrated inside the dotted box of Fig. 1-8. In particular, the fault-diagnosis

function is implemented via a pair of transmitter/receiver (Tx/Rx) at the data plane

and a software agent at the control/management plane. The Tx/Rx pair at the data

plane is responsible for transmitting optical probing signals along lightpaths and de-

tecting probing signals in the optical layer. In general, transmitters and receivers

do not have to pair up at the same node all the time. The coexistence of transmit-

ters and receivers simplifies the fault management system architecture by having a

uniform node architecture. The software agent at the control/management plane is

responsible for probe management, including processing the detected probe signals

to determine the message reported to the network management system and initiating

probing signals according to probe signaling messages from the network management

system.

In this thesis, we assume that dedicated Tx/Rx pairs are provisioned for fault

diagnosis. An alternative assumption is to use idle transmitters and receivers in the

network to send and detect optical probing signals, but there is a possibility that no

such idle Tx/Rx pair is available. An implication of using dedicated Tx/Rx pairs for

fault diagnosis that it incurs additional capital expenditure. It follows that another

design objective of scalable fault diagnosis schemes is to minimize the number of

Tx/Rx pairs for fault diagnosis, so as to minimize the diagnostic hardware cost5 .
4This design objective will be addressed in Chapter 2 and 3.
5This design objective will be addressed in Chapter 4.



1.2.3 Proactive Fault Diagnosis Schemes: Adaptive, Non-

Adaptive and Multi-Step

Based on how probes are scheduled in proactive fault-diagnosis schemes, proactive

fault-diagnosis schemes can be classified into three different categories:

Adaptive Diagnosis Scheme In an adaptive fault diagnosis scheme, individual op-

tical probing signals are sent sequentially along a set of lightpaths over an all-

optical network to probe its state of health. The network state (i.e., the failure

pattern) is then inferred from the results of this set of end-to-end lightpath

measurements (i.e., probe syndromes). Moreover, each successive probe is dy-

namically chosen among a set of permissible lightpath probes according to the

set of previous probe syndromes, with the objective of minimizing the number

of lightpath probes.

Non-adaptive Diagnosis Scheme In a non-adaptive fault diagnosis scheme, mul-

tiple optical probing signals are sent along a set of pre-determined lightpaths in

parallel. The network state is then inferred from the set of probing syndromes.

A brute-force non-adaptive diagnosis scheme is to test each individual link in

the network for all possible link failures and the number of lightpath probes is

equal to the number of links in the network.

Multi-step Diagnosis Scheme Multi-step diagnosis schemes carry the properties

of both adaptive and non-adaptive diagnosis schemes. In multi-step fault di-

agnosis schemes, lightpath probes are scheduled in multiple sequential steps as

in adaptive fault diagnosis schemes; at each step, multiple lightpath probes are

sent in parallel as in non-adaptive diagnosis schemes.

As an example, we illustrate these three proactive fault diagnosis schemes in Fig.

1-9. For a linear network of 4 links, we assume that, if any failure happens, one and

only one link failure occurs'. The adaptive diagnosis scheme is illustrated in Fig. 1-9
6Practically, one would not be able to make such a failure model assumption, because the upper

bound on the number of failures is normally unknown. Here we assume that there a genie exists to
tell the number of link failures if they occur.
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(c) 2-Stage Diagnosis

F S

S

3 probes, 2 steps

Figure 1-9: Illustrations of different proactive fault diagnosis schemes: (a) adaptive
diagnosis, (b) non-adaptive diagnosis, and (c) multi (2)-step diagnosis. The number
of lightpath probes can be considered as the diagnostic effort, and the number of
steps can be considered as the diagnostic delay.

(a). In the first step, a probe of length 4 is sent and resulting in a probe syndrome

of F (a failure). It suggests that some edge has failed. In the second step, a probe of

length 2 is sent and resulting in a probe syndrome of F. The same process continues in

the 3rd step and resulting in a probe syndrome of S (a successful transmission). This

suggests that the second link has failed. The non-adaptive fault diagnosis scheme

is illustrated in Fig. 1-9 (b). In this case, 3 probes are sent in parallel to uniquely

identify the failure on the second link. Fig. 1-9 (c) illustrates a special case of multi-

step diagnosis scheme (i.e., a 2-step diagnosis scheme). In this case, 3 probes are sent

in two steps, where the first step has 2 probes and the second step has 1 probe.

As shown in this example, we are interested in two design metrics : i) the (average)

number of lightpath probes, denoted as L,, and ii) the (average) number of steps,

denoted as TI. Each diagnosis scheme is thus characterized by a tuple (£p, Tp). In

fact, there is a trade-off between two design metrics, as explained in next subsection.

... -.
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1.2.4 Trade-Off between Diagnostic Effort and Diagnostic

Delay

For the proactive fault diagnosis paradigm, we are interested in two performance

metrics : the diagnostic effort and the diagnostic delay. Both follow the design

objectives of fault diagnosis schemes: (1) to make fault diagnosis schemes scalable

and (2) to identify network failures as quickly as possible. In this subsection, both

performance metrics are translated into practical design parameters, as follows.

The diagnostic effort refers to the amount of work expended in scheduling, trans-

mitting and detecting optical probing signals and reporting probe syndromes. It is

recurring, and is in proportion to the average number of lightpath probes, denoted

as £p. It follows that, to make fault-diagnosis schemes scalable, we would like to

minimize the average number of lightpath probes. In this thesis, Chapter 2 and 3 are

dedicated to developing efficient fault diagnosis schemes that minimize the (average)

number of lightpath probes.

The diagnostic delay can be interpreted as the average number of steps required

to identify the network state, for different fault diagnosis schemes. For each probe,

the delay could include three components: optical transmission delay, data commu-

nication network transmission delay, processing & scheduling delay. It can be shown

that, in current optical networks, the probe delay is normally on the order of the data

communication network transmission delay. Currently, the data communication net-

work (e.g., a TCP/IP network) is normally carried over bandwidth-limited pipelines,

such as a T1 line with a data rate of 1.544 Mbps. If each probe control message is

carried over one IP packet with an average length of 500 bytes and standard deviation

of 500 bytes7, the data communication network transmission delay would be around

5ms with a standard deviation of 5ms. This is on the same order of the USA's coast-

to-coast transmission delay (- 10ms). It follows that, to a first order, the number of
7According to http://www.caida.org, the average length of an IP packet is around 500 bytes,

with a standard deviation of 500 bytes. Here, we assume that the control message in the data
communication network follows the same statistics.



Figure 1-10: A line network of h edge. For illustration purpose, we assume that the
number of simultaneous link failures is upper bounded by one.

diagnostic steps, denoted as TI, can be considered as a indicator of the fault diagnosis

delay.

For proactive fault diagnosis schemes, we would like to minimize both the diag-

nostic effort (i.e., the average number of lightpath probes) and the diagnostic delay

(i.e., the average number of diagnostic steps). However, these two objectives compete

with each other. In one extreme, we can use as much resource as possible to diag-

nose failures and the delay could be just one step. For example, one can probe each

individual link in the network in parallel to identify all possible link failures within

one step, only to use the largest number of probes and the most Tx/Rx pairs. In

the other extreme, one could use as little resource as possible and the delay would be

longer. Intuitively, there is a trade-off between the diagnosis effort and the diagnosis

delay. It is one of our objectives in this thesis to characterize this trade-off, and design

optimal or near-optimal fault-diagnosis schemes.

In the following, we present a motivational example to highlight the trade-off

between the diagnostic effort and the diagnosis delay, by comparing three alternative

fault diagnosis schemes - adaptive, non-adaptive and 2-step fault diagnosis.

Example 1.1. Given a linear network of h undirected edges, as shown in Fig. 1-

10, it is assumed that there is one and only one failure if any failure has occured".
8 This assumption is contrived in that the number of simultaneous link failures is normally un-

known. Moreover, our results on non-adaptive fault-diagnosis schemes depend on the fact that
the fault-diagnosis scheme knows the upper bound on the number of simultaneous link failures.
Nevertheless, the results obtained under this strong assumption provide some insights into more
generalized cases where the number of link failures is unknown.



Table 1.1: Diagnostic Effort and Delay Comparison

Adaptive 2-Step Non-Adaptive

Effort: L, log2h h 2h I
Delay: Tp log2h 2 1

We would like to identify the faulty edge if there is one, via different proactive fault

diagnosis schemes. The design objective is to minimize the number of lightpath probes

for a given class of fault-diagnosis schemes (i.e., adaptive, non-adaptive and 2-step

diagnosis schemes).

For different fault diagnosis schemes (i.e., adaptive, non-adaptive and 2-step di-

agnosis), we compare their diagnostic effort and diagnostic delay in Table 1.1. The

optimal adaptive fault diagnosis scheme needs approximately log2h probes on aver-

age, the optimal 2-step fault diagnosis scheme needs approximately vf- probes on

average9, and the optimal non-adaptive fault diagnosis scheme requires h/2 probes.

The diagnosis delay is indicated by the average number of probe steps in the fault

diagnosis scheme, i.e., log2h for adaptive diagnosis, 2 for 2-step diagnosis and 1 for

non-adaptive diagnosis.

Notice that, as the diagnosis delay (equivalently, the average number of diagnosis

steps) increases, the minimum diagnostic effort (i.e., the average number of lightpath

probes) decreases. Specifically, as the number of diagnostic steps increases from 1 (for

non-adaptive diagnosis) to 2 (for 2-step diagnosis) to log2 h (for adaptive diagnosis),

the average number of lightpath probes decreases from h/2 (for non-adaptive diagnosis)

to v/2- for 2-step diagnosis) to log2 h. This trend is shown in Fig. 1-11, as the

diagnostic effort-delay curve is plotted for the case of h = 16.

This example suggests that a trade-off exists between the diagnosis effort and

the diagnosis delay. In particular, the minimum diagnosis effort decreases as the

diagnosis delay increases. This trade-off permits network architect to design specific

9If the length of probes in the first step is x, the total number of probes required is £(x) = 1 + l,
where the first term of x/2 comes from the number of probes in the second step and the second
term of h/x comes from the number of probes in the first step. £(x) is minimized to be Vf2 when
X v/-2.
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fault diagnosis schemes for different applications. This example also motivates us to

investigate the fault-diagnosis scheme for future dynamic all-optical networks with

the objective of understanding the diagnostic effort-delay trade-off.

Theoretical research on scalable fault-diagnosis schemes should be complemented

with additional research on some practical issues. One practical issue is where to

place network nodes with diagnostic Tx/Rx pairs in the network. In Chapter 4, we

look at this problem in an alternative setting. In particular, given a partial set of

evenly-distributed network nodes equipped with diagnostic Tx/Rx pairsio, we would

like to maximize the probability of successful diagnosis. Another practical issue on

scalable fault-diagnosis schemes is how to work around existing traffic in the network.

In Chapter 5, we follow a "divide-and-conquer" strategy to develop fault-diagnosis

schemes for different classes of lightpaths: i) lightpaths for existing traffic, ii) pre-

computed lightpaths and iii) lightpaths computed online. One particular challenge

here is that certain lightpath probes might not be feasible because existing traffic

dictates how optical switches should be configured. In this case, we would infer and

estimate internal network states through historical data and/or device failure models.

1.3 Network Survivability Architecture: Automatic

Protection Switching vs. Lightpath Diversity

As illustrated in Fig. 1-4, network survivability, i.e., the capability to provide contin-

uous network service through robust transport schemes in the presence of failures, is

a critical function that all networks should provide. If these networks carry commer-

cial, military and scientific traffic in super-high data rate, the interruption of network

services for even a short period of time might have disastrous consequences [76].

For example, in the commercial Internet Service Provider (ISP) business, a car-

rier normally commits to providing a certain availability for the connection as part

10Such a policy might not be an optimal deployment of diagnostic Tx/Rx pairs in the network.
However, for all-optical networks with symmetric graphs, we believe that the evenly-distributed
policy should be close to the optimum.



of the service-level agreement between the carrier and its customer leasing a connec-

tion [50]. A common requirement is that the connection should be available 99.999%

(five 9's )of the time. This requirement corresponds to a connection downtime of less

than 5 minutes per year. The only practical way of obtaining 99.999% availability

is to make the network survivable, that is, being able to continue providing service

in the presence of failures. Therefore, network architect should design efficient net-

work survivability schemes to guarantee network service as specified by any bilateral

agreement or standard specification.

Survivability designs for all-optical networks are subjected to different require-

ments, for example, different restoration time requirements. In future all-optical

networks, the lightpath demands can be classified into different restoration classes

based on their different restoration time requirements [55]. It follows that the time

delay is an important design metric for network survivability architecture.

Different restoration requirements dictate how network survivability should be de-

signed. In particular, to meet the heterogenous requirements for different restoration

applications, one cannot expect one single survivability scheme fit all, but to develop

different survivability schemes for different situations. In this chapter, we focus on two

classes of network survivability schemes: the automatic protection switching (APS)

scheme, and the lightpath diversity (LD) scheme. Both schemes are illustrated in

Fig. 1-12 and will be explained in next two subsections.

1.3.1 Automatic Protection Switching (APS)

Currently, the prevailing approach for network survivability is the automatic pro-

tection switching scheme, as implemented commercially in SONET/G.709 networks.

In this scheme, as illustrated in Fig. 1-12(a), each primary working lightpath is

protected by another secondary protecting lightpath. If the source-destination com-

munication session over the working lightpath is interrupted by a failure, the failure

is first detected and the communication is restored along the protecting lightpath.

Depending on the assignment of protection resources, the automatic protection

switching scheme has three main architectures: 1+1, 1:1 and 1:N. In the 1+1 auto-
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(c) I:N APS

Figure 1-13: Three alternative automatic protection switching architectures: (a) 1+1,
(b) 1:1 and (c) 1:N.



matic protection switching scheme, as illustrated in Fig. 1-13(a), traffic is transmitted

simultaneously over two separate links (usually over disjoint routes) from the source

to the destination. The destination simply selects one of the two links (each of which

has its own receiver) for reception. If that link is cut, the destination simply switches

over to the other link and continues to receive data. In the 1:1 automatic protection

switching, shown in Fig. 1-13(b), there are still two fibers from the source to the

destination. However, traffic is transmitted over only one fiber at a time, i.e., the

working fiber. If that fiber is cut, the source and the destination both switch over to

the other protection fiber. Under normal conditions, the protecting lightpath is either

idle or used to carry low-priority traffic. In the 1:N automatic protection switching

scheme, N working lightpaths share a single protecting lightpath. It operates similar

to the 1:1 automatic protection switching scheme, except that the protecting capac-

ity is shared among all the primary lightpaths and at any time only one primary

lightpath can be protected.

One advantage of the automatic protection switching scheme is that its loss of

bandwidth efficiency is limited. In fact, its bandwidth efficiency, defined as the ratio

between the data bandwidth and the provisioned bandwidth, is lower bounded by .

With the 1:N automatic protection switching, the bandwidth efficiency is N , which

is close to 1 when N is large. Therefore, the loss of bandwidth efficiency is bounded.

However, this protection-switching mechanism can induce a rather long delay (~50-

ms restoration time, the SONET standard [34]). Thus this scheme is inappropriate for

some unique applications. For example, considering the service with super high data

rate (>10Gbps), a short-time interruption can result in a large amount of data loss.

In other critical applications (e.g. when the network is used for transporting control

signals between the cockpit and control surfaces in an aircraft), the time-deadline of

control-message delivery needs to be shorter than 1-ms and probably ten times faster

in failure detection. This is faster than the speed at which most optical components

can switch and protection-switching protocol can be executed.



1.3.2 Lightpath Diversity

For these applications with stringent restoration requirements, one could increase

the speed of failure detection and lightpath switching to meet increasing data rates

and critical time deadlines. However, such a brute-force approach complicates the

system design and would include additional network cost. Instead, as illustrated

in Fig. 1-12(b), the lightpath diversity scheme, which sends the same data through

multiple lightpaths in different Shared-risk link groups [16], is a better alternative that

can be implemented with current technologies. Chan and Parikh have explored this

mechanism in [13, 45]. In that work they looked at a joint Data Link Control Layer

and Transport Layer reliable message delivery scheme and have found significant

merit for using path diversity efficiently via error correction coding techniques. In

this thesis, we extend their work to a Physical Layer lightpath diversity mechanism,

using an optimum signaling and detection scheme to optimize system performance

and provide reliable end-to-end data delivery in the presence of failures (e.g., fiber

cuts and node hardware failures).

The advantages of the lightpath diversity scheme are at least two-fold. First,

because the entire mechanism is implemented at the Physical Layer, it provides a

much faster response to failures than protocols that provide end-to-end reliability at

higher layers, especially those that need feedback, such as the Transmission Control

Protocol (TCP) at the Transport Layer. Second, it can be shown that the symbol

error probability of multiple-lightpath transmission is significantly lower than that of

single-lightpath transmission in medium and high signal-to-noise ratio regimes. In

particular, for a source-destination pair connected by M lightpaths, the symbol error

probability in the high signal-to-noise ratio regime is asymptotically equal to =1- fi
(fi is the failure probability of the lightpath.) This sets the asymptotic reliability limit

of the multiple-lightpath transmission scheme. By choosing the number of lightpaths

used, this limit can be made arbitrarily small compared to the asymptotic symbol

error probability of using only a single lightpath between a source-destination pair.



Compared to the single lightpath transmission, one major disadvantage of the

lightpath diversity scheme is that the same message is sent repeatedly through a

group of disjointed lightpaths and thus degrades the throughput per channel use by a

factor of M for an M-connected source-destination pair. This suggests that the band-

width efficiency is -, which approaches zero as the number of lightpaths increases.

However, in order to achieve ultra-reliable communication with low delay, for exam-

ple, in an aircraft control network, we choose to sacrifice some bandwidth efficiency

for reliability in a bandwidth-rich environment (e.g., optical fiber). In fact, multiple

connections between any source-destination pair are necessary for reliable networks

[64], and both parallel signaling and sequential signaling over multiple connections

can realize high reliability. The lightpath diversity scheme satisfies this necessary

condition by splitting each channel symbol and sending the fragments simultaneously

through M disjointed lightpaths.

In Chapter 6, we will investigate the proposed lightpath diversity scheme from

both a theoretical and an engineering perspective.

From the theoretical perspective, we characterize and optimize the error perfor-

mance of the lightpath diversity system. First, we show that the bit error rate of the

lightpath diversity schemes takes contributions from two sources: noise and failure.

To reduce the noise effect, we would like to increase the signal-to-noise ratio per light-

path. To reduce the lightpath failure effect, we would like to use more lightpaths.

Specifically, the bit error rate is given by

PBGA = {f + (1 - f) exp[-N,,(v/-+ 1 - 1)2]}M, (1.1)

where f is the lightpath failure probability, M is the number of lightpaths, N, is the

average number of noise photons received per bit, and Q is the signal-to-noise ratio

per lightpath. However, for a given amount of optical energy (per bit), the product of

the signal-to-noise ratio per lightpath and the number of lightpaths is a constant,i.e.,

Mx Q= Ns (1.2)



Number of Lightpaths, M

Figure 1-14: For a given amount of optical energy per bit, there is a trade-off between
the SNR per lightpath and the number of lightpaths.
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where N, is the average number of signal photons per bit. Therefore, there is a trade-

off between the number of the lightpaths used the signal-to-noise ratio per lightpath,

for a given amount of optical energy (per bit), as illustrated in Fig. . At We then

seek to balance this trade-off and derive an optimal operating point for the lightpath-

diversity scheme.

From the engineering perspective, we develop a class of structured receivers and

evaluate their error performance. First, we show a separation between the estimation

function (responsible for estimating the lightpath failure state) and the detection

function (responsible for deciding whether the transmitted bit is ONE or ZERO)in

the optimal realizable receiver architecture. Due to the high complexity in the optimal

receiver, we develop a class of simpler receivers, i.e., the equal-gain-combining receiver

(EGC). Performance comparison indicates that the EGC receiver suffers some power

penalty but provides significant reduction in complexity.



Chapter 2

Adaptive Fault Diagnosis Schemes

This chapter is dedicated to the design of adaptive fault-diagnosis schemes for all-

optical networks. The design objective is to minimize the amount of diagnostic effort

(i.e., the average number of lightpath probes) to identify all possible network failures1 .

2.1 Introduction

All-optical networks [25, 12], where data traverse along lightpaths without any optical-

to-electrical conversion, will be increasingly prevalent in future broadband network

due to its inherent large transmission bandwidth, lower cost, and transparency to

different signal formats and communication protocols. However, similar to other

networks, all-optical networks are also vulnerable to failures [66], such as fiber cuts

and transmitter/receiver breakdowns. Moreover, there are new types of failures that

are unique to all-optical networks - failures related to subtle changes in signal power,

optical signal-to-noise ratio, cross-talk, Kerr effects, or other non-linear effects. These

failures can result in the disruption of communication, and can be difficult to detect,

localize and repair. Hence, when parts of a network are malfunctioning it is critical

to locate and identify these failures as soon as possible. At the same time, the effort

to detect and locate failures must be small to keep the network cost low. In this

'The content in this chapter has been published partially in journal paper [68] and conference
papers [70, 69].



chapter, a family of adaptive fault-diagnosis schemes are proposed to exploit the

unique property of all-optical WDM networks where optical signals are not usually

detected at intermediate nodes along lightpaths (mostly for cost reasons).

According to the scale of their effect, failures in all-optical WDM networks can be

classified into two categories. One type of failures affects individual wavelength, and

is thus called as the wavelength-level failure. Examples of wavelength-level failures

include transmitter/receiver failures in the case of one dedicated transmitter/receiver

per wavelength, optical filter failures and individual channel failures of a frequency

selective switch. The other type of failures affects all the lightpaths on an individual

fiber, and is thus called the fiber-level failure. Examples of fiber-level failures include

fiber cuts and EDFA breakdowns. From a graph theory perspective, one can attribute

both categories to edge failures in a network (graph) topology. In this thesis, the

"ON/OFF edge failure" is modeled as a binary-value function of value 0 if the required

quality of transmission is met and of value 1 otherwise. Besides, all the failures that

do not belong to the same risk group are considered independent. In real life, there

may be failure correlation among risk groups due to physical proximity or accessibility

from the same malicious attack entry point. In those cases the results in this chapter

can still provide very useful upper and lower bounds to the diagnostic effort required

to localize the failures.

Historically, since the fault diagnosis problem [48] was first proposed in 1967,

it has been investigated extensively in electrical networks under a system diagnosis

context [57, 6, 38]. In this context, most current research is focused on a "single

hop" test model, i.e., signals are transmitted between adjacent nodes to determine

whether failure occurs on the edge connecting them. The result of each test can be

represented as one bit of diagnosis information: 1 or 0, corresponding to "failure" or

"no failure". Indeed for SONET networks, each SONET link (single hop) checks the

health of the link using parity checks within the SONET receiving chips2 . However,

in all-optical networks, this 'single-hop test' assumption will usually not be applicable
2We define a diagnosis scheme that tests each individual link in the network as a link-wise

diagnosis scheme.



due to the unique property that optical signals are not typically detected at every

(optically switched) intermediate node along the lightpath. For SONET networks,

the network management system employs mechanisms such as BER measurement,

optical trace and alarm management to perform fault detection and localization at

each regenerator. In particular, these functionalities may be carried over various types

of optical layer overhead [50], including pilot tone, subcarrier-modulated overhead,

optical supervisory channel, rate-preserving overhead and digital wrapper overhead.

To some degree, all these overheads are detected at some intermediate nodes along the

lightpath. This, in fact, breaks the spirit of the transparency paradigm of all-optical

networks and adds to the complexity and cost of future all-optical networks which do

not need signal detection along a lightpath.

Currently, to diagnose failures in future all-optical wavelength-division multiplex-

ing (WDM) networks, researchers typically consider an optical (channel) performance

monitoring solution, where optical performance monitors are employed at a set of net-

work nodes to watch for possible failures and report them to the network management

system [24]. However, little work has been done to quantify the overhead cost and

the amount of diagnostic effort that this monitoring solution might incur. Instead,

most research literatures [74, 52] follow essentially the same design approach as their

electrical counterparts, implicitly assuming that each network node, or even each ac-

tive optical component such as optical amplifiers and OADMs (Optical Add-Drop

Multiplexer), is equipped with a performance monitoring module which is active and

reporting all the time. While this is an acceptable solution in the near-term since

signal detection comes for free at every regeneration point, it is desirable to develop

more efficient and less costly methods when the all-optical network paradigm is fully

implemented and the network size grows significantly. Reduced complexity is good

for the following reasons. First, the total amount of monitored information and sig-

naling grows linearly with the number of network elements (i.e., network nodes and

edges). The huge amount of management information, together with faster switching

speeds in the network, complicates the network management system and stresses the

limited capability of current network processing units. Therefore, a mechanism based



on constant sensing and reporting of numerous individual active monitors3 does not

scale well with the size and tuning agility of future all-optical networks. Second,

since each monitor only tests one component without taking into consideration of its

failure statistics, the diagnostic effort (e.g., the required number of tests per unit time

with the interval between monitoring drawn from QoS specifications including mean

time to failure and failure statistics) of such a mechanism can be prohibitively high,

limiting the efficacy and ultimately ubiquitous deployment of all-optical networks.

In this chapter, more efficient and elegant methods are sought to greatly lower the

diagnostic effort for future all-optical WDM networks. In our proposed scheme, op-

tical signals are sequentially sent along a set of lightpaths over an all-optical network

to probe its state of health. The network state (i.e., failure pattern) is then inferred

from the 'syndromes' of this set of end-to-end measurements. To keep the required

number of probes small, each successive probe is dynamically chosen among the set

of permissible probes according to the results of the previous tests. Under this gener-

alized model, the traditional diagnosis mechanism based on single-hop probes is then

a special case and will be proven to be rather inefficient compared to the proposed

approach. In this chapter, a family of failure identification algorithms are developed

to exploit the unique properties of all-optical networks to reduce the average number

of diagnostic probes.

In all-optical networks, the fact that optical signals can be carried over a light-

path of a number of interconnected edges without necessarily being detected by the

intermediate nodes allows "multi-hop" tests to probe several edges simultaneously.

This technique can be used to greatly reduce the amount of diagnostic effort, as il-

lustrated with the 3-node ring network in Fig. 2-1. In this example, it is assumed

that each edge fails independently with probability of 0.1. If only 'single-hop' tests

are allowed as in Fig. 2-1(b), the total number of tests to identify all edge states is 3

by employing three single-hop tests (A-B, B-A, C-A). Note that the number of tests

required is independent of the edge failure probability and equal to the number of
3How fast updates are needed is correlated with how fast lightpaths are supposed to be set up

initially and be restored if any problem arises.



(a) (b)

Figure 2-1: Comparison between diagnosis paradigms of electrical networks and all-
optical networks: (a)three-node ring network; (b)diagnosis with three single-hope
tests; and (c) diagnosis with one three-hop test and three single-hop tests.

edges in the topology. On the other hand, if multi-hop tests are allowed, one can first

perform a three-hop test (A-B-C-A) as shown in Fig. 2-1(c). With a probability of

(1 - 0.1) 3 = 0.729, all edges are found to be fault-free and the diagnosis is concluded

with only one test. One can resort to the single hop tests only if there is at least one

failure from the result of the first test, which has a probability of 1 - 0.729 = 0.271.

Thus, on the average, it requires only 0.729 x 1 + 0.271 x (1 + 3) = 1.813 tests to fully

diagnose this network. Intuitively, in most cases, the probability that a particular

edge has failed is low when network diagnosis is performed; hence it makes sense to

test several edges together. Here, reducing the average number of tests required for

network diagnosis, which is used in this chapter as a measure of the diagnostic effort,

or efficiency, of the diagnosis process.

This example suggests that the fault-diagnosis problem can be better understood

from an information theoretic prospective. The network state can be viewed as a

collection of binary valued random variables; each associated with an edge in the

network, indicating failure/no failure on that edge. The objective of a fault-diagnosis

algorithm is to use a number of tests, whose results, also called the 'syndromes',

can be used to uniquely identify the network state. To put it simply, we use probes

to dig out all the information hidden in the unknown network state. In the above

example, with the single-hop tests, the result of each test is 'O' (for no failure) with a
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probability of 0.9 and '1' (for failure) with a probability of 0.1. Thus the information

about the network state provided by this test result is the binary entropy function

of Hb(O.1) = 0.469 bits where Hb(x) = -xlog 2x - (1 - x)log2(1 - x). In comparison,

the three-hop test (A-B-C-A) contains Hb(0.271) = 0.843 bits of information. The

information contained in a three-hop test is obviously larger than that of the single-

hop test, indicating that multi-hop tests are more informative than single-hop tests

for this case. As a result, in the second approach, the network state can be identified

by a smaller number of probes, or equivalently, the network state is represented by

the test syndrome in a more efficient way. In other words, this can be viewed as

encoding the network state with probe syndromes. In general, the amount of network

state information provided by a lightpath probe of length h is given by

6(h, p) = -(1 - p)h log2(1 p)h - [1 - (1 - p)h] log 2[1 - (1 _ p)h], (2.1)

where p is the failure probability of each individual link. In Fig. 2-2, we plot the

amount of network state information provided by any probe as a function of the

length of the probe. This figure can be used to determine the efficiency of a probe

in a general network. More importantly, this case study suggests that the design of

efficient fault diagnosis algorithm is similar to the well-studied source-coding problem,

whose goal is to use the minimum average number of bits to represent the source,

which is also a collection of random variables. Intuitively, we would like to maximize

the amount of network state information provided by each probe, so as to minimize

the number of lightpath probes required.

By applying the above approach under a probabilistic failure model where each

edge is assumed to fail independently with a prior failure probability, the follow-

ing main results have been obtained. First, for all-optical networks with Eulerian

topologies4 under a probabilistic link failure model, we show that the fault-diagnosis

problem in Network Management is mathematically equivalent to the source-coding

problem in Information Theory. The isomorphic mapping suggests an entropy lower
4A Eulerian graph contains a path that passes through all the edges without repetition.



bound on the minimum average number of probes required and an information the-

oretic approach to translating efficient source coding algorithms into efficient fault

diagnosis algorithms under the constraint that any lightpath probe can only traverse

along a path in the graph'. In addition, a family of novel near-optimal polynomial

time algorithms, i.e., the run-length probing schemes, have been developed based on

run-length codes[27]. Analytical results reveal that its performance (i.e., the average

number of lightpath probes required) is always within 5% more than the entropy

lower bound and asymptotically approaches the entropy bound as the network be-

comes more reliable. Second, the run-length probing scheme has been extended to

general non-Eulerian networks via two alternative mechanisms: (1)the disjoint-trail

decomposition approach and (2) the path-augmentation approach. Finally, fault di-

agnosis for practical all-optical networks with both node and link failures has been

investigated. To diagnose probabilistic node/link failures, a network transformation

has been introduced to convert the original undirected graph into a directed graph:

each link in the original graph is replaced by two parallel directed arcs in opposite di-

rections, and each node of degree d is replaced by a d x d directed complete bi-partite

graph [10], where any node in the left column is connected to any node in the right col-

umn via a directed arc. Under this transformation, both link and node failures in the

undirected graph are mapped into are failures in the directed graph. Depending on

the relative dominance between link failure probability and node failure probability,

different probing strategies are obtained through analytical and numerical investiga-

tions. Most importantly, analytical and numerical investigation reveals a guideline

for efficient probing schemes: each probe should be designed to provide ap-

proximately 1-bit of information on the network state and the number

of probes required is approximately equal to the information entropy of

the network states. Hence the complexity of optical network fault management is

fundamentally related to the information entropy of the network state.
5This constraint is called the probe feasibility constraint in this thesis.



2.2 Adaptive Fault Diagnosis Problem

2.2.1 Probabilistic Failure Model

In this chapter, all-optical networks are abstracted as undirected graphs. An undi-

rected graph G is an ordered pair of sets (V, E), where V is the set of nodes of size

n, and E is the set of edges of size m. In this chapter, we would like to first focus on

Eulerian network topologies that have at least one Euler trail [10], which is a sequence

of interconnected edges containing all the edges in the topology without repetition.

The results obtained are then extended to non-Eulerian topologies in Section 2.6.

In this chapter, the vulnerability of future all-optical networks is characterized

initially by the following probabilistic failure model:

1. Nodes are invulnerable(the vulnerable node case will be treated in Section 2.8);

2. Edges are vulnerable, and assumed to fail independently with a prior probability

ofp(0<p<1) ;

3. The states of the edges are assumed to stay unchanged over the duration of the

fault diagnosis process.

For a given network topology, each edge can be labeled along an Euler trail with

an index, / = 1, 2,..., m. The state of the 1th edge is represented by a Bernoulli

random variable Fp, called the edge state. Moreover, it is assumed that the edge

states, Fp,/3 = 1, 2,.. ., m, are statistically independent, and identically distributed

with Pr(Fp = 1) = p for an edge failure and Pr(Fp = 0) = q for no failure with

q = 1 - p.

The network state is defined as a realization of the set of edge states {Fp)= ,

written as s = f1f2 '" f m E S = {0, 1}m . The set of all possible network states is

denoted as S. Using the fact that all edges fail independently, one can obtain the

prior probability of a particular realization of the network state s = f1f2 ... f m as the

product of prior probabilities of all edges, i.e.,

Pr(s) = pE=L f qm-EO=1 fo, (2.2)



where the term p 6=1 4 comes from the set of edges with failures, and the term

qm- 0=1 4 originates from the set of edge without failures.

