1,160 research outputs found

    E5501: phase II study of topotecan sequenced with etoposide/cisplatin, and irinotecan/cisplatin sequenced with etoposide for extensive-stage small-cell lung cancer.

    Get PDF
    PURPOSE: Sequence-dependent improved efficacy of topoisomerase I followed by topoisomerase 2 inhibitors was assessed in a randomized phase II study in extensive-stage small-cell lung cancer (SCLC). METHODS: Patients with previously untreated extensive-stage SCLC with measurable disease, ECOG performance status of 0-3 and stable brain metastases were eligible. Arm A consisted of topotecan (0.75 mg/m(2)) on days 1, 2 and 3, etoposide (70 mg/m(2)) and cisplatin (20 mg/m(2)) (PET) on days 8, 9 and 10 in a 3-week cycle. Arm B consisted of irinotecan (50 mg/m(2)) and cisplatin (20 mg/m(2)) on days 1 and 8 followed by etoposide (85 mg/m(2) PO bid) on days 3 and 10 (PIE) in a 3-week cycle. RESULTS: We enrolled 140 patients and randomized 66 eligible patients to each arm. Only 54.5 % of all patients completed the planned maximum 6 cycles. There were grade ≥3 treatment-related adverse events in approximately 70 % of the patients on both arms including 6 treatment-related grade 5 events. The overall response rates (CR + PR) were 69.7 % (90 % CI 59.1-78.9, 95 % CI 57.1-80.4 %) for arm A and 57.6 % (90 % CI 46.7-67.9, 95 % CI 44.8-69.7 %) for arm B. The median progression-free survival and overall survival were 6.4 months (95 % CI 5.4-7.5 months) and 11.9 months (95 % CI 9.6-13.7 months) for arm A and 6.0 months (95 % CI 5.4-7.0 months) and 11.0 months (95 % CI 8.6-13.1 months) for arm B. CONCLUSION: Sequential administration of topoisomerase inhibitors did not improve on the historical efficacy of standard platinum-doublet chemotherapy for extensive-stage SCLC

    Concurrent chemotherapy (carboplatin, paclitaxel, etoposide) and involved-field radiotherapy in limited stage small cell lung cancer: a Dutch multicenter phase II study

    Get PDF
    To improve the prognosis of limited stage small cell lung cancer (LS-SCLC) the addition of concurrent thoracic radiotherapy to a platinum-containing regimen is important. In the Netherlands, we initiated a multicenter, phase II study, of the combination of four cycles of carboplatin (AUC 5), paclitaxel (200 mg m−2) and etoposide (2 × 50 mg orally for 5 days) combined with 45 Gy (daily fractions of 1.8 Gy). The radiation was given to the involved field and concurrently with the second and third chemotherapy cycle. Patients with a partial or complete response received prophylactic cranial irradiation to a dose of 30 Gy. From January 1999 to December 2001, 37 of the 38 patients with LS-SCLC entered were eligible for toxicity analysis and response. Grade 3 and 4 haematological toxicity occurred in 57% (21/37) with febrile neutropenia in 24% (9/37). There were no treatment-related deaths or other grade 4 toxicity. Grade 3 toxicities were oesophagitis (27%), radiation pneumonitis (6%), anorexia (14%), nausea (16%), dyspnea (19%) and lethargy (22%). The objective response rate was 92% (95% confidence interval (CI) 80–98%) with a median survival time of 19.5 months (95% CI 12.8–29.2). The 1-, 2- and 5-year survival rate was 70, 47 and 27%, respectively. In field local recurrences occurred in six patients. Distant metastases were observed in 19 patients of which 13 in the brain. This study indicates that combination chemotherapy with concurrent involved-field radiation therapy is an effective treatment for LS-SCLC. Despite PCI, the brain remained the most important site of recurrence

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    Radiation Therapy in Management of Small-Cell Lung Cancer

    Get PDF

    SEOM clinical guidelines for the treatment of small-cell lung cancer (SCLC) (2019)

    Get PDF
    Small-cell lung cancer (SCLC) accounts for 15% of lung cancers. Only one-third of patients are diagnosed at limited stage. The median survival remains to be around 15-20 months without significative changes in the strategies of treatment for many years. In stage I and IIA, the standard treatment is the surgery followed by adjuvant therapy with platinum-etoposide. In stage IIB-IIIC, the recommended treatment is early concurrent chemotherapy with platinum-etoposide plus thoracic radiotherapy followed by prophylactic cranial irradiation in patients without progression. However, in the extensive stage, significant advances have been observed adding immunotherapy to platinum-etoposide chemotherapy to obtain a significant increase in overall survival, constituting the new recommended standard of care. In the second-line treatment, topotecan remains as the standard treatment. Reinduction with platinum-etoposide is the recommended regimen in patients with sensitive relapse (≥ 3 months) and new drugs such as lurbinectedin and immunotherapy are new treatment options. New biomarkers and new clinical trials designed according to the new classification of SCLC subtypes defined by distinct gene expression profiles are necessary

    A Threefold Dose Intensity Treatment With Ifosfamide, Carboplatin, and Etoposide for Patients With Small Cell Lung Cancer: A Randomized Trial

    Get PDF
    Background The dose intensity of chemotherapy can be increased to the highest possible level by early administration of multiple and sequential high-dose cycles supported by transfusion with peripheral blood progenitor cells (PBPCs). A randomized trial was performed to test the impact of such dose intensification on the long-term survival of patients with small cell lung cancer (SCLC). Methods Patients who had limited or extensive SCLC with no more than two metastatic sites were randomly assigned to high-dose (High, n = 69) or standard-dose (Std, n = 71) chemotherapy with ifosfamide, carboplatin, and etoposide (ICE). High-ICE cycles were supported by transfusion with PBPCs that were collected after two cycles of treatment with epidoxorubicin at 150 mg/m2, paclitaxel at 175 mg/m2, and filgrastim. The primary outcome was 3-year survival. Comparisons between response rates and toxic effects within subgroups (limited or extensive disease, liver metastases or no liver metastases, Eastern Cooperative Oncology Group performance status of 0 or 1, normal or abnormal lactate dehydrogenase levels) were also performed. Results Median relative dose intensity in the High-ICE arm was 293% (range = 174%-392%) of that in the Std-ICE arm. The 3-year survival rates were 18% (95% confidence interval [CI] = 10% to 29%) and 19% (95% CI = 11% to 30%) in the High-ICE and Std-ICE arms, respectively. No differences were observed between the High-ICE and Std-ICE arms in overall response (n = 54 [78%, 95% CI = 67% to 87%] and n = 48 [68%, 95% CI = 55% to 78%], respectively) or complete response (n = 27 [39%, 95% CI = 28% to 52%] and n = 24 [34%, 95% CI = 23% to 46%], respectively). Subgroup analyses showed no benefit for any outcome from High-ICE treatment. Hematologic toxicity was substantial in the Std-ICE arm (grade ≥ 3 neutropenia, n = 49 [70%]; anemia, n = 17 [25%]; thrombopenia, n = 17 [25%]), and three patients (4%) died from toxicity. High-ICE treatment was predictably associated with severe myelosuppression, and five patients (8%) died from toxicity. Conclusions The long-term outcome of SCLC was not improved by raising the dose intensity of ICE chemotherapy by threefol
    corecore