2.2.2 Adaptive Lightpath Probing Schemes

In this chapter, network states are diagnosed via the measurements of end-to-end

probing signals. Specifically, each probe corresponds to sending an optical signal

along some lightpath. This subsection illustrates a class of adaptive lightpath probing

schemes.

A permissible probe t over an Eulerian network topology is a trail (a sequence of

adjoined edges without repetition) over the graph. Physically, each trail corresponds

to a lightpath. For a finite network, we can label each probe with an index t E T =

{1, 2,..., IT } where IT|, the cardinality of the set T, is the number of distinct probes

over the network. As an example, the 3-node ring topology has 7 permissible probes,

as shown in Fig. 2-3(a).

The result of each probe is called the probe syndrome, denoted as rt. When an

optical signal is sent along a permissible lightpath probe, the signal either arrives

at the destination when all the edges along the probe are ON, or never reaches the

destination (or the quality of the signal is unacceptable) when any of the edges along

the probe is OFF. In the former case, the probe syndrome is rt = 0 (or, equivalently

rt = S); in the latter case, the probe syndrome is rt = 1 (or, equivalently rt = F).

A probing scheme 7r is a sequential employment of probes such that any network

state can be identified. The successive probe can be sequentially determined according

to the syndromes of previous probes. Due to this sequential decision making property,

any probing scheme is equivalent to a binary decision tree, whose leaves are network

states and inner nodes are probes. For example, a probing scheme for the 3-node ring

network is shown in Fig. 2-3(b), where each inner node is labeled with the probe

employed. We adopt the convention that at any inner node, if the probe syndrome is

0 (no failure), the subsequent probe is given in the left child; otherwise if the probe

syndrome is 1, the probing process continues on the right child.



(a) Permissible Probes

(b) Probing Scheme

Figure 2-3: (a)Set of permissible probes over the three-node ring topology. Total num-
ber of probes is 7. Each probe is indexed with a number near the arrow. (b)Probing
scheme (decision tree) for the three-node ring topology.



The set of all possible probing decision trees for the network topology G is denoted

as II(G). Without loss of optimality, the following properties are assumed for any

efficient probing scheme:

1. A probe will not be employed if its syndrome can be inferred from previous

syndromes. For example, if a probe returns no failure, it means that no edge in

that probe has failed; hence no probe that involves only a subset of these edges

is performed thereafter.

2. When two probes are expected to reveal the same information, we would like to

consistently choose the probe spanning fewer number of edges for convenience.

For example, if the state of an individual edge is known, then one should not

start or end a probe with this edge, since dropping it loses no information.

2.2.3 Fault-Diagnosis Problem Formulation

In this chapter, the design metric used to measure the proficiency of any fault-

diagnosis scheme is its diagnostic effort, which is taken to be proportional to the

average number of lightpath probes required to identify the network state. Our de-

sign objective is to minimize the average number of lightpath probes.

Each probe t E T , if employed, is assumed to contribute one unit of diagnosis

effort. Consequently, for a given fault-diagnosis scheme 7r, the effort to diagnose the

state s, denoted by 1 , is equal to the number of lightpath probes from the root to

the leaf node s in the probing decision tree 7r. We call it the probing depth of the

state s. For example, as shown in Fig. 2-3(b), the probing syndrome of state 110 is

1101 and thus the probing depth is 4.

Given a probing scheme 7r e II(G), the average number of probes required6 is

4c = Pr(s)/, (2.3)
sES

6 The testing result of each probe is represented with 1 bit data (1/0). A similar objective has
been pursued in [33], where Ho and Medard sought to minimize the number of network diagnosis
information bits.



where Pr(s) is the prior probability of this state. Notice that the average number of

probes scales with the size of network. To suppress the scaling effect, we focus on the

average number of probes per edge, defined as

C, = Pr(s)1', (2.4)
sES

where m is the number of edges in the network topology.

For a given network topology G, we would like to find the optimal probing scheme

that minimizes the average number of probes per edge, and thus to minimize the diag-

nostic effort. Mathematically, it is formulated as the following optimization problem,

min 1•= Pr(s)1',
sES

s.t. 7irH(G). (2.5)

The resulted minimum average number of probes per edge is written as

* = min { Pr(s)l:} = Pr(s)l , (2.6)
7rEH(G) I M ,

sES sES

where 7r* is the optimum probing decision tree.

2.3 Optimum Fault-Diagnosis Schemes

In this section, we characterize some properties of the optimal probing schemes for

Eulerian networks and derive the achievable performance of these schemes. The

insights developed in this section will provide guidance for designing near-optimum

diagnosis schemes.



2.3.1 Mapping between the Source-Coding Problem and the

Fault-Diagnosis Problem

Structural similarity between these problems suggests that there is a mathemati-

cal mapping between the fault-diagnosis problem in Network Management and the

source-coding problem in Information Theory, as to be shown in this subsection. This

mapping provides theoretical and engineering insights for efficient network diagnosis

scheme design.

Given a probing scheme 7 E II(G), one can denote the probe syndrome of network

state s as r(s) = r(t8)r(t) ... r(t) , where l is the probing depth of state s , and

{tS, ti,..., t } is the sequence of probes employed to identify state s. For example,

the sequence of probes for state s = 110 in Fig. 2-3(b) is {2, 4, 5, 6} and the probe

syndrome is r(s) = 1101. For a given probing scheme 7, we call the set of probe

syndromes as R(ir) = {r(s), s E S}. In the following, we will show that the set of

probe syndromes constitutes a uniquely-decodable code7 for the set of network states

[1].

Theorem 2.1. For any valid probing decision tree 7 E II(G) , the set of probe

syndromes R(ir) = {r(s), s E S} forms a uniquely-decodable code for the set of network

states S.

Proof. We proof this theorem by contradiction. By the definition of a uniquely-

decodable code[18], we know that each source symbol should be mapped into a dif-

ferent non-empty bit string.

If the set of probe syndromes R(ir) does not forms a uniquely-decodable code for

the set of network states S, we can always find two distinguished network states that

have the same probe syndrome. That is, there exist two network states sl and s2,

and r(sl) = r(82). In this case, the probing scheme 7 cannot distinguish between s1

and s2 , and thus is not valid.
7A code is uniquely decodable if each source symbol is mapped into a different non-empty bit

string.



Table 2.1: Similarity between Fault Diagnosis and Source Coding

Fault Diagnosis Source Coding
Network states Source symbols

Prior probability of states Prior probability of symbols
Probe syndromes Coded symbols

Average number of probes Average code length

N-.."I -ource.Coding Problem

r

Figure 2-4: The structural similarity between the fault-diagnosis problem in network
management and the source-coding problem in information theory suggests a math-
ematical mapping between them.

Therefore, for any valid probing scheme, the set of probe syndromes forms a

uniquely-decodable code for the set of network states. O

Intuitively, there are mappings among various concepts between the fault-diagnosis

problem and the source-coding problem, as illustrated in Table 2.1. The objective

of the fault-diagnosis problem, i.e., to design a probing scheme mapping the set of

network state into a set of probe syndromes such that the average syndrome length

is minimized, is similar to the objective of the source-coding problem in Information

Theory, i.e., to design a coding scheme mapping the set of source alphabets into a

I



set of codewords such that the average codeword length is minimized. This struc-

tural similarity between the fault-diagnosis problem and the source-coding problem,

as illustrated in Fig. 2-4, suggests an isomorphic mapping between them.

The mapping between the fault-diagnosis problem and the source-coding problem

suggests that the rich set of results from the source-coding literature can be exploited

to obtain the fundamental limits of the fault-diagnosis problem and good source-

coding algorithms can be used to construct efficient fault-diagnosis schemes.

First, the mapping between the fault-diagnosis problem and the source-coding

problem suggests a lower bound on the minimum average number of probes per link.

It follows from the lossless source coding theorem [18] that the minimum average

number of probes per link is lower bounded by the information entropy of individual

link, i.e.,

S* > Hb(p), (2.7)

where Hb(p) is the Shannon binary information entropy function. This fundamental

limit can be understood intuitively as follows. The degree of uncertainty of the

unknown network state can be represented by the information entropy of the network

state. In the schemes considered here, each probe is either successful or fails and thus

provides at most one bit of state information. It follows that the number of probes

required should be larger than or equal to the information entropy of the network

state.

Second, this mapping suggests an approach to designing efficient fault-diagnosis

schemes by transforming (near)-optimal source-coding algorithms. However, not all

source-coding algorithms, e.g. the optimal Huffman coding algorithm, can be trans-

formed into fault diagnosis algorithms, due to the limitation imposed by the physical

structure of lightpath probes. The solutions to both the source-coding problem and

the fault-diagnosis problem can be understood as a sequence of YES/NO questions.

In the source-coding context, questions can be asked about any subset of links in the

network, which are not necessarily connected, and questions can be asked about a

network state of mixed 1 and 0 regarding to the chosen subset of links. For example,



the question like "Is Link 1 UP and link 3 DOWN and link 5 UP?" is allowed. On

the other hand, in the fault-diagnosis context, not all of such questions are physically

realizable probes, which can only probe consecutive links and ask questions whether

all the links in the probe are UP, corresponding to one particular class of questions

such as "Are links 2, 3, 4 all UP?" Thus, the nature of permissible probes imposes an

extra restriction on the class of questions that can be asked. In our research, we refer

to this restriction as the probe feasibility constraint, and study the fault-diagnosis

problem, or the equivalent source-coding problems, under this probe feasibility con-

straint.

2.3.2 Link-Wise Probing Schemes

As discussed in Section 2.1, the link-wise probing scheme, which probes each individ-

ual edge separately, is in general not optimal, especially when the failure probability

of each edge, p, is small. On the other hand, if each edge fails with a high probabil-

ity (which is unrealistic), the link-wise probing scheme becomes more efficient. The

following theorem states the condition under which the link-wise probing scheme is

optimals .

Theorem 2.2. For any non-trivial network topology with a connected subgraph of

more than one edge, the link-wise probing scheme is optimal if and only if the edge

failure probability is larger than 3 (the golden ratio).

The proof of this theorem is presented in Section A.1.

The theorem suggests that the link-wise probing schemes based on single-hop

tests, as used in the electrical networks and some of the current optical monitoring

schemes, are strictly sub-optimal in all-optical networks for p < (3- v5')/2(e 0.382),

which is the situation in most network monitoring scenarios.

According to the theorem, the link-wise probing scheme is optimal for the case

of p > 1/2. As p increases to 1, the lower bound Hb(p) decreases, while the optimal
8 This theorem is similar to the break-point theorem of the group testing problem [63]: when the

probability with which a sample is defected is higher than 3-2 , it is optimal to test each individual
sample to minimize the number of tests.



approach is always 1 probe per edge. Intuitively, for large values of p , if all the

edges fail with a high probability, we could reduce the number of probes required if

there were a probe to test the scenario where a collection of edges are all in OFF

states. Since such a probe cannot be implemented, our information theoretical bound

becomes less meaningful in the range of p > 1/2. Nevertheless, in almost all practi-

cal situations, the edge failure probabilities are small, thus in the remainder of this

chapter, we always assume p < 1/2.

2.3.3 Optimal Probing Scheme for Lightpath with Single Fail-

ure

In this sub-section as a special case to illustrate the technique, we will focus on a

linear network topology (i.e., bus) with h edges and only one failure if it happens.

In an all-optical network context, this can be understood as the case where there is

only one failure along a particular lightpath. Conditioning on the fact that there is

one and only one faulty edge, each edge has a uniform distribution of being the faulty

one. For this case, the optimum probing scheme to minimize the average number of

probes (per edge) has been found in [73].

The optimum probing scheme works as follows. Given that the linear network

topology has h edges and the number of faulty edges is 1, we first split the path of

length h into two sub-paths of length h, and hr according to the following criteria:

h 2 [og 2 hi-1 if 2 < h < 3 - 2~Log2 hi-
h - 2 [log 2 hj , if 3 - 2 Llog h] - 1 < h < 2 [log 2 hj+ l 

- 1

and

hr = h - hi. (2.9)

Next, the first sub-path of length hi is probed. If the syndrome is 1, meaning the

faulty edge is in the first sub-path, the scheme continues to split the first sub-path

according to rule (2.8) and probe the resulted first sub-path. If the syndrome is 0
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Figure 2-5: Optimal 2a-splitting probing scheme for the linear network with seven
edges and one failure at edge BC. The syndrome is 101.

meaning that the first sub-path is fault-free and the faulty edge is in the second sub-

path, the scheme splits the second sub-path using (2.8) and probe the resulted first

sub-path. This process continues until the faulty edge is located.

Such an optimum probing scheme can be understood to maximize the information

gain of each probe with the concern of keeping a balanced probing decision tree.

Intuitively, when dividing the path into two sub-paths of length hi and hr, respectively,

it is desirable to cut the path into equal halves, thus the probability that the faulty

edge is in the first sub-path is as close to 1/2 as possible. Such a probe provides as

much information gain as possible. However, such approach is in fact only locally

optimal: it makes the probe over the current hi edges information efficient, but may

cause the subsequent probes to be inefficient. In fact, the optimal splitting rule (2.8)

can be identified by solving the following optimization problem,

hi = min {2 *, h - 2a*}. (2.10)
a* =arg min I2a-(h-2a)I

This optimization suggests that it is globally optimal to balance the lengths of two

split sub-paths while making sure one of the sub-paths has a length of an integer power

of 2. The resulted probing scheme is called the "2'-splitting" probing scheme. Note

that, in both local and global optimums, we are trying to balance the probabilities

of syndrome 0 and syndrome 1, indicating that each efficient probe should provide

approximately one bit of network state information.



To illustrate the "2a-splitting" probing scheme, let us consider a linear topology

with 7 edges. As shown in Fig. 2-5, we assume that the 2nd edge (BC) fails. In

the first step, since h = 7, the splitting rule suggests that the length of next probe

should be h, = 3. The resulting probing syndrome is 1, indicating that the failure

is within the first sub-path. In the second step, since h = 3, the length of the next

probe should be h, = 1. The probing syndrome is 0, indicating that the failure is

within the second sub-path. Now, the length is h = 2. The scheme probes the first

sub-path of length 1, resulting the probing syndrome of 1. Therefore, the edge BC

fails. It follows that the probing algorithm outputs the syndrome 101 for the network

state 0100000.

It is also important to observe that, if the problem is changed into the scenario

where there is at least one faulty edge in the line network, and our objective is to

locate the first (leftmost) one, the optimal probing scheme is exactly the same as the

one described above, since the algorithm never tests a sub-path without knowing that

every edge to the left is fault free. It turns out that this is crucial in developing the

run-length probing algorithm in the next section.

2.4 Run-Length Probing Schemes

Mathematically, the optimization problem in (2.5) is, in fact, equivalent to design-

ing an optimal binary decision tree for a decision problem. Previously, the design of

optimal binary decision tree has been approached with well-established dynamic pro-

gramming algorithms [47, 46]. However, it has been shown in [49] that the sequential

diagnosis problem is Co-NP complete9 , meaning that the computational complexity

of probing algorithms grows exponentially with the network size. From a practical

point-of-view, it would be wise to develop simpler algorithms to design near-optimum

probing schemes.
9A decision problem C is Co-NP-complete if it is in Co-NP and if every problem in Co-NP

is polynomial-time many-one reducible to it. In complexity theory, the complexity class Co-NP-
complete is the set of problems that are the hardest problems in Co-NP, in the sense that they are
the ones most likely not to be in P. If you can find a way to solve a Co-NP-complete problem quickly,
then you can use that algorithm to solve all Co-NP problems quickly.



In this section, as a trade-off between complexity and performance, we will de-

velop a class of near-optimum probing schemes whose computational complexity is

polynomial order of the network size. This class of near-optimum probing schemes

have probe syndromes consisting of a string of run-length codes[28, 27, 60]. It can be

shown that this probing scheme is asymptotically optimal in that it achieves the min-

imum average number of probes per edge for large enough networks. Furthermore,

the run-length probing algorithm is easy to implement and its performance can be

obtained in closed-form.

2.4.1 Introduction to Run-Length Codes

In this subsection, we describe the run-length code, which was first proposed by

Golomb[28], and generalized by Gallager[27] and extended by Tanaka[60]. We will

transform the run-length code into an efficient fault-diagnosis algorithm in next sub-

section.

For the source-coding problem, we are interested the set of source alphabets

Z : {zi = il : i = 0, 1,...}, (2.11)

(i.e., a run of i O's followed by one 1) with a geometric probability distribution,

Pr(zi = Oil) = (1 - p)'p, i > 0, (2.12)

for some arbitrary p with 0 < p < 1. This distribution arises in run-length coding,

where one has an identical and independent binary source, with p being the probability

of a ONE.

Instead of looking at the original set of source symbols Z, we would like to first

investigate a set of truncated source alphabets and extend the result into the original

set of source symbols.



For any 0 < p < 1, there exists a unique positive integer K such that

(1 - p)K+ (1 - p)K+1 < (1 _ p)K + (1 - p)K-1. (2.13)

Notice that the unique positive integer K from this inequality maximizes the infor-

mation gain of any probe, given by (2.1). Solving this inequality, one can obtain the

maximum probing length as,

K= [-loglp(2 - q)]. (2.14)

Let us first look at the optimal source code for the set of truncated source alpha-

bets,

Z : {I = '1: i = 0,1,... K - 1}, (2.15)

where each source alphabet has the following prior probability,

Pr( = O') = Pp 0 < i < K - 1. (2.16)
Pr = il) 1 - (1 -p)g

It can be seen that each prior probability is the conditional probability given that

i < K. Using the Taylor expansion, we obtain

(1 - p)ip
1 • = Ep( 1 - p)i+jK. (2.17)

j=0

It follows that, each of the prior probabilities in (2.16) can be regarded as the ac-

cumulation of the probabilities of all the run-lengths in the original sources that are

in the same equivalence class (under modulo K). As an example, for K = 2, the

truncated source symbols are {1, 01}. The symbol {1} represents the class of source

alphabets {Oil : i mod 2 = 0} in the original set of source symbols, and the symbol

{01} represents the class of source alphabets {Oil : i mod 2 = 1} in the original

set of source symbols. Therefore, the original source is decoupled into two types of

source alphabet: Z{Oil : 0 < i < K - 1} and Z = {0jK : j > 0}. This structure

suggests that the optimal code for the original source must be the concatenation of



the optimal code for the truncated source Z and the optimal code for the source set

Z.
The optimal code for the truncated source Z is the Huffman code, which can

be derived as follows. Notice from (2.13) that the sum probability of the two least

likely source alphabets exceeds the probability of the most likely one"1 . Therefore,

the lengths of the optimal codewords for the truncated source Z can differ at most by

one, i.e., the difference between the largest length and the smallest one is not more

than 1.

Now, let us derive the length distribution of the optimal codewords for the trun-

cated source Z. Since the tree for the optimal code is complete and the lengths can

differ by at most one, the codeword length must be [log 2 K] and [log 2 K] + 1 if K

is not a power of two. Using the optimality condition of the Huffman code, we can

assume that the length of first x codewords is [log 2 K], and the length of other K - x

codewords is [log 2 K] + 1. Since the code tree is full at the height [log 2 K], we must

have the following condition satisfied,

x + 1(n - x) = 2 Llog 2 K]. (2.18)

Solving (2.18), we obtain

x = 2Llog 2 K j + 1 - n. (2.19)

This result indicates that the optimal code for the truncated source Z is to use

codewords of length [log 2 K] for alphabets {f : i < 2 Llog2 K+1 - n}, and codewords

of length [log 2 K] + 1, otherwise. Some of the properties of the optimal code tree for

the truncated source Z are list below:

1. The code tree is completell at height [log 2 K] + 1. The height of a tree is the

longest path from the root to any of its leaves.

10The probability of the most likely alphabet is . The sum probability of the two least

likely source alphabets is P((--P)K-'I+(1P)K--2)

"A complete tree has no internal node with single child.
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Figure 2-6: The optimal Huffman code tree for the
3,4,5,6.

2. The code tree is full at height Llog 2 K]. The K

are bifurcated to the height Llog 2 K] + 1.

truncated source Z with K =

- 2L [log 2 KJ leaves from the right

3. From the left to the right, the leaves of the code tree can be labeled with

{0il : 0 < i < K - 1}, which corresponds to the K source symbols in the

truncated source.

In fact, this is not the only optimal code tree for the truncated source Z. However,

for any optimal code tree, we can change the branch labels such that the resulted code

tree satisfies the above three properties. For any optimal code, the tree is full at height

Llog 2 K]. It follows that we rearrange the first 2 Llog 2 Kj+1 - K leaves from the left as

{Oil: 0 < i < 2Llg 2 K
+l 1 - K}, without loss of optimality. The same procedure can

be done to the leaves at height [log 2 K] + 1. As an examples, Fig. 2-6 shows the

optimal code trees for K = 3, 4, 5, 6. Without loss of optimality, we label all the left

branches with 1 and all the right branches with 0. This label strategy is consistent

with the syndromes of probes we employ at inner nodes of probing decision trees.

1 0

11 0

01 001

K=3

1 0

1 01 001 031

K=4 K=6



The average code length of the optimal code for the truncated source Z can be

derived as,

L [logC)2 K] (K) + (0log2 K]) (KA

(1 - p)k _ (1 - p)K
L= log2 K J+ (1 p) , (2.20)

where k = 2 [log 2 K
]+1 - K is the number of codewords with length [log 2 K].

The conjecture for the optimal code for the original source Z has been proved

by Gallager in [27]. Indeed, the optimal code for the original source alphabet zi =

Oil : i > 0 with a Geometric distribution is a concatenation of two prefix codes: the

optimal Huffman code for the alphabet i, = 0"1, i' = i mod K in the truncated

source Z, and the unary code for the alphabet OjK : j = [i/KJ in the source Z, i.e.,

c(zi) = c(i,)u(j). The unary code for the alphabet OjK : j = [i/K] is the codeword

with j zeros followed by a single one, i.e., u(j) = 0il. Without loss of optimality,

we can reverse the order of the two codes, thus encoding the alphabet zi into the

unary code for OjK followed by the optimal codeword for the alphabet i. Using this

equivalent code structure, the encoder of the run-length code works as follows:

1. The encoder counts up to K zeros from the source and then produces a single

zero at the output.

2. When a one appears from the source, the encoder produces a one, terminating

the unary code.

3. The encoder produces the optimal codeword for the position of the incoming

one within the sub-block of K digits.

The run-length code can be understood as an optimal code for the following

modified source,

Z = {OK , Oi K-1 (2.21)
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Figure 2-7: The run-length code trees for the source Z with K = 3,4, 5, 6.

The prior probability distribution of the possible symbols in Z is given by

(2.22)

and

Pr(OK) = (1 - p)K (2.23)

For this set of source alphabets, the run-length code trees for K = 3, 4, 5, 6 are given

in Fig. 2-7. The structure of these coding trees are simple: the codeword for OK is 0,

and the codewords for Oi l : 0 < i < K - 1 are the concatenation of 1 and the optimal

codewords for ii. We call the resulting code as the order K run-length code.

In the rest of this subsection, we will calculate the code rate for the run-length

code, which is defined as the average number of encoded bits per intermediate symbol.

For a run-length code with sub-block size of K, the average number of pattern bits

per intermediate symbol (i.e., the set of symbols Z) is given by

K-1K-1 _ 1 - (1 - p)K

E= (1 - p)ip + K(1 - p)K
i=O P

(2.24)

Pr(O'1i)= (1 - p)'p, O < i < K - 1,



The average number of run-length coded bits per intermediate symbol is given by

l~= 1.(l-p)K +(+L)(1- (-p)K) = (log2K + 1)(1--(1--p)K)+(1-p)k , (2.25)

where k = 2Llog2 K
] +1 - K. Therefore, the coding rate of the order K run-length code

is given by

(p)c (log 2KJ+1 + (1 p)K (2.26)R(p)--lz L0 - (1 -p)

2.4.2 Probing Schemes Based on Run-Length Codes

As a result of the mathematical mapping between the source-coding problem and the

fault-diagnosis problem, we have indicated in Section 2.3 that efficient source-coding

algorithms can be transformed into scalable fault-diagnosis schemes, under the probe

feasibility constraint. In this subsection, we develop a class of scalable fault-diagnosis

algorithms by transforming the run-length codes. In particular, the special structure

in the run-length codeword makes it possible to transform the run-length coding

algorithm into a fault-diagnosis scheme.

For an Eulerian network, we can introduce a natural order to any network state

by indexing all the link states along an Euler trail in the network. Specifically, any

network state must have the format of Oi110i21 - -... OiL, where il, i2,... iL are non-

negative integers and Oi means a run of i '0', and each of the segments, Oil, is called

a sub-state. Since any probe can locate at most one faulty link at a time, each of

such sub-states should be encoded separately. For example, for the Eulerian graph

shown in Fig. 2-8(a), the network state can be decomposed into a set of sub-states,

i.e., {021,0101, 07}. This idea suggests that one should, instead of coding indepen-

dent binary input streams, code the symbol set of Z = {Oil}j. with a geometrical

probability distribution. In the context of source coding, the optimal code for the set

Z = {Oil} 0 with geometrical distributions has been shown as the run-length code

[27], as introduced in Section 2.4.1. Alternatively, any network state Oi110i21 -.. OiL

can be decoupled into a set of source symbols from the symbol set Z = {OK, Oil}= 01.

Notice that the last sub-state of OiL can decoupled into a sequence of OK plus OiL mod K
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Figure 2-8: For an Eulerian graph, network state along any Euler trail can be de-
composed into a sequence of source symbols in the set Z. It follows that we should
encode each sub-state instead of the original network state.



Notice that the symbol of OiL mod K is not included in the run-length source symbol

set Z.

The special structure of a run-length codeword permits us to translate the run-

length coding algorithm into a corresponding fault diagnosis algorithm under the

probe feasibility constraint. The run-length codeword of alphabet O'l : i > 0 is a

concatenation of two prefix codes: the unary code for the integer i/K] followed by

the Huffman code for the alphabet 0O mod K 1 , where K = [- log,_,(2 - p)] is defined

as the maximum probing length. These two codes can be transformed as follows:

* The unary code for an integer j is the codeword with j zeros followed by a single

one, i.e., u(j) = 0il. In the fault diagnosis context, such a unary code can be

implemented by sequentially sending j + 1 back-to-back probes, each spanning

K edges along the Euler trail. The first j probes will return syndrome ZERO

meaning that all the probed edges are fault-free, and the (j + 1)th probe will

return ONE meaning that at least one of the edges in the (j + 1)th probe fails.

For example, as shown in Fig. 2-9(a) for the sub-state 0101 with K = 7, we send

2 back-to-back probes of length 7 along the Euler trail. The probe syndrome is

01, which is also the unary code for the integer j = (10 mod 7) = 1. Intuitively,

each probe of length K here maximizes the amount of network state information,

for a given link failure probability.

* The Huffman codeword for the alphabet Okl(k = i mod K) can be imple-

mented by the 2'-splitting binary searching algorithm developed in [68, 73].

This algorithm balances the Huffman code tree and maximizes the amount of

information revealed by each probe for an update conditional link failure prob-

ability. For example, as shown in Fig. 2-9(a) for the sub-state 0101 with K = 7,

the Huffman code for 031 is 011, which can be implemented with the 2a-splitting

binary searching algorithm.

Hence, the special structure of the run-length code guarantees its transferability to a

corresponding fault diagnosis algorithm, called the 'run-length probing scheme'.
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Figure 2-9: Demonstration of run-length probing scheme over a network. It contains
a sequence of concatenations of two phases: the fault detection phase (dotted lines)
and the failure localization phase (solid lines).



Using the run-length code, we can derive the run-length probing scheme (RLPA).

First, a probe is sent over a set of K consecutive edges along the Euler trail. If all

the edges are fault-free, we move onto the next set of consecutive K edges along the

Euler trail. If on the other hand the first probe suggests that there is at least one

faulty edge in this group, we can employ the "2a-splitting" probing scheme, described

in Section 2.3 to locate the first faulty edge. The process resumes with another group

of K edges along the trail right after this faulty edge. At the end of the Euler trail,

we can simply encode any network sub-state of O : 0 < i < K - 1 with a codeword

0. This can be achieved by a single probe to test the last i edges and the resulting

performance degradation is negligible when the network is large enough. An example

of the run-length probing scheme is illustrated in Fig. 2-9(b). A detailed description

of this algorithm is given below.

Let FP be a path (i.e., a permissible probe) that covers edge i to edge j over

the Euler Trail. When that path is being probed, it is active. Let h, denote the

number of edges in the current active path, and h, denote the number of edges in the

subsequent active path which is to be probed if all the edges in the current active

path are fault-free or the current active path has only one edge and it fails, and let i

be the start point of the active path. The run-length probing scheme is given by the

following pseudo-code.

To understand the run-length probing scheme pictorially, we illustrate the corre-

sponding probing decision trees for different K's in Fig. 2-10. Note that, these trees

are also the optimal Huffman code trees for the finite symbol set in (2.21) for different

K's. It turns out that for the particular set Z = {OK, OilK-1 , the Huffman code can

in fact be implemented under the probing feasibility constraint (i.e., any permissible

probe should be a valid lightpath), as shown in Section 2.3 for the line network with

single link failure. This should not be very surprising since we have already known (a)

the Huffman code is always optimal for any given alphabet, (b) the algorithm above is

optimal in locating the first faulty edge on a lightpath. The only missing logical step

is that the symbol OK is always assigned to a length-one codeword, corresponding to

a single probe. It can be shown that this is optimal from a coding perspective since



Algorithm 1 RLPS: Run-Length Probing Scheme
Set i = 0.
Set hj = hr = K.
while i <= m do

Probe the path Pi+h;

if the syndrome r(Pi hl) = 0 then
Set i = i + hi, hl = hr, and hr = K;
if i + hr > m then

Set hr = m - i;
end if

else
Set h = hi,
Set hi = g(h), [function g(-) is given by Eqn. 2.10],
Set hr = g(h - hi),
if hi = 1 then

The edge pi+h, fails,
Set hi = hr = K, i = i + 1;

end if
end if

end while

01 021 1 01 021 031

031 041

K=3 K=4 K=5

Figure 2-10: Run-length probing decision trees for K = 3,4,5, which are also the
optimal Huffman code trees for the corresponding intermediate symbol sets Z.
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K is chosen such that the symbol OK is much more likely than the other symbols in

Z. In fact, one can easily verifyl2 that the probability of OK is larger than 2/5, which

assures the optimality of assigning to it a length 1 codeword [18].

In summary, the run-length probing algorithm is natural for the fault-diagnosis

problem due to the following two reasons:

1. Each probe can at most locate one faulty edge, thus it makes sense to split the

network state into sub-states and locate the faulty edges one-by-one;

2. The probing algorithm can achieve the information theoretical optimum in lo-

cating the individual faulty edges.

Note that the run-length probing algorithm is restricted on an Euler Trail of the

network, and ignores other connections. In general, this restriction may seriously

reduce the set of admissible probes, thus one cannot claim a general optimality of

this algorithm over all possible sequential probing schemes. The run-length probing

belongs to a class of 'nested' probing schemes. In a nested probing scheme, each

successive probe includes only a subset of consecutive edges from the previous probe

or a set of edges that are not tested in the previous probe. Within the class of nested

probing schemes, the run-length probing scheme is optimal to minimize the average

number of lightpath probes required. Wolf [72] has derived similar results under a

totally different context of using group testing approach to resolve the conflict in

multi-access communications, and showed that a similar scheme is optimal within

the class of "nested" group testing algorithms [63].

2.4.3 An Algorithmic Interpretation

In this sub-section, we present an algorithmic description of the run-length probing

scheme for Eulerian networks.

As a mirror of the concatenation structure in the run-length code, the run-length

probing scheme alternates two phases (i.e., the failure detection phase and the failure

12Notice from (2.13), (1 - p)K + (1 - p)K-1 > 1. It follows that (1 - p)K > 11-P > 1/2.



localization phase) to identify each faulty link along the Euler trail. In the failure

detection phase, a detection probe is sent over a set of K (i.e., the maximum probing

length) consecutive links along the Euler trail. This phase corresponds to the unary

code in the run-length codeword. If all the links are fault-free, we move onto the next

set of K consecutive links along the Euler trail. If on the other hand the detection

probe returns the syndrome '1', the algorithm enters the failure localization phase. In

this phase, given that there is some failure in the detection probe, the "2'-splitting"

binary searching algorithm [68, 73] is employed to locate the leftmost faulty link. This

phase corresponds to the Huffman code in the run-length codeword. After the fault is

localized, the algorithm resumes the failure detection phase by sending another probe

spanning K links along the trail right after the failure.

As an illustration, Fig. 2-9 demonstrates how to employ the two-phase probing

scheme for efficient fault diagnosis, where dotted line corresponds to the fault de-

tection phase and solid line corresponds to the fault localization phase. Given an

Eulerian network, one can first identify an Euler trail13 in the network as indicated

by the blue line in Fig. 2-8(a). This Euler trail introduces a natural structure to the

network state, by indexing the link states along the trail, as illustrated in Fig. 2-9(b).

The run-length probing scheme is then implemented along the Euler trail. In this

example, we assume that the link failure probability equal to 0.1. It follows that the

maximal probing length is 7. Therefore, the first probe should span 7 edges, as shown

in Fig. 2-9(b). This probe corresponds to the fault detection phase. The resulted

probing syndrome is "1", indicating some failure within the lightpath probe. The
13We can find a Euler trail in a graph G by following procedure:

* pick any vertex a and trace out a trail;

* let C be the cycle thus generated and let G' be the subgraph consisting of the remaining edges
of G-C;

* because the original graph is connected, C and G' must have a common vertex, call it a';

* build a new cycle C' tracing through G' from a';

* incorporate C' into the cycle C at a' to obtain a larger cycle C';

* repeat the same process until no edge remains.

The complexity of this algorithm to identify a Euler trail is O(m), where m is the number of edges
in the graph.



scheme continues in the fault localization phase, by using the 2a-splitting probing

scheme to locate the leftmost failure, as indicated in the solid probes. We first send a

probe of length 3, and the resulting probe syndrome is ONE, meaning that there is a

failure within the first three edges. We then send a probe of length 1 and the result-

ing probe syndrome is ZERO, meaning that the first edge is healthy and the failure

happens between the second and the third edges. Finally, we send a probe of length

1 from the second edge, and the resulting probe syndrome is ZERO, meaning that

the third edge fails. Once the probing scheme identifies the failure on the third link

from the left, the algorithm resumes from the fourth link from the left. This process

continues until all the link failures have been detected and localized, as illustrated in

Fig. 2-9(b).

2.4.4 Performance of Run-Length Probing Schemes

In this subsection, the performance of the run-length probing scheme is characterized

by taking advantage of its information theoretic interpretation.

For large networks (roughly speaking, m > K), the following Lemma characterizes

the average number of probes per edge required for run-length probing schemes.

Lemma 2.1. For a large Eulerian network whose link failures are modeled as identical

and independent Bernoulli random variables with parameter p, the average number of

probes per edge required by the run-length probing scheme to fully identify the network

state, denoted as LRLPA, can be approximated by the code rate of its corresponding

run-length code, i.e.,

-RLPA p. ( o0g22 K] + I + ( ) ~ R(p), (2.27)

where K = [- log_,(2 - p)] and k = 2 Llog 2 KI]+1 - K.

This lemma can be proved using the results from the run-length code [27, 60], as

shown in Section A.2.
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Figure 2-11: Simulated average number of probes per edge for an Eulerian topology
with 50 edges is compare with the run-length code rate and the entropy lower bound.
The performance of the run-length probing scheme is close to the entropy lower bound.



In Fig. 2-11, the approximate average number of probes per edge, i.e., R(p),

is plotted as a function of the edge failure probability p, in comparison with the

simulated results of the actual number of probes required, the performance of the

link-wise probing scheme, and the entropy lower bound given in (2.7), for Eulerian

networks with 50 edges. We have three observations from this plot. First, compared

to the brute-force link-wise probing scheme, the run-length probing scheme provides a

significant reduction in the diagnosis effort, especially when the network is relatively

reliable. For example, when the link failure probability is p = 10- 5, the run-length

probing scheme requires around 10- 4 probes per edge. Compared to 1 probe per edge

for the link-wise probing scheme, this is 4 order of magnitude more efficient.

Second, the plot indicates that R(p) is a good approximation of the actual per-

formance of the run-length probing scheme over a broad range of reliability regime.

This suggests that for a large Eulerian network (m > K ) one can approximate the

average number of probes for the run-length probing scheme as £RLPA r m -R(p).

Finally, when the edge failure probability is small (of greater engineering interests),

the average number of probes required is close to the entropy lower bound (a careful

comparison will be presented next). For example, for an Eulerian network with

1000 edges and edge failure probability p = 0.01, the run-length probing scheme

requires only 81.05 probes on average. Compared to the entropy lower bound of 80.79

probes, it requires only an additional number of 0.26 probes. As explained next, the

performance of the run-length probing scheme actually approaches the entropy lower

bound asymptotically.

To gain a clearer view of the relationship between the performance of the run-

length probing scheme and the entropy lower bound, we define the information ineffi-

ciency (or, probing inefficiency) of the probing scheme as the ratio between the extra

number of probes per edge (compared to the entropy lower bound) and the entropy

of each edge, i.e.,
_, - Hb(p)

(p) = Hb(p) (2.28)Hb (p)
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where L, is the average number of probes per edge of any probing decision tree

7r E H(G).
In Fig.2-12, the information inefficiency of the run-length probing scheme, i.e.,

e(p) = 1(p)-Hb(p), is plotted as a function of the link failure probability. NoticeHb(p) d

that, when the edge failure probability p decreases, the run-length algorithm becomes

more efficient, with the fluctuation due to the change of the choice of the maximum

probing length K, which takes on only integer values. In particular, if the edge failure

probability is less than 0.1, the average number of probes per edge of the run-length

probing scheme, for large networks, is upper bounded by

1CRLPA - 1.007Hb(p), (2.29)

which is only 0.7% higher than the entropy lower bound. Moreover, the difference

between the achieved performance and the entropy lower bound is uniformly bounded.

In the range of p e (0, 0.5], the worst case, as shown in [60], occurs at p = (3- v/5)/ 2 ,

where

£RLPA P 1.0423Hb(p), (2.30)

meaning that the actual performance of the run-length probing scheme is less than

5% larger than the lower bound.

Based on(2.7), (2.29) and (2.30), the performance of the run-length probing scheme

is bounded by the following inequalities,

Hb(p) 5 CRLPA 5 [1 + e(p)]Hb(p), (2.31)

where e(p) tends to decrease with smaller edge failure probability and we can approx-

imate e(p) < 0.01 for p • 0.1 and e(p) < 0.05 for 0.1 < p < 0.5. This indicates that

the performance of the run-length probing scheme is always less than 5% larger than

the entropy lower bound.
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Moreover, as illustrated in Fig. 2-12, the information inefficiency tends to decrease

as the link failure probability decreases. Asymptotically, it can be shownl4 that

lim E(p) , (2.32)-40 - log2 p

where c = 2 - (log2 e + log 2 log2 e) e 0.029 is a constant. As illustrated in Fig. 2-

13, (2.32) shows that the probing inefficiency approaches zero asymptotically as the

failure probably decreases, and thus the run-length probing scheme is asymptotically

optimal when the network is relatively reliable. In practical networks with fairly

reliable components, both the upper and the lower bounds in (2.31) are reduced

to the entropy of individual link, suggesting that the run-length probing scheme is

asymptotically optimum for large Eulerian all-optical networks.

Finally, the performance of the run-length probing scheme can be used as an upper

bound for the minimum average number of probes per edge. The convergence of both

upper bound and lower bound to the entropy indicates that the minimum probing

effort approximately equals to the entropy of the network states. This result suggests

that,

* in an efficient probing scheme (e.g., the run-length probing scheme),

each probe is designed to provide approximately one bit of state in-

formation.

Since the amount of unknown information in the network state is equal to the entropy,

* the number of probes required to identify the network state is ap-

proximately equal to the entropy of network state.

2.5 Greedy Probing Schemes

The information theoretic perspective in the context of fault diagnosis is in general

also very useful in understanding, comparing, and improving the network probing
141n [271, Gallager has shown that, when p --* 0, R7(p) - Hb(p) -- p[2 - (log 2 e + log2 log 2 e)]. At

the same time, when p -- 0, Hb( p) --_ -plog 2 p. It follows that limp-o E(p) P C



schemes based on existing heuristics. In particular, we will in this section study the

fault diagnosis design based on dynamic programming approaches.

In fact, it can be shown that the optimum fault-diagnosis problem is equivalent to

the optimal binary decision tree design. It follows that the adaptive fault-diagnosis

problem for general network topology is Co-NP Complete [49], as pointed out in Sec-

tion 2.4. As a compromise, various sub-optimal greedy algorithms [54] are proposed

based on local optimization heuristics, under the dynamic programming approach.

The performance of such heuristic algorithms is usually studied only via simulations.

With the information theoretic viewpoint of the problem, it is natural to connect these

problems to their counterparts of source coding problems with dynamic programming

approaches, which have been thoroughly studied for decades.

In this section, we will first review the dynamic programming formulation of the

network-diagnosis problem, and then focus on a particular greedy algorithm that

maximizes the local information gain at each stage [54]. Finally, we will compare the

performance of this greedy scheme with that of the run-length algorithm to gain more

insights.

2.5.1 Dynamic Programming Formulation of Adaptive Fault

Diagnosis

In this subsection, the optimal adaptive fault diagnosis problem is formulated as a

dynamic programming problem.

First some useful notations are introduced to facilitate the formulation. The

design of optimal fault-diagnosis algorithms is equivalent to the design of optimal

binary decision trees. For a decision tree of r, the set of inner nodes is denoted

as 1,. Let ; E Z, denote one of the inner nodes, and P, the probability that c is

reached. It follows that P, equals to the sum of the prior probabilities of the network

states that are descendants of the node , [75]. Let t, be the probe employed at inner

node ý , Pr(01I) and Pr(llc) be the probabilities that this test returns "0" and "1",

corresponding to the probabilities that the network state lies in the left or right sub-
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Figure 2-14: Dynamic programming illustration: at each node, we choose a probe to
minimize the number of probe in the subtree starting from the node.

trees of inner node ;, respectively. Furthermore, let L, be the average number of

successive probes required when the inner node is reached.

Now to design the optimal diagnosis algorithm with the minimum average number

of probes, it is required, at each inner node ; (as illustrated in Fig. 2-14), to choose

a probe t, to minimize

L, = 1 + Pr(01) x £,o + Pr(llj) x £C*,, (2.33)

where £C,,o and £,,, are the minimum average number of probes required by the left

and right sub-trees from the inner node ;, respectively. In particular, taking ; as the

root of the entire tree, the solution of this optimization problem gives the optimal

fault diagnosis scheme.

Note that the difficulty of such a problem comes from the fact that the optimiza-

tion problems at different steps are coupled. In choosing t,, one needs to cater for the

future optimizations of £*,o and £*,1. As a result, the computational complexity of



this problem grows exponentially with the number of edges m. Some results of using

dynamic programming in designing binary decision trees can be found in [47, 46].

Now from an information theoretic perspective, the performance, in terms of the

average number of probes, can be computed from the local information efficiencies as

follows. For a given probing tree ir, the average number of probes required to reach

the leaves can be computed as

C, = E Pr(s) x (number of probes to reach state s)
sES

= Pr(s) x (number of ancestors of s)
sES

= Pr() x 1 (2.34)

On the other hand, one can write H(c) as the amount of information in bits, obtained

by employing the probe t, as node , is reached, that is,

H(c) A Hb(Pr(01c), Pr(1(;)), (2.35)

where Hb(p, q) = -p x log2 p - q x log 2 q is the information entropy function. By

running this fault-diagnosis algorithm, one can always find out the network state,

which contains on the average m - Hb(p) bits of information, and can be viewed as

the sum of the information obtained in each step, i.e.,

m Hb(p) = E Pr(s) x H(,). (2.36)

Hence the total inefficiency of the algorithm, in terms of the average number of probes

required in excess of the information minimum m - Hb(p) is

Cr - m . Hb(p) = E Pr(,) x (1 - H(4)). (2.37)

where 1- H(() is referred as the local inefficiency of the algorithm ir at the inner node

4. Intuitively, one probe is used to return only H(,) bits of information. Hence the
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difference between the two measures is the information inefficiency of employing this

probe, and the weighted sum of the inefficiency over the tree gives the total number of

extra probes required by the given probing scheme. To minimize the average number

of probes, the greedy approach chooses a probe to minimize the local inefficiency at

all the inner nodes.

2.5.2 Greedy Probing Algorithms

In order to design efficient network-diagnosis algorithms, it is desirable to minimize

the local inefficiency at each stage. Intuitively, by always asking the question to which

the answer is completely without bias, one would expect to figure out the network

state with fewer questions. This corresponds to making the left and right sub-trees

as balanced as possible, i.e., to chose a probe t, to minimize

t* = arg min Pr(O|) - Pr(l|)|. (2.38)

Such intuition of balancing the probabilities of the outcomes of a probe is in general

very useful. For example, the same design principle has been used to design the

maximum probing length K for the run-length algorithm. For the first probe over K

links, the probabilities of UP and DOWN are, respectively, qK and 1 - qK. It can be

shown that the choice of in inequality (2.13) indeed minimizes the difference between

these two probabilities.

It is important to note that such an approach, by maximizing the local information

gain H(;), may not necessarily be the globally optimum choice. As an example, in

the example of locating a single failure in Section 2.3, it is globally optimal to split

the path as in (2.8), to make sure that the length of one of the sub-paths is an integer

power of 2. On the other hand, a greedy design based on local optimizations would

simply split the path into equal halves.

The greedy algorithm presented above to maximize the local information gain is

in fact one of many variations [54]. Such algorithms are sometimes preferred due

to their conceptual simplicity. Although the run-length algorithm has the same or-
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Figure 2-15: Performance comparison between the run-length probing scheme and
the greedy probing scheme. The run-length probing scheme always outperforms the
greedy probing scheme, with the exception that both schemes have the same perfor-
mance when the maximum probing length K is an integer power of 2.

der of computational complexity as these algorithms, it provides better performance

compared to the greedy algorithms, as illustrated in next subsection.

2.5.3 Performance Comparison Between Run-Length Prob-

ing Schemes and Greedy Probing Schemes

Using Monte Carlo method, we simulate the performance of the greedy probing algo-

rithms and compare it to that of the run-length probing algorithm in this sub-section.
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To compare these two algorithms in a finer scale, the probing inefficiency of the

greedy probing scheme over the run-length probing scheme, defined as

SGPA- RLPA
(P) = LPA (2.39))CRLPA

is plot as a function of the link failure probability p in Fig. 2-15. In (2.39), '2 RLPA and

LGPA are the average number of probes per link for the run-length probing algorithm

and the greedy probing algorithm, respectively.

Notice that for some range of link failure probability, both the run-length probing

scheme and the greedy probing scheme have the same average number of probes per

link. It can be verified that this happens for all the link failure probabilities such

that the maximum probing length K is an integer power of 2. Under this scenario,

splitting a path of length K automatically gives sub-paths with lengths as powers of

2, hence the local and global optimums coincide. On the other hand, when the link

failure probability is in the range such that K is not an integer power of 2, the greedy

algorithms are strictly sub-optimal. As a result, in Fig. 2-15, there is a periodic

pattern in the log plot: when p is such that K(p) equals to a power of 2, the probing

inefficiency is equal to 0; as increases or decreases such that K(p) does not equal a

power of 2, the probing inefficiency is strictly non-zero.

Therefore, although both probing schemes have the same computational complex-

ity, the run-length probing scheme provides some saving in diagnostic effort over the

greedy probing scheme. However, the difference between the two algorithms is quite

limited. Intuitively, this is because that the global optimum solution always makes

sure that all but one sub-path have lengths of powers of 2, in which case the greedy

algorithm is also optimum.

Notice that, to develop the run-length probing schemes, we have made two as-

sumptions. First, it is assumed that the network contains a Euler trail. Second, only

link failures happen and nodes are robust. Practical networks normally cannot meet

these two assumptions. In the rest of this chapter, these two assumptions will be

relaxed to investigate fault diagnosis for practical all-optical networks.
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2.6 Fault Diagnosis for All-Optical Networks with

Non-Eulerian Topologies

The limitations of run-length probing scheme sometimes make it hard to apply to real-

istic all-optical networks. To employ the run-length probing scheme, we had assumed

in Section 2.4 that the network is Eulerian. This requires that all (or except two)

the nodes in the network have even degrees [10]. However, practical all-optical net-

works may not satisfy this condition and thus the run-length probing schemes cannot

be applied directly. In this section, two alternative approaches are proposed to ex-

tend the run-length probing scheme to non-Eulerian topologies. Their corresponding

performance are characterized analytically.

2.6.1 Disjoint-Trail Decomposition Approach

The first approach is based on the idea of decomposing the Non-Eulerian graph into

a set of link-disjoint trails (a trail in a graph is a sequence of interconnected links

without repetition.) It follows the following two-stage procedure.

First, any non-Eulerian graph can be decomposed into a set of link-disjoint trails,

among which no two trails share the same link. The set of link-disjoint trails can

be identified via a sequential deletion procedure as follows. One can start from any

node and walk along the graph until he has to pass some link twice. The set of

passed links forms a trail, and are deleted from the graph. The same trail deletion

process is continued from any other node of non-zero degree until the graph is empty.

For example, in Fig. 2-16(a), the sequential deletion procedure results in two link-

disjointed trails in the non-Eulerian network, i.e., trail A-B-C-D-E-F-G-H-I-J-B and

trail C-M-L-K-J. Notice that the minimum number of link-disjoint trails is fixed

although the length of each trail might vary. It is desirable to keep each decomposed

trail long enough so that the loss of efficiency is insignificant.

104



(a) Non-Eulerian Graph

(b) Complete Graph M

Figure 2-16: Fault diagnosis for Non-Eulerian Graphs:
can be decomposed into a set of non-overlapping trails.
identify the minimum set of replicated links.

(a)Each non-Eulerian graph
(b)The complete graph M to
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Second, after the decomposition step, the run-length probing scheme can be ap-

plied to each link-disjoint trail sequentially. The network state is uniquely identified

after all the trails have been probed.

However, the decomposition could potentially penalize the performance of the

run-length probing scheme. In particular, the decomposition could potentially break

one sub-state Oil into two sub-states of 0i' and 0i-il on two link-disjoint trails. The

number of probes to identify sub-state Oi l is at least less than the number of probes

to identify two sub-states of 0"i and O"- i' l , where the additional number of probes

is upper bounded by 1. If the number of individual link-disjointed trails is nT , the

average number of probes per link is given by

R(p) _5 LRLPA - R7(p) + (2.40)
m

where R(p) is defined in (A.12). Since each link-disjoint trail reduces the number of

odd-degree nodes by two, one can conclude 15 that nT = no/2, where no is the number

of odd-degree nodes in the network, and thus the upper bound becomes R(p) +no/2m.

Specifically, it is possible to derive a tighter bound for the class of non-Eulerian

regular topologies considered in [29]. A graph is said to be regular of degree d if the

degrees of all the nodes are equal to d. For example, the d-nearest neighbors Graph,

the symmetric Hamilton Graph and the Moore Graph (with the fully-connected graph

as a special case) are the most popular regular graphs considered for all-optical net-

work architectures. The non-Eulerian property suggests that degree d is odd and

thus no = n. Notice that for a regular graph of degree d, the handshake property

suggests n/2m = 1/d. It follows that, for a non-Eulerian regular graph of degree d,

the average number of probes per link is given by

1
R(p) _5 2 RLPA RT(p) + . (2.41)

15 In [71], Theorem 1.2.33 states that, for a connected nontrivial graph with exactly 2k odd vertices,
the minimum number of trails that decompose it is max{k, 1).
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For cost-optimized architectures of all-optical networks with optical cross-connect

(OXC) switches, Guan and Chan [29] have recently shown that, under the assumption

of all-to-all uniform traffic, the optimal node degree d asymptotically approaches

infinity as the network size (in particular, the number of nodes) approaches infinity

while their ratio approaches zero. It follows that, for a cost-optimally architected all-

optical network, the upper bound in (2.41) converges to the lower bound, indicating

that the run-length probing scheme is asymptotically optimum for large non-Eulerian

regular networks with cost-optimized architectures.

2.6.2 Path-Augmentation Approach

An alternative approach converts the non-Eulerian graph into an Eulerian graph by

replicating a minimum set of links. It also exhibits a two-stage procedure.

First, in any network, one can replicate each link once along the shortest path

between any two nodes of odd degree to make their degrees even. The shortest

path between two odd-degree nodes is called as an augmenting path and the above

replicating operation as a path augmentation. Notice that the path augmentation

does not change the degree parity of any other nodes along the augmenting path

(specifically, their degrees are increased by 2.), but reduces the number of odd-degree

nodes in the network by two. Since the number of odd-degree nodes in a finite

network is always even due to the handshake property (i.e., the sum of node degrees

is even) [10], one can convert any non-Eulerian graph into an Eulerian graph via a

finite number of path augmentations.

Second, after the path-augmentation step, the run-length probing scheme can be

applied along the nominal Euler trail in the resulting Eulerian graph. Upon termina-

tion, all the link states have been identified except that a set of redundant links have

been probed more than once. If possible, to reduce the diagnosis effort, one can skip

those redundant links whose states have been identified previously.

Moreover, to save the fault diagnosis cost, one would like to minimize the num-

ber of replicated links resulted from the path-augmentation step, via the following
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minimum-weight perfect matching approach. This approach includes the following

four steps:

1. an all-pair shortest-path algorithm (for example, the Floyd-Warshall algorithm

[2]) is run to identify the set of all-pair shortest paths among the set of odd-

degree nodes in the original graph (e.g., six distinct shortest paths for the set

of odd-degree nodes A, B, C, J in Fig. 2-16(a));

2. a complete graph M(i.e., Fig 2-16(b)) is created with the set of odd-degree

nodes (i.e., A, B, C, J) and the weight of each link as the length of the shortest

path connecting the two nodes in the original graph (e.g., the weight of link AJ

is 2 because the shortest path connecting node A and node J in Fig. 2-16(a)is

A-B-J);

3. a minimum-weight perfect matching algorithm (a perfect matching of a graph

is a subset of links in the graph that touch all the nodes exactly once [2], which

can be identified by the Edmonds' blossom algorithm [2]) is run over graph

M to obtain a perfect matching (e.g., AJ, BC is the minimum weight perfect

matching in Fig. 2-16(b));

4. the original network G is augmented along the set of paths chosen by the resulted

minimum perfect matching except for the augmenting path with the maximum

weight, because a graph with two odd-degree nodes is Eulerian. As a result,

path B-C is augmented in Fig 2-16(a) via the dotted link.

The approach has two distinguished advantages. First, the augmented graph is

always Eulerian so that the run-length probing scheme is applicable. For example,

in the augmented graph of Fig. 2-16(a), we can identify a nominal Euler trail16 , i.e.,

trail A-B-C-D-E-F-G-H-I-J-B-C-M-L-K-J, which passes link B-C twice. Second, the

number of replicated links is usually small compared to the number of links in the

original network. Notice that the number of replicated links is 1 in our example,

16A Euler trail over a Eulerian graph can be found by first decoupling the graph into a set of
edge-disjoint cycles and then connecting them together. A formal proof of this algorithm can be
found in [10](page 17).
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which is significantly less than the number of links (14 in this case) in the graph.

This observation can be made rigorously for Non-Eulerian regular graphs as follows.

Specifically, for the set of non-Eulerian regular topologies considered for all-optical

networks in [29], in particular, the symmetric Hamilton Graph, one can obtain a

tight upper bound on the performance. Notice that each Hamilton graph contains a

Hamilton path (a path containing each node exactly once) of size n. One minimum

weight perfect matching consist of alternating edges along the Hamilton path, and

thus the number of replicated links is n/2. Hence, for a regular Hamilton graph

of degree d, the average number of probes per link under the path-augmentation

approach is bounded by

R(p) • 4RLPA 1Z (p) l+ ,  (2.42)

where R(p) is defined in (A.12). For cost-optimized architecture whose optimal node

degree asymptotically approaches infinity as the network size (in particular, the num-

ber of nodes) tends to infinity [29], the upper bound in (2.42) converges to the lower

bound, verifying that the run-length probing scheme is asymptotically optimum for

large non-Eulerian regular networks with cost-optimized architectures.

2.7 Network Transformation from Undirected Topolo-

gies to Directed Topologies

Another limitation of the run-length probing scheme is that it can only identify link

failures. However, in practical all-optical networks, node failures are also possible. In

this section, we will first introduce failure models for optical links and optical nodes

of all-optical networks, and then introduce a transformation that converts link/node

failures in original undirected network topologies into arc failures in transformed di-

rected network topologies. The transformation makes the run-length probing scheme

applicable for both link and node failures in all-optical networks.
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2.7.1 Optical Links and Link Failure Model

In optical networks, bidirectional communication between adjacent nodes is typically

achieved by means of two parallel optical fibers that propagate optical signals in

opposite directions. If connectivity is of interest, an optical link may be abstracted

as an undirected graph edge in an undirected graph. On the other hand, if physical

failures are of interest, an optical link is more appropriately modeled as a pair of

contra-directional arcs in a directed graph. In the following, the latter abstraction is

adopted.

It is assumed that each directed optical link fails independently with probability

of p (0 < p < 0.5) over an interval of time, which represents the time duration

between fault diagnoses. This assumption of statistical independence among failures

is reasonable when "normal" operation of the network is considered, because the

equipment (e.g., optical amplifiers and in-line filters, and etc) of each are operates

independently from the equipment of other arcs. In the event of a catastrophic

failure, however, this model is not applicable and other approaches to ensure network

reliability, such as lightpath diversity [66], can be used.

2.7.2 Optical Nodes and Node Failure Model

The model for optical nodes is based on all-optical switches that are responsible

for optically routing signals from input fibers to output fibers. Assume that each

network node of degree d is equipped with a d x d optical switch fabric, switching

the optical beam from each input port to any desired output port, as shown in Fig

2-17(a). It is further assumed that each input/output port of the optical switch

is equipped with a pair of low-cost transceiversl 7 (economically viable due to the

VCSEL technology [15]), whose state of health is locally monitored and reported to

the network management system upon polling. This research focuses on the active

17As a comparison, we assume that no such transceivers are equipped for optical amplifiers. Ac-
cordingly, we need to investigate the transmitter/receiver deployment for fault diagnosis in Chapter
4.
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(a) Switch Architecture

(d) (e)

Figure 2-17: Optical network node model: (a) an illustration of 4x4 optical switch
fabric; (b)-(e) an illustration of some non-blocking directed configurations of a 4x4
optical switch fabric.
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components (e.g., the mirrors in MEMS optical switches) in the switch fabric, which

could fail from manufacture defects and/or fatigue from normal use.

Under these assumptions, each node i of degree d with a d x d optical switch fabric

can be modeled by a directed bipartite graph, defined as follows:

1. d virtual input nodes correspond to all the input ports of the switch, denoted

as I, k = 1,2,..., d

2. d virtual output nodes correspond to all the output ports of the switch, denoted

as io, k = 1, 2,..., d;

3. Each virtual input node is connected to all the virtual output nodes via d

directed arcs, as shown in Fig. 2-17(a).

For each node of degree d, there exists d different mutually exclusive and collec-

tively exhaustive non-blocking directed configurations'8 , each comprising a set of d

directed arcs from input nodes to output nodes where no two arcs share the same

source/destination nodes. For example, Fig. 2-17(b)-(e) shows some of the possible

configurations for a node of degree 4. At any instance, the switch can take one and

only one non-blocking configuration. Therefore, one can use one sample non-blocking

directed configuration at a time to model the corresponding network node for the

purpose of fault diagnosis.

In an analogy to the link failure model, an independent failure model is assumed

for each configuration of the optical switch: each input-output connection in the

switch fabric fails independently with probability q (0 < q < 0.5). Using different

non-blocking configurations, one can create d different topologies to diagnose all the

connections in a regular graph of degree d. In this research, we would like to focus on

one instance of network topology and develop fault diagnosis schemes which can be

easily extended to all the different network topologies. This simplified node failure

1sNotice that the total number of non-blocking directed configurations is d!. The number of or-
thogonal non-blocking directed configuration is d, because the number of individual input-output
connections is d2 and the number of input-output connection in any non-blocking directed configu-
ration is d. In fact, one can obtain the set of d orthogonal non-blocking directed configurations by
following the same cyclic decomposition as illustrated in Fig. 2-17.
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Figure 2-18: An original undirected graph: the Euler trail is illustrated with a blue
dotted line.

model captures the essence of practical switching node failures, and more practical

node failure models can be addressed by appropriate extension of this simple model.

2.7.3 Network Transformation from Undirected Topologies

to Directed Topologies

The run-length probing scheme developed in section 2.4 can only diagnose link fail-

ures, whereas, nodes are also vulnerable to failures in practical all-optical networks.

To diagnose failures in all-optical networks with directed optical links and possible

node failures, a transformation can be used to convert node failures into link failures:

1. All the links of each node in the undirected topology are indexed with an integer,

as shown in Fig 2-18.
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(a) Non-Eulerian Transformed Graph

(b) Eulerian Transformed Graph

Figure 2-19: Transformation from undirected graphs into directed graphs: (a)Non-
Eulerian transformed graph and (b)Eulerian transformed graph.
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2. Each link (i, j) in the undirected graph is replaced by two directed arcs, i -- j

and j -- i , in opposite directions.

3. Each network node of degree d is replaced with an empty bipartite graph com-

prised of 2d nodes (i.e., two columns of indexed nodes without any arc connect-

ing them).

4. For each link (i, j) in the original graph, if its index in node i is k and its index

in node j is 1, the output node i° is connected to the input node jI with the

directed arc i -- j , and also the output node jo is connected to the input node

kI with the directed arc j i- .

5. For each node, an appropriate directed configuration is chosen such that the

transformed graph is Eulerian (details will be elaborated later in this section.)

Fig. 2-18 and 2-19 demonstrate how the network transformation described above

converts an undirected graph into a directed graph. In particular, Fig. 2-18 depicts

the original undirected graph, and Figures 2-19 depicts two different directed graphs

resulted from choosing different network node configurations.

The proposed transformation provides two properties that are crucial for applica-

tion of the run-length probing scheme.

First, the transformed directed graph can be made Eulerian or be decoupled into

a set of directed cycles. Upon transformation, each virtual node in the resulted graph

has a degree of 2 with one for in-degree and one for out-degree. It follows from

the Euler's Theorem19 [10] that the resulted graph contains one Eulerian trail or a

set of arc-disjoint disconnected cycles. Indeed, the existence of an Euler cycle in

the directed graph depends on how the configurations are chosen for all the network

nodes. As shown in Fig. 2-18, the original graph has an Euler trail of 4-2-3-4-1-2. The

directed graph in Fig. 2-19(b) is decomposed into two arc-disjoint cycles and is thus

non-Eulerian. Alternatively, in Fig. 2-19(a), the Eulerian property of the graph is

maintained by appropriately choosing the configurations of all the nodes. In general,

19A non-trivial connected graph has an Euler circuit if and only each vertex has even degree.

115



the set of appropriate node configurations for Eulerian graphs can be identified as

follows. After step 2 of replacing each link in the undirected graph with two parallel

directed arcs, the resulting directed graph has an Euler trail since the in-degree of

each node is equal to its out-degree. For example, in Fig. 2-18, the Euler trail passes

node 1 from its link 2 to its link 1. It follows that node 1 should be configured as the

cross state as in Fig. 2-19(a), instead of the through state as in Fig 2-19(b). As a

result, Fig. 2-19(a) is Eulerian, while Fig. 2-19(b) is non-Eulerian. In the former case,

the run-length probing scheme can be applied to the resulted directed Euler cycle to

identify all the failures. In the latter case, the run-length probing scheme can be

applied to each of the arc-disjoint cycles sequentially. In Section 2.6, we have shown

that the performance of the run-length probing scheme over a set of link-disjoint trails

is still close to the entropy lower bound. Therefore, the rest of our analysis focuses

on the case where the resulted graph is Eulerian, and the resulted obtained can shed

light onto the case of a set of arc-disjoint cycles 20 .

Second, through the proposed transformation, both links and nodes in the undi-

rected graph are mapped into directed arcs in the directed graph. Any directed arc

connecting two virtual nodes in different switches corresponds to a directed optical

fiber link in the all-optical network, which shall be called a link arc. Any directed arc

connecting two virtual nodes in the same switch corresponds to a switching compo-

nent (e.g., a MEMS mirror) in the all-optical network, which shall be called a node

arc (or equivalently switch arc). For an original undirected graph of m links and n

nodes and a chosen switch configuration, the directed graph has 2m links arcs, and

2m switch arcs. In this way, the transformation maps both link and node failures in

the original graph into arc failures in the transformed graph, which can be identified

by the run-length probing scheme as shown in the next section.
20However, we are not yet clear whether the performance is related to how we decompose each

node into a set of non-blocking configurations. For a node of degree d, the number of different
decompositions is (d - 1)!.
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q P r=p +.q-pq

Node Arc Link Arc Virtual Arc

Figure 2-20: A virtual are is formed by combining a node arc with an adjacent link
arc.

2.8 Run-Length Probing Schemes for All-Optical

Networks with Link/Node Failures

In this section, a four-stage process is proposed to employ the run-length prob-

ing scheme for fault diagnosis to practical all-optical networks with probabilistic

link/node failures through the proposed network transformation.

1. In the first stage, one can employ the transformation approach to obtain the

directed network topology, and then identify a directed Euler trail in the trans-

formed graph. Notice that link arcs and switch arcs appear alternatively along

any Euler trail. Without loss of generality, one can assume that the directed

Euler trail starts from a link arc and ends with a switch arc.

2. In the second stage, since the failure probability of each arc along the Euler

trail is heterogeneous, our proposed solution is to combine an adjacent switch

arc and link arc into a virtual arc with failure probability of r = p + q - pq.

This combination results in a directed Euler trail of length 2m, in which the

failure probability of each virtual are in the Euler trail is homogenous. Hence,

the run-length probing scheme is now applicable.

3. In the third stage, one employ the run-length probing scheme along the directed

Euler trail to identify all the faulty virtual arcs. For a reasonably large network,
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the average number of probes per virtual arc is approximately equal to:

Sarc(r), if 0 <r<3-v5
Larc= 1,i 2 (2.43)

where 7(r) is defined in (A.12). Note that when the virtual arc failure prob-

ability is higher than 3 (the golden ratio), the run-length probing scheme

always probes each virtual are individually. Hence, in this case, the average

number of probes per arc is always equal to 1.

After the third stage, among all the 2m virtual arcs, the average number of

failures is 2m(p + q - pq). If we find that one virtual arc fails, there are three

possible failure scenarios: (1) a single switch arc failure with probability of

(1 - p)q/r, (2) a single link arc failure with probability of p(l - q)/r, or (3) a

combined switch/link arc failure with probability of pq/r.

4. In the fourth stage, additional probes can be deployed, using the built-in lasers

in the optical switch, to determine which of the above three scenarios has oc-

curred for each faulty virtual arc. It can be shown that, if p > q, the switch

arc should be probed first, otherwise, the link arc should be probed first. Un-

der such a diagnosis strategy, the average number of additional probes for each

faulty virtual arc is given by:

C = 1 + min{ p , q}. (2.44)
rr

where the first term of 1 comes from the default probe, and the second term

comes from the case when the probe syndrome of the default probe is F and

then we have to probe the other arc.

The performance of run-length probing schemes can be obtained by combining our

efforts in first identifying all the faulty virtual arcs, and then determining the sources

of failure for each faulty virtual are. In particular, the average number of probes per
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Figure 2-21: The average number of probes per component is compared to the entropy
lower bound, for different value of p and q. The performance of the run-length probing
scheme is close to the entropy lower bound.

directed arc (or vulnerable component) is given as

1
IRLPA ~ [2m2arc + 2m(p + q - pq) C]4m

= [~arc (p + q - pq)Lc] (2.45)

Meanwhile, suggested by the fault-diagnosis/source-coding mapping, the average

number of probes per are is lower bounded by the information entropy of an individual

arc, i.e.,
1 (
1 RLPA -[Hb(p) + Hb(q)] = H(p, q), (2.46)22

where Hb(x) = - log2(x) - (1 - Z) log2(1 - x) is the entropy function.
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Figure 2-22: The probing algorithm inefficiency is plotted for different link arc failure
probability and switch arc failure probability pairs.
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The performance (2.45) is compared with the entropy lower bound (2.46) in Fig. 2-

21. An immediate observation from Fig. 2-21 is that the average number of probes per

arc is close to the entropy lower bound, as expected from the previous results on the

near-optimality of the run-length probing scheme. This observation also lends support

to the proposed approach to fault diagnosis involving network transformations. A

second observation, from Fig. 2-22, is that the probing algorithm inefficiency, which

is defined as the ratio between the number of additional probes compared to the

entropy lower bound and the entropy lower bound, i.e.,

(p, q) RLPA - H(p, q)
hp, q) = H )(2.47)

H(p, q)

increases as the difference between the link arc failure probability and the switch arc

failure probability increases. This can be understood as follows. When the difference

between p and q increases, one kind of failure occurs more likely than the other. The

general approach treats both the link arc failure and the switch arc failure equivalently.

As a result, one pay the penalty for not exploiting in the algorithm the fact that one

type of failure dominates the other. The third observation, from Fig. 2-22, is that

when p is equal to q and both approach zero, the probing algorithm inefficiency

converges to zero much slower than the link-failure case [68]. In this case, we have

r* = 2p - p2 . This can be shown as the following equation,

= [R(r*) + r*Cc] - Hb(p)

Hb(p)
- [R(r*) - Hb(r*)] + lr*c - Hb(p) Hb(r*)

Hb(r*) Hb(P)

S+ 1 r*c + 1 Hb(P) Hb(r*)
2 2Hb(r*) 2 Hb(r*) Hb(p)

e(r*) + - (2.48)
- log2r*

where limp-o Hb(*) = 2 and e > 1. As p -+ 0 , the first term in (2.48) approaches to

zero as indicated in (2.32), and the second term in (2.48) approaches zero. However,

the second term is much larger than the first term. It follows that the convergence to
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zero is much slower than the link-failure case. In fact, if p = q, the link/node failure

diagnosis problem is equivalent to the link failure diagnosis problem with twice as

many links. It would be better to treat switch arcs and link arcs on equal basis,

and thus employ the run-length probing scheme along an Euler trail of 4m links. The

combination of switch arcs and link arcs as virtual arc definitely sacrifices performance

when the failure probability is fairly low, because the two-stage probing procedure is

different from the optimal run-length probing scheme.

In summary, the numerical analysis suggests the following rules of thumb for

applying the run-length probing scheme to all-optical networks with probabilistic

link/node failures. First, when the link failure probability is equal to the switch

failure probability, it is better to treat them equivalently and employ the run-length

probing scheme over an Euler trail of 4m links. Second, when one type of failures

dominates, we should focus on the dominant type of failures. Finally, for all other

cases between the aforementioned two extremes, we should adopt the proposed virtual

arc approach.

Once we have finished one instance of the network topology, we can continue to

diagnose other instances of the network topology, with the additional knowledge of

all the link states. We can merge two virtual nodes connected by any link arc and

deploy the run-length probing scheme over the resulting graphs.

2.9 Summary

Optical switching, in replacement of electronic switching, of high data-rate lightpaths

at intermediate nodes has been widely touted as the key enabling technology for eco-

nomically scalable future data networks. Less widely acknowledged, however, are the

challenges with respect to fault detection and localization entailed by this replacement

of electronic switching with optical switching in future all-optical networks. Presently,

fault detection and localization techniques, as implemented in SONET/G.709 net-

works, rely on electronic processing at intermediate nodes for bit-level parity checks.

To adapt these techniques to all-optical networks, optical signals need to be tapped
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out at intermediate nodes for parity checks, which would significantly diminish the

cost advantages of optical switching.

In this chapter, we present new scalable fault-diagnosis approaches specifically

tailored to all-optical networks, with the objective of keeping the diagnostic effort

low. Instead of the passive paradigm based on parity checks, we propose a proactive

lightpath probe paradigm: carefully chosen optical probe signals are sequentially sent

along lightpaths in the network, and the network state of health is inferred via the

set of end-to-end measurements from lightpath probes. The design objective of our

proposed fault diagnosis schemes is to minimize the number of probes in order to

keep the network operating cost low.

We have initiated an information-theoretic approach to the fault-diagnosis prob-

lem. Specifically, we established a mapping between the fault-diagnosis problem in

network management and the source-coding problem in Information Theory, which

suggests an entropy lower bound on the minimum average number of probes re-

quired and an information-theoretic approach to translating efficient source coding

algorithms into efficient fault diagnosis schemes. Our results-including an asymp-

totically optimal probing scheme-provide insights into the reduction of fault man-

agement overhead costs for all-optical networks, as well as the relationship between

information entropy and network management.
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Chapter 3

Non-Adaptive Fault Diagnosis

Schemes

In parallel to Chapter 2 for adaptive fault diagnosis schemes, we investigate in

this chapter non-adaptive fault diagnosis schemes for all-optical networks1 . In non-

adaptive fault diagnosis schemes, all the lightpath probes are sent in parallel within

one step. Our design objective is to minimize the number of lightpath probes, so as

to keep the diagnostic effort low. Mathematically, the non-adaptive fault-diagnosis

problem can be cast as a special case of the group-testing-over-graphs problem, i.e.,

the problem of combinatorial group testing over graphs.

3.1 Introduction

Instead of the passive paradigm based on parity checks in SONET/G.709 networks,

we have proposed, in Chapter 1, a proactive fault diagnosis paradigm in [68]: optical

probing signals are sent along a set of lightpaths to test the health of the network, and

probe syndromes (i.e., results of the probes) are used to differentiate failure patterns.

The design of proactive fault-diagnosis schemes for all-optical networks, illustrated in

Chapter 1, bears two key objectives: (i) detecting faults quickly, and (ii) keeping the

'The content in this chapter is based on the joint work with Nicholas J.A. Harvey, Mihai Patrascu
and Sergey Yekhanin at CSAIL MIT., and has been published in [30].
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diagnosis effort low. The importance of objective (i) stems from the current SONET

standard [34], in which the 50-ms restoration time leaves little room for fault detection

and localization. This will probably be reduced further in future all-optical networks

to avoid large amount of data loss during a short period of communication disruption.

Hence, when parts of a network are malfunctioning, it is critical to locate and identify

these failures as soon as possible.

The two design objectives could be tightly related to two parameters of proactive

fault-diagnosis schemes (i.e., the number of lightpath probes and the number of diag-

nostic steps), as illustrated in Chapter 1. First, the number of lightpath probes could

serve as the manifestation of fault management effort. In particular, each probe

requires certain amount of effort in both network management/control plane (e.g.,

signaling) and data plane (e.g., transmission and detection) that otherwise could be

used to generate revenue. In addition, each probe results in one bit of management

information, whose transportation, storage and processing consumes additional net-

work resources. Second, under the assumption that each step takes approximately

equal amount of time to a first order, the number of diagnostic steps indicates how

fast the fault pattern could be identified. In this thesis, we exploit two alternative de-

signs for sending probes (i.e, adaptive probing, and non-adaptive probing) to balance

these two objectives.

Previously in Chapter 2, we have investigated adaptive fault diagnosis schemes

[68, 70, 69, 46], in which probing signals are sequentially sent to probe the health

of the network until the failure pattern is identified. Owing to its sequential nature,

successive probes can be chosen according to previous probe syndromes, and thus the

number of probes required is usually quite small and approaches to the theoretical

limit of the information entropy of the network state. We have shown in Chapter 2

that the average number of probes is lower bounded by the information entropy of

the network state. Based on information theoretic insights, we have also developed

the run-length probing scheme and proved its performance to be within 5% of the

entropy lower bound. However, the number of diagnostic steps might be quite large

for some network failure patterns and/or in some large networks.
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To keep the number of diagnostic steps small, in this chapter, we consider an

alternative non-adaptive approach [48] to diagnose failures in all-optical networks.

Instead of sending optical probing signals sequentially, a pre-determined set of probing

signals are sent in parallel to probe the network state of health. In addition, compared

to the probabilistic failure model (i.e., each link fails independently and no upper

bound on the number of failures) used in Chapter 2, we assume a worst-case failure

model in that the number of simultaneous failures is upper bounded by a constant.

Under such a framework, our design objective is to minimize the number of parallel

probes for non-adaptive fault diagnosis schemes, specifically by exploiting the fact

that the number of simultaneous failures is upper bounded. Practically, one would

not be able to make such a failure model assumption, because the upper bound on

the number of failures is normally unknown. We hope to shed some light on the more

practical case by investigating this idealised case2

In this chapter, we cast the non-adaptive fault diagnosis problem mathematically

as the problem of combinatorial group testing (CGT) on graphs. In the classical

group testing problem[20], defected samples are identified through a set of parallel

testings on different combinations of unknown samples. This field has a wide variety

of practical applications, such as HIV screening, DNA testing, MAC design, and much

more [17]. It has also been used in network management applications (see, e.g., [5]),

but only to a limited degree. We believe that CGT is a powerful tool that can be used

in a wide variety of network failure detection contexts, and we hope that our work will

inspire its use more widely. In the framework of group testing on graphs, the valid

tests are determined by the structure of a graph. In the all-optical network context,

this graph corresponds to the network topology, and the constraint on valid tests is

due to the obvious condition that lightpaths can only traverse interconnected edges.

To the best of our knowledge, this is a novel framework for CGT, and we believe that

it deserves further study. We formally analyze the number of tests needed for certain

interesting classes of graphs, and even arbitrary graphs (with performance depending

2In the idealised case, we can assume a genie who reveals the number of simultaneous failures to
the fault diagnosis scheme.
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on the topology). In some cases, we can derive the upper- and lower-bounds that

have the same order, on the number of tests needed. Our algorithms have a common

theme, which suggests a practical rule-of-thumb for efficient fault diagnosis schemes:

a fault-free sub-graph in the network topology should be identified, and used as a

"hub" to diagnose other failures in the network.

The remainder of this chapter is organized as follows. In Section 3.2, we present

the non-adaptive fault diagnosis problem. In Section 3.3, this problem is cast as the

combinatorial group testing problem on graphs. In Section 3.4, we describe algorithms

and lower bounds for various classes of regular network topologies: linear networks,

complete networks, grid networks. In Section 3.5, we consider trees and arbitrary

graphs, and obtain efficient algorithms when the diameter is small and/or the graph

does not have small cuts. Section 3.6 concludes this chapter.

3.2 Non-Adaptive Fault Diagnosis Paradigm

3.2.1 Permanent Link Failure Model

As in previous chapters, all-optical networks in this chapter are abstracted as undi-

rected graphs. An undirected graph G is an ordered pair of sets (V, E), where V is

the set of nodes, and E is the set of edges, which are unordered pairs of nodes. The

number of nodes is n and the number of edges is m. The terms links and edges are

used interchangeably in this chapter.

Moreover, we assume that links fail and nodes do not. Insights from this limited

case could facilitate to address fault diagnosis for both node and link failures. In

addition, this chapter consider a static failure model, i.e., an edge is either failed or

intact, and the failure status does not change over the period of diagnosis. Since it

is unlikely that numerous edge failures happen simultaneously, we assume that the

number of edges failures is upper bounded by a constant s(< m) at any instant. In

this chapter, it is generally allowed for s to be arbitrary, although the case of s = 1 is

often central. An alternative view of this combinatorial failure model is that network
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architects might be only interested in identifying up to some number of failures in

the network, and classifying any network state with more failures as one "big" failure

state.

3.2.2 Non-Adaptive Fault Diagnosis Schemes

In this chapter, network failures are detected and localized by sending optical probing

signals along certain lightpaths to determine the network's state. We assume that

a probe in the network corresponds to a walk (a sequence of adjacent edges, allow-

ing repetitions) in the corresponding graph. Physically, each probe corresponds to a

lightpath in the network. For example, a walk in the graph can constitute a sub-tree

in the graph as in Fig. 3-1(a), which can be translated to a lightpath in practical

all-optical networks as in Fig. 3-1(b). In Fig. 3-1(a), the network is abstracted as

undirected graph, whose nodes correspond to the optical switches and links corre-

spond to the optical fibers. In practical all-optical networks, each link represents two

parallel optical fibers transmitting signals in opposite directions. As shown in Fig.

3-1(b), we can replace each link in Fig. 3-1(a) by two directed arcs in opposite direc-

tions. In this way, each walk can be implemented as a probe by sending a diagnosis

signal along the directed lightpath, as illustrated in Fig. 3-1(b). Moreover, to avoid

the potential fiber loop lasing effect [37], a physically feasible probe must satisfy one

additional property: each network link is traversed at most once in each direction.

We call such a probe a permissible probe. The probes generated by fault diagnosis

algorithms in Section 3.4 and 3.5 are all permissible probes.

As in the adaptive fault diagnosis schemes presented in Chapter 2, when an optical

signal is sent along a given lightpath, the signal will arrive at the destination if all

edges along the lightpath are intact. Otherwise, if there is at least one failed edge on

the lightpath, the signal never reaches the destination (or the quality of the signal

is unacceptable). The result of each probe is called the probe syndrome, denoted as

r = 0 if the probing signal arrives successfully; and r = 1 otherwise.

A non-adaptive fault diagnosis scheme is a method for sending optical signals (i.e.,

probes) along a set of pre-determined lightpaths in parallel such that up to s edge
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(a) Permissible Probes

(b) Lightpath Probes

Figure 3-1: Lightpath probe model for non-adaptive fault diagnosis schemes: (a)any
walk over graph is a permissible probe, (b) a walk over undirected graph can be
implemented with a lightpath in practical all-optical networks.
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(a) Link-Wise Probing Scheme

AB BC CA (D
1 1 1 0 0
2 0 1 1 0

(b) Multi-Hop Probing Scheme

Figure 3-2: Two non-adaptive fault diagnosis schemes for the 3-node ring network,
with their associated diagnosis matrix. The number of simultaneous link failures is
upper bounded by 1.
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failures can be identified by examining the set of probe syndromes. For example,

as shown in Fig. 3-2, both sets of probes can identify any single edge failure. One

would prefer Scheme (b) to Scheme (a) since Scheme (b) uses less probes than Scheme

(a). Indeed, to keep the fault diagnosis effort low, we would like to develop efficient

non-adaptive fault diagnosis schemes using the minimum number of probes.

3.3 Combinatorial Group Testing on Graphs

In this section, we present the theoretical background on combinatorial group testing

(CGT) and its connection to the non-adaptive fault diagnosis problem.

The general CGT problem is defined as follows. Consider a set S of m elements,

each of which is either intact or failed. The maximum number of failed elements

is bounded by s, which is considered to be small relative to m. It is allowed to

perform group tests of the following form: specify a subset t C S, run the test on t,

and learn if there is at least one failed element in t. The objective is to discover all

faulty elements, while using the smallest possible number of group tests. It has been

pointed out in [20, 43] that the combinatorial group testing problem is isomorphic to

the superimposed code problem [36] in Information Theory. Interested readers could

refer to [36, 21, 22] for more in-depth description the superimposed code problem.

Let T*(m, s) denote the minimum number of non-adaptive group tests needed to

locate up to s failed elements in a set of size m. It is obvious that T*(m, s) < m,

since one can test each element individually. The total number of failure patterns

is N(m, s) = =10k (m), so the minimum number of probes3 needed to distinguish

between these patterns is at least log 2 N(m, s). Hence, log 2 N(m, s) < T*(m, s) <

m. In particular, if s = 1, the minimum number of non-adaptive probes needed is

bounded as follows:

log 2(m + 1) < T*(m, 1) < m. (3.1)
3 Given that T* (m, s) probes are deployed, the maximum number of distinguishable patterns is

2 T*(m s). This number must be larger than or equal to the total number of failure patterns of
N(m, s), i.e., 2 T *(m,s) > N(m, s). It follows that T*(m, s) > log 2 N(m, s).
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Table 3.1: Diagnosis matrix for the logarithmic testing procedure (LTP) with m = 7.
Columns correspond to elements to be tested, and rows correspond to tests.

01234567
100001111
200110011
3 01010101

For arbitrary s and sufficiently large m, it has been shown in [21, 23] that T*(m, s)

can be bounded 4 as,

82 log2 m(1 + o(1)) < T*(m, ) < s2 1og2 mlog2 e(1 + o(1)). (3.2)
2 log2 s

Any non-adaptive combinatorial group testing algorithm with T(m, s) tests can be

expressed as a testing matrix C with T(m, s) rows and N(m, s)columns, where each

row corresponds to a group test and each column corresponds to a failure pattern.

One can set cij = 0 if group test i would fail under failure pattern j; otherwise, cjj = 1.

As a simple illustration, consider the case of s = 1 and m = 7; the testing matrix

is shown in Table 3.1. In this case, the algorithm performs three group tests. The

elements involved in these tests are respectively {4, 5, 6, 7}, {2, 3, 6, 7} and {1, 3, 5, 7}.

If element i has failed, the results of the tests are identical to column i, which is the

binary representation of i. If no element has failed, all tests return zero. Thus

T(7, 1) = 3, which corresponds to the lower bound of (3.1).

A similar construction yields an efficient procedure to find a single failed element

in any group of m elements. This procedure plays an important role in the fault

diagnosis algorithms of Section 3.4 and 3.5. The construction involves a matrix with

[log(m + 1)] rows (corresponding to the tests) and m + 1 columns (corresponding to

the m+ 1 possible failure patterns). Column 0 corresponds to the scenario in which all

elements are intact, and column i (i = 1,... , m) corresponds to the scenario in which

4 f(n) = O(g(n)) means that there exists a constant c and integer N such that f(n) • cg(n) for
all n > N. f(n) = Q(g(n)) means g(n) = O(f(n)). f(n) = e(g(n)) means both f(n) = O(g(n))
and g(n) = O(f(n)).
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the element i has failed. We set column i of the matrix to be the binary representation

of i. Each row corresponds to a group test which tests the subset of objects which

have a 1 entry in the row of the diagnosis matrix. It is easy to see that if item i

has failed then the outcome of the tests will be precisely the binary representation

of i. In the rest of this chapter, we refer to this procedure as the logarithmic testing

procedure (LTP).

The non-adaptive network fault diagnosis problem can be formulated as a non-

adaptive combinatorial group testing problem, under some additional constraints. In

particular, in this formulation of the non-adaptive fault diagnosis problem, there are

up to s edge failures among the set of m network edges. A set of permissible probes

are sent concurrently to test whether any edge of the corresponding walk has failed. It

follows that the non-adaptive fault diagnosis problem is equivalent to a non-adaptive

combinatorial group testing problem, under the constraint that the group test can be

performed only if it corresponds to a permissible probe. This variant of CGT is called

the problem of combinatorial group testing on graphs. This chapter addresses the non-

adaptive fault diagnosis problem by proving several results concerning combinatorial

group testing on graphs.

3.4 Efficient Fault Diagnosis for Regular Networks

In this section, we present efficient non-adaptive fault diagnosis algorithms for network

topologies with different classes of regular graphs, and characterize the minimum

number of non-adaptive probes required to identify up to s failed edges in graph G.

The minimum number of non-adaptive probes required is denoted as L*(G, s).
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3.4.1 Networks with Line or Ring Topologies

Line topologies5 are used mostly for distribution networks in optical networks. Ring

topologies are also widely used and are largely similar to linear networks, from a fault

diagnosis perspective.

Consider a line network consisting of n nodes, indexed by integers 0, 1,..., n - 1.

The edges are {i, i + 1} for 0 < i < n - 2. For line networks, one can establish the

following result.

Theorem 3.1. The minimum number of non-adaptive probes to locate up to a single

edge failure in a line network of n nodes, denoted as L*(G, s = 1), is precisely [n/2],

i.e.,

L*(G, s = 1)= [n/ 2] = 8(n). (3.3)

Proof. Let t be an arbitrary probe in a line network. Let a be the node with the

smallest index that is contained in t , and b be the node with the largest index

contained in t. Note that probe t is equivalent to a path from node a to node b. One

can use the notation t = [a, b] and call a(b) the head (tail) of t.

First, consider the lower bound of L*. Let P = {tl,..., tl} be a set of probes that

can detect a single edge failure. Suppose 2L* < n; then there exists a node i that is

neither a head or a tail of any test tj. Considering the following two cases:

* i = 0 or n- 1: In this case, no probe tj includes an edge that is adjacent to node

i. Therefore, the probe algorithm cannot identify whether the edge adjacent to

node i has failed or not.

* 1 K i < n - 2: In this case, every test tj either contains both edge {i - 1, i}

and edge {i, i + 1}, or contains neither. Therefore, the probe algorithm cannot

distinguish between the case when edge {i - 1, i} has failed and the case when

edge {i, i + 1} has failed.

In both cases, one can arrive at a contradiction and conclude that is a necessary

condition.
5Strictly speaking, line graphs are not regular. However, they can be approximated by ring

graphs that are regular.
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(a) Even Number of Nodes

(b) Odd Number of Nodes

Figure 3-3: Optimal fault-diagnosis schemes for line networks with different number
of nodes: (a)Even number of nodes, and (b) Odd number of nodes.

136

I 'I



Now, let us proceed to the upper bound of L*. Consider the probe test tj , where

tj = [j, i + [n/2J for 0 < j 5 [n/2] - 1, as illustrated in Fig. 3-3 for n = 6 (see Fig.

3-3(a)) and n = 7 (see Fig. 3-3(b)). Clearly, every edge e belongs to some test tj.

Therefore all one needs to show is that, for every pair of edges el 5 e2 , there is a test

tj that contains exactly one of the edges. This will imply that, given all the probe

syndromes, one can locate the faulty edge or decide that no failure has occurred. Let

el = [t1, hi] and e2 = [t2 , h2]. Without loss of generality, we assume hi 5 t2 . Consider

the following two cases:

* hi _> [n/21: In this case, the test [hi - Ln/2J, hi contains el but not e2.

* hi < En/2] In this case, either the test [hi, hi+ Ln/2J] or the test [[n/2] -1, n-1]

contains e2 but not el.

This completes the proof. O

This O(n) bound for line networks is much larger than the lower bound of log(n)

in (3.1). Intuitively, the low connectivity of the line/ring network topology restricts

the possible tests to such an extent that testing becomes inefficient. Note that with a

line network, s becomes irrelevant (one can handle any s with m = n - 1 probes). It

can be shown that the same result can be proved for ring networks by simply cutting

the ring network into a line network at any node.

3.4.2 Networks with Fully-Connected Topologies

This sub-section deals with the non-adaptive fault diagnosis problem for all-optical

networks whose topologies are fully-connected (i.e., complete graphs). For a topology

of n nodes, denoted K,, each node is connected to all other nodes in the network,

resulting in m = n(n- 1)/2 edges in the network. The case n = 5 is illustrated in Fig.

3-4. For such a network, we have followed a "trial-and-error" approach to develop an

optimal non-adaptive fault diagnosis algorithm, as illustrated in Algorithm 2.
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Figure 3-4: The complete graph with n = 5, where node v and its neighborhood are
used to route probes.

Algorithm 2 Testing for a single failure in complete networks
Step la:
Arbitrarily pick a node v and define its neighborhood sub-graph b(v) as the n - 1
edges that connect it to all other nodes. As shown in Fig. 3-4, the neighborhood
is a star centered at node v.
Step ib:
Perform the LTP on the sub-graph b(v). Each LTP test becomes a valid probe due
to the star topology.
Step 2:
Perform the LTP on the subgraph obtained by deleting node v. The sub-graph
b(v) is used to route the probes as needed.
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Notice that, although we separate the probes into different steps, all the probes

are actually sent out in parallel. The correctness 6 of Algorithm 2 can be proved as

follows. If the network topology did not impose any constraints on the choice of

probes (that is, if an arbitrary subset of edges formed a permissible probe), then one

could directly apply the LTP procedure, using the individual edges as elements to

be tested. Unfortunately, the topology restricts the choice of probes to sequences of

adjacent edges, so the probes are chosen more carefully. At a high level, the approach

is first to identify a fault-free sub-graph, then to use this sub-graph to route the

probes for an LTP procedure.

Theorem 3.2. O(log n) probes are necessary and sufficient to identify a single edge

failure in a fully connected network with nodes.

Proof. Algorithm 2 uses two LTPs, of size n - 1 and size (n - 1)(n - 2)/2 respectively,

and therefore the total number of probes required is O(log n). Combining this result

with the lower bound of (3.1), one can establish that 8(log n) probes are necessary and

sufficient to identify a single edge failure in a fully connected network with nodes. []

3.4.3 Networks with 2-D Grid Topologies

The sub-section considers two-dimensional grid networks7 of size V/- x V-n. Such

structures are also commonly used as interconnection networks [39]; in the context

of all-optical networks, they are sometimes called Manhattan Networks. Fig. 3-5

illustrates the case of n = 25. Using a "trial-and-error" approach, we have developed

an optimal non-adaptive fault diagnosis scheme for 2-D grid networks, as illustrated

in Algorithm 3. Notice that, although there are different steps in the algorithm, all

the probes are sent out simultaneously.

The correctness of Algorithm 3 is shown in Appendix B.1. As with Algorithm 2,

the strategy is first to identify a fault-free sub-graph (either column 1 or row 1), and

6In theoretical computer science, correctness of an algorithm is asserted when the algorithm does
what it is supposed to do, with respect to a specification.

7 Strictly speaking, 2-D grid graphs are not regular, but they can approximated by 2-D torus
graphs that are regular.

139



(a) (b)

(c) (d)

Figure 3-5: (a) A 2-D grid with 25 nodes. If at most 7 failures are allowed, then the
failure of edge e cannot be detected efficiently by non-adaptive tests. (b) A single
probe to test edge 1 and edge 3 on Column 1. (c) A single probe to test Column 2
and Column 4. (d) Single probe to test the 2nd edge on all rows and the 4th edge on
all rows.
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Algorithm 3 Testing for a single failure in 2-D grid networks
Step la:
Test all edges in column 1 using a single probe.
Step ib:
Perform the LTP on the edges in column 1 using edges between column 1 and
column 2 and edges in column 2 to route the probes as necessary. Fig. 3-5(b)
illustrates a single probe to test edge 1 and edge 3 in column 1, numbering the
edges in increasing order from top to bottom.
Step 2a:
Test all edges in row 1 using a single probe.
Step 2b:
Perform the LTP on the edges in row 1 using edges between row 1 and row 2 and
edges in row 2 to route the probes as necessary. (This is similar to Step lb.)
Step 3a:
Perform the LTP on row 2 through row Vi-. This step differs from Steps lb and
2b in that an entire row is treated as a single element for testing purposes. The
edges in column 1 are used to route between rows. Fig. 3-5(c) illustrates a single
probe to test row 2 and row 4.
Step 3b:
Perform the LTP on the individual row edges (the elements are sl, ... , s,, where
si = {ithedge of rowj : 2 < j < Vn} ). The column edges and the edges of row 1
are used to route between rows. Fig. 3-5(d) illustrates a single probe to test the
2nd edges in all rows and the 4th edge in all rows.
Step 4a:
Perform the LTP on column 2 through column V-S, in a manner analogous to Step
3a.
Step 4b:
Perform the LTP on the column edges, in a manner analogous to Step 3a.
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then to use the fault-free sub-graph to route the necessary probes required by the

LTPs.

Theorem 3.3. O(log n) probes are needed to identify a single edge failure in a 2-D

grid network of size xiY x /jn.

Proof. Algorithm 3 uses only 6 LTPs, each over a set of n elements, plus two

additional probes. It follows that the total number of probes used is only O(log n).

Combining this result with the lower bound of (3.1), we have established that 8(log n)

probes are needed to identify a single edge failure in a 2-D grid network of size

In general, if multiple failures can occur simultaneously, more probes are needed.

This phenomenon can be intuitively explained as follows. An edge e can hide behind

a small cut which separates it from the rest of the network. If all the edges of this

cut have failed, the only way to test whether edge has also failed is to probe the edge

by itself. Theorem 3.4 explains this phenomenon formally.

Theorem 3.4. If at least 7failures can occur, e(n) probes are needed to identify all

the edge failures in a 2-D grid network.

Proof. As illustrated in Fig. 3-5(a), the minumum cutset that separates any single

edge (e.g., edge e) has an order to 6. If all the edges in the cutset have failed, the

only way to test whether edge e has also failed is to probe edge e itself. However,

the identity of edge e is not known when the algorithm chooses its probes, due to

the non-adaptive nature of the algorithm. Therefore, the algorithm can only know

whether edge e has also failed if it performs Q(m) = Q(n) probes. Combining this

with the upper bound of (3.1) completes the proof. ED
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3.5 Efficient Fault Diagnosis for Arbitrary Topolo-

gies

Efficient testing algorithms for arbitrary graphs and trees are presented in this section.

The algorithms depend on the diameters and/or the edge connectivity 9of the graph.

On practical networks, one would expect the diameter to be relatively small, and the

connectivity to be large (for failure resilience).

3.5.1 Networks with Well-Connected Topologies

As shown in Section 3.4, identifying multiple failed edges in some networks (e.g., 2-D

grid networks) requires exponentially more probes than required for a single failed

edge. This high complexity is caused by edge failures that can hide behind small cuts.

One might conjecture that this phenomenon does not occur in graphs with sufficiently

high connectivity. The following theorem proves such a result.

Theorem 3.5. If a graph G contains s + 1 edge-disjoint spanning trees10 , the min-

imum number of non-adaptive probes required to identify up to s failed edges, i.e.,

L*(G, s), is bounded by T*(m, s) < L*(G, s) < O(s -T*(m, s)), where T*(m, s)is as

defined in Section 3.3.

Proof. The lower bound is immediate since the non-adaptive fault diagnosis prob-

lem is polymorphic to the combinatorial group testing problem with an additional

restriction on the feasible probes.

Let us proceed to the upper bound now. If the graph G contains s +1 edge-disjoint

spanning tree, at least one of the spanning trees, call it GT, contains no edge failures

according to the Pigeon Hole Principle. A single probe suffices to test if all edges of a

tree are intact, therefore one can identify GT using only s + 1 probes. As illustrated

in Fig. 3-6, for every non-tree edge {u, v} (Fig. 3-6(a)), one can create a virtual node

sThe diameter of a graph is the maximum shortest distance between any two nodes in the graph.
9Edge-connectivity means the minimum cardinality of any subset of edges whose removal discon-

nects the network.
10A spanning tree of a graph is an acyclic sub-graph containing all the nodes.
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(a) Spanning Tree

0 O

V)

(b) Non-tree Edges Transformation

Figure 3-6: Transformation from non-tree edges in the original graph into tree-edges
in the new graph.
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v'and replace {u, v} with {u, v'} (Fig. 3-6(b)). After this transformation, all non-tree

edges are at the bottom of GT, i.e., they have height zero.

Now consider these non-trees edges as the elements to be tested, and one can use

any CGT algorithm to test them by using the fault-free spanning tree GT as the hub.

Pick a root for GT arbitrarily; one can think of the CGT algorithm as running at this

root node. By the choice of GT, the path from the root to each of the non-tree edges

contains no failures. The CGT algorithm produces a sequence of tests, each of which

specifies a set of elements to test. For each such set, one sends a probe from the root

node which traverses the tree and visits only the non-tree edges in the specified set.

Therefore a probe fails if and only if one of the elements in the corresponding CGT

test has failed. The results of these probes are returned to the CGT algorithm, and

it identifies the failed edges.

To summarize, the optimal non-adaptive CGT algorithm can be applied to the

set of non-tree edges, using the edges of GT to route from the root to the non-tree

edges. This approach uses O(T*(m, s)) probes. Since we have to perform these tests

for all s + 1 trees, O(T*(m, s)) probes are sufficient. OE

We now illustrate this theorem by comparing it to our earlier results. A 2-D grid

network has edge-connectivity 2, since the corner nodes have degree only 2. Therefore

Theorem 3.5 yields no result for 2-D grids. On the other hand, consider a 2-D torus,

i.e., a grid in which the edges wrap around. Such a graph is shown in Fig. 3-7(a). Any

2-D torus has edge connectivity 4, so it has two disjoint spanning trees. An example

of two spanning trees in a 2-D torus is shown in Fig. 3-7(b). As consequences of

Theorem 3.5, one can have the following two corollaries.

Corollary 3.1. In a 2-D torus with m edges, e(log m)probes are sufficient to identify

a single edge failure.

Proof. A 2-D torus has two edge-disjoint spanning tree, as illustrated in Fig. 3-7.

When s = 1, the number of probes required is bounded by

T*(m, s = 1) _ L*(G, s = 1) < 0(1 - T*(m, s = 1)). (3.4)
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(a)

A A

(b)

Figure 3-7: (a)A 2-D torus of size 4x4. (b)
in the 2-D torus.

Two edge-disjoint spanning trees contained
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This suggests that L*(G, s = 1) = E(T*(m, s = 1)). From the definition of LTP, we

know that T*(m, s = 1) = E(log m). It follows that L*(G, s = 1) = O(log m). O

Corollary 3.2. In a complete (i.e., fully connected) network with n nodes, O(s

T*(m, s)) probes are sufficient to identify up to s < (n - 3)/2 failed edges.

Proof. According to the Tutte-Nash-Williams theorem [42, 62], a graph with edge

connectivity of at least 2(s + 1) has at least s + 1 edge-disjoint spanning trees.

For a fully-connected graph with n nodes, the node degree is n - 1. This corollary

follows from Theorem 3.5 by having n - 1 > 2(s + 1). O

Theorem 3.5 also suggests the following general paradigm for applying classical

CGT procedures (such as LTP) to combinatorial group testing problems on graphs.

* Preprocessing

1. Identify s + 1 edge-disjoint connected sub-graphs. Each sub-graph will be

used in turn as a "hub" to reach the edges of the graph outside itself.

2. For each hub, use a CGT algorithm to generate tests for the set of edges

outside it.

* Probing the network non-adaptively

3. For each hub, verify that its edges are intact.

4. For each hub, each test from Step 2 is implemented by a permissible probe

as follows: the probe traverses the interior of the hub, and steps out only

onto the neighboring edges that are to be tested. Note that, assuming the

hub is intact, the probe fails if and only if one of the edges to be tested

has failed.

* Diagnosis

5. Since there are at most s failures and s + 1 edge-disjoint hubs, at least one

contains no failed edge. Such a hub can be identified based on the results

of Step 3. All other hubs are ignored by the diagnosis algorithm.
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6. Run the CGT algorithm on the results of Step 4 for the good hub, thus

identifying all failed edges.

It can be seen that Algorithm 2 is a special case of this general procedure with

s = 1. Similar fault diagnosis algorithms can be designed for other regular networks

of degree d.

3.5.2 Networks with Tree Topologies

In this subsection, we consider networks with tree topologies, and obtain bounds in

terms of the diameter D.

Theorem 3.6. For any tree GT , when s = 1 , we have:

Q(log n) < L*(GT, 1) < O(D - log n), (3.5)

where D is the diameter of the graph GT.

The proof of Theorem 3.6 is given in Appendix B.2.

3.5.3 Networks with Arbitrary Topologies

In this sub-section, we address the fault diagnosis problem for networks with arbitrary

topologies. The main result is summarized as follows.

Theorem 3.7. If a graph G contains s edge-disjoint spanning trees T1,..., T, then

the minimum number of non-adaptive probes to identify up to s failed edges is upper

bound by

L*(G, s) < O(s -T*(m, s) + L*(Ti, s = 1)). (3.6)
i=1

Proof. Under the given assumptions, one of the following statements must be true:

1. there is exactly one failure in each of the spanning tree;

2. there is at least one spanning tree having no edge failure, while some spanning

tree has multiple failures.
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For Case 1, one can use L*(Ti, s = 1) probes to find the failure in the spanning

tree Ti. For Case 2, we can use the fault-free spanning tree as a hub to diagnose at

most s failures among the remaining edges, by using the non-tree edge transformation

illustrated in the proof of Theorem 3.5. This needs T*(m, s) probes. Since the fault-

free tree is unknown beforehand, we need to do it to all the spanning trees. Thus the

total number of probes required in this case is sT*(m, s). O

Theorem 3.7 implies an upper bound for arbitrary graphs as follows.

Corollary 3.3. For an arbitrary graph G and s = 1 , we have:

L*(G, 1) < O(D + log2 n), (3.7)

where D is the diameter of the graph.

Proof. Choose the spanning tree to be a shortest path tree from an arbitrary starting

node. This guarantees that the depth of the tree is at most the diameter of G. It

follows from Theorem 3.6 that L*(Ti, s = 1) = O(D + log 2 n) and from the LTP that

T*(m,s = 1) = log n. D

3.6 Conclusion

In this chapter, we focused on the proactive fault-diagnosis framework, in which a

set of probes are sent along lightpaths to test whether they have failed; the network

failure pattern is identified using the results of the probes. In particular, a non-

adaptive probing design, where all the probes are sent in parallel, are investigated.

The key objective of our design is to minimize the number of probes sent, in order to

minimize the diagnostic effort.

The non-adaptive fault diagnosis problem for all-optical networks is equivalent to

the combinatorial group testing problem on graphs. In the latter problem, probes

can only be sent over walks over the graph, and therefore such probes correspond to

lightpaths in all-optical networks. Under this framework, we develop in this chapter
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develops efficient fault diagnosis algorithms for different classes of network topologies.

In particular, we assume an upper bound on the number of simultaneous link failures

and exploit this fact to obtain upper and/or lower bounds on the number of non-

adaptive lightpath probes needed and derive optimal or near-optimal non-adaptive

fault-diagnosis schemes for different classes of network topologies. The non-adaptive

fault diagnosis algorithms proposed in this chapter share a common theme: a fault-

free sub-graph should be identified in the network and serve as a hub to route other

necessary probes to diagnose failures in the network.

Our research in this chapter has some limitations. First, we assumed that the

number of simultaneous link failures is upper bounded by a known number s. In

practical optical networks, this number is normally unknown, in which case the so-

lution would be to test each individual link. Our rationale is that the number of

simultaneous link failures cannot be too large for a reasonably reliable network. Sec-

ond, under the non-adaptive fault-diagnosis paradigm, we provided solutions only

to a limited set of topologies, including ring, tree, 2-D grid, well-connected graphs.

Future work should focus on extending this framework to more generalized mesh net-

works. Finally, we had not fully exploited the connection between the non-adaptive

fault-diagnosis problem and the superimposed code problem. A deeper understand-

ing of this connection could potentially reveal more insights about the non-adaptive

fault-diagnosis problem.

Although this research was presented in the context of all-optical networks, we

believe that our methods based on combinatorial group testing on graphs can be

employed in other network contexts to solve fault diagnosis problems.
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Chapter 4

Hardware Provisioning for

Proactive Fault Diagnosis Schemes

This chapter addresses the diagnostic hardware cost for proactively fault diagnosis

schemes, i.e., the diagnostic transmitter/receiver (Tx/Rx) cost'. Our investigation

suggests that the hardware cost can be reduced significantly by accepting a small

amount of uncertainty about failure status.

As pointed in Chapter 1, we are interested in two design metrics for the proac-

tive fault-diagnosis schemes: i) the diagnostic effort (i.e., the number of lightpath

probes) and ii) the diagnostic hardware cost (i.e., the number of transmitters and

receivers for diagnosis purpose. Previously in Chapter 2 and 3, we have established

a theoretical framework to minimize the number of lightpath probes and have devel-

oped asymptotically optimal fault diagnosis schemes to keep the diagnostic effort low,

[68, 69, 70]. At the same time, due to the unique cost structure of optical networks2 ,

the hardware cost, i.e., Tx/Rx pairs needed to transmit and detect optical probing

signals, contributes a significant portion of the fault-diagnosis cost. In this chapter,
1The content in this chapter has been accepted to 2008 IEEE International Conference in

Communications [67].
2In optical networks, transmitters and receivers are usually expensive. The price of an optical

transmitter could range from a few hundred dollars (for single fixed wavelength) to several thousand
dollars (for wide-band tunable lasers).
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1 2

4 3

Figure 4-1: A motivational example: the trade-off between the cumulative diagnos-
ability probability and the number of nodes equipped with diagnostic Tx/Rx pairs.

we aim to characterize this Tx/Rx hardware cost and understand its implications on

practical network design.

In particular, we develop a probabilistic framework to investigate the diagnostic

Tx/Rx cost for the proactive fault diagnosis paradigm. As a benchmark, we first

show that all the network nodes should be equipped with diagnostic Tx/Rx pairs in

order to identify all possible network states. This result prompts us to investigate

the impact on diagnosis performance when only a small fraction of nodes is equipped

with diagnostic Tx/Rx pairs. Our analytical results suggest a trade-off between the

number of nodes equipped with diagnostic Tx//Rx pairs and the diagnosis capability.

The metric we employ for the diagnosis capability is the probability of all identifiable

network states, defined as the cumulative diagnosability probability. This trade-off

can be illustrated via the following example.

Consider a line network with 3 nodes and 4 directed arcs, where nodes do not

fail and arcs fail independently with probability p, as illustrated in Fig. 4-1. First,

if only one node is equipped with a Tx/Rx pair (either A, B or C), one can only

diagnose the network state with zero arc failure, and the cumulative diagnosability

probability is (1 - p)4 . Second, if two nodes are equipped with Tx/Rx pairs (e.g.,

node A and C), the identifiable network state set 3 is {1, {1}, {2}, {3}, {4}, {1,2},

{3,4}, {1,4},{2,3}}, where (D denotes the network state with zero arc failures and 1

denotes the network state with arc 1 failure, and so on. In this arrangement, only a

subset of the network states with two arc failures can be uniquely identifiable. The
3A formal proof of this result will be presented in a generalized case in Section 4.2.
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cumulative diagnosability probability is (1 - p)4 + 4p(l - p)3 + 4p2(1 - p)2 . Finally,

if all the nodes are equipped with diagnostic Tx/Rx pairs, any network state can be

identified and thus the cumulative diagnosability probability is 1. It is evident from

this example that the cumulative diagnosability probability increases as the number

of nodes equipped with Tx/Rx pairs increases.

This example suggests an opportunity to reduce the diagnostic cost, especially the

diagnostic Tx/Rx hardware cost, by accepting a reduced cumulative diagnosability

probability. In particular, when the network is relatively reliable, only a small fraction

of nodes equipped with Tx/Rx pairs is needed to provide a high diagnosis fidelity. It

follows that a significant portion of the worst-case fault diagnosis hardware cost can

be saved in exchange for an acceptable amount of uncertainty about the network's

state.

This chapter is organized as follows. In Section 4.1, we present the proactive fault

diagnosis architecture for all-optical networks including the network model, the fault

diagnosis cost model, and the probabilistic analysis framework. In Section 4.2, we

derive the cumulative diagnosability probability for any ring network by decompos-

ing the network into a set of canonical linear networks with Tx/Rx pairs at both

end nodes, and characterize the trade-off between the number of nodes equipped

with Tx/Rx pairs and the cumulative diagnosability probability for ring networks.

In Section 4.3, the trade-off for mesh networks is characterized via two alternative

approaches: the cutset-based approach and the Euler-Trail-based approach.

4.1 Proactive Fault Diagnosis Architecture for All-

Optical Networks

4.1.1 Fault Diagnosis Model

In this section, we present some highlights of the fault-diagnosis model that are im-

mediately related to this chapter, including the topology model, the network failure

model and the lightpath probing model.
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(a) Undirected Graph (b) Directed Graph

Figure 4-2: Network topology for all-optical networks: (a) undirected graph, and
(b) directed graph. Each undirected link in the undirected graph is replaced by two
directed arcs in the opposite directions, to illustrate bidirectional connection between
adjacent nodes.

In general, all-optical networks are abstracted as undirected graphs. An undi-

rected graph G is a pair of sets (V, E) , where V is the set of network nodes of size

n, and E is the set of optical links of size m. For example, Fig. 4-2(a) illustrates

an optical network with 6 nodes arranged in a ring structure. However, in practice,

connections between adjacent nodes are bidirectional and are usually achieved via two

parallel optical fibers transmitting optical signals in opposite directions. To capture

this practical constraint, we replace each undirected edge in the undirected graph

with two directed arcs in opposite directions. It follows that the original undirected

graph is transformed into a directed graph, as illustrated in Fig. 4-2(b). The number

of arcs in the directed graph is 2m .

We assume in this chapter that nodes are invulnerable (the node failure case can be

investigated via similar approaches as in [69]), and that arcs fail independently with

probability p (0 < p < 0.5). Moreover, we assume that the state of an individual arc

does not change over the duration of the fault-diagnosis process. Therefore, each arc

state can be modeled by a Bernoulli random variable, taking value 1 with probability

p for arc failure, and value 0 with probability 1 - p for no failure. A network state
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s E S is referred to as a realization of all arc states, where S = {0, 1}2m denotes the

set of all possible network states.

To detect and localize possible arc failures, we adopt the adaptive fault-diagnosis

paradigm, based on the proactive lightpath-probe mechanism developed in [68, 69, 70].

In particular, optical probing signals are sequentially sent along a set of permissible

lightpaths in the network and network failures are identified through the set of probe

results. The result of each probe is called the probe syndrome, denoted as rt = 0 if all

the arcs along the probed lightpath are UP (no failure) and the probe signal arrives

successfully; and rt = 1 if any of the arcs along the probed lightpath is DOWN (at

least one failure) and the probe signal never reaches the destination.

4.1.2 Design Metrics for Fault Diagnosis Schemes

As illustrated in Chapter 1, we are interested in two design metrics for fault diag-

nosis schemes: the diagnostic effort (i.e., the number of lightpath probes) and the

diagnostic Tx/Rx hardware cost. Optical Tx/Rx pairs are used in the data plane

for probe transmission and detection. This part of the diagnostic cost is a one-time

cost and is proportional to the number of nodes equipped with diagnostic Tx/Rx

pairs. The diagnostic effort indicates the effort expanded to scheduling, transmitting

and detecting optical probes and reporting probe syndromes. The diagnostic effort is

recurring and is proportional to the number of lightpath probes deployed to identify

the network state.

For each design, there is some trade-off associated with it. When the diagnostic

effort (i.e., the number of lightpath probes) is of interest, we characterize a trade-off

between the diagnostic effort (i.e., the number of lightpath probes) and the diagnostic

delay (i.e., the number of diagnostic steps), via exploiting three alternative diagnosis

paradigms in Chapter 2 and Chapter 3. In this chapter, our concern is to minimize the

diagnostic Tx/Rx cost (i.e., the number of nodes equipped with diagnostic Tx/Rx

pairs). Specifically, we will investigate a trade-off between the fraction of nodes

equipped with diagnostic Tx/Rx pairs and the cumulative diagnosis probability (i.e.,

the probability of successful diagnosis).
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4.1.3 Probabilistic Analysis Framework

To identity all possible network states, any fault diagnosis scheme has to diagnose

the network state with all the arcs failing simultaneously. This, in turn, requires

the diagnosis scheme to be able to probe each directed arc individually, which can

be achieved only if each node in the network is equipped with a pair of diagnostic

transmitter and receiver. It follows that, for a network of n nodes and m links (or

equivalently 2m arcs), the number of nodes equipped with diagnostic Tx/Rx pairs is

nd = n, (4.1)

in order to identify all possible network states. However, the hardware cost of such a

worst-case approach could be prohibitively high and limits its application for future

all-optical networks.

The fact that the probability mass is not evenly distributed among all network

states provides us an opportunity to reduce the diagnostic hardware cost, with little

loss in diagnosis capability. Due to the probabilistic arc failure model, some network

states can occur with extremely small probability. However, in the worst-case analysis,

the diagnosis scheme has to identify these network states by paying a high cost. Here,

we propose a probabilistic analysis under which the objective of fault diagnosis is

to identify the majority of network states by deploying less Tx/Rx pairs than the

number of nodes in the network. This is similar to the lossy source coding problem

in Information Theory [18] by encoding only the "typical sets".

The probabilistic analysis works as follows. We assume that nd nodes are equipped

with diagnostic Tx/Rx pairs. The fraction of network nodes equipped with Tx/Rx

pairs is then defined as

n d (4.2)
n

where 0 < r_< 1. For a given subset of nodes equipped with diagnostic Tx/Rx pairs,

the set of all network states, denoted as S, is partitioned into two mutually exclusive

and collectively exhaustive subsets: the set of identifiable network states (SI), and the
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set of unidentifiable network states (Su), with S = SI U Su. We define the cumulative

diagnosability probability as the sum probability of all the network states in the set

of identifiable network states, i.e.,

3D(n , rd, p) = Pr(s), (4.3)
se S1

where Pr(s) = pi(l - p)2m-i is the probability of any network state with 0 < i < 2m

arc failures. Similarly, we define the cumulative undiagnosability probability as the

sum probability of all the networks in the set of unidentifiable network states,

aF(n, nrd,p) = 5 Pr(s), (4.4)
SCSu

The example of a 3-node linear network suggests a trade-off between the cumula-

tive diagnosability probability (or the cumulative undiagnosability probability) and

the number of nodes equipped with diagnostic Tx/Rx pairs. That is, the cumulative

diagnosability probability increases as the number of nodes equipped with diagnostic

Tx/Rx pairs increases and more network states can be uniquely identified. In the rest

of this chapter, we characterize this trade-off for ring networks and mesh networks,

and develop useful insights for engineering designs.

4.2 Efficient Tx/Rx Deployment for Ring Networks

In this section, we present a systematic approach to calculate the cumulative diagnos-

ability probability for any ring network with a subset of nodes equipped with Tx/Rx

pairs, by decomposing the network into a set of canonical linear networks, both end

nodes of which are equipped with diagnostic Tx/Rx pairs. For example, in Fig. 4-

2(b), if node 1 and node 4 are equipped with diagnostic Tx/Rx pairs, the network can

be decoupled into two canonical linear networks, i.e., 1-2-3-4 and 4-5-6-1. In both

canonical linear works, only end nodes are equipped with diagnostic Tx/Rx pairs.

Therefore, we can first derive the cumulative diagnosability probability of canonical
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Figure 4-3: The canonical linear network with k +1 nodes and 2k arcs: nodes at both
ends are equipped with diagnostic Tx/Rx pairs.

linear networks, and then synthesize the cumulative diagnosability probability for

any ring network with a subset of nodes equipped with Tx/Rx pairs. Using this re-

sult, we then characterize the trade-off between the target cumulative diagnosability

probability and the required fraction of nodes equipped with diagnostic Tx/Rx pairs.

4.2.1 Canonical Network Analysis: Linear Network with Di-

agnostic Tx/Rx Pairs at Both End Nodes

In this subsection, we consider a canonical linear network with k + 1 nodes and 2k

unidirectional arcs. As illustrated in Fig. 4-3, only the two end nodes (i.e., node 0

and node k) are equipped with diagnostic Tx/Rx pairs.

Let us first look at the case of k = 2, as illustrated in Fig. 4-4(a). There are

4 possible lightpath probes, i.e., 1-2, 3-4, 1-4 and 2-3. Using these four lightpath

probes, we derive a diagnosis matrix as in Fig. 4-4(b), whose columns correspond

to probes and rows correspond to network states. A network state is diagnosable if

and only if it has a unique probe syndrome. From the diagnosis matrix, we conclude

that any network state containing 3 or more edge failures is not diagnosable, and the

diagnosable network states can be classified into the three types:

1. network state with zero arc failure: D.

2. network states with one arc failure: {1},{2},{3},and {4}.

158



1-2
1 2

1-4 2-3

3-4

(a) Canonical Linear Network: k=2

State e 1-2 3-4 1-4 2-3
_ 0 0 0 0

{11 1 0 1 0
{2} 1 0 0 1
{3} 0 1 0 1
{4} 0 1 1 0
{1,2} 1 0 1 1
{1,3} 1 1 1
{1,4} 1 1 1 0
{2,3} 1 1 0 1

{2,4} 1 1 1 1
{3,4} 0 1 1 1
{1,2,3} 1 1 1 1

{1,2,4} 1 1 1 1
{1,3,4 } 1 1 1 1
{2,3,4} 1 1 1 1

{1,2,3,4} 1 1 1 1

(b) Diagnosis Matrix

Figure 4-4: (a)canonical linear network for k = 2: all possible lightpath probes, (b)
the corresponding diagnosis matrix: each column corresponds to a probe, and each
row corresponds to a network state. Each network state is uniquely diagnosable if
and only if its corresponding row is unique.
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3. a subset of the network states with two are failures4 : {1,4},{2,3},{1,2} and

{3,4}. Notice that the first two network states correspond to both directions of

one directional link, the last two network states correspond to two arc failures

in two consecutive arcs in the same direction.

For any canonical linear network with k > 3 and two Tx/Rx pairs at each end,

we notice that any network state containing 3 or more arc failures is not diagnosable.

For all the network states containing 2 or less are failures, it can be reduced to the

canonical linear network with k = 2. It follows that, for any canonical linear network,

three types of failure patterns can be identified with adaptive fault diagnosis schemes5 .

1. The first type of identifiable failure patterns contains network states with zero

arc failure. The number of network states in the first category is 1 and the

probability of that network state is (1-p)2k. This network state can be identified

by a probing scheme illustrated in Fig. 4-5(a), where two probes are sent from

one end to the other end.

2. The second type of identifiable failure patterns contains network states with a

single are failure. The number of network states in the second category is 2k

and the probability of such network state is p(l - p)2k-1. This type of network

states can be identified by a probing scheme illustrated in Fig. 4-5(b), where

the two probes from one end to the other end detect the failure and the binary

searching algorithm is used to localize the failure.

3. The third type of identifiable patterns contains a subset of the network states

with two are failures. In particular, among all the k(k - 1)/2 network states

with two are failures, the following two classes of failure patterns, i.e., failure

patterns with two arc failures in both directions of one bidirectional link (i.e.,

are failures at {1, 2k}, {2,2k-1},..., {k-1,k+2} or {k,k+1}, and failure patterns

with two arc failures in two consecutive arcs in the same direction (i.e., arc
4 Note that network states {1,3} and {2,4} are indistinguishable and thus not diagnosable
5 Here the objective is to identify possible network states, instead of minimizing the number of

probes at in [68, 69, 70]
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(a) Diagnosis Scheme for Network State with Zero Arc Failure
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(b) Diagnosis Scheme for Network State with One Arc Failure

(c) Diagnosis Scheme for Network State with Two Arc Failures
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(d) Diagnosis Scheme for Network State with Two Arc Failures

Figure 4-5: Diagnosis schemes for canonical linear networks.



failures at {1,2}, {2,3}, ... , {k-1,k}, {k+1, k+2}, ... , {2k-1,2k}. The two

classes of failure patterns can be identified by probing scheme illustrated in Fig.

4-5(c) and Fig. 4-5(d), respectively. In both cases, any network state in this

category can be uniquely identified by two probes from node 0 to node k and

from node k to node 0 to detect, followed by two binary searching procedures

from both ends to localize.. The total number of network states in the third

category is 3k - 2 and the probability of such network state is p2(1 - p)2k-2.

It follows that we can obtain the cumulative diagnosability probability for the

canonical linear network as

3tD(k,p) = (1 - p)2k + 2kp(1 - p)2k-1 + (3k - 2)p 2 (1 - p)2k-2, (4.5)

for k < 1 and 0 < p < 1. Notice that the ratio between the number of identifiable

network states with two arc failures and the number of network states with two arc

failures, i.e., k-2, is on the order of 1/k when k is large enough. When the

arc failure probability is small, the contribution of the subset of identifiable network

states with two arc failures is negligible. However, when the arc failure probability

is high, we need to keep the length of the canonical linear network small so that the

contribution of this subset of identifiable network states with two arc failures is kept

insignificant.

4.2.2 Cumulative Diagnosability Probability for Ring Net-

works

In this subsection, the cumulative diagnosability probability for a ring network is

derived by decomposing it into a set of canonical linear networks.

Consider a ring network with n nodes, among which a subset of nad nodes are

equipped with diagnostic Tx/Rx pairs. Notice that the ring network can be decou-

pled into nad canonical linear networks, both end nodes of which are equipped with

diagnostic Tx/Rx pairs. For example, for the ring network in Fig. 4-6, if node 1,

162



rx/Rx

Figure 4-6: When a subset of nodes are equipped with diagnostic Tx/Rx pairs, the
network can be decomposed into a set of non-overlapping canonical linear networks.

node 3 and node 5 are equipped with diagnostic Tx/Rx pairs, the network can be de-

composed into three canonical linear networks, i.e., 1-2-3, 3-4-5 and 5-6-1. We denote

the length of each canonical linear network as ki, i = 1, 2,..., nd. Using the cumu-

lative diagnosability probability for the canonical linear network, we can synthesize

the cumulative diagnosability probability for the ring network as

nd

OD(n, nd,p) = fl/ (k,p), (4.6)
i=1

where t (k, p) is defined in (4.5).

For a given number of nodes equipped with Tx/Rx pairs, it is natural to maximize

the cumulative diagnosability probability by optimally distributing them among all

the network nodes. We have not yet derived the optimum Tx/Rx distribution, but

have assumed that the set of nd diagnostic Tx/Rx pairs are evenly distributed among

all the network nodes and derive the cumulative diagnosability probability under such
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a deployment policy. Although the uniform distribution policy may not be optimal,

it is a reasonable starting point, especially for symmetric graphs.

Under the uniform Tx/Rx deployment policy, the length of each decomposed

canonical linear networks is made as equal as possible and the length of each canonical

linear network could be k* and k* + 1 , where k* = [n/naj. Moreover, the number

of decomposed canonical linear networks 6 with length k* is (k* + 1)nad - n, and the

number of decomposed canonical linear networks with length k*+ 1 is n - k*nad. Notice

that, when -L is an integer, all the decomposed canonical linear networks have the

same length of k*. It follows that the cumulative diagnosability probability is given

by

/PD(fl, nd, p)= D(k*, p)}(k*+l)nd-n t D(k* 1 , p)}n- k*nd (4.7)

where the first term results from the decomposed canonical linear networks of length

k* and the second term is due to the decomposed canonical linear networks of length

k* + 1.

In practice, the cumulative diagnosability probability of (4.7) can be further ap-

proximated as a function of the fraction of nodes equipped with Tx/Rx pairs. For the

special case that n/nd is an integer, the cumulative diagnosability probability of 4.7

would be reduced to be /D(n, rl,p)= {ftD (-l,p)}nr. In general, using the approxi-

mation fD (k*, p) /4 (k* + 1, p), we can approximate the cumulative diagnosability

probability as

/3D(n, rl,p) { (,q-,p)}In, (4.8)

Therefore, for the rest of this chapter, we use (4.8) to approximate the cumulative

diagnosability probability for ring networks.

4.2.3 Diagnostic Cost-Performance Trade-off

In this sub-section, we characterize the trade-off between the diagnostic hardware cost

(i.e., the number of nodes equipped with diagnostic Tx/Rx pairs) and the diagnostic
6Let x be the number of canonical linear networks with length k* and y be the number of canonical

linear networks with length k* +1. First, we have x+y = nd. Second, we have x. k* +y y.(k* +1) = n.
Solving these two equations, we obtain x = (k* + 1)nd - n and y = n - k*nd.
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performance (i.e., the cumulative diagnosability probability). Our results demon-

strate that the diagnostic hardware cost can be reduced significantly by accepting

some reasonable amount of uncertainty about the network state.

For practical engineering design, we would like to calculate the fraction of nodes

equipped with Tx/Rx pairs required to provide a target cumulative diagnosability

probability (or a tolerable cumulative undiagnosability probability). Indeed, for a

given cumulative diagnosability probability of 1D, we can identify the minimum frac-

tion of nodes equipped with diagnostic Tx/Rx pairs by exhaustively searching over

(4.8). Specifically, we can increase the number of nodes equipped with diagnostic

Tx/Rx pairs gradually until the cumulative diagnosability probability is higher than

our target.

In Fig. 4-7, we plot the required faction of nodes equipped with Tx/Rx pairs,

for different target cumulative diagnosability probabilities, as a function of the arc

failure probability, for a ring network with 100 nodes. Notice that all the curves

share a similar "S" shape, with two thresholds. In one extreme, when the arc failure

probability is small, the number of nodes with Tx/Rx pairs is either 1 or 2. In the

other extreme, when the arc failure probability is high, the required fraction of nodes

equipped with Tx/Rx pairs is close to 1. Between these two extreme cases, there is

a transition phase from a small fraction of nodes equipped with diagnostic Tx/Rx

pairs to a large fraction of nodes equipped with diagnostic Tx/Rx pairs.

These observations can be understood as follows. The cumulative diagnosability

probability in (4.8) can be expanded as

3D(T/) = (1 - p) 2n + 2np(l - p) 2n-1 + O(p2), (4.9)

where O(p 2) denotes a polynomial of p with an order of at least 2. Notice that each

term in (4.9) corresponds to one class of identifiable network states. The first term of

(1 _p)2n corresponds to the subset of network states with zero arc failure. The second

term of 2np(1 - p)2n-1 corresponds to the subset of network states with a single arc
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Figure 4-7: The required fraction of nodes with diagnostic Tx/Rx pairs for different
target
bility.

cumulative diagnosability probabilities is plot against the arc failure proba-
They share similar "S" shapes. The exact results are compared with the

approximate results and the analytical results. The number of nodes in the ring
network is 100.
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failure. The third term corresponds to the subset of network states with two or more

arc failures. The significance of these terms depends on the arc failure probability.

In one extreme, when the arc failure probability is small, the cumulative diag-

nosability probability is first dominated by the first term and then by the first two

terms. In the former case, when the target cumulative diagnosability probability is

less than (1 - p)2l, it is sufficient to diagnose the network state without any arc

failure with only one Tx/Rx pair. In the latter case, when the target cumulative

diagnosability probability is less than the sum of the first two terms, it is sufficient to

diagnose the subset of network states containing zero or a single arc failure, achieved

by two diagnostic Tx/Rx pairs. Therefore, there exist two thresholds as the arc failure

probability increases, as shown in Fig. 4-7.

In the other extreme, when the arc failure probability is high, the probability

mass of all network states is mostly contributed by networks states with multiple arc

failures. In this case, almost all of the nodes have to be equipped with Tx/Rx pairs

in order to identify the subset of network states with multiple arc failures.

Between these two extreme cases, for a target cumulative diagnosability proba-

bility, the required fraction of nodes equipped with Tx/Rx pairs increases as the arc

failure probability increases. In this regime, we hypothesize that, the cumulative di-

agnosability probability in each decomposed canonical linear network is dominated

by the subset of network states with zero and a single arc failure. To verify this

hypothesis, we can approximate the cumulative diagnosability probability in (4.8) as,

/3D(7?) r {(1 - p)2"- + 2[7-p(1 - p)2,-1-1} nl ,1 (4.10)

where the contribution from the subset of identifiable network states with two arc

failures in each decomposed linear network is suppressed. In Fig. 4-7, we also plot

the fraction of nodes equipped with Tx/Rx pairs to provide a target cumulative di-

agnosability probability, obtained by exhaustively searching over (4.10). We observe

that, the approximation is very close to the exact solution derived from (4.8), espe-

cially when the arc failure probability is small. With this approximation, the required
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fraction of nodes equipped with Tx/Rx pairs can be derived by solving the following

equation,

{(1 - p)2 -1 + 2F-l p(1 - p)2 l7-1- nr? = 1 C-F, (4.11)

for a tolerable cumulative undiagnosability probability of aF. Taking In on both sides

of (4.11), we obtain the following equation,

nr ln{ (1 - p) 2, - + 277-lp(1 - p) 2q'- }- 1 = ln(1 - aF). (4.12)

Using a Taylor expansion for the left hand side of (4.12), we

side of (4.12) as

LHS = nn(2n-1 - 1) In(1 - p) + nlIn(1 - pv

obtain the left hand

2- )
I \ , \ i1

= n(2 -) I)ln(1 - p)
2

nr In(1 + (2
T1

-n(2 - r7)p + n(2 - r)p - nri. .2 2 1)2
2 r

p2  4 2nrp 2

2 -12 rl
(4.13)

where the first approximation is due to Taylor expansion (i.e., In(1 + x) = x - +

0(X3)), and the second approximation is due to 27r - 1 - 1 2I- 1 . Similarly, using a

Taylor expansion for the right hand side of (4.11), we obtain

RHS = In(1 - aF) r -caF. (4.14)

Substituting (4.13)and (4.14) into (4.12), we obtain the following equation

2np2
•-CF · (4.15)

Solving (4.15), we can approximate the required fraction of nodes equipped with

diagnostic Tx/Rx pairs as

1)p)

77*(Ce) (
2n p2
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for small CaF and 1/n < 2np2/aF < 1. In Fig. 4-7, we also plot the required fraction

of nodes equipped with diagnostic Tx/Rx pairs to provide a tolerable cumulative

undiagnosability probability, based on the analytical result in (4.16). Notice that the

analytical result matches the exact solution from (4.8) closely, especially when the

arc failure probability is small.

4.3 Efficient Tx/Rx Deployment for Mesh Net-

works

In this section, we address the problem of efficient Tx/Rx deployment for mesh net-

works via two alternative approaches. One approach progressively identifies all the

network states with up to a link failures. The other approach extends our results for

ring networks to Eulerian graphs.

4.3.1 Cutset-based Approach

For a given mesh network of n nodes and m links, we can order all the network states,

based on the number of link failures contained in the network state, into a sequence of

disjoint subsets, So, Si,..., Sm, where Si denotes the set of network states containing

i link failures. The probability of all network states with i link failures is

P (m pi(1 - P)m-i (4.17)

for i= 0, 1,...,m.

For a target cumulative diagnosability probability 3D, starting from the set So,

we can progressively identify all the network states with up to r link failures by

deploying more diagnostic Tx/Rx pairs, so that the probability of all the identifiable

sets of network states is larger than the target diagnosability probability, i.e.,

PiŽ > OD. (4.18)
i=1
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Figure 4-8: One Tx/Rx pair has to be deployed in each of non-trivial subgraphs,
resulted from any cutset.

Solving the inequality (4.18), we obtain K*, which is the largest number of link failures

that we need to identify7.

The number of Tx/Rx pairs required can be determined by the following cutset

approachs . In order to identify the network state set Si (i.e., all the network states

with i link failures), we need to deploy one Tx/Rx pair in each nontrivial subgraph

(i.e., containing at least one link), resulted from any edge cutset of order i . As

shown in Fig. 4-8, each non-trivial subgraph resulted from any cutset has to be

equipped with a Tx/Rx pair. Otherwise, we cannot identify the state of all the links

in the cutset that connect these two subgraphs. It follows that the efficient Tx/Rx

deployment problem can be translated into the following combinatorial problem: for

an integer number n, what is the minimum set of nodes in a graph such that a node

from the minimum set exists in each nontrivial subgraph resulted from any cutset

with an order up to K ? We call this problem the efficient Tx/Rx deployment

problem.

As an example, we consider a Harary graph with 8 nodes and node degree d = 4

as illustrated in Fig. 4-9(a). We plot the required number of nodes equipped with

diagnostic Tx/Rx pair, nd , and the number of identifiable link failures, K, as a

function of the cumulative undiagnosability probability aF in Fig. 4-9(b). We can

see that the required number of nodes equipped with diagnostic Tx/Rx pairs decreases
7However, we have not yet found an approach to solve the inequality (4.18) analytically. Here,

we assume that the inequality is solved numerically.
8A cutset of any graph is the set of links, whose removal results in a disconnected graph (i.e., a

collection of connected subgraphs).
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Figure 4-9: (a)Harary graph with 8 nodes and 16 links. (b) The number of identifiable
links failures and the required number of nodes equipped with diagnostic Tx/Rx pairs
as a function of cumulative undiagnosability probability.
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as the cumulative undiagnosability probability increases. However, we have not yet

derived any analytical results for generalized mesh networks.

The challenge here comes from two sources. First, we have not been able to

solve the inequality (4.18) analytically to obtain r*. Second, for a generalized mesh

network, the efficient Tx/Rx deployment problem is a NP-hard problem in the worst

case9. Therefore, we will seek an alternative approach, based on ring network results,

in the next sub-section.

4.3.2 Euler-Trail-based Approach

The analysis for ring networks can be extended to derive performance bounds for

network topologies with an embedded ring structure, such as Eulerian graphs (an

Eulerian graph contains a path that passes through all the links without repetition.)

Non-Eulerian graphs can be approximated well with Eulerian graphs by a path aug-

mentation approach [70].

In particular, as illustrated in Fig. 4-10, all the links in an Eulerian graph can

be re-arranged into a ring network by replicating each node with d/2 virtual nodes,

where d is the node degree. Under such a network transformation, our analysis for

ring networks can be applied directly. However, the transformation suppresses a rich

set of possible probing paths in the original network. It follows that the derived

cumulative diagnosability probability is a lower bound, i.e.,

/OD (7) > {(1 - p)1 +- 77-1p(1 - p) - 1 - 1}lndq, (4.19)

for the transition phase. Due to the bidirectional graph model used here, (4.19) is

different from (4.10). This result, in turn, suggests that the resulting fraction of nodes

equipped with Tx/Rx pairs for any target cumulative diagnosability probability is an

upper bound on the required fraction of nodes equipped with diagnostic Tx/Rx pairs.

Specifically, if the tolerable cumulative undiagnosability probability is cF, we have
9When n _> 4, this problem can be converted into the vertex cover problem in graphs with

maximum vertex degree of 3, since any edge can be turned into a connected component by deleting
all other edges adjacent to its endpoints.
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Figure 4-10: Node replication approach: (a) a node of degree d has d/2 in degree and
d/2 out degree, (b) the node is replicated with d/2 virtual nodes, each of which has
1 in degree and 1 out degree.

the following inequality,

{(1 - p)- + ]-lp(1 - p)--1} L n d r =- 1 - aF. (4.20)

We can take In on both sides of (4.20), and obtain the following simplified inequality,

-nd7r In{(1 - p)" + r-p(1 - p)" 1 = In(1 - aF). (4.21)
2

Using a Taylor expansion for the left hand side of (4.21), we obtain the left hand

side of (4.21) as

1 1 1
LHS =-ndrl(r- - 1) Iln(1 - p) + -nd 7ln(1 - p + -p)

2 2 7
1 1 1
-nd(1 - r) In(1 - p) + -ndr7 In(1 + (- 1)p)2 2 I2

1 1 1 p2 1- nd(1 - rl)p + nd(1 - r)p - -ndr.-(- - 1)2
2 2 2 2 2
1 p2  1 4ndp2

nd 2 -- (4.22)2 2 127 7
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where the first approximation is due to Taylor expansion, and the second approxima-

tion is due to r-1 - 1 rn-1. Similarly, using a Taylor expansion for the right hand

side of (4.21), we obtain

RHS = ln(1 - aF) r aF. (4.23)

Substituting (4.22)and (4.23) into (4.21), we obtain the following equation

4ndp2
S- aF. (4.24)

Solving (4.24), we obtain that the required fraction of nodes equipped with diagnostic

Tx/Rx pairs is upper bounded by,

nq*(a) < (4.25)

where aF is the tolerable cumulative undiagnosability probability. Notice that the

required fraction of nodes equipped with diagnostic Tx/Rx pairs decreases as the

cumulative diagnosability probability increases. The result of (4.25) is plot in Fig.

4-9(b) for the Harary graph of 8 nodes and node degree 4. Notice that the number of

nodes equipped with Tx/Rx pairs is larger than the result from the cutset approach,

because rich connection in mesh networks is not exploited in the Euler-Trail-based

approach.

The tightness of these performance bounds depends on both the arc failure prob-

ability and the node degree. When the arc failure probability is small and/or the

node degree is small, these bounds are expected to be tight. In particular, when the

arc failure probability is small, the cumulative diagnosability probability in each de-

composed network is dominated by network states with zero and a single arc failure.

When the node degree is small, the benefit of additional node degree is not significant

enough to change the order of magnitude. However, when the node degree is large,

these bounds could be loose. In this case, the rich set of connections in the mesh

network of degree larger than 2 should be explored to identify failure patterns with
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multiple are failures, and thus reduce the number of nodes equipped with Tx/Rx

pairs.

4.4 Conclusion

In this chapter, we built upon our previous research on proactive lightpath probing

schemes to investigate the cost-effective Tx/Rx deployment for probe transmission

and detection in all-optical networks. We developed a probabilistic framework to char-

acterize the trade-off between the number of nodes equipped with diagnostic Tx/Rx

pairs and the cumulative diagnosability probability. Our investigation suggested that

the diagnostic hardware cost can be reduced significantly by accepting a reasonable

amount of uncertainty about network failure status.

For future research, we would like to extend this analysis to all-optical networks

with other mesh topologies. Other possible future work is to develop optimal Tx/Rx

deployment schemes to maximize the cumulative diagnosability probability for a lim-

ited number of diagnostic Tx/Rx pairs.
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Chapter 5

Fault Diagnosis Made Practical

This chapter addresses practical issues of fault diagnosis for all-optical networks.

First, we will investigate the fault detection and localization problem for optical

wavelength-division multiplexing (WDM) networks with multiple wavelength chan-

nels. This investigation suggests that the deployment of this type of proactive

fault diagnosis schemes will depend on the type of failures (i.e., fiber-level failure

vs wavelength-level failure). Second, we will focus on fault diagnosis for dynamic

all-optical network with existing traffic by classifying all lightpath services into three

categories and developing fault-diagnosis scheme for each category.

5.1 Fault Diagnosis for All-Optical WDM Networks

with Multiple Wavelength Channels

In this section, we will extend run-length probing schemes to fault detection and

localization for all-optical wavelength-division multiplexing (WDM) networks with

multiple wavelength channels. For WDM networks with multiple wavelength chan-

nels, network failures can be roughly classified into two categories: fiber-level failures

and wavelength-level failures. The relevant importance of these two categories of

network failures dictates how the fault diagnosis scheme should be deployed.

177



A

I x

/
/ 1 I

Figure 5-1: An illustration of all-optical WDM Network with multiple wavelength
channels: optical lightpath traverses from the source to the destination without being
processed electronically at intermediate nodes.
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5.1.1 Two Types of Failures: Fiber-Level vs. Wavelength-

Level

Fig. 5-1 illustrates an all-optical WDM network, where each lightpath traverses

across the network without being processed electronically at any intermediate nodes.

Without loss of generality, it is assumed that there are W wavelengths per fiber in an

all-optical WDM network. In the optical layer, the network is subjected to different

kinds of failures. According to the scale of their effect, these failures can be classified

into two categories. One category is the wavelength-level failure, which affects a

particular wavelength channel. For example, transmitter/receiver failures with one

dedicated transmitter/receiver per wavelength and single-bandwidth optical filter, or

single-channel frequency-selective switch failures, belong to this category. The other

category is the fiber-level failure, which affects all the wavelength channels within

an individual fiber, such as fiber cuts, EDFA breakdowns and transmitter/receiver

failures in the case of only one tunable transmitter/receiver per fiber (which rarely

happens).

Notice that, although that the wavelength-level failure and the fiber-level failure

are statistically independent, all the wavelength channels passing through an EDFA

fail simultaneously when the EDFA fails. This suggests that failures in different

wavelength channels on the same fiber are dependent in that knowing one partic-

ular wavelength channel fails reveals some information about the failures of other

wavelength channels. Therefore, the fault diagnosis algorithm for practical all-optical

WDM networks must consider inter-dependence among failures in different wave-

length channels.

5.1.2 General Approach

As mentioned previously, the application of the run-length probing scheme over prac-

tical all-optical networks depends on the relative dominance between wavelength-level

failures and fiber-level failures. In other words, the relationship between PF (i.e., the

prior probability of individual fiber-level failure) and pw(i.e., the prior probability
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of individual wavelength-level failure) determines how the run-length probing scheme

should be implemented over practical all-optical WDM networks.

In one extreme, for an all-optical WDM network where the wavelength-level failure

dominates the fiber-level failure (i.e., pw > PF), we can view the network as a

graph where each physical link is represented with W parallel edges. On one hand,

if wavelength converters are deployed in the network, we can apply the run-length

probing scheme over the hyper-graph and the average number of probes required

is approximated by the entropy lower bound, i.e, W - m - Hb(Pw). On the other

hand, if no wavelength conversion is allowed at any node, this hyper-graph can be

decoupled into W graphs, each of which is exactly the same as the original network

topology and represents one particular wavelength plane. Upon this separation of

different wavelength planes, we can employ the run-length probing scheme over each

wavelength plane graph. This is called the wavelength-level implementation. For

a reasonable large network (i.e., m > K where K is the maximal probe length

determined by the wavelength failure probability), the average number of probes

required by the run-length probing scheme can be approximated by W -m -Hb(pw).

In the other extreme, for an all-optical WDM network where the fiber-level failures

dominate the wavelength-level failures (i.e., pw < PF), we can view the network as a

graph where each physical link is represented with one edge and employ the run-length

probing scheme over an Euler trail of the resulted graph. This is called the fiber-level

implementation. For a large network (i.e., m > K where K is the maximal probe

length determined by the fiber failure probability), the average number of probes

required is approximately equal to m -Hb(pw).

Between these two extreme cases, for an all-optical WDM network subjected to

a comparable (in terms of probability of occurrence) mixture of both fiber-level fail-

ures and wavelength-level failures, we can still use the fault-diagnosis/source-coding

equivalence to obtain a useful lower bound for the minimum average number of probes

required as the information entropy of network states, i.e,

L* > m - Hb(F1, F2, ... Fw) , (5.1)
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where Fi's are dependent random variables indicating states of wavelength channel i's,

and Hb(.) is the information entropy function. The entropy function Hb(Fl, F2,... , Fw)

can be calculated through the summation of a sequence of conditional entropy func-

tions, i.e.,
W

Hb(Fl, F2, . .. Fw) = Hb(Fi F, , Fi-1). (5.2)
i=1

However, It is not yet clear whether the entropy lower bound (5.1) can be achieved,

or if achievable, how we can develop probing schemes to achieve this lower bound.

As a brute-force approach, we can view the network as a graph where each physical

link is represented with parallel edges and employ the run-length probing scheme over

an Euler trail of the resulted graph. The performance of this wavelength-level imple-

mentation, which is hard to obtain due to the complicated dependence among failures

in different wavelength channels, can certainly serve as an upper for the minimum

average number of probes required by an optimal probing scheme. However, since the

wavelength-level implementation does not consider the dependencies among failures

in different wavelength channels, the run-length probing scheme is not optimum in

general. The same conclusion that the information entropy is a lower bound and the

run-length probing scheme might not be near-optimum, can be extended to a more

general failure model which accommodates dependent failures and/or heterogeneous

failures. In the next subsection, we propose three alternative approaches to solve the

fault-diagnosis problem for all-optical WDM networks with a comparable mixture of

link-level and wavelength-level failures.

5.1.3 Three Proposed Approaches

To deal with the mixed failure case (i.e., the link-level failure probability and the

wavelength-level failure probability are of the same order), we propose the following

three approaches. These approaches are expected to perform better than the brute-

force approach (i.e., the wavelength-level implementation).

The first approach is similar to the brute-force approach, except that the link

failure probability of unprobed wavelength planes is updated once any wavelength
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plane has been finished with probes. The scheme works as follows. First, the net-

work is decoupled into W wavelength planes, whose failure probabilities are denoted

as p,( = PF+PW -PFPW, for i = 1,2,...,W and 1 = 1,2,...,m, where (0) de-

notes the initial failure probability. Second, the fault-diagnosis scheme randomly

starts with one wavelength plane, whose link failure probability can be calculated as

1, = PF + Pw - pFPw. In this case, the independence among all link failures is

still valid. Once the diagnosis for this wavelength plane is finished, the link failure

probability on all the unfinished wavelength planes is updated with the conditional

failure probability, i.e., p1) where the superscript (1) indicates that one wavelength

plane has been diagnosed and it will be increased by 1 after each wavelength plane

has been diagnosed. Specifically, for any link whose first wavelength channel is of no

failure, we have pi = pw. For any link whose first wavelength channel has failed,

we have p(1) = pw + (1 - pw)pF- The challenge here is that the updated failure

probability for any given wavelength plane is inhomogeneous among all the edges1 .

The same process continues until all the wavelength planes are probed.

The second approach declares a fiber-level failure once the number of wavelength-

level failures identified in that fiber passes some threshold. The threshold is chosen to

strike a balance between the saving of additional probes and the penalty of false dec-

laration of fiber-level failures. The trade-off can be understood through the following

example of a single fiber with W wavelength channels and one optical amplifier(OA).

The OA fails with probability of p. Once OA fails, all the wavelength channels fails.

In addition, each wavelength channel fails independently with probability q (mostly

from transmitter/receiver, filter failures). All the wavelength channels are probed

sequentially. If any wavelength channel is good, one declares that the OA is good

and continue to probe the rest of wavelength channels. On the other hand, if the

first k wavelength channels are found bad, one declares that the OA fails and stops

the probe process. The diagnosis cost includes two parts: the probing cost and the

false-alarm penalty. Let us assume that each probe costs cp, and if a good OA is

1In this case, we can follow the proven guideline for efficient fault diagnosis: each probe should
provide approximately one bit of state information.

182



declared as bad, it incurs a penalty cost of cf. Under such assumptions, the objective

is

C(k) = kc, + cf Pr(OA is good Ifirst k wavelength channels fail), (5.3)

where the false-alarm probability can be derived as

(1 - p)qk
Pr(OA is good |first k wavelength channels fail) (1 (5.4)(1 - p)qk + p

Therefore, the optimal threshold can be identified by solving the following optimiza-

tion problem,

(1 - p)qk (5.5)min C(k) = cpk + cf ( k (5.5)
k 1 - p)qk p

s.t. 1 < k < W. (5.6)

Let us first look at two extreme cases. On one extreme, when c, > cf, we have

k* = 1. On the other extreme, when c, < cf, we have k* = W. Between these two

extreme cases, we can approximate the optimal k* as

In Cp 1-p 1

k* pIn q- (5.7)
In q- l

The third approach is based on a network transformation that separates the fiber-

level failure and the wavelength-level failures. A graphical model for the mixed failure

case is illustrated in Fig. 5-2(a), where x0 indicated the fiber-level failure, and the

set {(xT, Z) : i = 1, 2,..., W} indicate the wavelength-level failures. All of these

indicators are random variables with binary values. When each wavelength channel

is probed, the syndrome is an OR function of x4, x0 and xR . The difficulty here is

that the indicator xo involves all the wavelength channels and thus wavelength channel

failures are dependent. Here, we propose a graphical transformation to decouple these

dependencies, as illustrated in 5-2(b). In the transformation, the fiber-level failure

is represented by an additional bridge link between the two set of wavelength-level

failure indicators. However, it also comes with some penalty: no diagnosis Tx/Rx can
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Figure 5-2: (a)Graphical model for mixed failure (b)Graphical transformation for
mixed failure.
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be deployed at the two end points of the fiber-level link. This changes the model of

our original assumption. Under the new model, we have to solve the fault diagnosis

problem with the assumption that only a limited set of nodes can be equipped with

diagnosis Tx/Rx. We have addressed a similar problem in Chapter 4.

5.2 Fault Diagnosis for All-Optical Networks with

Existing Traffic

In this section, we investigate the fault-diagnosis problem for all-optical networks with

existing traffic. In particular, we take a "divide-and-conquer" strategy by classifying

lightpaths into three classes and developing fault-diagnosis schemes for each class of

lightpaths separately.

5.2.1 Lightpath Service Requirements

In future dynamic all-optical networks, we believe that the lightpath service will have

different requirements in restoration and setup.

First, existing lightpath services present stringent restoration requirements in

terms of time deadlines. This suggests that primary lightpaths should be monitored

constantly, and secondary lightpaths should be monitored and be ready as soon as

primary lightpaths are interrupted.

Second, dynamic lightpath services exhibit a wide range of set-up requirements

in terms of blocking probability and time deadline. This suggests that lightpath de-

mands should be met via a combination of off-line and online routing and wavelength

assignment (RWA) algorithms. Hence, fault-diagnosis algorithms should be designed

to cater for both cases.

5.2.2 Breakdown of Lightpath Services

For dynamic all-optical networks, we can classify the lightpath services into three

categories:
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1. Class 1: currently lit lightpaths

2. Class 2: pre-computed but unlit lightpaths, including i) backup lightpaths of

currently lit ones and ii) unlit pre-computed lightpaths with stringent set-up

time requirements 2

3. Class 3: unknown lightpaths computed by online RWA algorithms with relaxed

set-up time requirement

To meet aforementioned lightpath service requirements, difference fault diagnosis

strategies have to be developed for different classes of lightpath service, as illustrated

in next subsection.

5.2.3 Fault Diagnosis for Different Classes of Lightpath Ser-

vices

For Class 1 lightpaths, a lit lightpath is under constant monitoring at the receiver

node. Once it fails, the destination node would initiate, through the network man-

agement system, an adaptive fault diagnosis process to identify the failure as soon

as possible. Two alternative implementations of the run-length probing scheme can

be deployed to identify the failure along each failed lightpath. In the case that inter-

mediate nodes does not have self-monitoring capability via tapping-out, the network

management system could signal the source node to initiate lightpath probes to dif-

ferent intermediate nodes sequentially, according to the run-length probing scheme

(i.e., the 21-splitting probing scheme), and the faulty link(s) can be identified based

on the probe syndrome. Alternatively, if intermediate nodes have self-monitoring ca-

pability via tapping out, either the network management system can poll the network

element management module for management information, or the network element

management module can send alarms to the network management system. In the

former case, the poll sequence is determined by the run-length probing scheme, with

the objective of minimizing the number of polls. In the latter case, the run-length
2Two other students in Prof. Vincent Chan's group, Bishwaroop Ganguly and Anarupa Ganguly,

are doing research on probing and resource reservation along this class of lightpaths.
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probing scheme suggests an efficient way to process the large amount of alarm infor-

mation by sequentially checking whether some specific alarms are present, with the

objective to minimize the amount of network processing unit (NPU) facility.

For Class 2 lightpaths, to meet the stringent time requirements for fast restoration

and very fast service setup, the network management system aggressively monitors the

states of the pre-computed but unlit lightpaths in a periodic schedule. The schedule

period is determined by the lightpath restoration and set-up requirement, could be

as short as 100mS.

We suggest two alternative monitoring procedures for Class 2 lightpaths. In the

first approach, the set of links covered by all unlit lightpaths forms a subgraph of

the original network, on which our previously established fault-diagnosis schemes will

be deployed periodically. Intuitively, this approach is preferable when the number of

pre-computed but unlit lightpaths is large so that the overlapping among different

lightpaths is large enough for the run-length probing scheme to save the number of

probes. In the second approach, each lightpath is monitored individually3 . Once

some lightpath has problem, the run-length probing scheme is applied to that specific

lightpath to identify the failure. Intuitively, this approach is preferable for the case

when the number of pre-computed but unlit lightpaths is relatively small so that

the run-length probing scheme over the expanded sub-graph is not efficient. It is an

interesting future work to characterize the optimality conditions for both approaches.

For Class 3 lightpaths that are not computed until the connection request has

arrived, the network management will conduct fault diagnosis over unassigned wave-

length channels on a coarse time scale. However, the existence of lit lightpaths poses

some technical challenges for such network-wise fault diagnosis. In particular, ex-

isting lightpaths could render some network elements inaccessible for diagnosis. For

example, as illustrated in Fig. 5-3, for a network node equipped with an OXC, if

a lightpath connects input port i and output port j, the non-blocking requirement

precludes any probing traffic accessing the set of connections originating at node i
3Supervised by Prof. Vincent Chan, Anarupa Ganguly is working on this periodic probing scheme

for pre-computed but unlit lightpaths.
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Figure 5-3: The existing lightpaths could render some network elements inaccessible
for diagnosis.

or terminating at node j. For such network elements, we will develop algorithms to

estimate/predict their current states based on their previous states and information

revealed by previous probes, or by scheduling probes on them when their associated

lit lightpaths have been torn down. As in the previous discussion, the remaining set

of diagnosable network elements spans a sub-network, on which our previously estab-

lished adaptive/non-adaptive fault diagnosis schemes would be periodically deployed

to monitor their state of health.

Because of this limitation resulted from existing traffic, network components can

be decoupled into three subsets: components that can be monitored by existing traffic

(denoted as Set), components that can be monitored by probing traffic (denoted as Spt)

and components that cannot be monitored at all (denoted as Suo). For example, for a

d x d optical switch, the total number of connections is d2 . If there is 1 (1 < d) existing

lightpaths through the switch, the number of connections that can be monitored by

existing traffic is 1, the number of connections that can be monitored by probing traffic

is (d - 1)2 and the number of connections that cannot be observed is d2 - (d - 1)2 - 1.

Moreover, for a regular network of n nodes and degree d, the total number of switch
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connections in the network is nd2 . If the average load of each switch is p, the number

of lightpaths for existing traffic on each switch is pd. In this case, the number of switch

connections monitored by existing traffic is npd, the number of switch connections

that can be monitored by probing traffic is n(d - pd)2 , and the number of switch

connections that cannot be monitored is nd2 - n(d - pd)2 - npd. The total number

of connections (denoted as Nmonitored) that can be monitored either through existing

traffic or through probing traffic is given by

Nmonitored = n(d - pd)2 + npd. (5.8)

It can be shown from (5.8) that Nmonitored is minimized when p* = 1 - 2. There-

fore, we can conclude that, as the average load increase, the number of observable

connections decreases first and then increases again after it goes above 1 - 12d"
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Chapter 6

Network Survivability: Lightpath

Diversity

This chapter proposes using spatial diversity via multiple node-disjoint1 lightpaths

at the optical layer to achieve ultra-reliable communication between any source-

destination pair in all-optical networks2 . Compared to the automatic protection

switching (APS) scheme for network survivability, the lightpath diversity scheme

trades the abundance of bandwidth in optical fibers for ultra-reliable communication.

Our design objective of lightpath diversity is to optimize the resource efficiency while

providing the required reliability.

6.1 Introduction

When deployed, all-optical networks will trigger an architectural revolution for fu-

ture broadband networks by eliminating all optical-to-electrical conversions along a

lightpath [25, 12]. Originally proposed to exploit the huge bandwidth within the low

attenuation transmission window of optical fibers to meet the exponential growth of

traffic demand, optical networks have been evolved to provide other highly desirable

features including wavelength switching, dynamic reconfigurability and improved re-
1Node-disjoint implies link-disjoint.
2 The content in this chapter has been published in [66].
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liability. These enhanced features can support highly reliable services that can trans-

port, for instance, aircraft control signals between the cockpit and control surfaces

over lightweight all-optical networks.

However, similar to other networks, all-optical networks are also vulnerable to

different categories of failures. One kind of failure is physical component failure,

for example, fiber cut and node hardware failure. Even if all network components

are reliable individually, the communication between a source-destination pair can

be interrupted by soft failures due to network problems, such as congestion, buffer

overflow, and routing algorithm oscillations. In this chapter, we will focus on the

problem of achieving ultra-high reliability in all-optical networks for some special

applications that may have to support services with critical time deadlines.

To support ultra-reliable communication in all-optical networks, two mechanisms

can be used to counteract the aforementioned failures: automatic protection switch-

ing and simultaneous lightpath-diversity. Currently, the prevailing approach is the

protection switching scheme, as implemented commercially in Synchronous Optical

Network (SONET) based networks. In this scheme, if a source-destination commu-

nication session is interrupted by a failure, a detection algorithm first identifies the

failure, and then communication is switched to another dedicated or shared backup

connection. However, this protection-switching mechanism can induce a rather long

delay (e.g., - 50-ms restoration time, a SONET standard [34]). Thus this scheme

is inappropriate for some applications. For example, considering the service with

super high data rate (10Gbps or higher), a short-time interruption can result in a

large amount of data loss. In other critical applications (e.g. when the network is

used for transporting control signals between the cockpit and control surfaces of an

aircraft), the time-deadline of control-message delivery needs to be shorter than 1-ms

and probably ten times faster in failure detection. This is faster than the speed at

which most optical components can switch and protection switching protocols can be

executed. For such applications, instead of increasing the speed of failure detection

and lightpath switching to meet increasing data rates and critical time deadlines,

multiple-path diversity is a better alternative that can be implemented with current
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technologies. Chan and Parikh have explored this mechanism in [13, 45]. In that work

they looked at a joint Data Link Control Layer and Transport Layer reliable message

delivery scheme and have found significant merit for using path diversity efficiently

via error correction coding techniques. In this work, their work will be extended to

a Physical Layer lightpath diversity mechanism, using an optimum signaling and de-

tection scheme to optimize system performance and provide reliable end-to-end data

delivery in the presence of failures (e.g., fiber cuts and node hardware failures).

The advantages of the proposed reliable transmission scheme, which is based on

spatial diversity via multiple disjoint lightpaths belonging to different shared-risk

groups, are at least two-fold. First, because the entire mechanism is implemented at

the Physical Layer, it provides a much faster response to failures than protocols that

provide end-to-end reliability at higher layers, such as the Transmission Control Pro-

tocol (TCP) at the Transport Layer using feedback and time-outs. Second, as will be

shown in this chapter, the symbol error probability of multiple-lightpath transmission

is significantly lower than that of single-lightpath transmission in medium and high

signal-to-noise photon rate ratio regimes. In particular, for a source-destination pair

connected by M lightpaths, the symbol error probability in the high signal-to-noise

photon rate ratio regime is asymptotically equal to I•J, fi (fi is the failure probabil-

ity of the lightpath.) This is the asymptotic reliability limit of the multiple-lightpath

transmission scheme. By choosing the number of lightpaths used, this limit can be

made arbitrarily small compared to the asymptotic symbol error probability of using

only a single lightpath between a source-destination pair.

Compared to the single lightpath transmission, one major disadvantage of the

lightpath diversity scheme is that the same message is sent repeatedly through a group

of disjointed lightpaths and thus degrades the throughput per channel use by a factor

of M for an M-connected source-destination pair. However, in order to achieve ultra-

reliable communication with low delay, for example, in an aircraft control network, it

is reasonable to sacrifice some bandwidth efficiency for reliability in a bandwidth-rich

environment(e.g., optical fibers). In fact, multiple connections between any source-

destination pair are necessary for reliable networks [64], and both parallel signaling
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and sequential signaling over multiple connections can realize high reliability. The

lightpath diversity scheme satisfies this necessary condition by splitting each channel

symbol and sending the fragments simultaneously through M disjointed lightpaths.

Another potential disadvantage of a lightpath diversity scheme is that more energy

may have to be used than a single lightpath scheme. However, the error probability of

any single lightpath scheme is bounded from below by the lightpath failure probability

f. In order to achieve an error probability below f, it is necessary to use more than one

lightpath to lower the asymptotic error limit. In this work, using optimum signaling

and detection, the number of lightpaths will be chosen to optimize energy efficiency

and reduce the amount of additional necessary optical energy to the minimum.

In this chapter, the proposed ultra-reliable transmission mechanism will be inves-

tigated from both a theoretical and an engineering perspective. From the theoretical

perspective, we will characterize and optimize the error performance of the lightpath

diversity system. From the engineering perspective, we will develop a class of struc-

tured receivers and evaluate their error performance. The remainder of this chapter

is organized as follows. In Section 6.2, we will formulate the detection problem and

introduce the structured receiver architecture. The error probability of the lightpath-

diversity system will be characterized via an idealized receiver in Section 6.3. This

benchmark result is called the 'genie-aided' receiver limit which is a lower bound for

practical receivers. In Section 6.4, the system is optimized via (1) minimizing the

error probability for a given amount of optical energy, and (2) minimizing the total

optical energy for a target error probability. In Section 6.5, we will illustrate the

trade-off between implementation complexity and error performance in the receiver

design. Also in this section, the architecture of the optimal receiver is derived, and

its error probability bound is obtained and compared with the 'genie-aided' receiver

limit. One sub-optimal receiver, the equal-gain-combining receiver, is developed in

Section 6.6. Its error probability bound is also calculated and compared with the

'genie-aided' receiver limit.
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Figure 6-1: Network model for an M-connected source-destination pair in a densely
connected all-optical networks [14].

6.2 Lightpath Diversity Problem

6.2.1 Network Model

It is assumed that the physical topology of the optical network under consideration

has dense enough connections such that M node-disjointed light-paths can be found

between some source-destination pair, as shown in Fig. 6-1 [64, 65]. All the light-

paths must belong to different shared-risk groups to justify the following independent

failure model. Each lightpath can be modeled as a discrete additive-noise channel

with UP and DOWN states. In particular, for the ith lightpath, the DOWN state

corresponds to a disconnected lightpath and occurs with probability fi , and the UP

state occurs with probability 1- fi and corresponds to a viable lightpath. Mathemat-

ically, the input-output relation of the channel can be expressed as i = FiXi + Ni,

as shown in Fig. 6-2, where Xi and Yi are the input and output, Fi is the lightpath

state indicator function which is a Bernoulli random variable with Pr{Fi = 0} = fi

and Pr{FF = 1} = 1 - fi, and Ni is the additive noise (zero if no optical amplifier

is used). For a given source-destination pair, one can define a lightpath state vector

F = (F1, F2 ,... ,FM)T, where the components Fi's are independent Bernoulli ran-

dom variables. The source-destination pair is also characterized by a delay vector

7 = (ri, 72 ,... · TM)T where each component 7• is the delay of the i t h lightpath, an
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Y= FX+N

F N

Figure 6-2: Discrete channel model of an individual lightpath. X is the input, Y is
the output, F is a Bernoulli random variable indicating the lightpath state, and N is
the noise.

attenuation vector L = (li, 12, ... , M)T where each component 1i is the attenuation of

the ith lightpath, and a noise vector N = (N1 , N2,... , NM)T where each component

Ni is the noise of the it h lightpath (including additive detection noise if present).

In this chapter, Binary Pulse-Position Modulation (BPPM) is used to simplify

the receiver implementation by not having to adaptively set the decision threshold

as in the case of On-Off-Keying (OOK) modulation. The modulated signal is split

into M parts. Each part is sent over an independent lightpath to the receiver. At

the destination node, the received optical signals are either combined optically before

detection, or individually detected and electrically combined for symbol-by-symbol

decisions. With a photon-counting receiver, the photo-event count at the receiver's

output obeys Poisson statistics [4] if the optical signal is generated by a single-mode

laser. The expected photo-event arrival rate A (the mean number of photo-event per

unit time) is determined by the received optical power (i.e., energy per bit, given the

bit rate). In this work, the received optical power is a random variable due to the

random channel model as illustrated in Fig. 6-2. Thus the photo-event process at

the detector output can be modeled by a Doubly-Stochastic Point Process [56].
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Figure 6-3: Structure receiver architecture. The receiver is divided into three cascaded
modules: an optical signal processing module, an optical detection module and an
electrical processing module.

6.2.2 Structured Receiver Architecture

One can design an optical receiver using two different approaches. Due to the quantum

nature of weak optical signals, one approach is to use a full quantum description of

the receiver, and optimize it over the class of physically realizable measurements [31].

Quantum receivers are optimum in energy efficiency. However, they are complicated

and hard to realize with current electrical and optical components. In this thesis, a

"structured" or "semi-classical" approach [35] is pursued. Although structured re-

ceivers without feedback can suffer a 3-dB loss of energy efficiency over optimum

receivers for binary signaling, they are much simpler and easier to implement with

current technologies. The architecture of all possible structured receivers can be di-

vided into three cascaded processing modules, as illustrated in Fig. 6-3: an optical

signal processing module, an optical detection module, and an electrical signal pro-

cessing module. The three modules must be jointly optimized to achieve a globally

optimum performance. Causal feedbacks among these blocks are also permissible,

which can make structured receivers achieve the quantum limit for binary signaling

[53]. However, due to their complexity, we will not consider them here.
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6.3 System Characterizations

In this section, the symbol error probability of the lightpath-diversity scheme will

be characterized with an exponentially tight upper bound. It is assumed that, at

the destination node, an idealized receiver obtains the lightpath state vector F from

a "genie" (i.e., the receiver has information of the channel states.) At the optical

signal processing module, optical delay lines are used to compensate for delay vari-

ations among different lightpaths (fiber delays can also be replaced by time delays

in the electrical signal processing stage if M parallel detectors are used.) At the

optical detection module, the photo-events at the output of the M detectors are

recorded for symbol decisions. At the electrical processing module, one apply the

Maximal Likelihood (ML) decision to the vector output of the detectors to make

optimal symbol-by-symbol decisions.

Under the general network model given in Section 6.2, the optimum receiver is

complex, as derived in Section 6.5. The analysis and results would not provide much

insight into the signaling and detection schemes due to the heterogeneity of individual

lightpath. Here we will make the simplifying assumption of homogeneous lightpaths,

resulting in a simpler derivation and the results will provide much better insight into

the proposed transmission scheme:

* All the lightpaths are assumed to be homogeneous and independent; i.e., fi =

f2 fM = f and N 1 = N2 = ... = NM. Although some generality is lost

due to this assumption, results based on this assumption will provide better

insight for the optimization of the proposed transmission scheme. Under this

assumption, a uniform energy (per bit) allocation algorithm at the transmitter

is optimal (See Appendix C.1). Otherwise, the optimal energy (per bit) alloca-

tion algorithm can be obtained by solving a complicated convex optimization

problem.

* All the attenuation parameters are assumed to be equal and normalized to one.

Note that this result can be generalized to the unequal attenuation case by solv-
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ing a complicated convex optimization problem. The detail of this optimization

problem is beyond the scope of this thesis, and thus suppressed here.

6.3.1 Photo-Event Counting Processes

With the BPPM signaling and the uniform energy (per bit) allocation, the optical

signal power over the ith lightpath is either

0 0 <t<
M(t)  -- 2 (6.1)

2 T<t<T

for hypothesis Ho (i.e., symbol "0"), or

10 0<t< T

-P {--2 (6.2)
Ps T<t<T
M' 2 - -

for hypothesis H 1 (i.e., symbol "1"). In both cases, P, is the average output power

of the laser, and T is the symbol time.

The received optical signals can be corrupted by amplifier noise if optical am-

plifiers are used. The noise process is assumed to receive contributions from many

spatial-temporal modes, and the probability of two successive noise-driven photo-

events coming from the same spatial-temporal mode is close to zero. It follows that

the Weak Photon-Coherence Assumption holds and one can approximate the noise-

driven photo-event process with a point process of a constant rate An equal to its

mean [11]. This approximation is accurate within about 1-dB for a single channel.

With M channels and many amplifiers in cascade, one can expect the approximation

to be even better. Consequently, taking into account of the noise, the photo-event

rate at the output of the detector is either

n02 - -2
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Figure 6-4: Detected photo-event rates for two hypotheses (Ho and H1) with BPPM
signaling: (a) When the lightpath is UP, the detected rate is the sum of the signal
rate (As/M) and the noise rate (An). (b) When the lightpath is DOWN, the detected
rate is only the noise rate (An).
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for hypothesis Ho, or

=0 < t < T
S+ T <t<T

for hypothesis H1. In both cases, A8 = r•FP/hv(r is the quantum efficiency of the

detector, hvis the photon energy)3 is the rate of the signal photo-event process with

an average signal power of PF, and Fi is a Bernoulli random variable with parameter

1 - f. Fig. 6-4 shows the rates of the photo-event counting process for (a)Fi = 1 and

(b)Fi = 0. For a given hypothesis, the photo-event process is a Doubly-Stochastic

Point Process due to its random rate parameter.

6.3.2 Optimum Detection Rule

In this section, we assume that there is a genie telling the failure status of each

lightpath. In this case, if m < M lightpaths are UP during the symbol duration,

one can re-index them from 1 to m for a "genie-aided" receiver. Under this scenario,

the optimal decision rule is the same as the detection rule for the scenario with m

perfectly reliable lightpaths [61], i.e.,

H=H0
m H= Hom

kil i2, (6.5)
i=1 l i=1

where kil and ki2 are photo-event counts during [0, T/2] and [T/2, T] over the light-

path, respectively.

6.3.3 Symbol Error Probability Bound

In this section, we derive an exponentially tight upper bound for the error probability

of the genie-aided receiver via a two-step procedure:
3The attenuation coefficient has been normalized to one and thus is suppressed in this chapter.
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1. the Chernoff Bound of the error probability conditioning on the number of UP

lightpaths is calculated; and

2. the overall error probability upper bound is calculated by averaging the con-

ditional error probability bound over the distribution of the number of UP

lightpaths.

Given that m lightpaths are UP during the transmission, the conditional error

probability is defined as

Pr(Elm) = Po Pr kil [ < ki2jH0, Hm + pl Pr kil > ki2 Hl, m

=Pr [ kil < ki2 Ho, (6.6)

where po, pi are probabilities of sending the "ZERO" or "ONE" bit, and the second

equality is due to the symmetry of binary pulse-position modulation and Po = pi =

1/2 for equiprobable digital source. Since the closed form solution of Pr(Elm) is in-

volved with summation of infinite numbers of terms, the exponentially tight Chernoff

Upper Bound [61] is used here,

Pr ki1  ki2 H0 , mj • E8>o es(Ei ki2-= k) H, m

- emN,(e -1)+( UN+mN,)(e 1) (6.7)

where N, = TA,/2 is the average data-driven photo-event count of duration T/2

with binary pulse-position modulation and N, = TA,/2 is the average noise-driven

photo-event count per 1/2 bit. Since the inequality is valid for any value of s > 0 ,

the bound can be tightened by minimizing the right hand side of (6.7),

mNN
Pr(eIm) < minexp{mNs(es - 1) + (-M + mNn)(e- - 1)}s>o M

= exp {-m( + Nn - N) 2} (6.8)M
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where the minimum is achieved when e0 = V1 + Ns/(MNn).

The overall error probability is then obtained by averaging the conditional error

probability (6.8) over the distribution of the number of UP lightpaths, m ,

M

Pr(E) = Pr(E m) Pr(m). (6.9)
m=0

The number of UP lightpaths can be written as m =- Fi. It can be verified that

m has a binomial distribution of

MI
Pr(m) = M ! (1 - f)mfM-m. (6.10)

Substituting (6.8) and (6.10) into (6.9), one can obtain

M M!
Pr(E) •< m!(M - M)! (1 - f)mfM-m -m')(NgsNnM) A PBGA (6.11)

m=0

where V/(Ns, Nn, M) = (VNs/M + Nn - \ )2. Note that the right hand side of

(6.11) has the form of the characteristic function of the random variable m . Using the

fact that the characteristic function of a binomial random variable X - B(n, 1 - f)

is [f + (1- f)eJv]n [9], one can obtain the upper bound of the overall error probability

as
VM

PBGA = f +(1 - f)e-( N/MNn )2 (6.12)

For a sanity check, if f = 0, (6.12) turns out to be

PBGA = exp{-( N ,+ MNn- N )2}, (6.13)

which is the error probability bound for the source-destination pair connected by

M reliable lightpaths. Note that f is the probability of the lightpath being DOWN

where the error probability is equal to 1, and 1 - f is the probability of the lightpath

being UP where the error probability is bounded by the term e - 0(NsNn' M) , which

is the Chernoff Bound for the error probability of a single lightpath with NS/M
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Figure 6-5: Error probability bounds for the idealized receiver with different number
of lightpaths exhibit different characteristics in different signal-to-noise photon rate
ratios. The star indicates the optimal operating point for each chosen number of
lightpaths. f = 0.01 and N,, = 2.

signal photons per a bit and N, noise photons per half a bit. It follows that the

term f + (1 - f) exp{-O(N,, Nn, M)} is the Chernoff Bound of the expected error

probability for a single lightpath with signal power P = N s and failure probability

f. The overall error probability bound is obtained by reducing this expected error

probability of a single lightpath to its Mth power, which can be defined as the lightpath

diversity gain.

The error probability upper-bound (6.12) is plotted in Fig. 6-5, where the error

curves exhibit different characteristics in three different signal-to-noise photon rate

ratio regimes.

In the low signal-to-noise photon rate ratio regime, the lightpath-diversity mecha-

nism has an inherently poor error performance, and thus is of no engineering interest.
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In particular, if one let f -- 0 and = Ns/(MN,) < 1, the error probability bound

is reduced to
N2

PBGA exp 4MN } .  (6.14)

The error exponent decreases if more lightpaths are used, which suggests that it

actually hurts to use lightpath diversity in the low signal-to-noise photon rate ratio

regime.

In the high signal-to-noise photon rate ratio regime, the error probability curves

converge to error floors because the effect of lightpath failures dominates that of the

amplification and detection noises. In fact, if one let NS/M - c0 and Ns/M > N,

for a fixed f, the symbol error probability becomes

PBGA , fM. (6.15)

This verifies that the error floor phenomenon corresponds to the event in which the

source-destination pair is disconnected from each other, with probability of fM. This

result suggests that topologies with a small probability of disconnection are preferable

for reliable networks [64, 65]. Moreover, due to this saturation property, one cannot

improve the error performance by simply increasing the signal-to-noise photon rate

ratio. Thus, it is inefficient in energy utilization to work in the super-high signal-to-

noise photon rate ratio regime.

In the medium-to-high signal-to-noise photon rate ratio regime, the error perfor-

mance depends on the number of lightpaths ( M, the lightpath diversity gain) and

the signal-to-noise photon rate ratio. After some algebraic manipulations, (6.12) can

be written as

PBGA = { f+ (1 - f) exp[-N(,(Q + 1 - 1)2]} M ,  (6.16)

where the signal-to-noise photon rate ratio is given by Q = NS/MNn. As shown in

(6.16), in order to achieve a lower error probability, we want to increase the number

of lightpaths M and the signal-to-noise photon rate ratio simultaneously. However,
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for a given amount of optical energy per bit (signal photons per bit, Ns), it can be

seen that
N

M x -= " (6.17)

This indicates that the number of lightpaths M and the signal-to-noise photon rate

ratio Q are two factors competing for a limited amount of optical energy. Therefore,

one needs to balance this trade-off to optimize the system performance and improve

the energy efficiency, which will be addressed in the next section.

6.4 System Optimizations

The output optical energy (per bit) of the transmitter is limited by physical con-

straints such as laser construction. One needs to utilize this limited amount of optical

energy efficiently. As indicated in last section, the energy efficiency can be improved

over the choice of the number of lightpaths for different objective functions.

6.4.1 Minimizing Error Probability for Limited Amount of

Optical Energy

Given a limited amount of optical energy, the number of lightpaths can be chosen to

minimize the error probability. Equivalently, one can minimize the error probability

bound PBGA since this bound is exponentially tight. It can be formulated as the

following nonlinear optimziation problem,

min G(M) = [f + (1 - f)e-/)(Ns'Nn'M)]M

s.t. M E N. (6.18)

Instead of finding the exact solution, one can relax the integer constraint, and

assume M is a positive real number to solve the approximate problem without the

integer constraint. Note that the minimum of G(M) without the integer constraint is

a lower bound of the minimum of G(M) with the integer constraint. If 0 < f < 1/2
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Figure 6-6: Optimal number of lightpath M* is plotted against the average number
of signal photons per bit Ns. As a comparison, the results from the exhaustive search
algorithm is plotted.
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(we are interested in this region since practical networks seldom have f > 1/2), the

optimum lightpath number M* (See Appendix C.2) is approximated by

N
M* (6.19)(( f, N,)'

where ((f, Nn) = In(1/ f- 1)+ 2 VN/ n(1/f - 1). Considering the boundary condi-

tion that the minimum number of lightpath is one, the optimal number of lightpaths

is given by M* = max 1, I N8). In this chapter, we are interested in the non-

constant part, i.e., .N~ For comparison, we have also found the optimal integer

M* by using an exhaustive search algorithm. In Fig. 6-6, the results from both the

exhaustive search algorithm (bullets) and the analytical solution (lines) are plotted

against different signal energy levels, i.e., the average number of signal photons per

bit Ns. The analytical results match the numerical results well.

According to (6.19) and Fig. 6-6, the optimum lightpath number M* decreases

with higher noise energy per slot since one wants to maintain a certain level of signal-

to-noise photon rate ratio, and also decreases with more reliable lightpaths since one

has no incentive of using light-path diversity if the lightpath is reliable. Moreover,

the optimum lightpath number M* increases linearly with the transmitted energy per

bit Ns. This suggests that each lightpath requires a fixed optimal average number of

signal photons per bit, i.e.,

Ns n (6.20)= In( f - 1) + 2 In(7- 1)7(6.20

which is fully determined by the parameters of the lightpath, i.e., the lightpath failure

probability f and the noise level Nn. When the lightpath is very reliable (i.e., f < 1),

this number is asymptotically equal to In(f -1 ) + 2 /•vln(f- 1). This asymptotic

result suggests that the optimal average number of photons per lightpath increases

with higher noises and more reliable lightpaths. This is because, under these two

scenarios, one needs more optical energy per lightpath to bias the lightpath at the

optimum operating point, which will be addressed next.
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Substituting (6.19) into (6.12), the minimum error probability bound is approxi-

mated by

PB*A (2f)M *.  (6.21)

This indicates that, at the optimum operating point where the number of lightpaths

are optimally chosen to minimize the error probability bound for a given amount of

optical energy (per bit), each lightpath is biased to have an effective error probability of

2f, which is close to the saturation error probability of f for an individual lightpath.

This result implies that the optimum operating point lies in the medium-to-high

signal-to-noise photon rate ratio regime but near the high signal-to-noise photon rate

ratio regime. This also justifies why each lightpath requires more photons when the

lightpath is more reliable. In fact, when the lightpath failure probability f decreases,

we need to increase the signal-to-noise photon rate ratio to sustain an effective error

probability of 2f.

Furthermore, if f < 1, the minimum error probability bound is approximated by

1
PBA exp{- N8}. (6.22)

1+2 -ln(f 1)

The error exponent decreases linearly with the optical energy (per bit). This again

suggests that the optimum strategy works at the medium-to-high signal-to-noise pho-

ton rate ratio regime and near the high signal-to-noise photon rate ratio regime;

otherwise, the error exponent would depend quadratically on the total signal energy

transmitted in low signal-to-noise photon rate ratio regime [56]. This is verified in Fig.

6-5 where the points marked by stars near the high signal-to-noise photon rate ratio

regime correspond to optimum operating points for different optical energy per bit in-

dicated in the horizontal axis. Also shown in (6.22), the ratio N,/ ln(f -1 ) determines

the minimum error probability bound for a limited amount of optical energy (per

bit)Ns. This says that both the noise and the lightpath failure probability exponent

contribute equally in determining the optimum operating point. Finally, the asymp-

totic minimum error probability bound (6.22) approaches zero when one increases the
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optical energy (per bit). This implies that one can eliminate the saturation effect in

the super-high signal-to-noise photon rate ratio regime if one chooses the number of

lightpaths optimally.

6.4.2 Minimizing Energy Consumption for Target Error Prob-

ability

In this section, we will minimize the total transmitted optical energy (per bit) for

a target error probability. Since the Chernoff Bound is exponentially tight, one can

minimize the transmitted optical energy (per bit) for an equivalent target error prob-

ability bound. This is actually the dual of the problem of minimizing the error

probability for a limited amount of optical energy.

For a given amount of optical energy (per bit) Ns, if one substitutes (6.19) into

(6.21), one can approximate the minimum error probability bound approximated by

Pb a exp{-Ns8 (f, Nn)}, (6.23)

where O(f, Nn) = -ln(2f)/((f, N,) > 0. Using (6.23), one can obtain the required

minimum optical energy (per bit) for a target error probability bound Pb , given by

- ln(Pb) (6.24)
8 8 (f , Nn)

Substituting (6.24) into (6.19), the optimal number of lightpaths to minimize the

transmitted energy (per bit) is obtained as

Mr= In(Pb)Mt ln() = log2f (Pb). (6.25)In(2f)

In Fig. 6-7, the optimum lightpath number Mt and the minimum optical energy

(per bit) N8t are plotted against different target error probabilities using the Chernoff

bound, according to the analytical solutions (6.25) and (6.24). As a comparison, the

numerical results from an exhaustive search algorithm are also labeled as points. Also
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in Fig. 6-7, the case of f = 0 is plotted for reference. If the lightpath is perfectly

reliable (i.e., f = 0), lightpath diversity is not used since using more lightpaths only

increases the total noise and degrades the error performance as suggested by (6.14).

As shown in Fig. 6-7, both the optimal number of lightpaths and the minimum

optical energy (per bit) increase with lower target error probabilities, because each

lightpath is biased at the optimum operating point to have error probability of 2f

by requiring an optimum average number of photons (per bit). Notice also from Fig.

6-7 that more lightpaths are needed to achieve a target error probability bound when

the reliability of individual lightpath deteriorates.

In (6.25), one cannot directly observe the effect of noise in determining the opti-

mum lightpath number Mt. As implied by (6.21), at the optimum operating point,

each lightpath is biased to have error probability of 2f , which is independent of the

noise N,. At the same time, in order to work at the optimum operating point, each

lightpath requires an optimum average number of signal photons (per bit) given by

(6.20). Therefore, when the noise increases, instead of requiring more lightpaths, we

increase the total optical energy (per bit) to maintain the signal-to-noise photon rate

ratio and thus bias each lightpath to have an effective error probability of 2f. In fact,

if one lets f < 1, the required minimum optical energy (per bit) is approximated by

N -ln(Pb) 1+2 - (6.26)[ In(f)

This says that, if one increases N, , the required minimum optical energy (per bit)

increases to bias each lightpath to maintain an effective error probability of 2f and

thus the target error probability bound is achieved without requiring more lightpaths.

6.5 Optimum Realizable Receivers

Pragmatic engineering design is basically a trade-off between implementation com-

plexity and symbol error probability. In general, in order to achieve a lower error

probability, the receiver needs to estimate states of all the lightpaths for symbol de-
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cisions. This joint estimation and detection approach can result in a complicated

receiver structure. On the other hand, a simpler receiver uses simpler lightpath

state estimators or does not estimate the lightpath states at all, and thus usually

has a higher error probability. To highlight this trade-off, two extreme cases for the

complexity-error trade-off are explored in this chapter:

1. The optimal receiver: It has the lowest symbol error probability, but has the

most complicated receiver architecture. This will be investigated in this section.

2. The equal-gain-combining receiver: The receiver architecture is much simpler.

However, the error performance is sub-optimum since it does not exploit all

the available information at the receiver. This will be investigated in the next

section.

Between the two extreme cases are other reasonably good sub-optimal receivers.

Their error performance is usually better than that of the equal-gain-combining re-

ceiver, and worse than that of the optimal receiver. On the other hand, their complex-

ity falls between the most complicated optimal receiver and the simplest equal-gain-

combining receiver. One of the research objectives in this chapter is to see how these

receivers perform in different signal-to-noise photon rate ratio regimes and generalize

rules of thumb to balance the complexity-error trade-off in practical optical receiver

design.

In this section, we will first find the optimal counting receiver under the following

framework. At the optical signal processing module, optical delay lines are used to

compensate for delay variations among different lightpaths (fiber delays can also be

replaced by time delays in the electrical processing stage since we will use parallel

detectors); at the detection module, photon-counting receivers are used to record

the photo-event times for symbol decisions; at the electrical processing module, to

minimize the symbol decision error probability, a Maximum Likelihood (ML) detector

is used to make symbol decisions based on the recorded photo-event time statistic.
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6.5.1 Optimum Receiver Architecture

Let us start with the calculation of the likelihood functions for both hypotheses. For

the ith channel, let (kil, ki2 ) be photo-event counts during the first half bit interval

[0, T/2] and the second half bit interval [T/2, T], and

(6.27)

be the corresponding photo-event time statistic. The conditional distribution density

functions of the time statistic at the lightpath output, as derived in [56], are given by

(6.28)

and

S (1) (j+k
j=1

kil
p(til, ti2lHO) = (

j=1

p(til, ti2 H1) = (XA,)
kil + An) X- r[T P(1) (t)dt]-2Nne M fJT/2

where the minimum mean squared error (MMSE) causal estimate of the lightpath

state for hypotheses Hj (j = 0, 1) is given by

F ý () E [FP = H i, Nt = 0],{ E[F ) H, Nt = k, til , ti2],
Nt=0

Nt = k > 1
(6.30)

and Nt is the number of photo-events over [0, t]. As derived in Appendix C.3, these

estimators are given by

1 + f exp(-st)(1 + Q)-Nt' t
I f M"\ /

T
E [0, ]) 2 (6.31)

where Nt is the number of photo-events over [o, t], and

(6.32)
1+ e ye'Mt- )(1t + ) -(Nt -NT/2 )' 2T
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where Nt is the photon count over [0, t], and NT/2 is the photon count over [0, T/2]

of the same realization of the photo-event process.

Note that the photo-event time statistics of the lightpaths are independent be-

cause the lightpaths belong to different shared-risk groups. It follows that the overall

conditional distribution density functions can be written as

M

p(tl,t 2 Ho) = ]Jptil,ti2 Ho) (6.33)
i=1

and
M

P(tl,t 2 HI) = ptil, ti2 H) (6.34)
i=1

where tl, t 2 Ho) = (t 11 , t 21,., tM1, t 12, t 22, ... , tM2) is the overall photo-event time

statistics. Using (6.33) and (6.34), the log likelihood-ratio can be written as

In A{t, N 1,N 2 : 0 < t < T} = In (tl t2 N I, N 21H° )
p(tl, t2, N1, N2 H)

SIn (1 + F (0) - f ) (t)dt
i=1 l j=1

M (ki2 A T

- ln(1 + F' (tJ+kil)) - -• j 1)(t) dt  (6.35)
i=1 j=I T/2

where Q = A,/MA, = NS/MN, is the signal-to-noise photon rate ratio. After some

algebraic manipulations, one can obtain the maximum likelihood detection rule as

M -kil T/2
S ln(1 + Fj(o)(t )Q) - A Fo)(t)dt

i=1 j= 1

< I= in(1 + fF 1(t+kil - -(2

H=H1 i=1 j=
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For a sanity check, assume all the lightpaths are UP, i.e., Fi(°)(t) = (1)(t) = 1 ,

during the symbol transmission, the decision rule (6.36) turns out to be

M t= Ho M

• k, ki-2, (6.37)
i=1 - i=1H = H,

Note that the detection rule (6.37) is identical to the detection rule for the case with

invulnerable lightpaths [61].

Note that each received photon is weighed by the scaling factor ln(1 + F(tj)Q)

which depends on the lightpath state estimate at the photon arrival time. If the

estimate of the lightpath state is large meaning that the possibility of the lightpath

being UP is high, the scaling factor is large since it is more likely that the photon

comes from the signal, not the noise. On the contrary, one assigns a small scaling

factor to the photon if the lightpath state estimate is small. In particular, if one

estimates that the lightpath is DOWN, the scaling factor is equal to zero since the

photon must come from noise and thus should not be taken into consideration for

detection.

Moreover, Detection rule (6.36) indicates a fundamental decomposition of func-

tions in the optimal receiver structure, which is generalized as the separation theorem

of detection in [56]. In particular, the receiver consists of two separable operation

modules, i.e., estimators for lightpath states and signal processing modules for hy-

pothesis testing, as shown in Fig. 6-8. This separation property suggests that one

may be able to replace the complicated optimal lightpath state estimator with some

simpler heuristic state estimators to reduce the receiver complexity without mod-

ifying the receiver structure. This idea often performs well in practice and yields

near-optimal policies in dynamic programming [8]. Therefore, it is expected that

the error performance with sub-optimal lightpath state estimators is not degraded

significantly, which indeed is true, as will be shown in next sub-section.
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Figure 6-8: Optimal receiver architecture. T 1(t 1 , E(o)(t)) = Z l In( + (k i (0 (t~3))-

M f0T/2 •() (t)dt, where til are photo-event time statistics and A(o) (t) are channel sate
estimators under Ho. '2(ti 2, •i()(t)) = Z 1 n ( 1) j+ k)) - T f/2 Fi(t)dt,
where t 21 are photo-event time statistics and F') (t) are channel sate estimators under
H1 .
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6.5.2 Error Performance

In this section, the error performance of the optimal receiver is analyzed. In particular,

a lower bound and an upper bound are derived for the exponentially tight Chernoff

Bound of the symbol error probability.

As illustrated in Section 6.3, the symbol error probability of the genie-aided re-

ceiver is the 'genie-aided' limit of the proposed architecture within the class of struc-

tured receivers. For a sense of how well the optimal receiver performs, one can use

the Chernoff Bound of the genie-aided receiver as a lower bound for Chernoff Bound

of the optimal receiver because the Chernoff Bound is exponentially tight [61]. This

suggests that the following lower bound for the Chernoff error bound of the optimal

receiver,

PBopt [f + (1 _ f)e-(N,,Nn,M)]M A PBB, (6.38)

where i(N,, N,, M) = (v N,/M- -N-)2 , N, = AT/2 is the average number of

signal-driven photo-events per bit, N, = A,T/2 is the average number of noise-driven

photo-events per half a bit, and PBopt is the error bound of the optimal receiver.

On the other hand, the optimal receiver must perform better than any suboptimal

receiver within the class of structured receivers [35]. It follows that one can use the

Chernoff Bound of any suboptimal receiver as an upper bound for the performance

of the optimal receiver. In particular, one can choose a suboptimal receiver that uses

the following non-causal estimator,

/ 0, if F(T) <0.5(6.39)

S1, if F(T) > 0.5

where F(T) is the MMSE causal estimate of the channel state at time t = T and

is the estimated lightpath state. If F = 0 , the receiver estimates the lightpath to

be DOWN and thus discards the received signal over that lightpath. Otherwise, the

receiver estimates the lightpath to be UP and thus uses the received optical signal

over that lightpath for optimal combining and symbol decisions.
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As derived in Appendix C.4, the upper bound for the Chernoff error bound of the

optimal receiver, which is also the Chernoff error bound of the suboptimal receiver,

is given by

PBopt < [g + (1 - g)e " )]M p PBo. (6.40)

Here, the probability that the lightpath is estimated to be DOWN, g = Pr(F(T) <

1/2) , is given by

= f e- + (1-f) N +N , (6.41)
k=0 k=O 0

where
N, + In( f

NTH = M 1-f (6.42)In(1 + N,)

is the number of photons per bit beyond which the lightpath is estimated to be UP.

In (6.42), Ns/M is the average number of photons per lightpath per bit, In[f/(1 - f)]
is the additional number of photons needed to declare that the lightpath is UP,

and both numbers must be adjusted by the term ln(1 + NI/MN,), which is the

scaling factor in (30), to obtain the actual number of photons. If 0 < f < 1/2,

then ln[f/(1 - f)] < 0 . This means that the actual number of photons needed is

reduced since the probability of the lightpath being UP is higher and fewer photons

per lightpath are needed for the estimator to declare that the lightpath is UP. If

1/2 < f < 1, then ln[f/(1 - f)] > 0. This means that the actual number of photons

needed is increased since the probability of the lightpath being DOWN is higher and

more photons per lightpath are needed for the estimator to declare that the lightpath

is UP.

Note that the lower bound (6.38) and the upper bound (6.40) have the same

form, except that the prior lightpath failure probability f in (6.38) is replaced by the

estimated lightpath failure probability g in (6.40). This implies that the tightness

of the lower bound and the upper bound highly depends on the difference between

the estimated lightpath failure probability and the prior lightpath failure probability.

To explore this, the estimated lightpath failure probability g is compared with the
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Figure 6-9: Estimated lightpath failure probability g is compared with the prior
failure probability f under different signal-to-noise photon rate ratios.
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prior failure probability f in Fig. 6-9. Note that the difference between these two

probabilities is negligible when the signal-to-noise photon rate ratio is high enough.

It follows that the lower bound and the upper bound are close to each other, and

thus both are very tight. This is verified in Fig. 6-10 where the lower bound and

the upper bound are plotted against the average number of signal photons per bit.

Moreover, these tight bounds suggest that the optimal receiver exhibits the same error

characteristics in different signal-to-noise photon rate ratio regimes as the 'genie-

aided' receiver, as shown in Fig. 6-10. In the super-high signal-to-noise photon

rate ratio regime, the error bound converges to an error floor fM, the probability

with which the source-destination pair is disconnected. This suggests that network

topologies with small probability of disconnection should be considered for ultra-high

reliable optical networks. In the lower signal-to-noise photon rate ratio regime, the

error probability increases with more lightpaths. It indicates that lightpath diversity

actually hurts in this regime and be of no engineering interest. In the medium-to-high

signal-to-noise photon rate ratio regime, the error probability depends on both the

number of lightpaths and the signal-to-noise photon rate ratio. These two factors,

however, are competing with each other for a given amount of optical energy. Hence,

one needs to balance this trade-off to achieve better energy efficiency. This, along

with the fact that the optimal receiver performs close to the 'genie-aided' receiver

limit, suggests that system parameters optimized for the genie-aided receiver, such

as the optimum number of lightpaths derived for different objective functions, also

apply for the optimal receiver in the medium-to-high signal-to-noise photon rate ratio

regime.

6.6 Equal-Gain-Combining Receivers

Although the optimal receiver has the lowest symbol error probability, it involves

complicated processing by estimating the individual lightpath state throughout the

symbol duration. In this section, we will develop one particular suboptimal receiver,

the equal-gain-combining receiver, which not only approaches the optimal receiver in
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the symbol error probability under most scenarios, but also has the advantage of a

simpler architecture.

6.6.1 Receiver Architecture

In the equal-gain-combining receiver, rather than estimating lightpath states, one

assumes all the lightpaths to be UP and use the Maximum Likelihood decision rule

to do symbol detection. Mathematically, the equal-gain-combining receiver employs

the following decision rule

M H = H M
k ki2, (6.43)

i= 1 H i=1

to make symbol-to-symbol decision based only on the photo-event counts. Decision

rule (6.43) is much simpler than decision rule (6.36) in that only one photon-counting

receiver is needed. This indicates that the equal-gain-combining receiver offer a sig-

nificant reduction in implementation complexity compared to the optimal receiver, at

the expense of a degraded error performance, as shown in the following subsection.

6.6.2 Performance Analysis

Let us start with the calculation of the error bound for the equal-gain-combining

receiver. Given the lightpath state vector F, the conditional error probability is

defined by

M M m M

Pr(E|Fm) = PoPr[ kil < ki2| Ho, F] +plPr[E kil _ ki2 H1 ,F]
i=1 i=1 i=1 i=1

M M

= Pr[- kil < ki2 Ho, F] (6.44)
i=1 i=1
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where po, pi are probabilities of sending the "ZERO" or "ONE" bit, and the second

equality is due to the symmetry of binary pulse-position modulation and Po = pi =

1/2 for equiprobable digital source.

Let K1 = -M kil be the total photo-event count recorded over [0, T/2], and

K2 = Em1 k i2 be the total photo-event count recorded over [T/2, T]. Note that,

given hypothesisHo and the lightpath state vector F, Klis a Poisson random variable

with mean mN s/M + MNn, where m = E-M1 F, is the number of UP lightpaths for a

given lightpath state vector F, and K2is a Poisson random variable with mean MN,.

Using the Chernoff Bound, the conditional error probability is bounded by

Pr(EIF) = exp{-( m( ) + MNn - M )2 }. (6.45)

Notice that m is a binomial random variable with a distribution function of Pr(m =

k) = (M) (1 - f )kfM-kk = 0, 1, ... ,M . Averaging (6.45) over all possible lightpath

state vectors F E {0, 1}M , we obtain the error bound for the equal-gain-combining

receiver as

M

Pr()= k!M! (1 - f)kfM-ke-(vk(N 8/M)+MNn-MA-MN) 2  (6.46)
k=0

Using (6.46), one can compare the error bound of the equal-gain-combining re-

ceiver with the 'genie-aided' receiver limit in Fig. 6-11. In the low signal-to-noise

photon rate ratio regime, the error probability is inherently high and of no engineer-

ing interest. In the medium-to-high signal-to-noise photon rate ratio regime, the gap

between error bounds of the equal-gain-combining receiver and the 'genie-aided' limit

is larger than the gap between error bounds of the optimal receiver and the 'genie-

aided' limit. With the equal-gain-combining receiver, noise from DOWN lightpaths

will degrade the average signal-to-noise photon rate ratio and thus increases the error

probability since the error probability in the medium-to-high signal-to-noise photon

rate ratio regime is sensitive to the signal-to-noise photon rate ratio. However, in the

high signal-to-noise photon rate ratio regime, the equal-gain-combining receiver has
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Figure 6-11: Error bounds of the EGC receiver are compared with the genie-aided
receiver limit under different lightpath numbers. f = 0.01 and N, = 2.
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an error bound close to the 'genie-aided' receiver limit. This indicates that the equal-

gain-combining receiver is preferable to the optimal receiver in the high signal-to-noise

photon rate ratio regime due to its simplicity. In fact, the equal-gain-combining re-

ceiver approaches asymptotically the optimal receiver when the noise is negligible, as

to be shown next.

6.6.3 Power Penalty

Since the error probability of the equal-gain-combining receiver is higher than that

of the 'genie-aided' receiver, one needs to transmit more optical energy in order for

the equal-gain-combining receiver to achieve the same target error probability as the

'genie-aided' receiver does in the medium-to-high signal-to-noise photon rate ratio

regime. In this subsection, we determine this amount of additional power for the

equal-gain-combining receiver to achieve a target error probability bound compared

to the genie-aided receiver. For a target error probability bound of Pb , the power

penalty of the equal-gain-combining receiver over the 'genie-aided' receiver is defined

as
N*(Pb, f, Nu; EGC) 1

6 = 10 log10 [N-(Pb f) N; EGC) (6.47)
0 N(blfNn; GA) I

where N*(Pb, f, Nn; GA) and N,*(Pb, f, Nn; EGC) are the minimum amounts of opti-

cal power (in terms of average number of signal photons per bit) for the genie-aided

receiver and the equal-gain-combining receiver respectively to achieve a target error

probability Pb.

Using numerical results by exhaustive searching, the optimal number of lightpaths

and the minimum transmitted optical energy are plotted in Fig. 6-12 (a) and (b). To

achieve the same error probability bound, the equal-gain-combining receiver requires

more lightpaths and more optical energy. This suggests that a more densely-connected

network topology is needed to provide enough independent lightpaths for the equal-

gain-combining receiver. The power penalty is plotted in Fig. 6-12 (c) and (d).

From plot (c), the power penalty is asymptotically independent of the target error

probability. This is due to two reasons. First, the error bound of the equal-gain-
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Figure 6-12: (a)Optimal number of lightpaths to minimize the total optical energy is
plotted against different target error probability bounds. (b) The minimum number
of signal photons per bit is plotted against different target error probability bounds
for the genie-aided receiver and the EGC receiver. In (a) and (b), we set f = 0.01 and
N, = 2. GA: genie-aided receiver; EGC: equal-gain-combining receiver. (c) Power
penalty of the EGC receiver is plotted under different target error probability bounds.
(d) Power penalty of the EGC receiver is plotted under different noise levels.
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combining receiver is close to that of the genie-aided receiver with optimized system

parameters. Second, the minimum transmitted power is linear with the error exponent

given by (6.24) in Section 6.4. It follows that, at the optimum operating points,

both error bounds are parallel to each other in a log-log plot. The power penalty

is approximately determined by the ratio between the slopes of the error exponents

of the 'genie-aided' receiver and the equal-gain-combining receiver at the respective

optimum operating points. Therefore, the power penalty is independent of the target

error probability bounds. On the other hand, the power penalty increases with higher

noise levels as shown in plot (d), and approaches zero when the noise level goes to zero.

This demonstrates that the equal-gain-combining receiver is generally suboptimal and

approaches the optimal receiver when the noise level decreases. In particular, if there

is no noise, the equal-gain-combining receiver would be optimal because the receiver

would not receive any noise from DOWN lightpaths to degrade the error performance.

Moreover, for the practically interesting parameters, the power penalty is around

1-dB. In practical system design, if this 1-dB penalty is acceptable, the equal-gain-

combing receiver is preferable over the optimum receiver due to its simplicity.

6.7 Conclusion

In this chapter, the use of lightpath-diversity was proposed to achieve ultra-reliable

end-to-end communication with low delay requirements in all-optical networks. For

a network with dense connections, arbitrary reliability can be achieved if enough

independent lightpaths are used. Since this approach is implemented entirely at

the Physical Layer without the use of higher layer protocols such as ARQ's (i.e.,

Automatic Repeat reQuest), the response is fast enough for applications with super-

high date rates and/or critical time deadlines.

From a theoretical perspective, we have characterized the proposed lightpath-

diversity system with a Doubly-Stochastic Point Process model. The limit on the error

probability of the scheme has been obtained via a 'genie-aided' receiver. This 'genie-

aided' receiver limit serves as a benchmark for practical receiver architectures. Under
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typical operating scenarios, we have optimized the system performance by choosing an

optimal number of lightpaths to utilize the limited optical power efficiently. Analytical

proof showed that, at the optimum operating point, each lightpath requires an optimum

number of signal photons to bias itself at the effective error probability of 2f, where

f is the lightpath failure probability. This optimum average number of photons per

lightpath is fully determined by the lightpath parameters, including the lightpath

failure probability and the noise level.

From an engineering perspective, we have investigated the class of structured

receivers for the multiple-lightpath transmission architecture. Using the Doubly

Stochastic Point Process model, we have developed the architecture of the optimal

receiver, and have bounded its error performance with a lower bound (the genie-

aided receiver) and an upper bound (non-causal estimator). The tightness of the

lower bound and the upper bound indicates that the optimal receiver approaches the

genie-aided limit of structured receivers, and thus system parameters optimized for

the genie-aided receiver apply to the optimal receiver in the medium-to-high signal-

to-noise photon rate ratio regime. However, the optimal receiver needs to estimate

lightpath states throughout the symbol time, which is complicated. To balance error

probability performance and implementation complexity, we suggested the use of a

suboptimal equal-gain-combining receiver with lower complexity, and have character-

ized its error performance. Performance comparison between the equal-gain-combing

receiver and the 'genie-aided' receiver limit of structured receiver showed that the

power penalty of the equal-gain-combining receiver decreases with decreasing noise

level. These results suggest that the equal-gain-combing receiver is preferable to the

optimal receiver in the high signal-to-noise photon rate ratio regime, and the optimal

receiver is needed for good performance in the low signal-to-noise photon rate ratio

regime at the expense of increased complexity. For practical system design, if the 1-dB

penalty (for typical system parameters)is acceptable, the equal-gain-combing receiver

is always the preferable due to its simplicity.
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Chapter 7

Thesis Contributions

Rapid progress in the field of communication systems and networks during the last

decade has yielded increasingly faster, more intelligent and almost ubiquitous net-

work services. Quality of service (e.g., fast, reliable, robust and secure) is of vital

importance in current network design. Achieving this objective at an affordable cost,

however, has become more challenging mainly due to network dynamics. Examples of

network dynamics include varying channel conditions in wireless networks and tran-

sient effects enabled by agile lightpath reconfigurations in optical networks. In this

thesis, we are particularly interested in two research areas: i) monitoring state infor-

mation about network dynamics and ii) overcoming detrimental effects resulting from

network dynamics. Both areas are crucial for network carriers to maintain promised

quality of service. This thesis focuses on characterizing major tradeoffs among various

performance metrics, with an objective of providing engineering insights for practical

network designs.

7.1 Network Diagnosis via a Framework of Group

Testing over Graphs

In order to deliver promised quality of service, network carriers run sophisticated net-

work management systems (NMS) to manage and control network operations. NMS
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relies on network state information provided by network monitoring schemes that

normally have multiple design objectives, such as low overhead, small delay, and high

accuracy. Network-monitoring schemes for different applications have been tailored

previously to their unique design requirements, for example, small delay for fault de-

tection and high accuracy for network tomography. Nevertheless, different network-

monitoring functions share some commonalities (e.g., using random variables to model

parameters under monitoring). Therefore, we have been motivated to develop: i) a

common mathematical framework that models key issues in network monitoring, and

ii) an information-theoretic approach that maps the network-diagnosis problem into

the source-coding problem by viewing network states as source alphabets and diag-

nosis algorithms as source codes. This mapping allows us to exploit well-established

information-theoretic results to characterize the trade-offs among different design met-

rics and develop optimal diagnostic algorithms.

As an example, we have investigated the fault detection and localization problem

for dynamic optical networks. Main results obtained in this research are as follows.

* We have developed a group-testing-over-graphs framework to model the fault-

diagnosis problem. The network is abstracted as a graph in which the failure

status of each node/link is modeled as a Bernoulli random variable. Probing

signals are sent along a set of lightpaths and their measurements are used to infer

the network state of health. This framework can be extended to model many

other network monitoring applications by choosing appropriate state variables.

* We have identified and characterized the trade-off between the number of light-

path probes (as a metric of the diagnostic effort) and the number of probing

steps (as a metric of the diagnostic delay). This trade-off can be balanced by

scheduling lightpath probes in different fashions: i) adaptive diagnosis, where

individual probes are sent sequentially, ii) non-adaptive diagnosis, where probes

are sent in parallel, and iii) multi-stage diagnosis, where probes are sent sequen-

tially in batches.
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* We have initiated an information-theoretic approach to minimizing the num-

ber of lightpath probes for adaptive diagnosis schemes, by mapping the fault-

diagnosis problem into the source-coding problem. This mapping leads to an

entropy lower bound on the number of probes and an approach to translating

efficient source codes (e.g., the run-length code) into scalable fault-diagnosis

schemes.

* We have started to characterize the trade-off between the hardware cost and

the probability of successful diagnosis. Preliminary results indicate that the

hardware cost can be reduced significantly by accepting some uncertainty in

assessing the network state.

The immediate plan to continue this research focuses on exploiting the theoretical

frontier in the group-testing-over-graphs framework:

Diagnosis for different performance parameters Our previous research assumes

that the network performance parameter being monitored is the node/link fail-

ure status, modeled as a Bernoulli random variable. Choosing appropriate state

random variables, we would like to extend this framework to design scalable di-

agnosis schemes for other network performance parameters (e.g., noise level,

packet delay, packet drop ratio, etc).

Diagnosis with probabilistic measurements Our previous research assumes that

the probe syndrome is a deterministic function of all the probed node/link

states. In general, probe syndromes could be probabilistic, due to noisy or un-

reliable measurements. In this case, the key design objective is to characterize

the trade-off between the diagnostic effort and the estimate error.

Diagnosis with acceptable uncertainty Our previous research has indicated that

the hardware diagnostic cost (e.g., transmitters/receivers) is prohibitively high

for 100% diagnostic confidence. It is of practical interest to investigate how this

capital cost scales with some diagnostic uncertainty.
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7.2 Lightpath Diversity for Ultra-reliable Commu-

nications

In the data plane, quality of service can be improved by incorporating redundancy into

network design in order to overcome the detrimental effects engendered by network

dynamics. The idea of adding redundancy, such as error-correction codes for noisy

channels, has been successfully implemented in point-to-point communications. In

networked communications, the richly-connected network fabric, inherent in emerg-

ing mesh networks, provides additional venues for redundancy via multipath connec-

tions. In Chapter 6, we have explored a physical-layer lightpath diversity scheme

that transmits the same signals along multiple lightpaths in optical networks. In par-

ticular, we have developed an optimum signaling and detection scheme to optimize

system performance and provide reliable end-to-end data delivery in the presence of

network failures.

Specifically, we have obtained the following results:

* We have derived an upper bound (i.e., the Chernoff bound) on the bit error prob-

ability for the proposed lightpath-diversity system with a Doubly-Stochastic

Point Process model. The limit on the error probability of the scheme has been

obtained via a 'genie-aided' receiver. This 'genie-aided' receiver limit serves as

a benchmark for practical receiver architectures.

* We have optimized the system performance by choosing an optimal number

of lightpaths to utilize the limited optical power efficiently. Analytical proof

showed that each lightpath requires an optimum number of signal photons to

bias itself at the effective error probability of 2f where f is the failure probability

of each lightpath. This optimum average number of photons per lightpath is

fully determined by the lightpath parameters, including the lightpath failure

probability and the noise level.

* We have developed the architecture of the optimal receiver(causal estimator),

and have bounded its error performance with a lower bound (the genie-aided
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receiver) and an upper bound (non-causal estimator). The tightness of the lower

bound and the upper bound indicates that the optimal receiver approaches the

genie-aided limit of structured receivers, and thus system parameters optimized

for the genie-aided receiver apply to the optimal receiver in the medium-to-high

signal-to-noise photon rate ratio regime.

* We have also developed a suboptimal equal-gain-combining receiver with lower

complexity, and have characterized its error performance. Performance com-

parison between the equal-gain-combing receiver and the 'genie-aided' receiver

limit of structured receiver showed that the power penalty of the equal-gain-

combining receiver decreases with decreasing noise level. These results suggest

that the equal-gain-combing receiver is preferable to the optimal receiver in the

high signal-to-noise photon rate ratio regime, and the optimal receiver is needed

for good performance in the low signal-to-noise photon rate ratio regime at the

expense of increased complexity. For practical system design, if the marginal

1-dB penalty is acceptable, the equal-gain-combing receiver is always the prefer-

able due to its simplicity.
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Appendix A

Adaptive Fault Diagnosis Schemes

A.1 Optimality of the Link-Wise Probing Scheme

In this section, we will establish the optimality condition under which the link-wise

probing scheme is optimal, as summarized in the following theorem:

Theorem A.1. For any non-trivial network topology with a connected component of

more than one edge, the edge-wise probing scheme is optimal if and only if the edge

failure probability is larger than 3- (the golden ratio).

Proof. First of all, if the number of edges in any connected component is less than

or equal to one, the optimal probing scheme is always to probe each individual edge

in the network. In the following, we focus on network topologies with a connected

component of at least two edges.

Let £*(m, p) be the minimum average number of probes for any network with m

links, where p is the failure probability of each individual link. It is easy to see that

£*(m, p) < m, because one can always probe each individual links.

First, let us look at the case of m = 2, as illustrated in Fig. A-1(a). There are

only two possible probing schemes in this case, as shown in Fig. A-1(b) and A-1(c).

For the probing scheme T1, the average number of probes required is

£-, = 2. (A.1)
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(a) 2-Link Line Network

(b) Probing Scheme One (c) Probing Scheme Two

Figure A-i: Case study for a 2-line line network: (a) a line network with 2 edge;(b)
probing scheme one (Ti); (c) probing scheme two (T2 ).
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For the probing scheme T2, the average number of probes required is

= 1 x (1 -p) 2 + 2 x (1 -p)p+3 x p= -p 2 +3p+ 1. (A.2)

Solving the inequality of t&r, •< £Z2 , we obtain

< p < 1. (A.3)2

This suggests that link-wise probing scheme for this case is optimal when p 2 -

For the case of m > 2, we split the network into two subgraphs: one network

with k links and the other network with m - k link. These two networks are probed

separately. It can be seen that

* (m, p) < £* (k, p) + C£*(m - k,p). (A.4)

Using the upper bound of IC*(m, p) < m and the fact that 1C*(m,p) < 2 if 0 < p <

2, we can obtain

£*(m, p) < £*(m - 2, p) + C*(2, p) < m - 2 + £C*(2, p) < m. (A.5)

This result indicates that, for 0 < p < 3 and m > 2, the link-wise probing scheme

is not optimal.

The part of the proof is to show that the link-wise probing scheme is optimal for

3-,/ < p < 1 and m > 2. Without loss of optimality, we assume that every good

probing scheme (equivalently, probing decision trees) has the following properties:

1. The same probe will not occur more than once on the same path from the root

to any of network states, although it may occur in many inner nodes of the

probing decision tree.

2. Let t be a probe at an inner node c. In the left subtree Ti (corresponding to the

probe syndrome rt = 0), none of probes will be constituted by a subset of links

from probe t and one more link that is not from probe t. In the right subtree
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I "T
11 II"

(a) Original Probing Scheme, T (b) New Probing Scheme, T'

Figure A-2: Reducing an original probing scheme into a link-wise probing scheme:
(a) the original probing scheme and (b) the new probing scheme.

T[ (corresponding to the probe syndrome rt = 1), none of probes will contain

all the link from probe t.

3. A probe will not be performed if its syndrome can be inferred from previous

probe syndromes.

Now consider an arbitrary probing scheme which satisfies the above properties and

contains a probe whose length is more than 1. We will reduce it into the link-wise

probing scheme so that the average number of probes for the link-wise probing scheme

is less than that of the original probing scheme under the condition of p 3> -"

Let § be the inner node on the probing decision tree T such that the probe t at

§ has a length of it > 2 and all other probes at the subtree T, has a length of 1. As

shown in Fig. A-2(a), we denote the left subtree for rt = 0 as I and the right subtree

for rt = 1 as II.

Let w denote one of the end links in probe t and the state of link w is unknown

(otherwise, there is no reason to include link w in probe t). The new probing scheme

T' is constructed as follows. Instead of performing probe t at the node ,, we perform
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the probe t - {w}. If the syndrome of probe t - {w} is ONE, we know that the

syndrome of probe t would be also ONE and we can continue the probing tree in

the same manner as when when then syndrome of probe t is ONE in the old probing

decision tree T. The additional information may enable us to infer the result of some

probes; these will of course not be performed in the new probing scheme. This part

of the subtree is denoted at II'.

If the syndrome of probe t- {w} is ZERO, we perform probe {w}. If the syndrome

of probe {w}. If the syndrome of probe {w} is ZERO, we have exactly the same

information as when the syndrome of probe t is ZERO in the old probing scheme,

and we continue the probing tree in the same manner as in T. If the syndrome of

probe {w} is ONE, we again proceed as in the case of rt = 1 in the old probing

scheme, except that we skip all the tests whose syndromes can be inferred.

The reminder of the probing decision tree, i.e., everything that is not in the subtree

T,, is left unchanged.

Next, we will calculate the difference between the average number of probes in the

original probing scheme T and the new probing scheme T'. For any network state

in the subtree T,, its probability is the product of three components: the probability

Pr(A) of individual link states that have been determined before node ', the probabil-

ity Pr(w) of unknown link states of probe t, and the probability Pr(B) of individual

link states that are yet to be determined after node ý except for links in probe t.

Furthermore, these network states can be classified into 21t subsets, and each subset

has the same link states in probe t and different link states for other links.

From Fig. A-2, we have the following observations:

1. The probing depth of network states in subtree I is increased by 1, since we

probe t - {w} and {w} in the new probing scheme, but we only probe t in the

original probing scheme.

2. The probing depth of network states in subtree II" is reduced by It - 2. In

the original probing scheme, we need It - 1 individual probes after node c to

identify the states of links in t, i.e., to probe the it - 1 fault-free links implies
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that the last link fails. In the new probing scheme, only 1 probe is needed after

node ý.

3. The probing depth of at least one subset of network states in subtree II' is

reduced by 1. For example, the first It - 2 individual links of probe t - {w} are

fault-free implies that the last link fails. The probing depth of this subset of

network states is reduced by 1.

In the following, we calculate the reduction of the average number of probes under

two scenarios.

Case 1: It = 2

Without loss of generality, we assume that t = wIw 2. Using the above observa-

tions, we obtain

T - L,V = - Pr(A) Pr(B)(1 - p) 2 + Pr(A) Pr(B)p(1 - p) + Pr(A) Pr(B)p2

= Pr(A) Pr(B)(-p 2 + 3p - 1). (A.6)

In order to make the reduction of the average number of probes positive, we have

-p2 + 3p- 1 > 0 3 - <p< 1.
2

Case 2: It > 2

In this case, the reduction of the average number of probes in subtree I is given

At, = -(1 - p)lt Pr(A) Pr(B). (A.8)

The reduction of the average number of probes in subtree II" is given by

A -",, = (1 - p)lt-lp Pr(A) Pr(B).

The reduction of the average number of probes in subtree II' is at least

AZI,,, = (1 - p)1t-2p2 Pr(A) Pr(B).

(A.9)

(A.10)
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Combining all these results, we obtain

-T - L = •t-,+ A-Ii' + AncI

> (1 - p)1t-2 Pr(A) Pr(B)(-p 2 + 3p - 1). (A.11)

For 3- < p < 1, we have LT - r, > 0. Therefore, the average number of
2 --

probes decreases by the modification.

The same procedure can continue until we end up with the link-wise probing

scheme without increasing the average number of probes. Therefore, the link-wise

probing scheme is optimal if @ 5< p < 1.

]

A.2 Proof of Theorem 2.1: Performance of Run-

Length Probing Schemes

In this section, we prove the performance of run-length probing schemes by resorting

their information-theoretic interpretations.

Lemma A.1. For a large Eulerian network whose link failures are modeled as identi-

cal and independent Bernoulli random variables with parameter p, the average num-

ber of probes per edge required by the run-length probing scheme to fully identify the

network state, denoted as -RLPA, can be approximated by the code rate of its corre-

sponding run-length code, i.e.,

RLPA Pý [log 2 K] + 1+ 1( k R(p), (A.12)
RLPA P ( 1092 1 - ( - p)K}

where K = [-log_,p(2 - p)] and k = 2Llog2 KJ+1 - K.

Proof. For any prefix code, the average codeword length is defined as

Le = E Pr(z)lz, (A.13)
zEZ
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where Z is the symbol set of {0 1}o0, and lz is the codeword length for any prefix

code. Gallager proved that the run-length code minimizes the average codeword

length, i.e.,

L= Pr(z)/l = min Pr(z)li, (A.14)
C Z CEC
zEZ

where L is the average length of the run-lengh of the run-length code, I* is the codeword length for

source alphabet z, and C is the set of all prefix codes for the geometrically distributed

source.

For an Euler trail with m links, the average number of probes required by the

run-length probing scheme is given by

LRLPA = E*z, (A.15)
zEZ

where 1z is the run-length code for symbol z, and nz is the number of occurrence of

the network sub-state zin a typical network state s.

Note that, when m -4 oc, using the law of large number, we obtain

m
nz - Pr(z) _ , (A.16)

iis

where Pr(z) is the probability of substate z and hs = 11 is the average number of

pattern bits per source alphabet.

Substituting (A.16) into (A.15), we obtain the average number of probes per edge

as

lim 'RLPA = lim R* Pr(z)A-- -= (p). (A.17)
zEZ

m]
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Appendix B

Non-Adaptive Fault Diagnosis

Schemes

In this appendix, we present the proof of the correctness of testing algorithms for

various networks1 .

B.1 Correctness of Testing Algorithm for 2-D Grid

Networks

The correctness of Algorithm 3 can be established as follows.

* Suppose that the edge failure happens in column 1. This fact will be uncovered

in Step la. The edges in all other columns and in all rows are intact, and

therefore it is valid to use them for routing in Step lb. It follows that Step lb

correctly performs the LTP on the edges of column 1 and identifies the edge

failure.

* Suppose that the edge failure happens in row 1. A similar argument shows that

Step 2 identifies the edge failure.
1The content in this chapter is based on the joint work with Nicholas J.A. Harvey, Mihai Patrascu

and Sergey Yekhanin at CSAIL MIT., and has been published in [30].
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* Suppose that the edge failure happens on the ith edge in row j > 2. All column

edges are intact, and can be used to route probes in Step 3a. It follows that

Step 3a correctly performs the LTP on all rows and identifies the row containing

the edge failure. The edges of row 1 are intact, and can be used for routing

probes in Step 3b to identify the edge failure.

* Suppose that the edge failure happens on the ith edge in column j > 2. A

similar argument shows that Step 4 identifies the edge.

B.2 Proof of Theorem 3.6 for Tree Topologies

For the proof, we fix an arbitrary root.

First consider the lower bound. The Q(log n) bound is from the CGT lower bound

of (3.1).

We now show the upper bound of O(D - log n). The strategy works as follows.

Starting from d = 1 and increasing d from 1 to D, we do the following two types of

probes:

1. Probe the sub-tree containing the root and all nodes up to depth d. This

constitute one probe.

2. Assuming that the failed edge is at level d + 1, use the sub-tree of depth d as a

hub to test nodes at depth d + 1. The number of Type 2 probes for each d is

up to log n.

The diagnosis algorithm first looks at probes of Type 1, and determines the level at

which the failure occurred. Then, it uses the probes of Type 2 made at the relevant

level to identify the edge failure.

The number of probes for each d is O(log n), and thus the total number of probe

is O(D - log n).
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Appendix C

Lightpath Diversity

C.1 Optimum Power Allocation Algorithm for Ho-

mogenous Lightpaths

For a M-connected source-destination pair, the power allocation vector is

(C.1)

and the state vector is

(C.2)

with a probability distribution

Pr(F) M (1 - fPr(F) = fE , Fi(= _ f)M-_E,1F, (C.3)

For the 'genie-aided' receiver, the overall error probability upper-bound is given by

(C.4)PBGA Pr(F)e-( FT(P+N)- )2

FE{O,1}M

where N, = (N,, N,,...,Nn)T is the noise power vector and {0,1}Mis the M-

dimensional vector space over the {0, 1} field. To minimize the error probability,
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one can solve the following nonlinear programming problem,

min 7-(P) = E
FE{O,1}M

s.t. pT 1 I Ps,

Pr(F)e-( FT(PN )_ FN) 2

(C.5)

where 1 = (1, 1,..., 1)T.

From the fact that, for each F = (F1 , F2,... FM)T E {0, 1}M, the function

h(P) = e-(/F(p+N _ ))2 (C.6)

is a convex function defined over a compact convex set

M

(P1, P2 .. 7 PM) E E P, Ps, (C.7)
i=1

one can conclude that the objective function R7-(P) is convex over the compact convex

set. It follows that the minimization problem (C.5) has a unique solution due to the

convex property.

From the Karush-Kuhn-Tuck Conditions [7], one can have

VpL(P, j) = 0, (C.8)

where the Lagrange function is given by

L(P, p) = H-(P) - /(PT1 - Ps), (C.9)

and p is a Lagrange multiplier. It can be verified that the following power allocation

vector

PS
(C.10)
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satisfies the necessary condition of (C.8). It follows that (C.10) must be the unique

minimizer of the objective function. This result indicates that the uniform power

allocation algorithm is optimal under the assumption of homogenous lightpaths.

C.2 Optimum Number of Lightpaths Used for a

Limited Amount of Transmitted Optical En-

ergy

In this subsection, I will solve the nonlinear programming problem given by

min G(M) = [f + (1 - f) exp {-0(Ns, Nn, M)}]M. (C.11)
M>0

From the Implicit Function Theorem [7], there exists a function M* = c(Ns, Ns, f)

such that G(M) is minimized over the convex set M : M E R+ . One can find an

approximation of the function M* = p(Ný, Nn, f) as follows.

Let a = f and b(M) = (1 - f) exp{-O(N, N~, M)}. Note that 0 < a, b(M) < 1

and G(M) = (a + b(M))M. To a first order approximation, in the medium signal-

to-noise photon rate ratio regime, the optimum number M* of lightpaths can be

approximated by the value of M where the curve aM and the curve bM meet, i.e.,

aM = b(M)M. (C.12)

If 0 < f < 0.5, (C.12) has a unique solution given by

M* = (C.13)
ln( - 1) + 2- n( - 1) (C13)

This approximation is found to be very accurate when compared to a numerical search

for M*.

Intuitively, this derivation can be understood as follows. For each individual light-

path channel, there are two detrimental factors that degrade the error performance.
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One is the noise, the other is the lightpath failure. If the lightpath works in high

signal-to-noise photon rate ratio regime, the error due to the noise is dominated by

the error due to the lightpath failure such that the error probability is floored by the

failure probability f. The energy efficiency in this regime is very low but error prob-

ability is also low. On the other hand, if the lightpath works in low signal-to-noise

photon rate ratio regime, the error due to the noise dominates the error due to the

lightpath failure such that the error probability is on the order of 1. In this regime,

the energy efficiency is high but the error probability is also high. As a trade-off

between the energy efficiency and the error probability, the optimal operation point

should be the point where both noise and failure contribute equally to the error prob-

ability, i.e., f = (1 - f) exp {-0(Ns, N,, M)} . The optimal number of signal photons

per lightpath follows from this observation.

C.3 MMSE Lightpath State Estimator for Opti-

mum Receivers

In designing the optimal receiver, one needs to find the MMSE causal estimator of

lightpath states. I will start by incorporating the following lemma in [56], which is

crucial to the derivation of the MMSE causal lightpath state estimator.

Lemma C.1. Estimation of random variables in Doubly Stochastic Point Processes

For a Doubly Stochastic Point-Process N(t) : t > to with a random arrival rate A(t, x,

where x is a time-independent random vector, let at(x) be a time-dependent vector-

value function of the random vector x and such that E(lat(x)2 ) < o00. Then, for a

recorded time statistic t = (t 1, t2 ,..., tn), the MMSE causal estimate of the function

at(x) of x is the conditional mean at, given by

E[at(x) exp{At(x)}]
at = E[at(x)] = (C.14)E[exp {At(x)}] (C.14)

where At(x) = - ftto A(T, x)dT + ft, In A(T, x)dN,.
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For simplicity, the subscript i is suppressed in the following derivation. Due to

the random channel model, the arrival rate of the photo-event process at the output

of each detector, A(t, F) = FA(t) + An, is a random variable. In particular, F is a

Bernoulli random variable with the probability density function PF() = f(x) + (1 -

f)6(x - 1).
Using (C.14), the MMSE causal estimator of the channel state F is given by

F(t) = E[F t] = E[Fexp{At(F)}]
E[exp{At(F)]

(C.15)

where At(F) = - fto A(, F)dr +f 0to In A(r, F)dN,.

For hypothesis Ho, the photo-event rate is

~ $ X,, < t < TA( (t) M 2
n- -2

X,, <t<T
(C.16)

Substituting (C.16) into (C.15), the MMSE causal estimator of the channel state

F turns out to be

P(0)(t) = T

2'
(C.17)

where Nt is the number of photo-events over [0, t].

For hypothesis H 1, the photo-event rate is

--{A- + An,

0<t<T
-- 2 (C.18)

Substituting (C.18) into (C.15), the MMSE causal estimator of the channel state F

turns out to be

1+ 1 f eA(t-T )
f M (1 + Q)-(Nt-NT/ 2) t e
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F (1)(t) =
T
[- T],2'

(C.19)

SX, _,T1 ) t E [0
1+ Lexp _t)(1+Q)-#' '



where Nt is the photo-event count over [0, t], and NT/2 is the number photo-event

count over [0, T/2] of the same sample function of photo-event process.

C.4 Chernoff Bound of the Symbol Error Proba-

bility for the Receiver with Non-causal Light-

path State Estimator

The suboptimal receiver makes hard-decisions on estimated lightpath states from

causal state estimators at time t = T. The non-causal hard-decision rule is given by

= 0, if F(T) <0.5 (C.20)
1, if F(T) > 0.5

where F(T) is the MMSE causal estimate of the lightpath state at time t = T. If

F = 0, the receiver estimates the lightpath to be DOWN and thus discards the

received signal over that lightpath. Otherwise, the receiver estimates the lightpath

to be UP and thus uses the received optical signal over that lightpath for optimal

combining and symbol decisions.

With hard-decision lightpath states, the symbol decision rule is given by

m H = Ho m

il > ki2 , (C.21)
i= 1 i=l

S Hi1

where m is the number of lightpaths that are estimated to be UP during the symbol

transmission. Note that m is a binomial random variable with a probability dis-

tribution function, Pr(m) = (')(1 - g)mgM-m, where g = Pr(F(T) < 1/2) is the
probability with which the lightpath is estimated to be DOWN during the symbol
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transmission. For both hypotheses, the channel state estimator has the form,

F= [1+ exp
1-f

The probability distribution function of the photon count is

Pr(N = k) = f e -N n + (1 - f) (  + N) e-( +Nn)
P N f

Combining (C.22) and (C.23), the probability with which the lightpath is esti-

mated to be DOWN is given by

9 = Pr(F < 0.5)

= Pr(N <
In(1 + Q) NTH)

NTH

= Pr(N = k).
k=O

(C.24)

To calculate the error bound, one can first calculate the error probability condi-

tioned on the number of lightpaths estimated to be UP during the symbol time. For

given m, the conditional error probability is defined as

M

Pr(6Em) = poPr[Ekil
M

Ski2zHo, Mm] + pi
mr

Pr[
M

k~il k i2 HI, m]
i=1 i=1

M M

= Pr[E kil _ k i
2 

H o, m]
i=1 i=1

i=l i=1

(C.25)

where the second equality is due to the symmetry of BPPM. Using the Chernoff

Bound, the right hand side of (C.25) is bounded by

M

Pr[E
M

ki1 < Zki2 Ho, m] < min {emN(es-1) m( n--+N)(e-s-1)
s>O

where 0(N,,N,, M) = ( - + Nn
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(C.22)

(C.23)

i=1 i=1

= exp{-mV)(Ns,Nn,M)} (C.26)

(N_)( 1 + )-N]-.
M

N, + ln(f) - In(1 -M

- VI)2.



Using (C.24) and (C.26), the error bound of the hard-decision receiver is obtained

by averaging (C.26) over all possible m , that is,

Pr(E) = Pr(Elm) Prm
m=0

M

< =0 e-m(N,,N.,M)

m=0 (M
(1 - g)mgM-m

= [g + (1 - g)e-*(Ns",N"n,M) (C.27)

Note that (C.27) is also an upper bound for the optimal receiver.
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